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Introduction

Organic residues survive in two principal forms in
association with archaeological pottery, namely as:
(i) surface residues appearing as visible residues on
the exterior or interior of vessels, and (ii) as ab-
sorbed residues preserved within the vessel wall; in-
visible to the naked eye. The first class of
residues, occurs on the exterior surfaces of and cor-
respond to either sooting derived from heating on
a fire or seemingly rather rare instances of applied
decorations (Urem-Kotsou et al. 2002; Connan et
al. 2004). Together with exterior sooting, the inte-
rior surface residues are probably the group of resi-
dues most familiar to pottery analysts. These are
often carbonised, and presumed to be residues of

‘cooking’ failures, while post-firing treatments are
also seen, particularly as copious linings associated
with Roman amphorae (Beck et al. 1989). Absorbed
residues are by far the most common in pottery and
probably the most widely occurring residue type.
Analyses performed to date suggest that absorbed
organic residues survive in >80% of domestic cook-
ing pottery assemblages worldwide.

Lipids residues of cooking and the processing of
other organic commodities have been found to sur-
vive in archaeological pottery vessels as components
of surface and absorbed residues for several millen-
nia. The most successful analytical approaches in-

ABSTRACT – A collection of pottery from the early Neolithic site of Mala Triglavca was analysed with
the aim of obtaining insights into vessel use and early animal domestication and husbandry prac-
tices in the Adriatic region. Total lipid extracts were submitted to gas chromatography (GC), GC-mass
spectrometry (GC-MS) and GC-combustion-isotope ratio MS (GC-C-IRMS) in order to obtain molecu-
lar and stable carbon isotope signatures as the basis for determining the nature and origins of the
residues. The extracts were dominated by degraded animal fats. The majority (70%) of the total lipid
extracts displayed intact triacylglycerol distributions attributable to ruminant adipose and dairy fats,
which were subsequently confirmed through C16:0 and C18:0 fatty acid δ13C values.

IZVLE∞EK – Izbor kerami≠nih vzorcev iz zgodnje neolitskega najdi∏≠a Mala Triglavca je bil analiziran
z namenom, da bi pridobili dodatne informacije o uporabi kerami≠nih posod ter zna≠aju zgodnje ∫i-
vinoreje na Jadranskem prostoru. Lipidne ekstrakte vzorcev smo analizirali s pomo≠jo plinske kroma-
tografije (GC), plinske kromatografije sklopljene z masno spektrometrijo (GC/MS) in plinske kroma-
tografije sklopljene s se∫igno masno spektrometrijo razmerij izotopov (GC-C-IRMS). V lipidnih eks-
traktih so prevladovale ∫ivalske ma∏≠obe. V ve≠ini (70%) lipidnih ekstraktov so bile prisotne nespre-
menjene trigliceridne distribucije, ki jih lahko pripi∏emo tol∏≠nim ter mle≠nim ma∏≠obam pre∫veko-
valcev. Lipidni izvor je bil nadalje potrjen z δ13C vrednostmi prostih ma∏≠obnih kislin C16:0 in C18:0.
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volve solvent extraction, then using a combination
of instrumental analytical techniques, including: high
temperature-gas chromatography (HTGC), GC/mass
spectrometry (GC/MS; Evershed et al. 1990) and GC-
combustion-isotope ratio MS (GC-C-IRMS; Evershed
et al. 1994), to identify and quantify the components
of the lipid extracts of such residues. Characterisa-
tion of lipid extracts to commodity type is only pos-
sible through detailed knowledge of diagnostic com-
pounds and their associated degradation products
formed during vessel use and/or burial. An increas-
ing range of commodities is being detected in pot-
tery vessels, including animals products (e.g. Ever-
shed et al. 1992; Copley et al. 2003), leafy vegeta-
bles (Evershed et al. 1991; Evershed et al. 1994),
specific plant oils (Condamin et al. 1976; Copley et
al. 2005a) and beeswax (Heron et al. 1994; Ever-
shed et al. 1997; Regert et al. 2001).

