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Abstract

LetH be a graph and let k ≥ χ(H) be an integer. The k-colouring graph ofH , denoted
Gk(H), is the graph whose vertex set consists of all proper k-vertex-colourings (or simply
k-colourings) of H using colours {1, 2, . . . , k}; two vertices of Gk(H) are adjacent if and
only if the corresponding k-colourings differ in colour on exactly one vertex of H . If
Gk(H) has a Hamilton cycle, then H is said to have a Gray code of k-colourings, and the
Gray code number of H is the least integer k0(H) such that Gk(H) has a Gray code of
k-colourings for all k ≥ k0(H). Choo and MacGillivray determine the Gray code numbers
of trees. We extend this result to 2-trees. A 2-tree is constructed recursively by starting with
a complete graph on three vertices and connecting each new vertex to an existing clique on
two vertices. We prove that if H is a 2-tree, then k0(H) = 4 unless H is isomorphic to the
join of a tree T and a vertex u, where T is a star on at least three vertices, or the bipartition
of T has two even parts; in these cases, k0(H) = 5.
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1 Introduction
Let H be a graph and k a positive integer. We define a proper k-vertex-colouring of H as a
function f : V (H)→ {1, 2, . . . , k} for which f(x) 6= f(y) for any xy ∈ E(H). Since we
are concerned only with proper k-vertex-colourings, we use the simpler term k-colouring,
and refer to f(x) as the colour of x. For notation and terminology not defined here, the
reader is referred to Bondy and Murty [1].

A graph H has a Gray code of k-colourings if it is possible to list all the k-colourings
of H in such a way that consecutive colourings in the list (including the last and the first)
differ on exactly one vertex of H , and the Gray code number of H is the least integer
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k0(H) for which H has a Gray code of its k-colourings for all k ≥ k0(H). Equivalently,
we may define the k-colouring graph ofH , denotedGk(H), to be the graph whose vertices
correspond to all k-colourings of H , and whose edges connect two k-colourings of H that
differ on exactly one vertex of H . In this context, H has a Gray code of k-colourings if
and only if Gk(H) has a Hamilton cycle, and the Gray code number of H is the the least
integer k0(H) for which Gk(H) has a Hamilton cycle for all k ≥ k0(H).

The k-colouring graph is an example of a reconfiguration graph. Such graphs are often
used in the study of what are known as reconfiguration problems. Generally, a reconfigu-
ration problem asks: given two (different) feasible solutions to a problem, can one solution
be transformed to the other through a sequence of allowable moves, while maintaining fea-
sibility at each stage? In the context of k-colourings, the k-colouring graph is connected if
and only if any k-colouring can be reconfigured into any other k-colouring by re-colouring
one vertex at a time in such a way that each intermediate colouring is a k-colouring. Re-
cently, reconfiguration problems have been receiving wide attention, and have been studied
for various graph colouring problems [2, 3, 4, 10, 15], for dominating sets [12, 13, 18],
and for various other graph problems including vertex covers, cliques, and independent
sets [14].

The k-colouring graph arises in the context of theoretical physics, where it is the graph
of the Glauber dynamics Markov chain; the goal is to find efficient algorithms for almost
uniform sampling of k-colourings of graphs [16]. The Glauber dynamics Markov chain
converges to the uniform distribution provided that the k-colouring graph is connected,
prompting Cereceda, van den Heuvel and Johnson [4] to ask the question: given a graph
H and a positive integer k, is Gk(H) connected? They prove that if H has chromatic
number k ∈ {2, 3}, then Gk(H) is never connected, whereas for k ≥ 4, there are k-
chromatic graphs H for which Gk(H) is connected, and other k-chromatic graphs H for
which Gk(H) is not connected. In general, they prove that Gk(H) is connected for all
k ≥ col(H) + 1, where col(H), the colouring number of H , is defined as col(H) :=
max{δ(G) | G ⊆ H}+ 1. A slightly weaker version of this result is proven in [8].

Choo and MacGillivray [6] initiated the study of Hamilton cycles in k-colouring graphs
by proving that the Gray code number of H is well defined, i.e., Gk(H) has a Hamilton
cycle for all k ≥ col(H) + 2. This gives the upper bound k0(H) ≤ col(H) + 2. Note that
if T is a tree, then col(T ) = 2 and G2(T ) is disconnected; hence 3 ≤ k0(T ) ≤ 4. Choo
and MacGillivray [6] determine which trees have k0(T ) = 3 and which have k0(T ) = 4.
In particular, they prove that if T is a tree, then k0(T ) = 3 unless T ∼= K1,2`, for ` ≥ 1,
in which case k0(T ) = 4. They also determine the Gray code numbers of complete graphs
and cycles. Celaya, Choo, MacGillivray and Seyffarth [3] establish the Gray code numbers
of complete bipartite graphs. Haas [11] studies a variation of k-colouring graphs, namely,
canonical colouring graphs, and uses techniques developed in [6] to show that canonical
colouring graphs of trees have Hamilton cycles.

Given the results for trees and complete graphs, a natural question is to determine the
Gray code numbers of k-trees. We use the definition of k-tree given in [9], that is, a k-tree is
constructed recursively by starting with a complete graph on k+ 1 vertices and connecting
each new vertex to an existing clique on k vertices (hence a 1-tree is simply a connected
acyclic graph). A vertex of degree k in a k-tree is called a leaf. LetH be a k-tree. Then it is
clear that the chromatic number of H is χ(H) = k+1, and that Gk+1(H) is disconnected.
Since every induced subgraph of H has a leaf, col(H) = k + 1. Thus it follows from [6,
Theorem 3.4] that k0(H) ≤ k + 3, and therefore k + 2 ≤ k0(H) ≤ k + 3. The problem
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is therefore reduced to classifying k-trees into those with Gray code number k + 2 and
those with Gray code number k + 3. The answer appears to be far from trivial. In the
current paper, we provide a complete solution for 2-trees; the characterization can be stated
in fairly non-technical language, but the proof involves numerous cases and generalizations
of the techniques used in [3, 6]. The join of graphs G1 and G2, denoted by G1 ∨ G2, is
obtained from the disjoint union of G1 and G2 by adding all edges between vertices of G1

and vertices of G2.

Theorem 1.1. If H is a 2-tree then k0(H) = 4, unless H ∼= T ∨ {u} for some tree T and
vertex u, where T is a star on at least three vertices or the bipartition of V (T ) has two
even parts; in these cases, k0(H) = 5.

The remainder of the paper is devoted to proving this theorem. We first characterize
2-trees of diameter two (Lemma 3.2). We then determine the 2-trees, H , of diameter two
for which G4(H) has a Hamilton cycle (Lemmas 3.3 and 3.5). This is done by considering
the structure of G3(T ), where T is a tree (Lemmas A.2 and 3.6). We show that if H is a
2-tree with diameter at least three, thenG4(H) has a Hamilton cycle (Lemmas 6.3 and 6.4).
To do so we describe a specific recursive procedure for constructing 2-trees of diameter at
least three (Theorem 4.3).

2 Preliminaries
Definition 2.1. LetH be a graph, and letX and Y be disjoint subsets of V (H). We denote
by [X,Y ] the set of edges of H that have one end in X and the other end in Y .

Definition 2.2. Let H be a graph and L a function that assigns to each vertex v ∈ V (H)
a set of positive integers, L(v), called the list of v. An L-colouring of H (also called a
list colouring of H with respect to L) is a (proper) colouring c : V (H) → N such that
c(v) ∈ L(v) for each v ∈ V (H). We define the L-colouring graph of H , denoted GL(H),
to be the graph whose vertex set consists of all L-colourings of H; two L-colourings are
joined by an edge of GL(H) if they differ in colour on just one vertex of H .

Remark 2.3. If k ≥ χ(H) and L(v) := {1, 2, . . . , k} for each v ∈ V (H), then GL(H) ∼=
Gk(H), the k-colouring graph of H .

We use G�H to denote the Cartesian product of graphs G and H , and Qn to denote
the n-dimensional hypercube, defined as the Cartesian product of n copies of K2.

Remark 2.4. Let H1 and H2 be vertex disjoint graphs and let L be an assignment of lists
to the vertices of H1 ∪H2. Then

GL(H1 ∪H2) = GL(H1)�GL(H2).

Lemma 2.5. Let H be a 2-tree with clique X = {x1, x2, . . . , x`} where ` ≤ 3, and let L
be an assignment of lists to the vertices of H so that

1. |L(xi)| = 1 and L(xi) ⊆ {1, 2, 3, 4}, 1 ≤ i ≤ `;

2. L(xi) 6= L(xj) for all 1 ≤ i 6= j ≤ `;

3. L(v) = {1, 2, 3, 4} for each v ∈ V (H) \X .
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Then GL(H) has a spanning tree T with ∆(T ) ≤ 4.

Proof. The proof is by induction on |V (H)|. For the basis, H ∼= K3 with V (H) :=
{v1, v2, v3}. When ` = 0, GL(H) = G4(K3), which has a Hamilton cycle [6, Theo-
rem 4.1], so take T to be a Hamilton path in G4(K3). When ` = 1, we may assume,
without loss of generality, that L(v1) := {1} and L(v2) = L(v3) := {1, 2, 3, 4}. Then
GL(H) ∼= G3(K2), which has a Hamilton cycle [6, Theorem 4.1], so take T to be a
Hamilton path in G3(K2). When ` = 2, we may may assume, without loss of generality,
that L(v1) := {1}, L(v2) := {2}, and L(v3) := {1, 2, 3, 4}. Then GL(H) ∼= K2, and
the result holds. Finally, when ` = 3, we may assume, without loss of generality, that
L(v1) := {1}, L(v2) := {2}, and L(v3) := {3}. ThenGL(H) ∼= K1, and the result holds.

Now suppose H is a 2-tree with |V (H)| > 3 and clique X = {x1, . . . , x`}. Since
` ≤ 3, there is a leaf v ∈ V (H) with v 6∈ X , and thus H − v is a 2-tree containing the
clique X . It follows by induction that GL(H − v) has a spanning tree T with ∆(T ) ≤
4. Let V (GL(H − v)) := {f0, f1, . . . , fN−1}, and for each fj ∈ V (GL(H − v)), let
Fj ⊆ V (GL(H)) be the set of L-colourings of H that agree with fj on V (H − v). Then
{F0, F1, . . . , FN−1} is a partition of the vertices of GL(H). Since v is a leaf of H , there
are two ways to extend an L-colouring of H − v to an L-colouring of H , and hence for
each j, 0 ≤ j ≤ N − 1, Fj = {aj , bj} is a clique.

For each edge fifj ∈ E(T ), there is a unique vertex w ∈ V (H−v) for which fi(w) 6=
fj(w). If wv 6∈ E(H), then [Fi, Fj ] consists of two disjoint edges, and the subgraph of
GL(H) induced by Fi ∪ Fj is a 4-cycle. Otherwise, wv ∈ E(H), so [Fi, Fj ] has only one
edge, and the subgraph of GL(H) induced by Fi ∪ Fj is a path of length three. In both
cases, label the edge fifj in T with |[Fi, Fj ]|.

Let S denote the spanning subgraph of GL(H) corresponding to the spanning tree T
of GL(H − v) as described above, that is, S has edge set ⋃

fifj∈E(T )

[Fi, Fj ]

 ∪ {ajbj | 0 ≤ j ≤ N − 1}.

Since [Fi, Fj ] is nonempty for each fifj ∈ E(T ), S is connected. Also, since ∆(T ) ≤ 4
and [Fi, Fj ] contains either one edge or two disjoint edges, ∆(S) ≤ 5. Furthermore, since
there are only two vertices adjacent to v inH , at most two edges incident to fi inGL(H−v)
have label ‘1’.

Let S′ be the graph obtained from S by deleting the edges ajbj for each fj ∈ V (T )
with dT (fj) = 4. Then ∆(S′) ≤ 4, since if aj ∈ V (S) has dS(aj) = 5, then dT (fj) = 4,
and thus dS′(aj) = 4. We also claim that S′ is connected. To prove this, it suffices to show
that there is a path in S′ from ap to bp for each fp ∈ V (T ) with dT (fp) = 4. Suppose
fp ∈ V (T ) has dT (fp) = 4. Construct a path, P , in T starting at fp, using edges labelled
‘2’, and whose final vertex fq has dT (fq) < 4. Such a path exists since T has no cycles,
and each degree four vertex in T is incident to at least two edges labelled ‘2’. The union ⋃

fifj∈E(P )

[Fi, Fj ]

 ∪ {aqbq}
gives us a path in S′ from ap to bp.
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Therefore, S′ is a connected spanning subgraph of GL(H), and thus S′ has a spanning
tree T that is also a spanning tree ofGL(H). Since ∆(S′) ≤ 4, ∆(T ) ≤ 4, thus completing
the proof of the lemma.

The result in Lemma 2.5 is best possible in that ∆(T ) cannot be reduced from four to
three, as illustrated in the following example. Let D denote the unique 2-tree of diameter
three on six vertices, with vertices labelled as shown in Figure 1(a).

u1 u3 u5

u2 u4 u6

(a) D

3412

3413

3423

3421

4312

4314

4324

4321

3123

3124

3143

3142

4123

4124

4134

4132
(b) GL(D)

Figure 1: The 2-tree D and GL(D).

Let L : V (D)→ {1, 2, 3, 4} be defined as follows.

L(u1) := {1},
L(u2) := {2}, and
L(ui) := {1, 2, 3, 4} for 3 ≤ i ≤ 6.

If f is an L-colouring of D, then f(u1) = 1 and f(u2) = 2, and thus we may denote the
vertices of GL(D) by strings ijk` where f(u3) = i, f(u4) = j, f(u5) = k and f(u6) = `.
Using this convention, GL(D) is depicted in Figure 1(b). Notice that GL(D) is unicyclic,
and has exactly two nonadjacent vertices of degree four, ‘3123’ and ‘4124’. Thus every
spanning tree of GL(D) has a vertex of degree four.

As part of their proof [6, Theorem 5.5], Choo and MacGillivray prove the following.

Remark 2.6. Let G be a graph with vertex partition {F0, F1, . . . , FN−1}, such that

(i) G[Fi] is a 4-cycle for each i, 0 ≤ i ≤ N − 1;

(ii) G[Fi−1 ∪ Fi] is isomorphic to either P4�K2 or Q3 for each i, 1 ≤ i ≤ N − 1;

(iii) if G[Fi−1 ∪ Fi] and G[Fi ∪ Fi+1] are both isomorphic to P4�K2, then G[Fi−1 ∪
Fi ∪ Fi+1] is not isomorphic to the graph in Figure 2.

Then G has a Hamilton cycle.

The conditions imply that [Fi−1, Fi] 6= ∅, 1 ≤ i ≤ N−1, and hence there is a function,
h, from a spanning subgraph of G to a path f0f1 · · · fN−1 of length N − 1 defined by
h(u) = fi for all u ∈ Fi, 0 ≤ i ≤ N − 1.

In our next lemma, we adapt the result of Choo and MacGillivray to a more general
scenario. Suppose G is a graph with vertex partition {F0, F1, . . . , FN−1} where G[Fi]
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Fi−1

Fi

Fi+1

Figure 2: Forbidden subgraph.

contains a spanning cycle for each i, 0 ≤ i ≤ N − 1 (these cycles form a 2-factor of G).
Further, assume that there is a function, h, from a spanning subgraph of G to a tree with
vertex set {f0, f1, . . . , fn−1} such that h(u) = fi for all u ∈ Fi, 0 ≤ i ≤ N − 1. The
general idea is to choose, for each edge fifj of the spanning tree, appropriate edges from
the set [Fi, Fj ] of G so that we are able to construct a Hamilton cycle from among these
edges and edges of the 2-factor. See Figure 3 for an illustration of this result.

Lemma 2.7. Let G be a graph with vertex partition {F0, F1, . . . , FN−1}, and let T be a
tree with V (T ) := {f0, f1, . . . , fN−1}. Suppose there is a function, h, from a spanning
subgraph of G to T such that h(u) = fi for all u ∈ Fi, 0 ≤ i ≤ N − 1. Furthermore,
suppose that for each fifj ∈ E(T ), 0 ≤ i, j ≤ N − 1, there exist edges ei,j in G[Fi] and
ej,i in G[Fj ] such that

(i) if j 6= k and fifj , fifk ∈ E(T ), then ei,j 6= ei,k;

(ii) if ei,j = ac and ej,i = bd, then G[{a, b, c, d}] contains a 4-cycle;

(iii) G[Fi] has a Hamilton cycle Ci such that

Mi := {ei,j | fifj ∈ E(T )} ⊆ E(Ci).

Then G has a Hamilton cycle C such that

N−1⋃
i=0

(E(Ci) \Mi) ⊆ E(C).

