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ABSTRACT: Expressions for multi-dimensional analysis of semiconductor structdres in the discrete domain are derived from first principles. A
simple structure is analyzed and the algorithms are cast in C-language.

Algoritmi za veédimenzionalno ra¢unalnisko analizo
polprevodnikov iz osnovnih fizikalnih principov
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POVZETEK: Izrazi za ve¢dimenzionalno racunalnisko analizo polprevodniskih struktur so izvedeni iz osnovnih fizikalnih zakonov. Uporaba je

ilustrirana na enostavnem primeru in algoritmi so prikazani v C-jeziku.

1. Introduction

Multi-dimensional analysis of semiconductor structures
is commonly deferred to pre-canned computer pro-
grams [1] which often drape a veil of mystery over the
inner workings of such design tools. The Poisson’s
equation is usually taken as the basis for evaluation of
Fermi levels which then control the distribution of
charged carriers. When the transport equation is used
instead, the carrier distributions are computed from its
discrete counterpart. This is prone to producing wrong
answeres and makes the imposition of boundary condi-
tions quite difficuit.

The purpose of this paper is to derive the relevant
equations for multi-dimensional analysis of semiconduc-
torsindiscrete formdirectly fromfirst physical principles.
Such approach effectively avoids the hazards of discre-
tization of partial differential equations [2], makes the
imposition of boundary conditions. intuitive and, most
importantly, it provides the practicing engineer and the
novice with an insight which enables them to inde-
pendently access the analytical powers of computers.
The limitations of a paper prevent us from developing
anything resembling a complete source code. Neverthe-
less, we will address the crucial ideas and make them
understandable so that they can be embellished with
refinements when needed.
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We will be making use of the classical physics principles
which are applicable to semiconductor structures larger
than a few tenths of microns. For smaller structures
quantum mechanics must be invoked and the reader
should take note of this.

2. The Method of Approach

Before we address the general case we introduce the
methodology with a simple example. Fig. 1 illustrates
three points in space separated by Ax. With each loca-
tion we associate a particle count C(x,t} at time t.

Cx-Axt) C(x,0) Cx + Ax,t)
® ® ®
x-Ax X X + Ax
— F

Fig. 1: Hlustration of three points in one-dimensional

space.

Particles are assumed to be in random thermal agitation
which implies that they are equally likely to move to the
left or to the right. We denote the likelyhood of their
motion in one and the other direction by /. This means
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that Himes the number of particles in a given position
will move to the left and the same number will move to
the right. We make a simplifying assumption that par-
ticles which do move make one single space step Ax in
one time increment At. Armed with this information we
can entertain the following question: "What will the con-
centration be in position x at time t +At given the status
attime ?" The answer proceeds along the following line
of reasoning. If the likelyhood of motion is /then /{imes
the number of particles in position x - Ax will move into
position x during one time interval At. During the same
time Himes the number of particles will move into posi-
tion x form x + Ax. 2-times the number of paricles
initially residing at x will have moved out of this position.
What we have then left at x is

Cxt+At) = Cxt)+IC(x-Ax,t)

+HClx+Ax,t)-21C(x,t) (1
The mathematical manipulation below is intended to
show that (1) is the discrete form of the diffusion equa-
tion with diffusivity D given by

D =1Ax%/At 2)
Firstwe subtract C(x,t) on both sides of equation (1) and
divide by At. Then we multiply and divide the RHS of the
resulting equation by Ax® and obtain

Cont+A1)-Cx,t) _
At

[AX? Clx-Ax,0)+C(x+Axt) -2C(x,t)
At Ax?

We recognize the numerator of the LHS of the above
equation as the temporal difference of C(x,t) and the
numerator of the RHS as the second spatial difference
of C(x,t). Upon taking the limit as Ax and At go to zero
we end up with the familiar basic diffusion equation for
which the relationship (2) applies.

9C k) _ D 3*C (x,1)
at dx?

A temporal sequence of plots produced by (1) when the
initial distribution is a &-function in the center and a unit
step at the left is shown in Fig.2.

An implementation of our example in C-language is
shown below

// Initialization:
for (x = 0; x<200; x+ +) C[x] = 0;
for (x=0; x<20; x+ +) C[x]} = 1.0;
C[100] = 10.0;

//Time loop of N passes:
for (t = 0; t< N; t+ +)
{ // Space loop:
L=1.0;
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Fig. 2: Solution of discrete diffusion equation in one

dimension

for (x = 0; x< 200; x+ +)
{temp = 0.25"C[x-1] + 0.25*C[x+1] + 0.5*C[x];
C[x-1] = L; L= temp;
// Plot temp vs X
}
}

The timing required by (1) has been implemented in the
above algorithm by reliance on memory management of
computers. The values on the RHS of an equation are
always taken to be the old values and those on the LHS
of equation as the new ones. But we update C[x] by the
new value only after we have computed C[x+1] which
requires the old value of C[x]. This is accomplished by
swapping the temp variable with L every time we pass
through the space loop. It is obvious that the /value has
been taken to be 0.25 in the example. One may wonder
if such simple algorithm truly represents the solution of
the diffusion equation. A quantitative comparison of (1)
with the continuous ditfusion equation is given in refer-
ence [2].