Animal fats are by far the most common residue
identified from archaeological pottery, characterised
by high abundances of free fatty acids, particularly
palmitic (C16:0) and stearic acid (C18:0). Triacylglyce-
rols (TAGs) are the major constituents of modern
animal fats, however, they are degraded to diacylgly-
cerols (DAGs), monoacylglycerols (MAGs) and free
fatty acids during vessel use and burial, such that in
archaeological pottery the free fatty acids tend to
predominate. This has been observed in numerous
pottery vessels (Evershed et al. 2001) and verified
through laboratory degradation experiments (e.g.
Charters et al. 1997; Dudd and Evershed 1998;
Evershed 2008). Precise assigning of the origins of
animal fats is only possible through the use of com-
pound-specific stable carbon isotope analysis. GC-C-
IRMS allows the carbon stable isotope (d13C) values
of individual compounds (within a mixture) to be
determined. It has been previously observed that
the δ13C values for the principal fatty acids (C16:0

and C18:0) are crucial in distinguishing between diffe-
rent animal fats, e.g. ruminant and non-ruminant
adipose fats and dairy fats (Evershed et al. 1997a,
Dudd and Evershed 1998), as well as in the identi-
fication of the mixing of commodities (Evershed et
al. 1999; Copley et al. 2001). Recently it has been
demonstrated that dairy products were important
commodities in Early Neolithic at various archaeolo-
gical sites throughout Europe and Near East, as illu-
strated through the persistence of dairy fats in ar-
chaeological pottery vessels (Copley et al. 2003;
2005b; Evershed et al. 2008).

The aim of this investigation was to apply organic
residue analysis to prehistoric pottery from the Neo-

lithic rock shelter Mala Triglavca in order to deter-
mine the nature and origin of preserved lipids and
thereby provide new insights into food preparation
and consumption of the inhabitants. As a conse-
quence of the wider interest in the use of rock shel-
ters in the early Neolithic, the organic analysis of the
pottery from this site offers an important opportu-
nity to explore aspects of animal husbandry, particu-
larly dairying.

Sites and samples

The Neolithic rock shelter site of Mala Triglavca is
situated in the Dinaric karst in south-western Slo-
venia. There is evidence that the site has been con-
tinuously occupied from the Mesolithic until the Mid-
dle ages. Rock shelter sites in the region have most-
ly been interpreted in two different ways: (i) as sea-
sonal camps for hunters/shepherds, or (ii) as places
for long-term settlement. Archaeozoological remains
discovered on the site mainly belong to domestica-
ted animals (cattle, sheep, goat, dog) as well as wild
animals (wild boar, red deer, roe deer). A total of 36
potsherds were selected for analysis from earliest
Neolithic phase.

Materials and methods

Lipid analyses were performed using established pro-
tocols which are described in detail in earlier publi-
cations (Evershed et al. 1990; Charters et al. 1993b).
Briefly, analyses proceeded as follows:

Solvent extraction of lipid residues
Lipid analyses of potsherds involved taking c. 2g
samples from area of the the sherd that had been
surface-cleaned using a modelling drill to remove
any exogenous lipids (e.g. soil or finger lipids due
to handling). The sub-samples were then ground to
a fine powder, accurately weighed and a known
amount (20mg) of internal standard (n-tetratriacon-
tane) added, to enable determination of the lipid
concentration. The lipids were extracted with a mix-
ture of chloroform and methanol (2:1 v/v). Follo-
wing separation from the ground potsherd the sol-
vent was evaporated under a gentle stream of nitro-
gen to obtain the total lipid extract (TLE). Portions
(generally one third aliquots) of the extracts were
then trimethylsilylated and submitted directly to ana-
lysis by HTGC. Where necessary combined GC/MS
analyses were also performed on trimethylsilylated
aliquots of the lipid extracts to enable the elucidation
of structures of components not identifiable on the
basis of HTGC retention time alone.
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Preparation of trimethylsilyl derivatives
Portions of the total lipid extracts were derivatised
using N,O-bis(trimethylsilyl)trifluoroacetamide (40μl;
70°C; 60 min; Sigma-Aldrich Company Ltd., Gilling-
ham, UK) and analysed by HTGC and GC-MS.

Saponification of total lipid extracts
Methanolic sodium hydroxide (5% v/v) was added
to the TLE and heated at 70°C for 1 h. Following
neutralisation, lipids were extracted into chloroform
and the solvent reduced under gentle stream of ni-
trogen.

Preparation of methyl ester derivatives
(FAMEs)
FAMEs were prepared by reaction with BF3-metha-
nol (14% w/v; 100ml; Sigma-Aldrich, Gillingham,
UK) at 70°C for 1 h. The methyl ester derivatives
were extracted with chloroform and the solvent re-
moved under nitrogen. FAMEs were re-dissolved in
hexane for analysis by GC and GC-C-IRMS.