Proof. The proof is by induction on N . The result is trivial when N = 1.
Let N > 1. For each fifj ∈ E(T ), 0 ≤ i ≤ N − 1, suppose ei,j ∈ E(G[Fi]), ej,i ∈

E(G[Fj ]), and Ci (a Hamilton cycle in G[Fi]) satisfy conditions (i), (ii) and (iii). Without
loss of generality, we may assume that fN−1 is a leaf of T , and that fN−1fN−2 ∈ E(T ).
Let G′ := G− FN−1 and T ′ := T − fN−1. Using ei,j , ej,i and Ci as previously defined,
0 ≤ i ≤ N − 2, and Mi as defined in (iii) except with MN−2 replaced by M ′N−2 :=
MN−2 \ {eN−2,N−1}, we apply the induction hypothesis to G′. The result is a Hamilton
cycle C ′ in G′ such that(

N−3⋃
i=0

(E(Ci) \Mi)

)
∪ (E(CN−2) \M ′N−2) ⊆ E(C ′),

and eN−2,N−1 ∈ E(C ′). Let eN−2,N−1 := ac, eN−1,N−2 := bd; without loss of general-
ity, abdca is a 4-cycle in G[{a, b, c, d}], and hence

C := (C ′ − eN−2,N−1) ∪ (CN−1 − eN−1,N−2) + {ab, cd}
is a Hamilton cycle in G with the required property.
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F0

F1

F2

F3

F4

e0,1

e1,0

e1,2

e2,1

e1,3

e3,1

e3,4
e4,3

Figure 3: Illustration of Lemma 2.7.

We remark that if dT (fi) = 1 for some i, then the Hamilton cycle C constructed in
Lemma 2.7 contains all except one edge of E(Ci).

3 2-trees of diameter two
In this section we characterize 2-trees H of diameter two in which G4(H) has a Hamilton
cycle. We begin by defining a class of 2-trees that we denote by T (p, q, r) (see Figure 4).

x

y

z

P Q

R

Figure 4: The 2-tree T (p, q, r).

Definition 3.1. Let P , Q, and R be pairwise disjoint independent sets of vertices with
|P | := p, |Q| := q, and |R| := r. The graph T (p, q, r) is the graph on p+q+r+3 vertices
defined on vertex set {x, y, z} ∪ P ∪Q ∪R where the subgraph induced by P ∪Q ∪R is
an independent set, and

• the subgraph induced by {x, y} ∪ P is isomorphic to K1,1,p;

• the subgraph induced by {y, z} ∪Q is isomorphic to K1,1,q;

• the subgraph induced by {z, x} ∪R is isomorphic to K1,1,r.

A dominating vertex in a graph is a vertex adjacent to all other vertices of the graph.
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Lemma 3.2. A graph H is a 2-tree of diameter two if and only if H has a dominating
vertex or H ∼= T (p, q, r) for p, q, r > 0.

Proof. Any 2-tree with a dominating vertex has diameter two, and one can easily verify
that T (p, q, r) is a 2-tree of diameter two for any p, q, r > 0.

For the converse, suppose H is a 2-tree of diameter two. We proceed by induction on
n := |V (H)|. When n = 4, H is isomorphic to the graph obtained from K4 by deleting
one edge, and has a dominating vertex. Now suppose that n ≥ 5, and let u ∈ V (H)
be a leaf of H , i.e., dH(u) = 2. By the induction hypothesis, H − u has a dominating
vertex, or H − u ∼= T (p′, q′, r′) for some p′, q′, r′ > 0. If H − u ∼= T (p′, q′, r′) for
some p′, q′, r′ > 0, then let V (H − u) := {x, y, z} ∪ P ′ ∪ Q′ ∪ R′, where |P ′| := p′,
|Q′| := q′, and |R′| := r′. Since H has diameter two, u must be adjacent to at least two
vertices from {x, y, z}. However dH(u) = 2, and thus NH(u) = {x, y}, NH(u) = {y, z},
or NH(u) = {z, x}. It follows that H ∼= T (p′ + 1, q′, r′), H ∼= T (p′, q′ + 1, r′), or
H ∼= T (p′, q′, r′ + 1), respectively.

Now suppose H −u has a dominating vertex, x. If ux ∈ E(H), then x is a dominating
vertex in H . Otherwise, let y and z denote the neighbours of u in H , and note that yz ∈
E(H). Since H has diameter two, every vertex in V (H − u) is adjacent to x and at least
one of y or z. Let P ′ be the set of vertices in H − u adjacent to both x and y, R′ be the
set of vertices in H − u adjacent to both x and z, and suppose |P ′| := p′ and |R′| := r′.
Since H − u is a 2-tree, P ′ ∪ R′ is an independent set. Therefore, P ′ ∪ R′ ∪ {u} is an
independent set in H , and thus H ∼= T (p′, 1, r′).

In what follows, we first prove that if p, q, r > 0, then G4(T (p, q, r)) has a Hamilton
cycle. Let G be a graph with vertex partition {F0, F1, . . . , FN−1}. For each i, 1 ≤ i ≤
N−1, let Si−1 ⊆ Fi−1 and S′i ⊆ Fi denote the vertices incident to the edges of [Fi−1, Fi].

Lemma 3.3. If p, q, r > 0, then G4(T (p, q, r)) has a Hamilton cycle.

Proof. Let V (K3) := {x, y, z}. Suppose f : V (K3) → {1, 2, 3, 4} is a 4-colouring of
K3 and V (G4(K3)) := {f0, f1, . . . , fN−1}. Since G4(K3) has a Hamilton cycle by [6,
Theorem 4.1], we may assume that f0f1 · · · fN−1 is a Hamilton path in G4(K3).

For 0 ≤ i ≤ N − 1, let Fi be the set of 4-colourings of T (p, q, r) that agree with
fi on {x, y, z}. In order to simplify notation, we define G := G4(T (p, q, r)). Then
{F0, F1, . . . , FN−1} is a partition of the vertices of G, and G[Fi] ∼= Qp+q+r, 0 ≤ i ≤
N − 1.

Let st ∈ [Fi−1, Fi], where s ∈ Si−1 and t ∈ S′i for some 1 ≤ i ≤ N − 1. Then
s(u) = t(u) for all u ∈ V (G) \ {v}, where v is one of {x, y, z}, and s(v) 6= t(v). Thus,
[Fi−1, Fi] is a set of independent edges. If v = x, then s(u) = s(w) for all u,w ∈ P and
for all u,w ∈ R, and t(u) = t(w) for all u,w ∈ P and for all u,w ∈ R. Thus G[Si−1] ∼=
Qq ∼= G[S′i], and G[Si−1 ∪ S′i] ∼= Qq+1. Analogously, if v = y, G[Si−1] ∼= Qr ∼= G[S′i]
and G[Si−1 ∪ S′i] ∼= Qr+1; and if v = z, G[Si−1] ∼= Qp ∼= G[S′i], G[Si−1 ∪ S′i] ∼= Qp+1.

Consider the path fi−1fifi+1 in G4(K3), 1 ≤ i ≤ N − 2. Note that

fi−1(x), fi(x), fi+1(x)

use at most two different colours; otherwise, there would be only one colour available for
y and z, which is impossible since y and z always receive different colours. Analogously,
fi−1, fi, fi+1 assign at most two different colours to each of y and z. It follows that if
|[Fi−1, Fi]| = |[Fi, Fi+1]| = 2, then [Fi−1, Fi] ∪ [Fi, Fi+1] 6∼= 2P3.
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For each edge fi−1fi with 1 ≤ i ≤ N − 1, we choose a 4-cycle, Bi−1, containing
exactly two edges of [Fi−1, Fi] as follows.

• For each |[Fi−1, Fi]| = 2 ,G[Si−1∪S′i] is a 2-cube, so we chooseBi−1 := G[Si−1∪
S′i] = ai−1ci−1dibiai−1, where ai−1, ci−1 ∈ Fi−1 and bi, di ∈ Fi.

• For i = 1, 2, . . . , N − 1, and |[Fi−1, Fi]| > 2, first note that |[Fi−1, Fi]| ≥ 4 since
G[Si−1 ∪ S′i] ∼= Qn for some n ≥ 3. Thus it is possible to choose edges ai−1bi and
ci−1di of [Fi−1, Fi] so that Bi−1 := ai−1ci−1dibiai−1 is edge disjoint from Bi−2,
and also edge disjoint from Bi if |[Fi, Fi+1]| = 2 and i < N − 1.

Let ei,i+1 := G[Si] ∩ Bi and ei+1,i := G[S′i+1] ∩ Bi, 0 ≤ i ≤ N − 2. Observe
that G and the path f0f1 · · · fN−1 satisfy conditions (i) and (ii) of Lemma 2.7. Recall that
G[Fi] ∼= Qp+q+r, 0 ≤ i ≤ N−1, and p+q+r ≥ 3. Since any pair of edges ofQn, n ≥ 2,
is contained in a Hamilton cycle (see [7, Theorem 4.1]), there exist Hamilton cycles C0 in
G[F0] containing e0,1, CN−1 in G[FN−1] containing eN−1,N−2, and, for 1 ≤ i ≤ N − 2,
Ci in G[Fi] containing ei,i−1 and ei,i+1. Therefore, by Lemma 2.7, G has a Hamilton
cycle.

In the case where p > 0 and q = r = 0, T (p, q, r) has a dominating vertex, and is
isomorphic to K2 ∨Kn.

Lemma 3.4. For n ≥ 2, G4(K2 ∨Kn) has no Hamilton cycle.

Proof. Let H := K2 ∨Kn for n ≥ 2, let H := G4(H), and let u, v be the two vertices of
H of degree n+ 1. For each 1 ≤ i 6= j ≤ 4 let

Vij := {c ∈ V (H) | c(u) = i and c(v) = j}.

Then
{V12, V13, V14, V21, V23, V24, V31, V32, V34, V41, V42, V43}

is a partition of V (H). Note that [Vαβ , Vγδ] 6= ∅ if and only if α = γ or β = δ. For 1 ≤
i 6= j ≤ 4, let Lij be an assignment of lists to the vertices of H such that Lij(u) := {i},
Lij(v) := {j} and Lij(x) := {1, 2, 3, 4} for x ∈ V (H − {u, v}). Note that GLij

(H) ∼=
H[Vij ] ∼= Qn, for each 1 ≤ i 6= j ≤ 4. Define the three-coloured vertices ofH (that is, the
colourings of H with three colours) by cijk ∈ Vij such that

cijk(x) :=


i, if x = u,
j, if x = v,
k, otherwise.

Each Vij has two such vertices, cijk1 and cijk2 , where k1, k2 ∈ {1, 2, 3, 4}\{i, j}. Further-
more,H−{cijk1 , cijk2} is disconnected so that any Hamilton cycle inH must contain the
edges of a Hamilton path ofH[Vij ] with endpoints cijk1 and cijk2 , for each 1 ≤ i 6= j ≤ 4.

By [6, Lemma 2.1] there is no Hamilton path in the n-dimensional cube from 00 · · · 0
to 11 · · · 1 whenever n is even. Thus, for n even, there is no Hamilton path in H[Vij ] with
endpoints cijk1 and cijk2 . Therefore,H has no Hamilton cycle when n is even.

For n odd, such Hamilton paths exist and must be used in any Hamilton cycle of H,
if one exists. We construct an auxiliary graph A (see Figure 5(a)) where the vertex (i, j)
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represents a Hamilton path in H[Vij ] from cijk1 to cijk2 . There is an edge in A between
(i1, j1) and (i2, j2) whenever ci1j1k is adjacent to ci2j2k in H. We label the edge between
(i1, j1) and (i2, j2) by the unique element of {1, 2, 3, 4} \ ({i1, j1} ∪ {i2, j2}) (see Fig-
ure 5(b)). Notice that the edges labelled i, 1 ≤ i ≤ 4, induce a 6-cycle, and the edges of
these four 6-cycles partition E(A).

(3,4)

(1,3)

(2,4)
(2,1)

(4,2)(4,1)

(3,1) (3,2)

(2,3)

(1,2) (1,4)

(4,3)

(a)

3

4

3

3 1

2

2

2

4 2

3

1
4

3

1

2

4

1

4 13 2
1

4

(b)

Figure 5: The auxiliary graph A.

A Hamilton cycle in H corresponds to a Hamilton cycle, C, in A in which any two
consecutive edges of C have different labels. Such a cycle C uses a matching of size three
from each labelled 6-cycle in A. Without loss of generality, we may assume C contains
horizontal edges of the 6-cycle labelled 1. Now, C uses horizontal edges from one of
the remaining labelled 6-cycles, otherwise, C contains a K3. Regardless of whether C
uses horizontal edges of the 6-cycle labelled by 2, 3 or 4, using vertical edges of the two
remaining 6-cycles gives C ∼= C4 ∪ C8, a contradiction. Therefore H has no Hamilton
cycle.

Observe that if H is a 2-tree of diameter two having a dominating vertex u, then H ∼=
T ∨ {u} for some tree T .

Lemma 3.5. Let T be a tree on at least two vertices. Then G4(T ∨ {u}) has a Hamilton
cycle unless T is a star on at least three vertices or the bipartition of V (T ) has two even
parts.

The proof of this lemma requires a result that we state here, but whose proof is technical
and is postponed to the Appendix A.

Lemma 3.6. Let T be a tree with bipartition (A,B), where |A| := ` and |B| := r, and
let G3(T ) be the 3-colouring graph of T with colours C = {1, 2, 3}. Define cij to be the
vertex of G3(T ) with cij(a) = i for all a ∈ A and cij(b) = j for all b ∈ B.

(1) If `, r > 0 are both even, then G3(T ) has no spanning subgraph consisting only of
paths whose ends are in {c12, c13, c21, c23, c31, c32}.

(2) If ` > 1 is odd and r > 0 is even, then G3(T ) has a Hamilton path from c12 to c23.

(3) If ` > 1 and r > 1 are both odd, then G3(T ) has a Hamilton path from c12 to c13.
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Proof of Lemma 3.5. Let T be a tree with |V (T )| ≥ 2 and bipartition (A,B), where A :=
{x1, x2, . . . , x`} and B := {y1, y2, . . . , yr}. Let H := T ∨ {u}, and let H := G4(H) be
the 4-colouring graph of H with colours {1, 2, 3, 4}. For each 1 ≤ k ≤ 4, define

Vk := {c ∈ V (H) | c(u) = k}.

Then {V1, V2, V3, V4} is a partition of V (H). Define Lk to be an assignment of lists with
Lk(u) := {k} and Lk(w) := {1, 2, 3, 4} for w ∈ V (T ). Note that GLk

(H) ∼= H[Vk] ∼=
G3(T ). Define the three-coloured vertices of H (that is, the colourings of H with three
colours) by cijk ∈ Vk so that cijk(x) := i for all x ∈ A, cijk(y) := j for all y ∈ B.

Observe

[V1, V2] = {c341c342, c431c432}, [V1, V3] = {c241c243, c421c423},
[V1, V4] = {c231c234, c321c324}, [V2, V3] = {c142c143, c412c413},
[V2, V4] = {c132c134, c312c314}, [V3, V4] = {c123c124, c213c214}.

Case 1. Suppose |V (T )| = 2. Then T ∨ {u} ∼= K3 and G4(K3) has a Hamilton cycle by
[6, Theorem 4.1].

Case 2. Suppose T is a star with |V (T )| ≥ 3. Then G4(T ∨ {u}) ∼= K2 ∨Kn for some
n ≥ 2. By Lemma 3.4, G4(T ∨ {u}) has no Hamilton cycle.

Case 3. Suppose both |A| and |B| are odd. By Lemma 3.6, there is a Hamilton path
in H[V1] from c421 to c431, in H[V2] from c432 to c132, in H[V3] from c134 to c124 and in
H[V4] from c123 to c423. The union of these paths with edges {c431c432, c132c134, c124c123,
c423c421} gives a Hamilton cycle inH.

Case 4. Suppose one of |A| and |B| is even and the other is odd. Without loss of generality,
|A| is odd and |B| is even. By Lemma 3.6, there is a Hamilton path in H[V1] from c231
to c341, in H[V2] from c342 to c412, in H[V3] from c413 to c123 and in H[V4] from c124 to
c234. The union of these paths with edges {c341c342, c412c413, c123c124, c234c231} gives a
Hamilton cycle inH.

Case 5. Suppose both |A| and |B| are even, and suppose H contains a Hamilton cycle C.
Then C[V1] is a spanning subgraph ofH[V1] ∼= G3(T ) consisting of a union of paths whose
endpoints are three-coloured vertices of V1, contradicting Lemma 3.6. Thus in this case,H
has no Hamilton cycle.

4 Constructing 2-trees of diameter at least three
To complete the proof of our main result, we must show that if H ′ is a 2-tree with diameter
at least three, then k0(H ′) = 4. Naively deleting two leaves with the intention of applying
Remark 2.6 may be problematic. For example, let H ′ be a 2-tree with diameter at least
three having leaves x and y of distance at least three. Let H = H ′ − {x, y}, NH′(x) =
{x1, x2}, and suppose G4(H) has a Hamilton cycle f0f1 · · · fN−1f0. Let Fi be the set
of 4-colourings of H ′ that agree with fi on V (H), 0 ≤ i ≤ N − 1. In the case that
fi−1fi arises from a colour change on x1 and fifi+1 arises from a colour change on x2, the
subgraphG[Fi−1∪Fi∪Fi+1] is isomorphic to the forbidden subgraph in Figure 2. Because
of this we take a more general approach. Suppose a 2-tree H ′ is obtained from a 2-tree H
by repeatedly adding vertices of degree two. Instead of a Hamilton cycle inG4(H) we take
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a spanning tree satisfying certain properties providing the flexibility needed to construct a
Hamilton cycle in G4(H ′). Our approach does not require G4(H) to have a Hamilton
cycle. To facilitate this procedure, we define nine operations (see Figure 6).