Results

The HTGC and GC/MS analyses serve to quantify
and identify compounds in the TLE, revealing the
possible presence of: (i) animal fat or plant oil, and/
or (ii) plant epicuticular waxes, and/or (iii) beeswax
or other sealants, and/or (iv) mid-chain ketones that
indicate that the vessel has been heated (Evershed
et al. 1995; Raven et al. 1997). Further analyses by
GC-C-IRMS analyses can distinguish between rumi-
nant and non-ruminant adipose fats and dairy fats
by investigating the d13C16:0 and d13C18:0 values. Tab-
le 1 lists the sample designations, the concentrations
of lipids detected and the assignments of the broad
commodity groups present in individual sherds
based on the molecular and isotopic compositions
of the components of the TLEs. Ten of the sherds
(28%) yielded significant concentrations of lipid (i.e.
>5mgg–1) sufficient for further analysis by GC-MS
and GC-C-IRMS.

Figure 1 shows a typical partial gas chromatogram
for the TLE of sample 08MT, revealing the presence
of free fatty acids, with high abundances of C16:0

and C18:0 components, mono-, di- and triacylglycerols
(MAGs, DAGs, TAGs). The chromatogram also shows
presence of odd carbon number saturated fatty acids,
iso- and anteiso-branched odd carbon number fatty
acids (C15:0br, C17:0br), which may indicate a ruminant
source (Mottram et al. 1999; Evershed et al. 2001).
Traces of wax esters were also present eluting in the
region of the TAGs.

MAGs, DAGs and TAGs, which are indicative of de-
graded animal fat were detected in 7 of the TLEs to-
gether with relatively high abundances of the pal-
mitic (C16:0) and stearic (C18:0) free fatty acids, which
as discussed above, are the terminal products of TAG
hydrolysis. Previous work has shown that the TAG
distributions can be linked to different sources,
thereby allowing preliminary differentiation of fats
of the two major classes of domestic animals (rumi-
nant and non-ruminant) and ruminant dairy fats.

However, laboratory experiments have shown that
TAG distributions can be skewed by degradation; the
wide TAG distribution characteristic of fresh rumi-
nant dairy fat is considerably narrowed, and thus
comes to resemble the narrower distribution seen in
ruminant adipose fat (Dudd et al. 1998; Dudd and
Evershed 1998). Therefore conclusions drawn from
TAG distributions have to be made with caution. The
TAG distributions preserved in the extracts from the
Mala Triglavca sherds are shown in Figure 3.

The total lipid extracts (TLEs) of samples 08MT,
18MT, 78MT, 79MT and 159MT displayed relatively
broad TAG distributions with acyl carbon number
range of C44 to C54, maximising at C50/C52. Such dis-
tributions are characteristic of reference ruminant
adipose fat, or degraded milk fat. In contrast, the ex-
tract of 13MT displayed quite a narrow TAG distribu-

Fig. 1. Partial HTGC profile of the trimethylsilylated
total lipid extract from sample 08MT, showing the
distribution of components characteristic of degra-
ded animal fat. Key: CX:0 are saturated free fatty
acids of carbon length x, br stand for branched
fatty acids, IS is the internal standard (C34 n-alka-
ne). MAGs are monoacylglycerols; DAGs are dia-
cylglycerols; TAGs are triacylglycerols.
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tion, with an acyl carbon number range of C50 to C54,
maximising at C52, which is identical to reference ru-
minant adipose fats (Fig. 2).

The 8 TLEs that yielded appreciable lipid concentra-
tions analysed further by GC-C-IRMS to determine
the d13C values for the major fatty acids (C16:0 and
C18:0); these values are plotted in Figure 4. The d13C
values obtained for modern reference animal fats
from the major domesticated animals exploited in
prehistory are grouped within confidence ellipses,
onto which the values from archaeological pottery
are plotted. The d13C values for the C18:0 fatty acid
are more depleted in milk fats than in ruminant adi-
pose fats, thus enabling distinctions to be drawn be-
tween milk and adipose fats from ruminant animals
(Dudd and Evershed 1998). This is witnessed in the
c. 2.5 ‰ shift between centroids of the reference ru-
minant adipose fat and ruminant dairy fat ellipses.
The less depleted d13C values seen for the fatty acids
in non-ruminant fats compared to equivalent compo-

nents in ruminant fat are to be due to differences in
diet and in the metabolic and biochemical processes
involved in the formation of body fats in ruminant
and non-ruminant animals.