Definition 4.1. Let H be a 2-tree. Then H ′ is obtained from H by

Operation I if {α, β, γ} := V (H ′) \ V (H), {a1a2, b1b2, c1c2} ⊆ E(H), and
NH′(α) = {a1, a2}, NH′(β) = {b1, b2}, NH′(γ) = {c1, c2}.

Operation II if {α, β, γ} := V (H ′) \ V (H), {xa, xb, c1c2} ⊆ E(H), and NH′(α) =
{x, a}, NH′(β) = {x, b}, NH′(γ) = {c1, c2}.

Operation III if {α, β, γ} := V (H ′) \ V (H), {ax, xy, yc} ⊆ E(H), and NH′(α) =
{a, x}, NH′(β) = {x, y}, NH′(γ) = {c, y}.

Operation IV if {α, β, γ, δ} := V (H ′) \ V (H), {xy, zw} ⊆ E(H), and NH′(α) =
NH′(β) = {x, y}, NH′(γ) = NH′(δ) = {w, z}.

Operation V if {α, β, γ, δ} := V (H ′) \ V (H), {xy, zw} ⊆ E(H), and NH′(α) =
{β, x, y}, NH′(β) = {α, y}, NH′(γ) = NH′(δ) = {w, z}.

Operation VI if {α, β, γ, δ} := V (H ′) \ V (H), {xy, zw} ⊆ E(H), and NH′(α) =
{β, x, y}, NH′(β) = {α, y}, NH′(γ) = {δ, w, z}, NH′(δ) = {γ, z}.

Operation VII if {α, β, γ, δ} := V (H ′) \ V (H), {xy, xz} ⊆ E(H), and NH′(α) =
{β, x, y}, NH′(β) = {α, y}, NH′(γ) = {δ, x, z}, NH′(δ) = {γ, z}.

Operation VIII if {α, β, γ, δ} := V (H ′) \ V (H), {xy, xz} ⊆ E(H), and NH′(α) =
{β, x, y}, NH′(β) = {x, α}, NH′(γ) = {δ, x, z}, NH′(δ) = {γ, z}.

Operation IX if {α, β, γ, δ} := V (H ′) \ V (H), {xy, xz} ⊆ E(H), and NH′(α) =
{β, x, y}, NH′(β) = {α, y}, NH′(γ) = NH′(δ) = {x, z}.

Remark 4.2. Since each of Operations I through IX can be performed by sequentially
adding simplicial vertices of degree two to H , H ′ is a 2-tree.

Recall that D denotes the unique 2-tree of diameter three on six vertices (Figure 1(a)).

Theorem 4.3. A graph H ′ is a 2-tree of diameter at least three if and only if H ′ ∼= D or
H ′ can be obtained from a 2-tree H by applying one of Operations I through IX.

Proof. (⇐): If H ′ ∼= D, the result is trivially true. Otherwise, it follows from Remark 4.2
that H ′ is a 2-tree. Since each operation produces two leaves that are distance at least three
apart, H ′ has diameter at least three.

(⇒): As already observed, D is the unique 2-tree of diameter three on six vertices.
The 2-trees on three, four and five vertices all have diameter less than three. Thus, we may
assume that H ′ is a 2-tree of diameter three and |V (H ′)| ≥ 7. Since H ′ has diameter
at least three, there are at least two leaves whose neighbourhoods are vertex disjoint. We
consider cases based on the number of edges induced by the neighbourhoods of the leaves
of H ′, and the number of leaves of H ′.

Case 1. First assume that the neighbourhoods of the leaves of H ′ induce at least three
distinct edges.
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Figure 6: Operations I through IX applied to a graph H by the addition of vertices α, β, γ,
and δ where applicable. The solid edges belong to H and the dotted edges are added to
construct H ′.

If H ′ has three leaves whose neighbourhoods are pairwise vertex disjoint, then H ′

contains vertex disjoint edges a1a2, b1b2, c1c2, and leaves α, β, γ with N(α) = {a1, a2},
N(β) = {b1, b2}, N(γ) = {c1, c2}. Letting H := H ′ − {α, β, γ} results in a 2-tree, and
applying Operation I to H produces H ′.

We may now assume that no three leaves of H ′ have neighbourhoods that are pairwise
vertex disjoint. Choose two leaves α and γ whose neighbourhoods are vertex disjoint, and
let β 6∈ {α, γ} be a leaf such that N(β) 6∈ {N(α), N(γ)}. If N(β) intersects exactly one
ofN(α) andN(γ), then we may assume without loss of generality that |N(β)∩N(α)| = 1
andN(β)∩N(γ) = ∅. ThenH ′ contains a path of length two, axb and an edge c1c2 that is
vertex disjoint from axb, such that N(α) = {a, x}, N(β) = {x, b}, and N(γ) = {c1, c2}.
Letting H := H ′ − {α, β, γ} results in a 2-tree, and applying Operation II to H produces
H ′. Otherwise, |N(β) ∩ N(α)| = |N(β) ∩ N(γ)| = 1, and H ′ contains a path of length
three, c1xyc2 such that N(α) = {c1, x}, N(β) = {x, y} and N(γ) = {y, c2}. Letting
H := H ′ − {α, β, γ} results in a 2-tree, and applying Operation III to H produces H ′.

Case 2. We may now assume that the neighbourhoods of the leaves of H ′ induce exactly
two edges.
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Case 2(a). Suppose that H ′ has at least three leaves. Let leaves β and γ have neighbour-
hoods that are vertex disjoint, and let δ 6∈ {β, γ} be a leaf. Without loss of generality,
N(δ) = N(γ).

If there exists a leaf α with N(α) = N(β), then H := H ′ − {α, β, γ, δ} is a 2-tree,
and applying Operation IV to H produces H ′. Otherwise, no other leaf of H ′ has the same
neighbourhood as β. If we let N(β) := {α, y}, then at least one of {α, y} is a leaf of
H ′ − β; without loss of generality, α is a leaf of H ′ − β, and so d(α) = 3. It follows that
N(α) = {β, y, x} for some x 6∈ {α, β, γ, δ, y}, and that xy ∈ E(H ′).

Let N(γ) = N(δ) = {w, z}. We consider two cases depending on |{x} ∩ {w, z}|. If
|{x} ∩ {w, z}| = 0, then H := H ′ − {α, β, γ, δ} is a 2-tree, and applying Operation V
to H produces H ′. If |{x} ∩ {w, z}| = 1, then y = w or y = z, and the two cases are
analogous. The graph H := H ′ − {α, β, γ, δ} is a 2-tree, and applying Operation IX to H
produces H ′.

Case 2(b). Finally, assume that H ′ has exactly two leaves, β and δ, with N(β) = {α, y}
and N(δ) = {γ, z}. Since dH′(β, δ) ≥ 3, {α, y} ∩ {γ, z} = ∅. We may assume, without
loss of generality, that α and γ are leaves in H ′ − {β, δ}, and so d(α) = 3 and d(γ) = 3.
It follows that N(α) = {β, y, p} and N(γ) = {δ, z, q} for some p, q 6∈ {β, α, δ, γ} with
p 6= y, q 6= z and py, qz ∈ E(H ′).

We consider three cases depending on |{p, y} ∩ {q, z}|. If |{p, y} ∩ {q, z}| = 0,
then H := H ′ − {α, β, γ, δ} is a 2-tree, and applying Operation VI to H produces H ′.
If |{p, y} ∩ {q, z}| = 1, then either p = q, p = z, or q = y. In the case p = q,
H := H ′ − {α, β, γ, δ} is a 2-tree, and applying Operation VII to H produces H ′. In the
case p = z, H := H ′−{α, β, γ, δ} is a 2-tree, and applying Operation VIII to H produces
H ′. The case q = y is analogous to the case p = z. Finally if |{p, y} ∩ {q, z}| = 2, then
the fact that y 6= z implies that p = z and q = y, and hence H ′ ∼= D, contradicting the fact
that |V (H ′)| ≥ 7.

5 Operations and the 4-colouring graph
Let H be a 2-tree, and let H ′ be the 2-tree obtained from H by applying one of the Op-
erations I through IX. As before, let V (G4(H)) := {f0, f1, . . . , fN−1}, and let Fj ⊆
V (G4(H ′)) be the set of 4-colourings of H ′ that agree with fj on the vertices of H ,
0 ≤ j ≤ N − 1. For each Operation I through IX, what follows is a description of the
subgraph of G := G4(H ′) induced by Fi, 0 ≤ i ≤ N − 1, and also a description of the
subgraph of G induced by Fi ∪ Fj when fifj ∈ E(G4(H)), 0 ≤ i, j ≤ N − 1. Each edge
fifj of G4(H) is also assigned a label to indicate the structure of G[Fi ∪ Fj ]. We remark
that for a path fifjfk of length two in G4(H), if fi(u) 6= fj(u) for some u ∈ V (H), then
fj(u) = fk(u).

5.1 Operation I

If H ′ is obtained from H using Operation I, then there are two choices of colour for each
of the vertices α, β, and γ, so for each i, 0 ≤ i ≤ N − 1, G[Fi] ∼= Q3. To simplify the
labelling of the vertices of G[Fi], we label the faces of a plane drawing of Q3 as shown
in Figure 7(a), where α1 and α2 are the possible colours of vertex α, β1 and β2 are the
possible colours of vertex β, and γ1 and γ2 are the possible colours of vertex γ. Without
loss of generality, assume these colour choices are as shown in Figure 7(b). A vertex u of
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Q3 is assigned label αiβjγk where i, j, k ∈ {1, 2}, and u is incident with the faces labelled
αi, βj and γk (see Figure 7(c)).

α1β1 β2

γ1

γ2

α2

(a)

12 4

3

4

2

(b)

124 144

123 143

224 244

223 243

(c)

Figure 7: Labelling G[Fi].

The following arguments can be made with sets of colours {fi(a1), fi(a2)}, {fi(b1),
fi(b2)} and {fi(c1), fi(c2)} each chosen independently as a subset of {1, 2, 3, 4}. To ease
notation, we assume that fi(a1) = 3, fi(a2) = 4, fi(b1) = 1, fi(b2) = 3, fi(c1) = 1, and
fi(c2) = 2. Then the colour choices for α are {1, 2}, for β are {2, 4}, and for γ are {3, 4}.
As already noted, G[Fi] ∼= Q3; assume that G[Fi] has been drawn in the plane and labelled
as in Figure 8(a).

If fifj ∈ E(G4(H)), then fj is obtained from fi by changing the colour of a single
vertex in V (H). We label each edge fifj ∈ E(G4(H)) according to the structure of
G[Fi ∪ Fj ].
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Figure 8: G[Fi] and G[Fi ∪ Fj ] for Operation I, II and III.

(i) fi(v) 6= fj(v) for v ∈ {a1, a2}. Without loss of generality, suppose v = a1. Since
H is a 2-tree, there is a vertex a3 ∈ V (H) such that H[{a1, a2, a3}] ∼= K3. Observe
fi(a3) ∈ {1, 2}; we may assume fi(a3) = 1. Then fj(a1) = 2.1 Since fj(a2) =

1Since fj(a1) is uniquely determined there is no f` with ` 6= j such that fi and f` differ on a1.
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fi(a2) = 4, the colours available for α are {1, 3}; the colours available for β and
γ are unchanged. Therefore [Fi, Fj ] is a matching of size four between the 4-cycle
bounding the α1 face in G[Fi] and the 4-cycle bounding either the α1 face or the α2

face inG[Fj ]. ThusG[Fi∪Fj ] is isomorphic to the graph in Figure 8(b). We label the
edge fifj by a-sq. It follows from Footnote 1 that there are at most two edges incident
to fi having label a-sq. Furthermore, we remark that if fifj1 , fifj2 ∈ E(G4(H))
both have label a-sq, then the four vertices of Fi incident to the edges of [Fi, Fj1 ] are
the same four vertices of Fi that are incident to the edges of [Fi, Fj2 ], and induce a
4-cycle in G[Fi] that bounds a face with label α1 or α2.

(ii) fi(v) 6= fj(v) for v ∈ {b1, b2}. As in (i), we label the edge fifj by b-sq. Note
that there are at most two edges incident to fi having label b-sq. If fifj1 , fifj2 ∈
E(G4(H)) both have label b-sq, then the four vertices of Fi incident to the edges of
[Fi, Fj1 ] are the same four vertices of Fi that are incident to the edges of [Fi, Fj2 ],
and induce a 4-cycle in G[Fi] that bounds a face with label β1 or β2.

(iii) fi(v) 6= fj(v) for v ∈ {c1, c2}. As in (i) and (ii), we label the edge fifj by
c-sq. Note that there are at most two edges incident to fi having label c-sq. If
fifj1 , fifj2 ∈ E(G4(H)) both have label c-sq, then the four vertices of Fi incident
to the edges of [Fi, Fj1 ] are the same four vertices of Fi that are incident to the edges
of [Fi, Fj2 ], and induce a 4-cycle in G[Fi] that bounds a face with label γ1 or γ2.

(iv) fi(u) 6= fj(u) for u ∈ V (H) \ {a1, a2, b1, b2, c1, c2}. In this case, the vertex labels
onG[Fi] andG[Fj ] are identical. Thus [Fi, Fj ] is a perfect matching, andG[Fi∪Fj ]
is isomorphic to the graph in Figure 8(c). We label the edge fifj by pm.

Table 1: Summary of Operation I.

Vertex whose colour is changed
Subgraph induced by

Fi ∪ Fj Label of fifj
a1, a2 Figure 8(b) a-sq
b1, b2 Figure 8(b) b-sq
c1, c2 Figure 8(b) c-sq

u ∈ V (H) \ {a1, a2, b1, b2, c1, c2} Figure 8(c) pm

5.2 Operation II

As with Operation I, G[Fi] ∼= Q3 for each i, 0 ≤ i ≤ N − 1. We may assume that
fi(a) = 4, fi(x) = 3, fi(b) = 1, fi(c1) = 1, and fi(c2) = 2. Then the colour choices for
α are {1, 2}, for β are {2, 4}, and for γ are {3, 4}. Using the same labelling convention as
for Operation I, we assume that G[Fi] is drawn in the plane and labelled as in Figure 8(a).

If fifj ∈ E(G4(H)), then fj is obtained from fi by changing the colour of a single
vertex in V (H). We label each edge fifj ∈ E(G4(H)) according to the structure of
G[Fi ∪ Fj ].

(i) fi(v) 6= fj(v) for v ∈ {a, b, c1, c2}. This is analogous to Operation I when the
colour of one of {a1, a2, b1, b2, c1, c2} is changed, and thusG[Fi∪Fj ] is isomorphic
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to the graph in Figure 8(b). We label the edge fifj by either a-sq, b-sq or c-sq as in
Operation I.

(ii) fi(x) 6= fj(x). We may assume that fj(x) = 2. Then the colours available for α
are {1, 3} and the colours available for β are {3, 4}; the colours available for γ are
unchanged. Therefore, [Fi, Fj ] is a matching of size two where G[Fi] and G[Fj ] are
edges whose endpoint labels are unchanged, and thus G[Fi ∪ Fj ] is isomorphic to
the graph in Figure 8(d). We label the edge fifj by e.

(iii) fi(u) 6= fj(u) for u ∈ V (H) \ {a, b, x, c1, c2}. In this case, the vertex labels on
G[Fi] and G[Fj ] are identical. Thus [Fi, Fj ] is a perfect matching, and G[Fi ∪Fj ] is
isomorphic to the graph in Figure 8(c). We label the edge fifj by pm.

Table 2: Summary of Operation II.

Vertex whose colour is changed
Subgraph induced by

Fi ∪ Fj Label of fifj
a Figure 8(b) a-sq
b Figure 8(b) b-sq

c1, c2 Figure 8(b) c-sq
x Figure 8(d) e

u ∈ V (H) \ {a, b, x, c1, c2} Figure 8(c) pm

5.3 Operation III

As with Operations I and II, G[Fi] ∼= Q3 for each i, 0 ≤ i ≤ N − 1. We may assume
that fi(x) = 3, fi(y) = 1, fi(a) = 4, and fi(c) = 2. Then the colour choices for α are
{1, 2}, for β are {2, 4}, and for γ are {3, 4}. Using the same labelling convention as for
Operation I, we assume that G[Fi] is drawn in the plane and labelled as in Figure 8(a).

If fifj ∈ E(G4(H)), then fj is obtained from fi by changing the colour of a single
vertex in V (H). We label each edge fifj ∈ E(G4(H)) according to the structure of
G[Fi ∪ Fj ].

(i) fi(v) 6= fj(v) for v ∈ {a, c}. This is analogous to Operation I when the colour is
changed on one of {a1, a2, c1, c2}, and thus G[Fi ∪Fj ] is isomorphic to the graph in
Figure 8(b). We label the edge fifj by either a-sq or c-sq as in Operation I.

(ii) fi(v) 6= fj(v) for v ∈ {x, y}. This is analogous to Operation II when the colour of x
is changed, and thus G[Fi ∪ Fj ] is isomorphic to the graph in Figure 8(d). We label
the edge fifj by e.

(iii) fi(u) 6= fj(u) for vertex u ∈ V (H) \ {a, c, x, y}. In this case, the vertex labels on
G[Fi] and G[Fj ] are identical. Thus [Fi, Fj ] is a perfect matching, and G[Fi ∪Fj ] is
isomorphic to the graph in Figure 8(c). We label the edge fifj by pm.