The d13C values for the C16:0 and C18:0 fatty acids
from 18MT, 79MT, 87MT, 88MT and 161MT plot
within or adjacent to the dairy fat reference confi-
dence ellipse, while that from 75MT plots within the
ruminant adipose reference fat ellipse. Values from
08MT and 13MT plot between the porcine adipose
fat and ruminant adipose fat ellipses. These d13C va-
lues are most likely indicative of mixing of commodi-
ties in the vessels, which may have occurred through
multiple use of the vessel or through the contempo-
raneous mixing of animal products.

The modern fats used to construct the reference iso-
tope plot were reared on a strict C3 diet of fodders
and cereals. The slight displacement of some of the
d13C values to the right of the mixing curves may be

Fig. 2. Histograms showing the typical acyl carbon number distributions expected for triacylglycerols
deriving from degraded lipid residues obtained from: (a) ruminant dairy fat, (b) ruminant adipose, and
(c) pig adipose (Berstan 2002).

Fig. 3. The distributions of TAGs detected in the Mala Triglavca total lipid extracts.
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Lab. Lipid
dd13C16>0 dd13C18>0 Predominant

sample concentration Lipids detected
± 0.3 (‰) ± 0.3 (‰) commodity type

no. (mmg g–1)

08MT 173.35
FA (16∏18< 14, 15, 15br,17, 17br,

–26.5 –29.9 mixture of animal fats
19, 20), MAG, DAG, TAG, WE

09MT 1.90 n\a n\a n\a n\a

11MT 0.81 n\a n\a n\a n\a

12MT 0.42 n\a n\a n\a n\a

13MT 11.56
FA (16∏18), MAG, A,

–26.7 –28.8 ruminant adipose fat
OH, DAG, WE, TAG

14MT 0.24 n\a n\a n\a n\a

15MT 0.00 n\a n\a n\a n\a

16MT 0.00 n\a n\a n\a n\a

17MT 1.01 n\a n\a n\a n\a

18MT 88.09
FA (16∏18< 14, 15, 15br,17, 17br, 18>1,

–27.7 –33.3 dairy fat
19, 20, 21, 22, 23, 24), MAG, DAG, TAG

75MT 90.54
FA (16∏18< 14, 15, 15br,17, 17br,

–29.0 –31.5 ruminant adipose fat
18>1, 19, 20), MAG, DAG, TAG

76MT 2.92 n\a n\a n\a n\a

77MT 0.00 n\a n\a n\a n\a

78MT 2.58 n\a n\a n\a n\a

79MT 27.23
FA (16π18< 14,17, 17br, 18>1, 19,

–27.8 –32.9 dairy fat
20), MAG, OH, A, DAG, TAG, P

80MT 3.45 n\a n\a n\a n\a

81MT 1.34 n\a n\a n\a n\a

82MT 0.00 n\a n\a n\a n\a

83MT 3.12 n\a n\a n\a n\a

84MT 1.10 n\a n\a n\a n\a

85MT 1.34 n\a n\a n\a n\a

86MT 1.38 n\a n\a n\a n\a

87MT 21.93
FA (16π18< 14,17, 17br,

–27.3 –32.2 dairy fat
18>1, 19, 20), OH, A, P

88MT 9.93 FA (16π18< 14, 20), P –27.0 –31.9 dairy fat

89MT 0.00 n\a n\a n\a n\a

156MT 10.06 FA (16π18< 18>1), P n\a n\a |

157MT 4.06 n\a n\a n\a n\a

158MT 0.98 n\a n\a n\a n\a

159MT 12.65 FA (16π18), MAG, DAG, TAG, P n\a n\a dairy fat |

160MT 5.53 n\a n\a n\a n\a

161MT 43.81 FA (16∏18), MAG, DAG –29.5 –34.1 dairy fat

162MT 2.77 n\a n\a n\a n\a

163MT 4.02 n\a n\a n\a n\a

164MT 2.47 n\a n\a n\a n\a

165MT 1.53 n\a n\a n\a n\a

166MT 4.67 n\a n\a n\a n\a

Tab. 1. Summary of the results of the organic residue analyses of Mala Triglavca early Neolithic pot-
sherds.
Key: FA refers to free fatty acids, MAG to monoacylglycerols; DAG to diacylglycerols; TAG to triacylglyc-
erols; A are n-alkanes, K are mid chain ketones, WE are wax esters, P are plasticizers and nd = none
detected. Annotation 18:1 refers to the level of unsaturation and 17br to branched free fatty acids.
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due to the fact that the animals in prehistory were
reared on diets, which varied in d13C values compa-
red to today’s values today environmental influen-
ces. D13C values (d13C16:0 – d13C18:0) are also a use-
ful indicator of lipid origin where such variations
exist. Figure 5 displays the D13C values plotted
against d13C16:0 values for the Mala Triglavca pot-
sherd fatty acids. The ranges on the left side of the
graph are from the modern reference fats.