Remark 5.1. We note that for Operations I – III, if fifj1 , fifj2 ∈ E(G4(H)) have the
same label that is not e, and F 1

i , F
2
i ⊆ Fi are incident to the edges of [Fi, Fj1 ], [Fi, Fj2 ],

respectively, then F 1
i = F 2

i .
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Table 3: Summary of Operation III.

Vertex whose colour is changed
Subgraph induced by

Fi ∪ Fj Label of fifj
a Figure 8(b) a-sq
c Figure 8(b) c-sq
x, y Figure 8(d) e

u ∈ V (H) \ {a, c, x, y} Figure 8(c) pm

5.4 Operation IV

We may assume that fi(x) = 1, fi(y) = 2, fi(w) = 2 and fi(z) = 3. Then the pairs of
colour available for α and β, respectively, are

{(4, 3), (3, 3), (3, 4), (4, 4)},

and the pairs of colours available for γ and δ, respectively, are

{(1, 4), (1, 1), (4, 1), (4, 4)}.

Thus the subgraph of G induced by Fi is isomorphic to C4�C4, and we assume that it is
drawn as shown in Figure 9(a), with the rows labelled by the pairs of colours available for
α and β, respectively, and the columns labelled by the pairs of colours available for γ and
δ, respectively.

If fifj ∈ E(G4(H)), then fj is obtained from fi by changing the colour of a single
vertex in V (H); there are three cases to consider.

(a) (b) (c) (d)

Figure 9: G[Fi] and G[Fi ∪ Fj ] for Operation IV.

(i) fi(v) 6= fj(v) for v ∈ {x, y}. We may assume that fj(x) = 4. Then the pairs of
colours available for α and β, respectively, are

{(1, 3), (3, 3), (3, 1), (1, 1)},

and the pairs of colours available for γ and δ are unchanged. Hence, G[Fi ∪ Fj ] is
isomorphic to the graph in Figure 9(b).
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(ii) fi(v) 6= fj(v) for v ∈ {w, z}. We may assume that fj(w) = 4. Then the pairs of
colours available for γ and δ, respectively, are

{(2, 2), (2, 1), (1, 1), (1, 2)},

and the pairs of colours available for α and β are unchanged. Hence, G[Fi ∪ Fj ] is
isomorphic to the graph in Figure 9(c).

(iii) fi(u) 6= fj(u) for u ∈ V (H) \ {x, y, w, z}. In this case, the vertex labels on G[Fi]
and G[Fj ] are identical. Thus [Fi, Fj ] is a perfect matching, and G[Fi ∪ Fj ] is
isomorphic to the graph in Figure 9(d).

Table 4: Summary of Operation IV.

Vertex whose colour is changed
Subgraph induced by

Fi ∪ Fj Label of fifj
x, y Figure 9(b) r
z, w Figure 9(c) c

u ∈ V (H) \ {x, y, z, w} Figure 9(d) pm

Remark 5.2. We note that for Operation IV, if fifj ∈ E(G4(H)) has label r and e ∈
[Fi, Fj ], then each colouring corresponding to an end of e assigns the same colour to α
and β. Similarly, if fifj ∈ E(G4(H)) has label c and e ∈ [Fi, Fj ], then each colouring
corresponding to an end of e assigns the same colour to γ and δ.

5.5 Operation V

We may assume that fi(x) = 1, fi(y) = 2, fi(w) = 2 and fi(z) = 3. Then the pairs of
colour available for α and β, respectively, are

{(3, 4), (3, 1), (4, 1), (4, 3)},

and the pairs of colours available for γ and δ, respectively, are

{(4, 1), (1, 1), (1, 4), (4, 4)}.

Thus the subgraph of G4(H ′) induced by Fi is isomorphic to P4�C4, and we assume that
it is drawn as shown in Figure 10(a), with the rows labelled by the pairs of colours available
for α and β, respectively, and the columns labelled by the pairs of colours available for γ
and δ, respectively.

If fifj ∈ E(G4(H)), then fj is obtained from fi by changing the colour of a single
vertex in V (H); there are five cases to consider. Since H is a 2-tree, there are vertices
a, b ∈ V (H) such thatH[{x, y, a}] ∼= K3 andH[{w, z, b}] ∼= K3. Observe fi(a) ∈ {3, 4}
and fi(b) ∈ {1, 4}. We may assume that fi(a) = 4 and fi(b) = 1. Even though b
(respectively, a) could be equal to x or y (respectively, w or z), this does not affect the
argument.
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(a) (b) (c)

(d) (e) (f)

Figure 10: Subgraphs induced by Fi ∪ Fj for Operations V and IX.

(i) fi(y) 6= fj(y). Then fj(y) = 3 and the pairs of colours available for α and β,
respectively, are

{(4, 2), (4, 1), (2, 1), (2, 4)},
and the pairs of colours available for γ and δ are unchanged. Hence, G[Fi ∪ Fj ] is
isomorphic to the graph in Figure 10(b) with appropriate labels.

(ii) fi(x) 6= fj(x). Then fj(x) = 3 and the pairs of colours available for α and β,
respectively, are

{(4, 1), (4, 3), (1, 3), (1, 4)},
and the pairs of colours available for γ and δ are unchanged. Hence, G[Fi ∪ Fj ] is
isomorphic to the graph in Figure 10(c).

(iii) fi(z) 6= fj(z). Then fj(z) = 4 and the pairs of colours available for γ and δ,
respectively, are

{(3, 3), (1, 3), (1, 1), (3, 1)},
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and the pairs of colours available for α and β are unchanged. Hence, G[Fi ∪ Fj ] is
isomorphic to the graph in Figure 10(d).

(iv) fi(w) 6= fj(w). Then fj(w) = 4 and the pairs of colours available for γ and δ,
respectively, are

{(3, 3), (1, 3), (1, 1), (3, 1)},
and the pairs of colours available for α and β are unchanged. Hence, G[Fi ∪ Fj ] is
isomorphic to the graph in Figure 10(d).

(v) fi(u) 6= fj(u) u ∈ V (H) \ {x, y, w, z}. In this case, the vertex labels on G[Fi] and
G[Fj ] are identical. Thus [Fi, Fj ] is a perfect matching, andG[Fi∪Fj ] is isomorphic
to the graph in Figure 10(f).

Table 5: Summary of Operation V.

Vertex whose colour is changed
Subgraph induced by

Fi ∪ Fj Label of fifj
y Figure 10(b) r
x Figure 10(c) rr
z, w Figure 10(d) c

u ∈ V (H) \ {x, y, z, w} Figure 10(f) pm

We informally refer to the rows and columns of vertices in G[Fi] according to the
drawing in Figure 10(a). For Operations IV and VI through IX we use a similar convention.

Remark 5.3. We note that for Operation V, if fifj ∈ E(G4(H)) has label r, then the set
of vertices Si,j ⊆ Fi incident to the edges of [Fi, Fj ] consists of row two or three2. If
fifj ∈ E(G4(H)) has label rr, then the set of vertices Si,j ⊆ Fi incident to the edges of
[Fi, Fj ] consists of rows one and two, or rows three and four. If fifj ∈ E(G4(H)) has
label c and e ∈ [Fi, Fj ], then each colouring corresponding to an end of e assigns the same
colour to γ and δ.

5.6 Operation VI

We may assume that fi(x) = 1, fi(y) = 2, fi(z) = 3 and fi(w) = 1. Then the pairs of
colour available for α and β, respectively, are

{(3, 4), (3, 1), (4, 1), (4, 3)},

and the pairs of colours available for γ and δ, respectively, are

{(2, 4), (2, 1), (4, 1), (4, 2)}.

Thus G[Fi] is isomorphic to P4�P4, and we assume that it is drawn in the plane as shown
in Figure 11(a), with the rows labelled by the pairs of colours available for α and β, respec-
tively, and the columns labelled by the pairs of colours available for γ and δ, respectively.

2Rows are numbered from top to bottom and columns from left to right.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Subgraphs induced by Fi ∪ Fj for Operations VI, VII and VIII.

If fifj ∈ E(G4(H)), then fj is obtained from fi by changing the colour of a single
vertex in V (H); there are five cases to consider. Since H is a 2-tree, there are vertices
a, b ∈ V (H) such thatH[{x, y, a}] ∼= K3 andH[{w, z, b}] ∼= K3. Observe fi(a) ∈ {3, 4}
and fi(b) ∈ {2, 4}. We may assume that fi(a) = 4 and fi(b) = 2. Even though b
(respectively, a) could be equal to x or y (respectively, w or z), this does not affect the
argument.

(i) fi(y) 6= fj(y). Then fj(y) = 3, and the pairs of colours available for α and β,
respectively, are

{(4, 2), (4, 1), (2, 1), (2, 4)},
and the pairs of colours available for γ and δ are unchanged. Hence, G[Fi ∪ Fj ] is
isomorphic the the graph in Figure 11(b).

(ii) fi(x) 6= fj(x). Then fj(x) = 3, and the pairs of colours available for α and β,
respectively, are

{(4, 1), (4, 3), (1, 3), (1, 4)},
while the pairs of colours available for γ and δ are unchanged. Hence, G[Fi ∪ Fj ] is
isomorphic to the graph in Figure 11(c).
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(iii) fi(z) 6= fj(z). Then fj(z) = 4 and the pairs of colours available for γ and δ,
respectively, are

{(3, 2), (3, 1), (2, 1), (2, 3)},
while the pairs of colours available for α and β are unchanged. Hence, G[Fi ∪Fj ] is
isomorphic the the graph in Figure 11(d).

(iv) fi(w) 6= fj(w). Then fj(w) = 4 and the pairs of colours available for γ and δ,
respectively, are

{(2, 1), (2, 4), (1, 4), (1, 2)},
while the pairs of colours available for α and β are unchanged. Hence, G[Fi ∪Fj ] is
isomorphic the the graph in Figure 11(e).

(v) fi(u) 6= fj(u) for some u ∈ V (H) \ {x, y, z, w}. In this case, the vertex labels on
G[Fi] and G[Fj ] are identical. Thus [Fi, Fj ] is a perfect matching, and G[Fi ∪Fj ] is
isomorphic to the graph in Figure 11(f).

Table 6: Summary of Operation VI.

Vertex whose colour is changed
Subgraph induced by

Fi ∪ Fj Label of fifj
y Figure 11(b) r
x Figure 11(c) rr
z Figure 11(d) c
w Figure 11(e) cc

u ∈ V (H) \ {x, y, z, w} Figure 11(f) pm

Remark 5.4. We note that for Operation VI, if fifj ∈ E(G4(H)) has label r (respectively,
c), then the set of vertices Si,j ⊆ Fi incident to the edges of [Fi, Fj ] consists of row (re-
spectively, column) two or three. If fifj ∈ E(G4(H)) has label rr (respectively, cc), then
the set of vertices Si,j ⊆ Fi incident to the edges of [Fi, Fj ] consists of rows (respectively,
columns) one and two or rows (respectively, columns) three and four.

5.7 Operation VII

We may assume that fi(x) = 1, fi(y) = 2 and fi(z) = 3. Then the pairs of colours
available for α and β, respectively, are

{(3, 4), (3, 1), (4, 1), (4, 3)},

and the pairs of colours available for γ and δ, respectively, are

{(2, 4), (2, 1), (4, 1), (4, 2)}.

Thus G[Fi] is isomorphic to P4�P4, and we assume that it is drawn in the plane as shown
in Figure 11(a) with rows labelled by the pairs of colours available for α and β, respectively,
and the columns labelled by the pairs of colours available for γ and δ, respectively.

If fifj ∈ E(G4(H)), then fj is obtained from fi by changing the colour of a single
vertex in V (H). There are four cases to consider.
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(i) fi(x) 6= fj(x). We may assume that fj(x) = 4. Then the pairs of colours available
for α and β, respectively, are

{(3, 1), (3, 4), (1, 4), (1, 3)},

and the pairs of colours available for γ and δ, respectively, are

{(2, 1), (2, 4), (1, 4), (1, 2)}.

Hence, G[Fi ∪ Fj ] is isomorphic to the graph in Figure 11(g).

(ii) fi(y) 6= fj(y). This is analogous to Operation VI when the colour of y is changed,
and thus G[Fi ∪ Fj ] is isomorphic to the graph in Figure 11(b).

(iii) fi(z) 6= fj(z). This is analogous to Operation VI when the colour of z is changed,
and thus G[Fi ∪ Fj ] is isomorphic to the graph in Figure 11(d).

(iv) fi(u) 6= fj(u) for some u ∈ V (H) \ {x, y, z}. In this case, the vertex labels on
G[Fi] and G[Fj ] are identical. Thus [Fi, Fj ] is a perfect matching, and G[Fi ∪Fj ] is
isomorphic to the graph in Figure 11(f).

Table 7: Summary of Operation VII.

Vertex whose colour is changed
Subgraph induced by

Fi ∪ Fj Label of fifj
x Figure 11(g) sq
y Figure 11(b) r
z Figure 11(d) c

u ∈ V (H) \ {x, y, z} Figure 11(f) pm

Remark 5.5. We note that for Operation VII, if fifj ∈ E(G4(H)) has label r (respectively,
c), then the set of vertices Si,j ⊆ Fi incident to the edges of [Fi, Fj ] consists of row
(respectively, column) two or three. If fifj ∈ E(G4(H)) has label sq, then the set of
vertices Si,j ⊆ Fi incident to the edges of [Fi, Fj ] induces a four-cycle using a degree two
vertex of G[Fi].

5.8 Operation VIII

We may assume that fi(x) = 1, fi(y) = 2 and fi(z) = 3. Then the pairs of colours
available for α and β, respectively, are

{(4, 3), (4, 2), (3, 2), (3, 4)},

and the pairs of colours available for γ and δ, respectively, are

{(2, 4), (2, 1), (4, 1), (4, 2)}.

Thus G[Fi] is isomorphic to P4�P4, and we assume that it is drawn in the plane as shown
in Figure 11(a) with rows labelled by the pairs of colours available for α and β, respectively,
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and the columns labelled by the pairs of colours available for γ and δ, respectively (but not
the same labels as in the figure).

If fifj ∈ E(G4(H)), then fj is obtained from fi by changing the colour of a single
vertex in V (H), and there are four cases.

(i) fi(x) 6= fj(x). We may assume that fj(x) = 4. Then the pairs of colours available
for α and β, respectively, are

{(1, 3), (1, 2), (3, 2), (3, 1)},

and the pairs of colours available for γ and δ, respectively, are

{(2, 1), (2, 4), (1, 4), (1, 2)}.

Hence, G[Fi∪Fj ] is isomorphic to the graph in Figure 11(h) with appropriate labels.

(ii) fi(y) 6= fj(y). This is analogous to Operation VI when the colour of x is changed,
and thus G[Fi ∪ Fj ] is isomorphic to the graph in Figure 11(c) with appropriate
labels.

(iii) fi(z) 6= fj(z). This is analogous to Operation VI when the colour of z is changed,
and thus G[Fi ∪ Fj ] is isomorphic to the graph in Figure 11(d) with appropriate
labels.

(iv) fi(u) 6= fj(u) for some u ∈ V (H) \ {x, y, z}. In this case, the vertex labels on
G[Fi] and G[Fj ] are identical. Thus [Fi, Fj ] is a perfect matching, and G[Fi ∪Fj ] is
isomorphic to the graph in Figure 11(f).

Table 8: Summary of Operation VIII.

Vertex whose colour is changed
Subgraph induced by

Fi ∪ Fj Label of fifj
x Figure 11(h) e
y Figure 11(c) rr
z Figure 11(d) c

u ∈ V (H) \ {x, y, z} Figure 11(f) pm

Remark 5.6. We note that for Operation VIII, if fifj ∈ E(G4(H)) has label c, then the
set of vertices Si,j ⊆ Fi incident to the edges of [Fi, Fj ] consists of column two or three.
If fifj ∈ E(G4(H)) has label rr, then the set of vertices Si,j ⊆ Fi incident to the edges
of [Fi, Fj ] consists of rows one and two or rows three and four. If fifj ∈ E(G4(H)) has
label e, then the set of vertices Si,j ⊆ Fi incident to the edges of [Fi, Fj ] induces an edge
that is the first or last edge of row two or row three.

5.9 Operation IX

We may assume that fi(x) = 1, fi(y) = 2 and fi(z) = 3. Then the pairs of colours
available for α and β, respectively, are

{(4, 3), (4, 1), (3, 1), (3, 4)},
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and the pairs of colours available for γ and δ, respectively, are

{(2, 2), (2, 4), (4, 4), (4, 2)}.

Thus G[Fi] is isomorphic to P4�C4, and we assume that it is drawn in the plane as shown
in Figure 10(a) with rows labelled by the pairs of colours available for α and β, respectively,
and the columns labelled by the pairs of colours available for γ and δ, respectively (but not
the same labels as in the figure).

If fifj ∈ E(G4(H)), then fj is obtained from fi by changing the colour of a single
vertex in V (H); there are four cases.

(i) fi(x) 6= fj(x). We may assume that fj(x) = 4. Then the pairs of colours available
for α and β, respectively, are

{(3, 1), (3, 4), (1, 4), (1, 3)},

and the pairs of colours available for γ and δ, respectively, are

{(2, 1), (2, 2), (1, 2), (1, 1)}.

Hence, G[Fi∪Fj ] is isomorphic to the graph in Figure 10(e) with appropriate labels.

(ii) fi(y) 6= fj(y). This is analogous to Operation V when the colour of y is changed,
and thus G[Fi ∪ Fj ] is isomorphic to the graph in Figure 10(b) with appropriate
labels.