Using Figure 5, it was possible to more securely attri-
bute the Mala Triglavca residues to their potential
lipid sources. Sample 13MT, which was plotted on
Figure 4 in between the ruminant dairy and adipose
reference ellipse, can now be more accurately attri-
buted to the latter, together with 75MT. Unfortuna-
tely, the same could not be achieved for TLE of sam-
ple 08MT, which remains plotted on the boarder of
two ranges and most likely the consequence of mix-

ing of different types of fat during
the pottery use. 

Discussion

The lipid components of the orga-
nic residues preserved in the early
Neolithic vessels from Mala Triglav-
ca displayed reasonable preserva-
tion given their age, with appreci-
able TLEs being detected in 28% of
the sherds analysed. The high de-
gree of preservation overall was
also reflected in the survival of acyl-
glycerol components (MAGs, DAGs
and TAGs) in a significant propor-
tion (70%) of TLEs. Although some-
what later age the lipid residues
from Mala Triglavca show similar
rate of recovery and mean concen-
trations to those observed in early

Fig. 4. Scatter plot showing the δδ13C values of C16:0

and C18:0 fatty acids prepared from total lipid
extracts of Mala Triglavca potsherds. The values of
modern reference fats are represented by confi-
dence ellipses (1 standard deviation). Lines con-
necting the ellipses represent theoretical δδ13C val-
ues obtained through the mixing of these fats.

Fig. 5. A plot showing the difference between ΔΔ13C
values (δδ13C18:0 – δδ13C16:0) and δδ13C values obtai-
ned from the C16:0 fatty acids extracted from the
Mala Triglavca potsherds. The ranges for the mo-
dern reference fats are plotted to the left of the dia-
gram.

Fig. 6. A plot showing the correlation between success rate (which is
number of TLEs with appreciable lipid concentration divided by to-
tal number of samples analysed) and mean lipid concentration for
Mala Triglavca and other regions with evidences for early Neolithic
milk use.
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Neolithic pottery from SE Europe, Turkey and Near
East (Fig. 6; Evershed et al. 2008). Interestingly,
dairy fats dominate the preserved lipids at Mala Tri-
glavca, and display a mean lipid concentration of
15mgg–1, which is comparable to the concentration
seen in pottery from the other regions where early
Neolithic milk use has been demonstrated. The con-
centrations and rate of recovery of lipid from British
Neolithic pottery are both significantly higher than
the more southerly located sites and likely reflect
preservational differences related to climate and age
(Copley et al. 2005b).

Returning to the Mala Triglavca residues there is
also a good correlation between the triacylglycerol
distributions preserved and interpretations of rumi-
nant dairy and adipose fats in pottery based upon
stable carbon isotope values. None of the total lipid
extracts contained porcine adipose fat, which agrees
with the low percentages of pigs in faunal assem-
blage from the site, which is dominated by small cat-
tle and sheep/goat. The latter clearly correlates with
the fat type detected in the pottery, although the fats
from the different species cannot be separated. In-
terestingly, Mleku∫ has recently managed to partial-
ly reconstruct herd structures using faunal remains
from early Neolithic sites on the Adriatic coast. The
earliest animal domestication and husbandry ap-
pears to have involved exploitation of both animal
meat as well as dairy products (Mleku∫ 2006). Ana-
lyses of absorbed lipid residues of pottery from Mala
Triglavca confirm this interpretation – the Neolithic

inhabitants of the site were using diverse domestica-
ted animal products in every day food preparation
and consumption. Since no mid-chain ketones were
present in any of the extracts it appears that the ves-
sels were not heated to high temperatures (>300° C)
during use (Raven et al. 1997).

In summary, the results obtained from lipid analy-
ses of the Mala Triglavca pottery is consistent with
on-going debate concerning the integration of ani-
mal domestication into early farming as part of the
Neolithisation process along the Adriatic coast. The
results concur with recent findings from organic re-
sidue analyses of Neolithic pottery from the SE Eu-
rope and Near East, where it has been shown that
the early use of dairy products dates back at least to
the 7th millennium BC and rather than being a fixed
package, likely developed in different ways and in
different geographical regions (Evershed et al. 2008;
Mleku∫ et al. 2008).
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