(iii) fi(z) 6= fj(z). This is analogous to Operation V when the colour of z is changed,
and thus G[Fi ∪ Fj ] is isomorphic to the graph in Figure 10(d) with appropriate
labels.

(iv) fi(u) 6= fj(u) for some u ∈ V (H) \ {x, y, z}. In this case, the vertex labels on
G[Fi] and G[Fj ] are identical. Thus [Fi, Fj ] is a perfect matching, and G[Fi ∪Fj ] is
isomorphic to the graph in Figure 10(f).

Table 9: Summary of Operation IX.

Vertex whose colour is changed
Subgraph induced by

Fi ∪ Fj Label of fifj
x Figure 10(e) e
y Figure 10(b) r
z Figure 10(d) c

u ∈ V (H) \ {x, y, z} Figure 10(f) pm

Remark 5.7. We note that for Operation IX, if fifj ∈ E(G4(H)) has label r and e ∈
[Fi, Fj ], then each colouring corresponding to an end of e assigns the same colour to α
and β. Similarly, if fifj ∈ E(G4(H)) has label c and e ∈ [Fi, Fj ], then each colouring
corresponding to an end of e assigns the same colour to γ and δ. If fifj ∈ E(G4(H))
has label e and e ∈ [Fi, Fj ], then the set of vertices Si,j ⊆ Fi incident to the edges of
[Fi, Fj ] induces an edge that is either the first or last edge in a column, and each colouring
corresponding to an end of e assigns the same colour to γ and δ.
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6 4-colouring graphs of 2-trees of diameter at least three
Let H be a 2-tree, and let H ′ be a 2-tree obtained from H by applying one of the Opera-
tions I through IX. We prove G4(H ′) has a Hamilton cycle.

6.1 Operations I, II and III

We first prove a result about Hamilton cycles in a cube Q3 that will later be used to show
the existence of edges satisfying Lemma 2.7. In this section, we let each face label in
Figure 12(a) denote the 4-cycle bounding that face.

α1β1 β2

γ1

γ2

α2

(a)

h2
h3

h1

h4

w1 w4w3w2

d1

d4

d2

d3

(b)

Figure 12: Labelling G[Fi].

We label the six Hamilton cycles of a plane drawing of Q3 as shown in Figure 13.

(a)@ (b)u (c)A (d)t (e) à (f)⊥>

Figure 13: Labels for the Hamilton cycles of Q3.

To simplify notation for multisets, we write nZ to mean n copies of Z.

Lemma 6.1. Let Q ∼= Q3 be drawn as in Figure 12(a), and let e be an edge of Q. Let
Z = {Z1, Z2, . . . , Zn} be a multiset such that Z ⊆ {2α1, 2β1, 2γ1, 5Q3} and n ≤ 5.
That is, each Zi is an induced subgraph of Q and is either the entire 3-cube or one of the
4-cycles of Q labelled by α1, β1, or γ1. Then there exists a Hamilton cycle in Q containing
distinct edges {e, e1, e2, . . . , en} such that ei ∈ E(Zi), for 1 ≤ i ≤ n.

Proof. It is enough to prove the result when n = 5 and Z = {2α1, 2β1, γ1}. Note that
the Hamilton cycles t and u in Q each contain three edges of α1, three edges of β1, and
two edges of γ1. When any single edge is deleted from t or u, we see that the resulting
Hamilton path contains five distinct edges, two from α1, two from β1 and one from γ1.
Since at least one of t and u contains the edge e, either t or u contains distinct edges
{e, e1, e2, . . . , e5} such that ei ∈ E(Zi), for 1 ≤ i ≤ 5.
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Lemma 6.2. Let Q ∼= Q3 be drawn as in Figure 12(a) with edges labelled as in Fig-
ure 12(b). Assume {e, e′} ⊆ E(Q) with e ∈ {w1, w2, w3, w4}. Let Z = {Z1, Z2, . . . , Zn}
be a multiset such that Z ⊆ {α1, β1, 2γ1, 4Q3} and n ≤ 4. That is, each Zi is an
induced subgraph of Q and is either the entire 3-cube or one of the 4-cycles of Q la-
belled by α1, β1, or γ1. Then there exists a Hamilton cycle in Q containing distinct edges
{e, e′, e1, e2, . . . , en} such that ei ∈ E(Zi), for 1 ≤ i ≤ n.

Proof. It is enough to prove the result when n = 4 and Z = {α1, β1, 2γ1} with Z1 := α1,
Z2 := β1, Z3 := γ1 and Z4 := γ1. Let H := {h1, h2, h3, h4}, W := {w1, w2, w3, w4}
and D := {d1, d2, d3, d4}. For each Zi, we designate a set of candidate edges for ei as
follows (see Table 10).

Table 10: Cases in the proof of Lemma 6.2.

Cycle Edges ei assigned to Zi

e′, e in Q Z1 Z2 Z3 Z4

e′ ∈ H , e ∈ {w1, w2} @ {h2, h3} \ {e′} {w1, w2} \ {e} d2 {h1, h2} \ {e′}
e′ ∈ H , e ∈ {w3, w4} A {h2, h3} \ {e′} d4 d1 {h1, h2} \ {e′}
{e, e′} = {w1, w2} u w3 d4 h1 h2

e, e′ ∈ W , {e, e′} 6= {w1, w2} t h3 {w1, w2} \ {e, e′} d1 d2

e′ ∈ D, e ∈ {w1, w4} à h3 {d1, d4} \ {e′} h1 {d1, d2} \ {e′}
e′ ∈ D, e ∈ {w2, w3} ⊥> {w2, w3} \ {e} {d1, d4} \ {e′} h1 {d1, d2} \ {e′}

As indicated in Table 10, the first case has e′ ∈ H and e ∈ {w1, w2}. We claim that
@ has the required property. We take e3 := d2, and as |{w1, w2} \ {e}| = 1, we take
{e2} := {w1, w2} \ {e}. Observe that the sets {h2, h3} \ {e′} and {h1, h2} \ {e′} are
distinct and non-empty. Thus, we may take e1 ∈ {h2, h3} \ {e′} and e4 ∈ {h1, h2} \ {e′}
so that e1 6= e4. The remaining five cases follow using analogous arguments.

Lemma 6.3. Suppose H ′ is obtained from a 2-tree H by applying one of Operations I, II
or III. Then G4(H ′) has a Hamilton cycle.

Proof. Case 1. Suppose H ′ is obtained from H by applying Operation I. By Lemma 2.5,
G4(H) has a spanning tree T with ∆(T ) ≤ 4. Let V (T ) := {f0, f1, . . . , fN−1} such that
f0 is a leaf, and root T at f0, turning T into a branching,

−→
T , by directing all arcs away

from f0.
Let G := G4(H ′), and let Fi be the set of 4-colourings of H ′ that agree with fi on

V (G4(H)), 0 ≤ i ≤ N −1. Label each
−−→
fifj ∈ A(

−→
T ) with the label of fifj ∈ E(G4(H)),

as described in Section 5, and let Si,j ⊆ Fi denote the vertices incident to the edges
of [Fi, Fj ].

For each arc
−−→
fifj ∈ A(

−→
T ), we choose edges ei,j in G[Fi] and ej,i in G[Fj ] satisfying

conditions (i) and (ii) of Lemma 2.7 as follows. Suppose
−−→
f0f1 ∈ A(

−→
T ). The fact that

G[F0 ∪ F1] is isomorphic to the graph in Figure 8(b) or 8(c) gives us the flexibility to
choose e0,1 ∈ E(G[F0]) and e1,0 ∈ E(G[F1]) satisfying (ii) of Lemma 2.7.

Edge choosing procedure. Now suppose for some i, ei,k has been chosen in G[Fi] but
ei,j has not yet been chosen for each j where

−−→
fifj ∈ A(

−→
T ). For this i, let J := {j |
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−−→
fifj ∈ A(

−→
T )}. We choose edges ei,j and ej,i for j ∈ J as follows. Assume that G[Fi] is

drawn as in Figure 12(a). By Remark 5.1, Si,j1 = Si,j2 whenever
−−→
fifj1 and

−−→
fifj2 have the

same label. Without loss of generality, we may assume that an arc
−−→
fifj with label a-sq has

G[Si,j ] isomorphic to the 4-cycle α1, an arc
−−→
fifj with label b-sq has G[Si,j ] isomorphic

to the 4-cycle β1, and an arc
−−→
fifj with label c-sq has G[Si,j ] isomorphic to the 4-cycle γ1.

For each j ∈ J , let Zj := G[Si,j ], and define the multiset Z := {Zj | j ∈ J}. Then each
Zj is either a 3-cube or one of the 4-cycles α1, β1, or γ1. Since fi is incident to at most
two edges with label a-sq, at most two edges with label b-sq, and at most two edges with
label c-sq, Z ⊆ {2α1, 2β1, 2γ1, 5Q3}. Observe |Z| ≤ 4 since ∆(T ) ≤ 4. By Lemma 6.1,
using e := ei,k, there is a Hamilton cycle Ci in G[Fi] and an edge ei,j ∈ E(Zj) for each
Zj ∈ Z such that ei,j1 6= ei,j2 whenever j1 6= j2. Thus (i) of Lemma 2.7 is satisfied.
Furthermore, for each j ∈ J there is an edge ej,i ∈ E(G[Fj ]) such that ei,j and ej,i satisfy
(ii) of Lemma 2.7.

Now suppose for every
−−→
fifj ∈ A(

−→
T ), ei,j and ej,i have been chosen as above. By

construction, (i) and (ii) of Lemma 2.7 are satisfied, and for each G[Fi], 0 ≤ i ≤ N − 1,
the Hamilton cycle Ci satisfies condition (iii) of Lemma 2.7. Therefore, G has a Hamilton
cycle.

Case 2. Suppose H ′ is obtained from H by applying Operation II. Let H := G4(H) and
V (H) := {f0, f1, . . . , fN−1}. For each 1 ≤ i ≤ 4 let Vi := {c ∈ V (H) | c(x) = i}. Then
{V1, V2, V3, V4} is a partition of V (H). Let Li be an assignment of lists with Li(x) := {i}
and Li(w) := {1, 2, 3, 4} for w ∈ V (H) \ {x}. Note that GLi(H) ∼= H[Vi] and that
H[V1] ∼= H[V2] ∼= H[V3] ∼= H[V4]. Thus,H can be partitioned into four copies isomorphic
to GL1

(H) with edges between pairs of copies. Furthermore, each edge in E(H[Vi]),
1 ≤ i ≤ 4, has label a-sq, b-sq, c-sq or pm, and each edge with one endpoint in Vi and the
other endpoint in Vj , i 6= j, has label e.

By Lemma 2.5, H[Vi], 1 ≤ i ≤ 4, has a spanning tree Ti with ∆(Ti) ≤ 4. Note
that [Vi, Vj ] 6= ∅ for 1 ≤ i 6= j ≤ 4. Choose one edge from each of [V1, V2], [V2, V3],
and [V3, V4]. Without loss of generality, suppose the chosen edges are f1f2 ∈ [V1, V2],
f ′2f3 ∈ [V2, V3], and f ′3f4 ∈ [V3, V4] such that fi ∈ Vi, 1 ≤ i ≤ 4. Since f1f2, f ′2f3 and
f ′3f4 each have label e in H and each vertex of V (H) is incident to at most one edge with
label e, the vertices f1, f2, f ′2, f3, f

′
3, f4 are distinct. Thus, we may assume that f ′2 = f0

and f ′3 = f5.
Let T be the spanning tree ofH consisting of the union of T1, T2, T3, T4, and the edges

{f1f2, f0f3, f5f4}. Then ∆(T ) ≤ 5 and the only edges of T with label e are f1f2, f0f3
and f4f5. Root T at f1, turning T into a branching,

−→
T , by directing all arcs away from f1.

This gives a branching
−→
Ti for each Ti, 1 ≤ i ≤ 4, and by our choice of labels, fi is the root

of
−→
Ti .
Let G := G4(H ′), and let Fi be the set of 4-colourings of H ′ that agree with fi on

V (G4(H)), 0 ≤ i ≤ N − 1. Label each
−−→
fifj ∈ A(

−→
T ) with the label of fifj ∈ E(H), and

let Si,j ⊆ Fi and S′j ⊆ Fj denote the vertices incident to the edges of [Fi, Fj ].

For each arc
−−→
fifj ∈ A(

−→
T ), we choose edges ei,j in G[Fi] and ej,i in G[Fj ] satisfying

conditions (i) and (ii) of Lemma 2.7 as follows. For (i, j) ∈ {(1, 2), (0, 3), (5, 4)} (where−−→
fifj has label e), let ei,j be the unique edge of G[Si,j ] ⊆ G[Fi] and ej,i be the unique edge
of G[S′j ] ⊆ G[Fj ]. For

−→
T1 and

−→
T4 we apply the edge choosing procedure used in Case 1,
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starting with with e1,2 in G[F1] for
−→
T1, and e4,5 in G[F4] for

−→
T4. The resulting set of edges

{ei,j , ej,i |
−−→
fifj ∈ (A(

−→
T1 ∪

−→
T4) ∪ {−−→f1f2,

−−→
f5f4})}

and set of cycles {Ci | fi ∈ V1 ∪ V4} satisfy Lemma 2.7. For
−→
T2, we let fM be the

parent of f0 and fk the parent of fM . Let
−→
T2
′ be the subtree of

−→
T2 obtained by deleting

the descendants of fM and
−→
T2
′′ be the subtree of

−→
T2 rooted at fM . If M = 2 then k = 1,

so eM,k = e2,1. Otherwise apply the apply the edge choosing procedure used in Case 1 to−→
T2
′, starting with e2,1 in G[F2]. This leads to the designation of an edge eM,k in G[FM ].

Let J := {j | −−−→fMfj ∈ A(
−→
T2)}. We choose edges eM,j and ej,M for j ∈ J as follows.

Without loss of generality, we may assume that an arc
−−−→
fMfj with label a-sq has G[SM,j ]

isomorphic to the 4-cycle α1, an arc
−−−→
fMfj with label b-sq has G[SM,j ] isomorphic to the

4-cycle β1, an arc
−−−→
fMfj with label c-sq has G[SM,j ] isomorphic to the 4-cycle γ1, and an

arc with label pm has G[SM,j ] isomorphic to Q3. Let Z be a multiset consisting of the
graphs Zj := G[SM,j ] for j ∈ J .

Suppose there exists ` ∈ (J \ {0}) such that both
−−−→
fMf0 and fMf` have label c-sq. We

apply the edge choosing procedure used in Case 1 to
−→
T2
′′, with chosen edge eM,k. The

resulting set of edges {eM,j | j ∈ J} and cycle CM satisfy Lemma 2.7. Observe that
eM,0, eM,` ∈ E(γ1). Suppose eM,0 = ab, and let the vertices of [{a, b}, F0] incident to F0

be {c, d}. If e0,3 = cd then exchange eM,0 with eM,`. It now follows that for each j ∈ J
there is an edge ej,M ∈ E(G[Fj ]) such that eM,j and ej,M satisfy (ii) of Lemma 2.7, with
e0,M 6= e0,3.

Otherwise
−−−→
fMf0 is the only arc in {−−−→fMfj | j ∈ J} labelled c-sq, or

−−−→
fMf0 has label

a-sq, b-sq, or pm. To ensure (i) of Lemma 2.7 is satisfied for i = 0, we duplicate Z0 ∈ Z
and apply Lemma 6.1. Let Z0′ := Z0 and F0′ := F0. Observe |Z ∪ {Z0′}| ≤ 5 since
∆(T ) ≤ 4. Since fM is incident to at most one edge with label a-sq, at most one edge with
label b-sq, and at most two edges with label c-sq, (Z ∪ {Z0′}) ⊆ {2α1, 2β1, 2γ1, 5Q3}.
By Lemma 6.1 applied to Z ∪ {Z0′}, and using e := eM,k, there is a Hamilton cycle CM
in G[FM ] and edges eM,j ∈ E(Zj) for each j ∈ (J ∪ {0′}) such that eM,j1 6= eM,j2

whenever j1 6= j2. Thus (i) of Lemma 2.7 is satisfied for i = M . Furthermore, for each
j ∈ (J ∪ {0′}) there is an edge ej,M ∈ E(G[Fj ]) such that ej,M and eM,j satisfy (ii) of
Lemma 2.7. Since eM,0′ 6= eM,0, we have e0,M 6= e0′,M , and hence, one of e0,M and
e0′,M is different from e0,3. If e0,M 6= e0,3 then we ignore e0′,M and eM,0′ ; otherwise,
redefine e0,M to be e0′,M and eM,0 to be eM,0′ so that (i) of Lemma 2.7 is satisfied for
i = 0.

Finally, let G[F0] ∼= Q3 be drawn as in Figure 12(a) with edges labelled as in Fig-
ure 12(b). Observe that e = e0,3 ∈ {w1, w2, w3, w4} and let e′ := e0,M . Let J := {j |−−→
f0fj ∈ A(

−→
T2)}. We choose edges e0,j and ej,0 for j ∈ J as follows. Without loss of

generality, we may assume that an arc
−−→
f0fj with label a-sq has G[S0,j ] isomorphic to the

4-cycle α1, an arc
−−→
f0fj with label b-sq has G[S0,j ] isomorphic to the 4-cycle β1, an arc−−→

f0fj with label c-sq has G[S0,j ] isomorphic to the 4-cycle γ1, and an arc with label pm
has G[S0,j ] isomorphic to Q3. Let Z be a multiset consisting of the graphs Zj := G[S0,j ]
for j ∈ J . Observe Z ⊆ {α1, β1, 2γ1, 4Q3} and |Z| ≤ 4. By Lemma 6.2, there exists a
Hamilton cycle C0 in G[F0] containing distinct edges {e, e′} ∪ {e0,j | j ∈ J} such that
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e0,j ∈ E(Zj) for j ∈ J . Thus (i) of Lemma 2.7 is satisfied for i = 0. Furthermore, for
each j ∈ J there is an edge ej,0 ∈ E(G[Fj ]) so that ej,0 and e0,j satisfy (ii) of Lemma 2.7.

We now apply the edge choosing procedure used in Case 1 to the remaining nodes of
−→
T2.

This designates edges ei,j in G[Fi] and ej,i in G[Fj ], and cycles Ci satisfying Lemma 2.7.
For
−→
T3 we apply the argument for

−→
T2 giving us edges ei,j in G[Fi] and ej,i in G[Fj ], and

cycles Ci satisfying Lemma 2.7, for each
−−→
fifj ∈ A(

−→
T3).

Now ei,j and ej,i have been chosen for all
−−→
fifj ∈ A(

−→
T ). By construction, each such

ei,j and ej,i satisfy (ii) of Lemma 2.7, and for each G[Fi], 0 ≤ i ≤ N − 1, the Hamilton
cycleCi satisfies condition (iii) of Lemma 2.7. Furthermore, the collection of chosen edges
are all distinct. Therefore, G has a Hamilton cycle.

Case 3. Suppose H ′ is obtained from H by applying Operation III. Let H := G4(H) and
V (H) := {f0, f1, . . . , fN−1}. For each 1 ≤ i 6= j ≤ 4 let

Vij := {c ∈ V (H) | c(x) = i and c(y) = j}.

Then
V := {V12, V13, V14, V21, V23, V24, V31, V32, V34, V41, V42, V43}

is a partition of V (H). Note that [Vαβ , Vγδ] 6= ∅ if and only if α = γ or β = δ. Further-
more, each edge in E(H[Vij ]), 1 ≤ i 6= j ≤ 4, has label a-sq, c-sq or pm, and each edge
with one endpoint in Vi1j1 and the other endpoint in Vi2j2 , (i1, j1) 6= (i2, j2), has label e.

Let {i, j, k} ⊂ {1, 2, 3, 4}. As H is a 2-tree, H is 3-colourable and for each 1 ≤
i 6= j ≤ 4, there is a unique vertex cijk ∈ V (H) with cijk(x) = i, cijk(y) = j and
cijk(w) ∈ {i, j, k} for w ∈ V (H) \ {x, y}.

Consider the ordering

(V14, V12, V32, V34, V31, V21, V24, V23, V13, V43, V42, V41)

of V . For each Vij ∈ V \ {V41}, suppose V`m immediately follows Vij in the list. Then
|{i, j} ∪ {`,m}| = 3, and hence there is a unique kij ∈ {1, 2, 3, 4} \ ({i, j} ∪ {`,m})
such that cijkij ∈ Vij . The ordering of V ensures that for each Vij ∈ V \ {V42, V41}
with V`m immediately following Vij in the list, kij 6= k`m. Choose the edge c14c′14 from
[V14, V12] with endpoint c14 := c143 ∈ V14; note that c′14 6= c124. For each [Vij , V`m]
where V`m immediately follows Vij in the list, there is a unique edge cijc′ij with endpoint
cij = cijkij ∈ Vij .

By Lemma 2.5, H[Vij ], 1 ≤ i 6= j ≤ 4, has a spanning tree Tij with ∆(Tij) ≤ 4.
Let T be the spanning tree of H with Tij ⊂ T , 1 ≤ i 6= j ≤ 4, and cijc′ij ∈ E(T ),
1 ≤ i 6= j ≤ 4 with (i, j) 6= (4, 1). Then ∆(T ) ≤ 5 and the only edges of T with label
e are cijc′ij , 1 ≤ i 6= j ≤ 4 with (i, j) 6= (4, 1). Root T at c143 ∈ V14, turning T into a

branching,
−→
T , by directing all arcs away from c14. This gives a branching

−→
Tij for each Tij ,

1 ≤ i 6= j ≤ 4. Now repeat the argument in Case 2 for each
−→
Tij , 1 ≤ i 6= j ≤ 4.

6.2 Operations IV to IX

We introduce some labelled Hamilton cycles of C4�C4, P4�C4 and P4�P4 to be used
in Lemma 2.7 to show the existence of a Hamilton cycle in G4(H ′), where H ′ is obtained
from a 2-tree H by applying one of Operations IV through IX.
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Let be the edge labelled Hamilton cycle in C4�C4 shown in Figure 14, with the
edges in rows two and four labelled by r, the edges in columns two and four labelled by
c, and the remaining edges left unlabelled. Let @ and @′ be the edge labelled Hamilton
cycles in P4�C4 shown in Figure 14, and let ⊥>, ⊥>′ and ⊥>′′ be the edge labelled Hamilton
cycles in P4�P4 shown in Figure 14.

(a) (b)@ (c)@′

(d)⊥> (e)⊥>′ (f)⊥>′′

Figure 14: Labelled Hamilton cycles of C4�C4, P4�C4 and P4�P4.

Lemma 6.4. Suppose H ′ is obtained from a 2-tree H by applying one of Operations IV
through IX. Then G4(H ′) has a Hamilton cycle.

Proof. By Lemma 2.5, H := G4(H) has a spanning tree T with ∆(T ) ≤ 4. Let V (T ) :=

{f0, f1, . . . , fN−1} such that f0 is a leaf, and root T at f0, turning T into a branching,
−→
T ,

by directing all arcs away from f0. Let G := G4(H ′), and let Fi be the set of 4-colourings
of H ′ that agree with fi on V (H), 0 ≤ i ≤ N − 1. Label each

−−→
fifj ∈ A(

−→
T ) with the label

of fifj ∈ E(H), and let Si,j ⊆ Fi and S′j ⊆ Fj denote the vertices incident to the edges
of [Fi, Fj ].

We first traverse
−→
T using breadth-first search starting at f0 to construct a drawing of

eachG[Fi] as shown in Figure 9(a) for Operation IV, Figure 10(a) for Operations V and IX,
and Figure 11(a) for Operations VI, VII and VIII, so that each drawing has the following
property, denoted (∗).

(∗) The rows are labelled by the pairs of colours available for α and β, respectively, and
the columns are labelled by the pairs of colours available for γ and δ, respectively.
In the case of Operations IV, V and IX, we further assume that the second and fourth
columns have γ and δ the same colour. Also, in the case of Operation IV, we assume
the second and fourth rows have α and β the same colour.

Start with a drawing of G[F0] satisfying (∗). Assume
−−→
fifj ∈ A(

−→
T ) where G[Fi] has

been drawn but G[Fj ] has not. We draw G[Fj ] satisfying (∗) as follows. If
−−→
fifj has label
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• pm, then drawG[Fj ] so that the labels of the rows and columns are in the same order
as in G[Fi].

• r, then draw G[Fj ] so that the column labels of G[Fj ] are in the same order as the
column labels of G[Fi], and so that the row number of S′j in G[Fj ] is the same as
that of Si,j in G[Fi]. This can be done for Operation IV due to the cyclic structure of
C4�C4; furthermore, (∗) guarantees that Si,j and S′j have row number two or four.
For Operations V, VI, VII and IX, this can be done by Remarks 5.3, 5.4, 5.5 and 5.7.
Thus, one of the two possible labellings for the rows of G[Fj ] gives a drawing of
G[Fj ] such that the row number of S′j in G[Fj ] is the same as that of Si,j in G[Fi].

• c, then draw G[Fj ] so that the row labels of G[Fj ] are in the same order as the row
labels of G[Fi], and so that the column number of S′j in G[Fj ] is the same as that of
Si,j in G[Fi]. This can always be done using a similar argument as in the case for−−→
fifj having label r. For Operations IV, V and IX, (∗) guarantees that Si,j and S′j
have column number two or four. For Operations VI, VII and VIII, by Remarks 5.4,
5.5 and 5.6, Si,j and S′j have column number two or three.

• rr, then draw G[Fj ] so that the column labels of G[Fj ] are in the same order as the
column labels of G[Fi], and so that the set of row numbers of S′j in G[Fj ] is the
same as that of Si,j in G[Fi]. This can be done for Operations V, VI and VIII, since
by Remarks 5.3, 5.4 and 5.6, the set of row numbers of Si,j and S′j is either {1, 2}
or {3, 4}.

• cc, then draw G[Fj ] so that the row labels of G[Fj ] are in the same order as the row
labels of G[Fi], and so that the set of column numbers of S′j in G[Fj ] is the same as
that of Si,j in G[Fi]. This can be done for Operation VI, since by Remark 5.4, the
set of column numbers of Si,j and S′j is either {1, 2} or {3, 4}.

• sq, then draw G[Fj ] satisfying (∗).

• e, then drawG[Fj ] satisfying (∗). Note that for Operation IX, (∗) guarantees that Si,j
and S′j belong to column number two or four.

For Operation IV (respectively, V, VI, VII, VIII, and IX), for each i, 0 ≤ i ≤ N − 1,
let Ci be the Hamilton cycle (respectively, @, ⊥>, ⊥>′, ⊥>′′, and @′) in G[Fi].

We describe how to construct a set of edges

E := {ei,j , ej,i | fifj ∈ E(T )}

so that for each arc
−−→
fifj ∈ A(

−→
T ), the edges ei,j in G[Fi] and ej,i in G[Fj ] satisfy con-

ditions (i) and (ii) of Lemma 2.7, and so that ei,j ∈ E(Ci) and ej,i ∈ E(Cj). Start with
E := ∅. We consider the arcs of

−→
T in the following order according to their labels.

(1) For each
−−→
fifj ∈ A(

−→
T ) with label e (Operations VIII and IX), ei,j ∈ G[Fi] and

ej,i ∈ G[Fj ] satisfying condition (ii) of Lemma 2.7 are uniquely determined. Note
that for Operation VIII, ei,j ∈ Ci and has label e, and ej,i ∈ Cj and has label e; this
follows by the symmetry of⊥>′′ and the drawingsG[Fi] andG[Fj ]. For Operation IX,
ei,j ∈ Ci and has label c/e, and ej,i ∈ Cj and has label c/e; this follows from the
drawings of G[Fi] and G[Fj ], and Remark 5.7. Add ei,j and ej,i to E .
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(2) For each
−−→
fifj ∈ A(

−→
T ) with label sq (Operation VII), choose ei,j in Ci with label

sq and ej,i in G[Fj ] satisfying condition (ii) of Lemma 2.7. Note that ej,i ∈ Cj and
has label sq or label r/sq; this follows from the drawings of G[Fi] and G[Fj ], and
Remark 5.7. Add ei,j and ej,i to E .

(3) For each
−−→
fifj ∈ A(

−→
T ) with label rr (Operations V, VI and VIII), choose ei,j in

Ci with label rr and ej,i in G[Fj ] satisfying condition (ii) of Lemma 2.7. Note that
ej,i ∈ Cj and has label rr; this follows from the drawings of G[Fi] and G[Fj ]. Add
ei,j and ej,i to E .

(4) For each
−−→
fifj ∈ A(

−→
T ) with label cc (Operation VI), choose ei,j in Ci with label cc

and ej,i in G[Fj ] satisfying condition (ii) of Lemma 2.7. Note that ej,i ∈ Cj and has
label cc; this follows from the drawings of G[Fi] and G[Fj ]. Add ei,j and ej,i to E .

(5) For each
−−→
fifj ∈ A(

−→
T ) with label r (Operations V, VI and IX), choose ei,j in Ci with

label r and ej,i in G[Fj ] satisfying condition (ii) of Lemma 2.7. Note that ej,i ∈ Cj
and has label r; this follows by the drawings of G[Fi] and G[Fj ]. Add ei,j and ej,i
to E .

For each
−−→
fifj ∈ A(

−→
T ) with label r (Operation VII), choose ei,j in E(Ci) \ E with

label r/sq and ej,i in G[Fj ] satisfying condition (ii) of Lemma 2.7. This is possible
since ⊥>′ has four edges with label r/sq. Note that ej,i ∈ Cj and has label r/sq; this
follows by the drawings of G[Fi] and G[Fj ]. Add ei,j and ej,i to E .

In the context of Operation IV, let T ′ be the subgraph of T induced by edges with
label r. Each component of T ′ is a path since each fi is incident to at most two edges
of T with label r. Let P be a component of T ′, and assume without loss of generality
that P = f0f1 · · · fm−1. For each i, 0 ≤ i ≤ m − 2, starting at i = 0, choose
ei,i+1 in E(Ci) \ E with label r and ei+1,i in G[Fi+1] satisfying condition (ii) of
Lemma 2.7. This is possible because the Hamilton cycle has two edges labelled r
in both rows two and four. Note that ei+1,i ∈ Ci+1 and has label r; this follows by
the drawings of G[Fi] and G[Fi+1]. Add ei,i+1 and ei+1,i to E .

(6) For each
−−→
fifj ∈ A(

−→
T ) with label c (Operations VI, VII and VIII), choose ei,j in Ci

with label c and ej,i in G[Fj ] that satisfies condition (ii) of Lemma 2.7. Note that
ej,i ∈ Cj and has label c; this follows by the drawings of G[Fi] and G[Fj ]. Add ei,j
and ej,i to E .

For each
−−→
fifj ∈ A(

−→
T ) with label c (Operation IX), choose ei,j in E(Ci) \ E with

label c/e and ej,i in G[Fj ] satisfying condition (ii) of Lemma 2.7. This is possible
because the Hamilton cycle @′ has two edges labelled c/e in columns two and four,
and fi is incident to at most one edge in T with label c and at most one edge in T
with label e. Note that ej,i ∈ Cj and has label c/e; this follows by the drawings of
G[Fi] and G[Fj ]. Add ei,j and ej,i to E .

In the context of Operations IV and V, let T ′ be the subgraph of T induced by edges
with label c. Each component of T ′ is a path since each fi is incident to at most two
edges of T with label c. Let P be a component of T ′, and assume without loss of
generality that P = f0f1 · · · fm−1. For each i, 0 ≤ i ≤ m − 2, starting at i = 0,
choose ei,i+1 in E(Ci) \ E with label c and ei+1,i in G[Fi+1] satisfying condition
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(ii) of Lemma 2.7. This is possible because the Hamilton cycles and @ have two
edges labelled c in both columns two and four. Note that ei+1,i ∈ Ci+1 and has label
c; this follows by the drawings of G[Fi] and G[Fi+1]. Add ei,i+1 and ei+1,i to E .

(7) For each
−−→
fifj ∈ A(

−→
T ) with label pm, choose ei,j inE(Ci)\E and ej,i inE(G[Fj ])\

E satisfying condition (ii) of Lemma 2.7. Add ei,j and ej,i to E .

Now ei,j and ej,i have been chosen for all
−−→
fifj ∈ A(

−→
T ). By construction, (i) and (ii)

of Lemma 2.7 are satisfied, and for each G[Fi], 0 ≤ i ≤ N − 1, the Hamilton cycle Ci
satisfies condition (iii) of Lemma 2.7. Therefore, G has a Hamilton cycle.

As a consequence of Lemmas 3.3, 3.5, 6.3 and 6.4, we now have our main result.

Theorem 1.1. If H is a 2-tree then k0(H) = 4, unless H ∼= T ∨ {u} for some tree T and
vertex u, where T is a star on at least three vertices or the bipartition of V (T ) has two
even parts; in these cases, k0(H) = 5.

As pointed out in Section 1, if H is a k-tree then k + 2 ≤ k0(H) ≤ k + 3. For both 1-
trees (i.e., trees) and 2-trees, equality can occur in both the upper and lower bound. By [6,
Corollary 5.6] and Theorem 1.1, if H is a tree or 2-tree of diameter at least three, then the
lower bound holds. We ask if this extends to k-trees, that is, if H is a k-tree with diameter
at least three, is it the case that k0(H) = k+ 2? On a related note, k-trees are a subclass of
chordal graphs. We ask if the techniques presented here can be extended to determine the
Gray code numbers of other chordal graphs.
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Appendix A 3-colouring graphs of trees
A 2-tree with a dominating vertex u has the form T ∨ {u} for some tree T . Lemma 3.5
characterizes when k0(T ∨ {u}) = 5. Its proof requires a technical result (Lemma 3.6)
that we prove in this appendix. To do so, we introduce additional terminology along with
structural results on the 3-colouring graphs of trees.

Define Li to be an assignment of lists to the vertices of T ∨ {u} with Li(u) := {i} and
Li(w) := {1, 2, 3, 4} for w ∈ V (T ). ThenGLi

(T ∨{u}) ∼= G3(T ) and thus, G4(T ∨{u})
can be partitioned into four copies of G3(T ) with edges between pairs of copies. We prove
that when T has even number of vertices then G3(T ) is bipartite. First, we prove a more
general result for GL(H) where H is a connected graph.

Lemma A.1. Let H be a connected graph on n vertices and L an assignment of lists to
the vertices of H such that L(v) ⊆ {1, 2, 3} for each v ∈ V (H). If H is L-colourable and
there is a vertex w ∈ V (H) with |L(w)| < 3, then GL(H) ⊆ Qn. In particular, GL(H) is
a bipartite graph.

Proof. The proof is by induction on n. Observe that the result is true for n = 1 and n = 2.
First suppose that |L(w)| = 1 and without loss of generality, L(w) = {1}. In any

list colouring of H , each vertex v ∈ NH(w) cannot be coloured ‘1’. Thus, let L̂ be an
assignment of lists of allowable colours defined as

L̂(v) :=

{
L(v) \ {1}, if v ∈ NH(w),
L(v), otherwise.

Denote the components of H − w by H1, H2, . . . ,HN . Then by the inductive hypothesis,
for each i, 1 ≤ i ≤ N ,

GL̂(Hi) ⊆ Q|V (Hi)|.

Since w must be coloured using the colour ‘1’, we have

GL(H) = GL̂(H − w)

= GL̂
(
∪Ni=1Hi

)
=

N

�
i=1

GL̂(Hi), by Remark 2.4

⊆
N
�
i=1

Q|V (Hi)|, by the inductive hypothesis

= Qn−1.

Next suppose that |L(w)| = 2 and without loss of generality, L(w) := {1, 2}. For
i = 1, 2, define Li as Li(w) := {i} and Li(v) := L(v) for v 6= w with v ∈ V (H). Also
define L̂i as L̂i(w) := {i} and L̂i(v) := {1, 2, 3} for v 6= w with v ∈ V (H). Observe
that GL1

(H) ⊆ GL̂1
(H) and GL2

(H) ⊆ GL̂2
(H). Furthermore, GL̂1

(H) ∼= GL̂2
(H),

and hence, GL(H) ⊆ GL̂1
(H)�K2. By the preceding argument, GL̂1

(H) ⊆ Qn−1, and
therefore

GL(H) ⊆ Qn−1�K2 = Qn.

Lemma A.2. If T is a tree with an even number of vertices then G3(T ) is bipartite.
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Proof. If T ∼= K2, then G3(T ) ∼= C6. Let T be a tree on an even number of vertices with
|V (T )| ≥ 4 having bipartition (A,B). Fix u ∈ A, v ∈ B with u adjacent to v in T . Define
H := G3(T ). For each 1 ≤ i 6= j ≤ 3 let

Vij := {c ∈ V (H) | c(u) = i and c(v) = j}.

Then {V12, V13, V23, V21, V31, V32} is a partition of V (H). Observe each H[Vij ] is con-
nected (this can be shown by induction on |V (T )|), and that [Vαβ , Vγδ] 6= ∅ if and only
if α = γ or β = δ. It follows that H1 = H[V12 ∪ V13 ∪ V23 ∪ V21] is connected,
and by Lemma A.1 is bipartite. Similarly, H2 = H[V23 ∪ V21 ∪ V31 ∪ V32] and H3 =
H[V31 ∪ V32 ∪ V12 ∪ V13] are connected and bipartite. Denote the two-coloured vertices of
H (that is, the colourings of T with two colours) by cij ∈ Vij such that

cij(x) :=

{
i, if x ∈ A,
j, if x ∈ B.

Suppose the bipartition of eachH[Vij ] is (Aij , Bij) where cij ∈ Bij .
If |A| and |B| are even, then dH(cij , ci′j′) is even. It follows that

(A12 ∪A13 ∪A23 ∪A21, B12 ∪B13 ∪B23 ∪B21)

is a bipartition ofH1,

(A23 ∪A21 ∪A31 ∪A32, B23 ∪B21 ∪B31 ∪B32)

is a bipartition ofH2, and

(A31 ∪A32 ∪A12 ∪A13, B31 ∪B32 ∪B12 ∪B13)

is a bipartition ofH3. Hence,

A :=
⋃

1≤i 6=j≤3

Aij and B :=
⋃

1≤i 6=j≤3

Bij

are independent, and thus form a bipartition ofH.
If |A| and |B| are both odd, dH(cij , ci′j′) is even if and only if i 6= i′ and j 6= j′. It

follows that
(A12 ∪B13 ∪A23 ∪B21, B12 ∪A13 ∪B23 ∪A21)

is a bipartition ofH1,

(A23 ∪B21 ∪A31 ∪B32, B23 ∪A21 ∪B31 ∪A32)

is a bipartition ofH2, and

(A31 ∪B32 ∪A12 ∪B13, B31 ∪A32 ∪B12 ∪A13)

is a bipartition ofH3. Hence,

A = {A12 ∪B13 ∪A23 ∪B21 ∪A31 ∪B32}

and
B = {B12 ∪A13 ∪B23 ∪A21 ∪B31 ∪A32}

are independent, and thus form a bipartition ofH.



M. Cavers and K. Seyffarth: Reconfiguring vertex colourings of 2-trees 691

Definition A.3. A connected bipartite graph with bipartition (A,B) is Hamilton laceable
if there is a Hamilton path between any u ∈ A and v ∈ B.

Remark A.4. The following are Hamilton laceable.

1. P2k1 �Pk2 �Pk3 � · · ·�Pkn , for n ≥ 2 and ki ≥ 1, 1 ≤ i ≤ n [17].

2. Qn, for n ≥ 1 [5].

Definition A.5. A B-graph with vertex partition {F0, F1, . . . , FN−1} is a bipartite graph
G with bipartition (A,B) together with a partition {F0, F1, . . . , FN−1} of V (G) so that,
for i = 0, 1, . . . , N − 1, G[Fi] is Hamilton laceable.

Lemma A.6. Let G be a B-graph with vertex partition {F0, F1, . . . , FN−1} and biparti-
tion (A,B). Suppose for each i = 1, 2, . . . , N − 1, there is an edge bi−1ai with bi−1 ∈
B∩Fi−1 and ai ∈ A∩Fi. Then G has a Hamilton path between any vertex inA∩F0 and
any vertex in B ∩ FN−1.

Proof. Let a0 ∈ A∩F0 and bN−1 ∈ B ∩ FN−1. For each Fi, i = 0, 1, . . . , N − 1, choose
a Hamilton path Pi in G[Fi] between bi and ai. Then(

N−2⋃
i=0

{biai+1}
)
∪
(
N−1⋃
i=0

E(Pi)

)

are the edges of a Hamilton path in G between a0 and bN−1.

Corollary A.7. Let G be a B-graph with vertex partition {F0, F1, . . . , FN−1} and bi-
partition (A,B) such that [Fi−1, Fi] is a set of independent edges and |[Fi−1, Fi]| ≥ 2,
i = 1, 2, . . . , N − 1. If for each i = 1, 2, . . . , N − 1, the endpoints of any pair of edges
in [Fi−1, Fi] induces a 4-cycle in G, then G has a Hamilton path between any vertex in
A ∩ F0 and any vertex in B ∩ FN−1.

Proof. Let a0 ∈ A ∩ F0 and bN−1 ∈ B ∩ FN−1. For each [Fi−1, Fi], i = 1, 2, . . . ,
N − 1, choose two edges bi−1ai and b′i−1a

′
i. Then G[{ai, a′i, bi−1, b′i−1}] induces a 4-

cycle aia′ib
′
i−1bi−1ai. Note that either bi−1 ∈ B or b′i−1 ∈ B. Without loss of generality,

suppose bi−1 ∈ B. Then ai ∈ A. The result follows by Lemma A.6.

Definition A.8. An odd flare is a tree obtained from K1,t, t ≥ 3 and odd, by a single
subdivision of one edge.

Lemma 3.6. Let T be a tree with bipartition (A,B), where |A| := ` and |B| := r, and
let G3(T ) be the 3-colouring graph of T with colours C = {1, 2, 3}. Define cij to be the
vertex of G3(T ) with cij(a) = i for all a ∈ A and cij(b) = j for all b ∈ B.

(1) If `, r > 0 are both even, then G3(T ) has no spanning subgraph consisting only of
paths whose ends are in {c12, c13, c21, c23, c31, c32}.

(2) If ` > 1 is odd and r > 0 is even, then G3(T ) has a Hamilton path from c12 to c23.

(3) If ` > 1 and r > 1 are both odd, then G3(T ) has a Hamilton path from c12 to c13.
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Proof. (1): Suppose `, r > 0 are both even. By Lemma A.2, H := G3(T ) is bipartite.
Suppose H has bipartition (A,B). Without loss of generality, assume c12 ∈ A. Since
dH(c12, cij) is even for each cij ∈ {c12, c13, c21, c23, c31, c32} and H is bipartite, we have
{c12, c13, c21, c23, c31, c32} ⊆ A. By [6, Theorem 5.5] there is a Hamilton cycle inH, and
thus |A| = |B|. It follows that there is no spanning subgraph ofH consisting only of paths
whose ends are in {c12, c13, c21, c23, c31, c32} (otherwise |A| > |B|).

(2): Suppose ` > 1 is odd and r > 0 is even. Then `+r ≥ 5. We first prove thatG3(T )
has a Hamilton path between c12 and c23 whenever T is P5 or any odd flare. If T ∼= P5

(with |A| = 3, |B| = 2), then there is a Hamilton path between c12 to c23 in G3(P5), as
described in Figure 15. A 3-colouring f of P5 = x1x2x3x4x5 is represented by the string
f(x1)f(x2)f(x3)f(x4)f(x5); for example, c12 = 12121 and c23 = 23232.

12121 21313 32321 13131 23231 31212
12321 21323 32121 12131 13231 31232
12323 21321 32123 32131 13232 31231
12313 31321 12123 32132 13212 21231
12312 31323 13123 12132 13213 21232
32312 31313 23123 13132 23213 21212
31312 32313 23121 23132 21213 23212
21312 32323 13121 23131 31213 23232

Figure 15: A Hamilton path in G3(P5) from c12 to c23.

Let T be an odd flare on n vertices with u denoting the unique vertex of degree two and
let NT (u) = {v, v′} where v is the unique vertex of degree n− 2 (Figure 16).

uv′ v
(n− 3)


Figure 16: An odd flare T .

Here |A| = n − 2 and |B| = 2. We partition H := G3(T ) according to the colours of
u and v. For each 1 ≤ i 6= j ≤ 3, let Vij := {c ∈ V (H) | c(u) = i and c(v) = j} and let
Lij be an assignment of lists to the vertices of H such that Lij(u) := {i}, Lij(v) := {j}
and Lij(w) := {1, 2, 3} for w ∈ V (H − {u, v}). Note that GLij

(H) ∼= H[Vij ] ∼= Qn−2,
for each 1 ≤ i 6= j ≤ 3. Let H1 := H[V32 ∪ V12] ∼= Qn−3�P4, H4 := H[V21 ∪ V31] ∼=
Qn−3�P4,H2 := H[V13], andH3 := H[V23].

For {i, j, k} = {1, 2, 3}, let dijk ∈ V (H) denote the vertex with dijk(v) = j,
dijk(v′) = k, and dijk(w) = i for all w ∈ NT (v). Then [V12, V13] = {c12d132, d123c13}
and [V23, V21] = {c21d231, d213c23}.
Claim. For m ≥ 2, every edge of Qm�P4 is in a Hamilton cycle of Qm�P4.

The claim follows by induction and the fact that any pair of distinct edges of Qm−1
(m ≥ 3) belongs to a Hamilton cycle of Qm−1 (for example, see [7, Theorem 4.1]).

In what follows, we define cycles and paths to construct a Hamilton path from c12 to
c23 in G3(T ) when T is an odd flare on n vertices. See Figure 17 for the case n = 5; here,
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the labels of the two columns of Vij represent the colour choices for v′ and the labels of
the rows of Vij represent the colour choices for the two vertices in NT (v) \ {u}. Let C1 be
a Hamilton cycle of H1 containing c12d123 and C4 be a Hamilton cycle of H4 containing
d213c21; these exist by the previous claim. Let c ∈ NH3

(c23) have c(v′) = 3 and d ∈ V13
be the unique vertex of H2 adjacent to c. By [7, Theorem 4.1], there is a Hamilton cycle
C3 in H3 containing the edges cc23 and c23d231. Observe dH2(d, c13) is odd. Since H2 is
Hamilton laceable, there is a Hamilton path P between d and c13 (see Figure 17).

12

1 13332 1 21 2 2 3

11 33

32

22

23

13

33

31

22

21

11

c12 d123

d132 c13

c23

cd

d231

d213 c21

V32 V12 V13 V23 V21 V31

Figure 17: H = G3(T ), T an odd flare on five vertices, along with C1, P , C3, and C4.

Now,

(C1 − {c12d123}) ∪ {d123c13} ∪ P ∪ {dc} ∪ (C3 − {c23c, c23d231})
∪ {d231c21} ∪ (C4 − {c21d213}) ∪ {d213c23}

is a Hamilton path inH between c12 and c23 (see Figure 18 for n = 5).

12

1 13332 1 21 2 2 3

11 33

32

22

23

13

33

31

22

21

11

c12 d123

d132 c13

c23

cd

d231

d213 c21

V32 V12 V13 V23 V21 V31

Slika 1: A Hamilton path between c12 and c23 in H = G3(T ),
T an odd flare on five vertices.

Figure 18: A Hamilton path between c12 and c23 in H = G3(T ), T an odd flare on five
vertices.

Now suppose T is a tree on n > 5 vertices with n odd that is not isomorphic to a star or
an odd flare. Then there are leaves x, y ∈ V (T ) with dT (x, y) ≥ 3. By choosing leaves x
and y so that dT (x, y) ≥ 3 is minimum, T ′ := T −{x, y} is not a star. Let NT (x) := {x′}
and NT (y) := {y′}; since dT (x, y) ≥ 3, x′ 6= y′.

Let (A′, B′) denote the bipartition of T ′ with A′ ⊆ A,B′ ⊆ B, and define c′ij to be
the vertex of H′ := G3(T ′) with c′ij(a) = i for all a ∈ A′ and c′ij(b) = j for all b ∈ B′.
By the inductive hypothesis, H′ has a Hamilton path between c′12 and c′23. Let V (H′) :=
{f0, f1, . . . , fN−1}. SinceH′ has a Hamilton path, we may assume that f0f1 · · · fN−1 is a
Hamilton path inH′ between f0 = c′12 and fN−1 = c′23. Since c′12 and c′23 differ in colour
on at least two vertices, f0 is not adjacent to fN−1 inH′.
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For 0 ≤ i ≤ N − 1, let Fi be the set of 3-colourings of H that agree with fi on
V (T ′). Then {F0, F1, . . . , FN−1} is a partition of the vertices of H, and H[Fi] ∼= C4,
0 ≤ i ≤ N − 1. If fi−1 and fi differ on the colour of a vertex of V (T ′) \ {x′, y′}, then
|[Fi−1, Fi]| = 4 and H[Fi−1 ∪ Fi] ∼= Q3. Otherwise, fi−1 and fi differ on the colour of
x′ or y′, implying that |[Fi−1, Fi]| = 2, the subgraph ofH induced by the endpoints of the
edges of [Fi−1, Fi] is a 4-cycle, andH[Fi−1 ∪ Fi] ∼= P4�K2.

Consider the spanning subgraph G ofH with edge set(
N−1⋃
i=0

E(H[Fi])

)
∪
(
N−1⋃
i=1

[Fi−1, Fi]

)
.

Note that G is a connected B-graph. Let (A,B) be the bipartition of G and assume
c12 ∈ A.

First suppose c23 ∈ B. As c12 ∈ F0 and c23 ∈ FN−1, it follows from Corollary A.7
that there is a Hamilton path in G between c12 and c23. Now suppose c23 ∈ A. Since
dG(c12, c23) is odd, H must have an edge e with both endpoints in A or both endpoints in
B. Suppose e ∈ [Fp, Fq], where 0 ≤ p < q ≤ N − 1. Since f0 is not adjacent to fN−1
in H′, either p 6= 0 or q 6= N − 1. Without loss of generality we assume p 6= 0. Then
fpfq ∈ E(H′), and either

(i) |[Fp, Fq]| = 4 andH[Fp ∪ Fq] ∼= Q3, or

(ii) |[Fp, Fq]| = 2, the subgraph of H induced by the endpoints of the edges of [Fp, Fq]
is a 4-cycle, andH[Fp ∪ Fq] ∼= P4�K2.

In either case, there exists another edge e′ ∈ [Fp, Fq] such that e := uv, e′ := u′v′,
u, u′ ∈ Fp, and uvv′u′u is a 4-cycle. The choice of e = uv ensures that u, v ∈ A or
u, v ∈ B.

Consider the spanning tree T̂ ofH′ with edge set

E(T̂ ) := {fi−1fi | 1 ≤ i ≤ q − 1} ∪ {fi−1fi | q + 1 ≤ i ≤ N − 1} ∪ {fpfq}.

We define J to be the spanning subgraph ofH with edge set(
N−1⋃
i=0

E(H[Fi])

)
∪

 ⋃
fifj∈E(T̂ )

[Fi, Fj ]

 .

Then J is a connected B-graph. Let (K,L) be the bipartition of J ; we may assume that
c12 ∈ K. Since fpfq ∈ E(T̂ ), [Fp, Fq] ⊆ E(J); in particular, e = uv and e′ = u′v′ are
edges of J , so u and v are in different parts of the partition (K,L), and thus c23 ∈ L.

Case 1. If |[Fp, Fp+1]| = |[Fp, Fq]| = 2, then fpfq, fpfp+1 ∈ E(H′) arise from colour
changes on x′ and y′. Since there are only three possible vertex colours, there is only
one possible colour that x′ could change to, and only one possible colour that y′ could
change to; i.e., one of fpfq, fpfp+1 arises from a colour change on x′ and the other from a
colour change on y′. Assuming thatH[Fp] is the 4-cycle uu′ww′u, it follows that u, u′ are
incident to the edges of [Fp, Fq] and that without loss of generality u′, w are incident to the
edges of [Fp, Fp+1].
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Let [Fp, Fq] = {uv, u′v′} and [Fp, Fp+1] = {wz, u′z′}. Since uu′ ∈ E(J), exactly
one of u, u′ is in L.

Case 1(a). First suppose that u ∈ L. Let J1 denote the subgraph of J induced by ∪pi=0Fi.
Then J1 is a B-graph with vertex partition {F0, F1, . . . , Fp} and bipartition (K,L) satis-
fying the conditions of Corollary A.7, with c12 ∈ K ∩ F0 and u ∈ L ∩ Fp. Thus J1 has a
Hamilton path R1 between c12 and u. Note that the proof of Corollary A.7 implies that R1

can be constructed so as to contain the edge u′w.
Let J2 be the subgraph of J induced by ∪N−1i=q Fi. Then J2 is a B-graph with vertex

partition {Fq, Fq+1, . . . , FN−1} and bipartition (K,L) satisfying the conditions of Corol-
lary A.7, with v ∈ K ∩ Fq and c23 ∈ L∩ FN−1. Thus J2 has a Hamilton path R2 between
v and c23.

Finally, let J3 be the subgraph of J induced by ∪q−1i=pFi. Then by Lemma 2.7, J3 has a
Hamilton cycle C containing the edges uu′, ww′ and uw′. Let R3 be the path between u′

and w obtained by deleting u and w′ from C.
Now concatenate paths R1, R2, R3 and delete edge u′w ∈ R1 to form a Hamilton path

between c12 and c23.

Case 1(b). Now suppose that u ∈ K. Then u′ ∈ L. Since p ≥ 1 and |[Fp, Fp+1]| =
|[Fp, Fq]| = 2, we have |[Fp−1, Fp]| = 4. Let t ∈ Fp−1 be such that tu ∈ [Fp−1, Fp]. Then
t ∈ L.

Let J1 denote the subgraph of J induced by ∪p−1i=0Fi. Then J1 is a B-graph with ver-
tex partition {F0, F1, . . . , Fp−1} and bipartition (K,L) satisfying the conditions of Corol-
lary A.7, with c12 ∈ K ∩ F0 and t ∈ L ∩ Fp−1. Thus J1 has a Hamilton path R0 between
c12 and t. Let R1 be the concatenation of paths R0 and tuw′wu′.

We define J2 and R3 as in Case 1(a). The same argument with v′ in place of v gives a
Hamilton path R2 between v′ and c23. Now concatenate paths R1, R2, R3 and delete edge
u′w ∈ R1 to form a Hamilton path between c12 and c23.

Case 2. Suppose |[Fp, Fq]| = 4 and label the 4-cycle of H[Fp] as uu′ww′u. Let J3 be
the subgraph of J induced by ∪q−1i=pFi. Then by Lemma 2.7, J3 has a Hamilton cycle C.
Without loss of generality, suppose C contains the edges uu′, ww′ and uw′. Let R3 be the
path between u′ and w obtained by deleting u and w′ from C.

Let J1 denote the subgraph of J induced by ∪pi=0Fi. Then J1 is a B-graph with ver-
tex partition {F0, F1, . . . , Fp} and bipartition (K,L) satisfying the conditions of Corol-
lary A.7, with c12 ∈ K ∩ F0. Thus J1 has Hamilton paths R′1 and R′′1 between c12 and
the two vertices in L ∩ Fp. Let R1 be one of R′1 and R′′1 such that R1 contains edge u′w.
Suppose R1 is between c12 and t. Then t ∈ L. Let t′ ∈ Fq be such that tt′ ∈ [Fp, Fq].
Then t′ ∈ K.

We define J2 as in Case 1(a). The same argument with t′ in place of v gives a Hamilton
path R2 between t′ and c23. Now concatenate paths R1, R2, R3 and delete edge u′w ∈ R1

to form a Hamilton path between c12 and c23.

Case 3. Suppose |[Fp, Fp+1]| = 4. Let J1 denote the subgraph of J induced by (∪pi=0Fi)∪(
∪N−1i=q Fi

)
. Then J1 is a B-graph with vertex partition

{F0, F1, . . . , Fp, Fq, Fq+1, . . . , FN−1}

and bipartition (K,L) satisfying the conditions of Corollary A.7, with c12 ∈ K ∩ F0 and
c23 ∈ L∩FN−1. Thus J1 has a Hamilton path R between c12 and c23. Note that the proof
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of Corollary A.7 implies that R can be constructed so as to contain three edges ofH[Fp].
Let J3 be the subgraph of J induced by ∪q−1i=p+1Fi. Then by Lemma 2.7, J3 has a

Hamilton cycle C. Note that C contains three edges ofH[Fp+1].
By the Pigeonhole Principle there are s, t ∈ Fp and s′, t′ ∈ Fp+1 with st ∈ R, s′t′ ∈ C

such that ss′tt′s is a 4-cycle in H[Fp ∪ Fp+1]. Now (R ∪ C) − {st, s′t′} is a Hamilton
path in J between c12 and c23.

(3): Finally suppose, ` > 1 and r > 1 are both odd. We define Eks,t to be the tree
obtained from Pk with ends u and v by appending s leaves to u and t leaves to v. The
proof is by induction and has the following base cases.

Base Case 1. We first prove that H := G3(T ) has a Hamilton path between c12 and c13
when T ∼= E4k+2

0,0 for k ≥ 0, that is, when T ∼= P4k+2. If T ∼= P2 then c12c32c31c21c23c13
is such a Hamilton path. Suppose k > 0 and T ∼= P4k+2. Let u and v be the leaves of
T , NT (u) := {u′}, NT (v) := {v′}, NT (u′) := {u, u′′} and NT (v′) := {v, v′′}. Then
T ′ := T − {u, u′, v, v′} is isomorphic to P4(k−1)+2. Let (A′, B′) denote the bipartition of
T ′ with A′ ⊆ A,B′ ⊆ B, and define c′ij to be the vertex of H′ := G3(T ′) with c′ij(a) = i
for all a ∈ A′ and c′ij(b) = j for all b ∈ B′. By the inductive hypothesis,H′ has a Hamilton
path between c′12 and c′13. Let V (H′) := {f0, f1, . . . , fN−1}. Since H′ has a Hamilton
path we may assume that f0f1 · · · fN−1 is a Hamilton path in H′ between f0 := c′12 and
fN−1 := c′13.

For 0 ≤ i ≤ N − 1, let Fi be the set of 3-colourings of H that agree with fi on
V (T ′). Then {F0, F1, . . . , FN−1} is a partition of the vertices ofH, andH[Fi] ∼= P4�P4,
0 ≤ i ≤ N − 1. If fi−1 and fi differ on the colour of a vertex of V (T ′) \ {u′′, v′′}, then
|[Fi−1, Fi]| = 16 and H[Fi−1 ∪ Fi] ∼= (P4�P4)�K2. Otherwise, fi−1 and fi differ on
the colour of u′′ or v′′, implying that |[Fi−1, Fi]| = 8, and the subgraph of H induced by
the endpoints of the edges of [Fi−1, Fi] is C4�P4.

Consider the spanning subgraph G ofH with edge set(
N−1⋃
i=0

E(H[Fi])

)
∪
(
N−1⋃
i=1

[Fi−1, Fi]

)
.

Note that by Remark A.4,G is a connectedB-graph. Let (A,B) be the bipartition ofG and
assume c12 ∈ A. Since H is bipartite by Lemma A.2, and dH(c12, c13) is odd, c13 ∈ B.
As c12 ∈ F0 and c13 ∈ FN−1, it follows from Corollary A.7 that there is a Hamilton path
in G between c12 and c13.

Base Case 2. Let T ∼= E4k+2
2s,2t or T ∼= E4k2s+1,2t+1 with s, t ≥ 1, k ≥ 0, and T ′ ∼= P4k+2 be

obtained from T by deleting 2s leaves adjacent to u and 2t leaves adjacent to v.
Let (A′, B′) denote the bipartition of T ′ with A′ ⊆ A,B′ ⊆ B, and define c′ij to be the

vertex of H′ := G3(T ′) with c′ij(a) = i for all a ∈ A′ and c′ij(b) = j for all b ∈ B′. By
Case 1, H′ has a Hamilton path between c′12 and c′13. Let V (H′) := {f0, f1, . . . , fN−1}.
SinceH′ has a Hamilton path we may assume that f0f1 · · · fN−1 is a Hamilton path inH′
between f0 := c′12 and fN−1 := c′13.

For 0 ≤ i ≤ N−1, letFi be the set of 3-colourings ofH := G3(T ) that agree with fi on
V (T ′). Then {F0, F1, . . . , FN−1} is a partition of the vertices ofH, andH[Fi] ∼= Q2s+2t,
0 ≤ i ≤ N − 1. If fi−1 and fi differ on the colour of a vertex of V (T ′) \ {u, v}, then
|[Fi−1, Fi]| = 22s+2t and H[Fi−1 ∪ Fi] ∼= Q2s+2t�K2

∼= Q2s+2t+1. If fi−1 and fi
differ on the colour of u then |[Fi−1, Fi]| = 22t, and the subgraph of H induced by the
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endpoints of the edges of [Fi−1, Fi] is Q2t+1. Otherwise fi−1 and fi differ on the colour
of v implying that |[Fi−1, Fi]| = 22s, and the subgraph of H induced by the endpoints of
the edges of [Fi−1, Fi] is Q2s+1.

Consider the spanning subgraph G ofH with edge set(
N−1⋃
i=0

E(H[Fi])

)
∪
(
N−1⋃
i=1

[Fi−1, Fi]

)
.

Note that by Remark A.4,G is a connectedB-graph. Let (A,B) be the bipartition ofG and
assume c12 ∈ A. Since H is bipartite by Lemma A.2, and dH(c12, c13) is odd, c13 ∈ B.
As c12 ∈ F0 and c13 ∈ FN−1, it follows from Corollary A.7 that there is a Hamilton path
in G between c12 and c13.

Base Case 3. Let T ∼= E4k2s+1,1 with s, k ≥ 1, and let T ′ ∼= P4k−2 be obtained from T by
deleting the 2s+ 2 leaves and the vertices u and v. Define u′, v′ as the leaves of T ′ so that
in T , u′ is adjacent to u and v′ is adjacent to v.

Let (A′, B′) denote the bipartition of T ′ with A′ ⊆ A,B′ ⊆ B, and define c′ij to be the
vertex of H′ := G3(T ′) with c′ij(a) = i for all a ∈ A′ and c′ij(b) = j for all b ∈ B′. By
Case 1, H′ has a Hamilton path between c′12 and c′13. Let V (H′) := {f0, f1, . . . , fN−1}.
SinceH′ has a Hamilton path we may assume that f0f1 · · · fN−1 is a Hamilton path inH′
between f0 := c′12 and fN−1 := c′13.

For 0 ≤ i ≤ N − 1, let Fi be the set of 3-colourings of H := G3(T ) that agree with
fi on V (T ′). Then {F0, F1, . . . , FN−1} is a partition of the vertices of H, and H[Fi] ⊇
P4�P22s+2 , 0 ≤ i ≤ N − 1. This follows since GL(K1,2s+1) has a Hamilton path P22s+2

where L is an assignment of lists in which vertices of degree one have lists {1, 2, 3} and the
remaining vertex has list {1, 2}. If fi−1 and fi differ on the colour of a vertex of V (T ′) \
{u′, v′}, then |[Fi−1, Fi]| = 4 ·22s+1 andH[Fi−1∪Fi] ⊇ (P4�P22s+1)�K2. If fi−1 and
fi differ on the colour of v′ then |[Fi−1, Fi]| = 2 · 22s+1, and the subgraph of H induced
by the endpoints of the edges of [Fi−1, Fi] contains (P2�P22s+1)�K2. Otherwise fi−1
and fi differ on the colour of u′ implying that |[Fi−1, Fi]| = 4 · 22s, and the subgraph ofH
induced by the endpoints of the edges of [Fi−1, Fi] contains (P4�P22s)�K2.

Consider the spanning subgraph G ofH with edge set(
N−1⋃
i=0

E(H[Fi])

)
∪
(
N−1⋃
i=1

[Fi−1, Fi]

)
.

Note that by Remark A.4, G is a connected B-graph . Let (A,B) be the bipartition of G
and assume c12 ∈ A. SinceH is bipartite by Lemma A.2, and dH(c12, c13) is odd, c13 ∈ B.
As c12 ∈ F0 and c13 ∈ FN−1, it follows from Corollary A.7 that there is a Hamilton path
in G between c12 and c13.

Induction Step. Now suppose T is a tree with bipartition (A,B), where |A| := ` > 1 and
|B| := r > 1 are both odd and T is not isomorphic to any of the graphs in Base Cases 1 to
3. If every pair of leaves x, y ∈ A or x, y ∈ B satisfy dT (x, y) ≤ 2, then T ∼= Eks,t; since
`, r > 1 are both odd, T is isomorphic to one of the graphs in Base Cases 1 to 3. Thus,
there are leaves x, y ∈ A (or x, y ∈ B) with dT (x, y) ≥ 3.

Case 1. If T − {x, y} is a star, then T is the graph obtained from K1,2s+1, s ≥ 1, by
subdividing two of its edges. Let u ∈ V (T ) be the vertex of degree 2s + 1 and v ∈ V (T )
a leaf adjacent to u. Define T ′ := T [{u, v}] and observe T ′ ∼= K2.



698 Ars Math. Contemp. 17 (2019) 653–698

Let H′ := G3(T ′) have Hamilton path f0f1f2f3f4f5 := c′12c
′
32c
′
31c
′
21c
′
23c
′
13, where

c′ij(u) = i and c′ij(v) = j. For 0 ≤ i ≤ 5, let Fi be the set of 3-colourings ofH := G3(T )
that agree with fi on V (T ′). Then {F0, F1, . . . , F5} is a partition of the vertices ofH, and
H[Fi] ∼= P4�P4�Q2s−2, 0 ≤ i ≤ 5. If fi−1 and fi differ on the colour of vertex v, then
|[Fi−1, Fi]| = 4 · 4 · 22s−2 and H[Fi−1 ∪ Fi] = (P4�P4�Q2s−2)�K2. If fi−1 and
fi differ on the colour of u then |[Fi−1, Fi]| = 4, and the subgraph of H induced by the
endpoints of the edges of [Fi−1, Fi] is C4.

Consider the spanning subgraph G ofH with edge set(
5⋃
i=0

E(H[Fi])

)
∪
(

5⋃
i=1

[Fi−1, Fi]

)
.

Note that by Remark A.4, the graph P4�P4�Q2s−2 is Hamilton laceable since P4�
P4�P22s−2 is a Hamilton laceable spanning subgraph. Thus, G is a connected B-graph.
Let (A,B) be the bipartition ofG and assume c12 ∈ A. SinceH is bipartite by Lemma A.2,
and dH(c12, c13) is odd, c13 ∈ B. As c12 ∈ F0 and c13 ∈ F5, it follows from Corollary A.7
that there is a Hamilton path in G between c12 and c13.

Case 2. Suppose NT (x) := {x′} and NT (y) := {y′}, and that T ′ := T − {x, y} is not a
star. Let (A′, B′) denote the bipartition of T ′ with A′ ⊆ A,B′ ⊆ B, and define c′ij to be
the vertex ofH′ := G3(T ′) with c′ij(a) = i for all a ∈ A′ and c′ij(b) = j for all b ∈ B′.

By the inductive hypothesis,H′ has a Hamilton path between c′12 and c′13. Let V (H′) :=
{f0, f1, . . . , fN−1}. SinceH′ has a Hamilton path we may assume that f0f1 · · · fN−1 is a
Hamilton path inH′ between f0 := c′12 and fN−1 := c′13.

For 0 ≤ i ≤ N − 1, let Fi be the set of 3-colourings ofH := G3(T ) that agree with fi
on V (T ′). Then {F0, F1, . . . , FN−1} is a partition of the vertices of H, and H[Fi] ∼= C4,
0 ≤ i ≤ N − 1. If fi−1 and fi differ on the colour of a vertex of V (T ′) \ {x′, y′}, then
|[Fi−1, Fi]| = 4 and H[Fi−1 ∪ Fi] ∼= Q3. Otherwise, fi−1 and fi differ on the colour of
x′ or y′, implying that |[Fi−1, Fi]| = 2, the subgraph ofH induced by the endpoints of the
edges of [Fi−1, Fi] is a 4-cycle, andH[Fi−1 ∪ Fi] ∼= P4�K2.

Consider the spanning subgraph G ofH with edge set(
N−1⋃
i=0

E(H[Fi])

)
∪
(
N−1⋃
i=1

[Fi−1, Fi]

)
.

Note that G is a connected B-graph. Let (A,B) be the bipartition of G and assume c12 ∈
A. Since H is bipartite by Lemma A.2 and dH(c12, c13) is odd, c13 ∈ B. As c12 ∈ F0 and
c13 ∈ FN−1, it follows from Corollary A.7 that there is a Hamilton path in G between c12
and c13.