Next we allow a force F, indicated in Fig.1, to act
uniformly on all particles. ltis not difficult to conclude that
a positive force - one that pushes to the right - will
increase the likelyhood of particles moving to the right.
Atthe same time it will decrease their chances of moving
to the left. We can modify equation (1) for this case by
introducing a skew factor fwhich is related to the force
F and which biases the likelyhood / in the direction of
force F.

Clt+At) =Clt)+ ([ +f)Cx-Ax,t)

+(L-f)Cle+axt) - 21C(x1) ®

The effect of force on C(x,t) cancels out in this simple
example as the reader may verify. Expression (3) is the
transport equation in one dimension with constant diffu-
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sivity and force. To prove this we subtract C(x,t) on both
sides, divide by Atand separate the /and fcontributions
Ct+a)-Cot) _ 1

At At

[Cx-Ax,)+C(x+Ax,)

-2C (x,0)]+ Z%[C(x ~Ax,t) - Clx +Ax,t)]

Now we need a relationship between the factor fand the
force F. This is best done by comparing the energies
involved during the move. The thermal energy kT is
related to / in the same manner as the energy derived
from the force field is related to f. A formal expression to
that effect is

1:f=kT:F§x

It yields the following for the force tactor

_, FAx
f=1 2kT

We substitute (4) into our last equation, multiply and
divide the first term on the right by Ax?, and the second
term by 2Ax and end up with the following ditference
equation

(4)

Clt+A)-Cxt) -
At

1Ax2 Cx-Ax,)+C(x+Axt) -2C (x,1)
At Ax?

_21Ax* F Cx+Axt)-C(x-Axyt)
At 2T 2Ax

The second term on the right is readily recognized as
the first central difference in x of C(x,t). It becomes the
first derivative with respect to x when the limit is taken.
The above equation then assumes the form

9C(x,t) _
at

3*C(x,0) pF acn

b 8x2 kT dx

In the above we have substituted (2) for IAX/At. Fig.3
shows a plot of expression (3) as function of x for a
uniform force F with time being a parameter. Initial
conditions are identical to those in Fig.2.

The numeric values for the plot of Fig.3 were generated
by a source code identical to that shown earlier. The only
difference is that the skew factor is introduced. We have
chosen its value to be f= 0.4 /= 0.1. Consequently the
only modification of the algorithm is in the space loop
which now reads: temp = 0.35*C[x-1] + .15*C[x+1] +
.5*C|[x]; Everything else remains the same. The reader,
familiar with problems arising in computer solutions of
transport equation may find (3) to be of considerable
interest. Its simplicity and the physical basis from which
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Fig. 3: Solution of transport equation for

one-dimensional case.

(3) has been derived make the introduction of boundary
conditions particularly easy.

We will now exploit the method just introduced for
answering some of the more profound questions. One
oftheminvolves the diffusivity gradient. If Dis a function
of space, does it appear under the first or the second
derivative sign? What if the diffusivity and force have
ditferent gradients along the spatial directions? How do
we handie multidimensional analysis of semiconductors
in general? These and some other questions will be
addressed as we proceed.

3. Transport of Particles in Two Dimensions

The motion of charge carriers in semiconductors is
governed by thermal energy, by electrical forces* and
by properties of material through which they are moving.
Their number depends on influx and outflow and on
generation and recombination of oppositely charged
pairs. We will derive the relevant equations taking into
consideration the spatial variability of these effects and
will allow, in addition, the temporal variation of electric
fields and of carrier concentrations. In order to shield the
derivation from excessive notational complexity we will
limit it to the two-dimensionai case. The extension to
three dimensions will become self evident as we pro-
ceed.

We start with the illustration in Fig.4 which shows two
points in x-space separated by Ax and a third point
displaced in y-space by Ay. We assign the likelyhood of
thermal motion in x-direction by /x and that in y-direction

* Gravitational forces are negligible in comparison
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F,., NS'
® .,y @
x-Axy X,y
L. f- F,., Ny.
o
xy-Ay
Fig. 4: Illustration of three points in two-dimensional

space.

by /. We also allow a force F to act in the x-direction
and a force Fy in the y-direction. These forces are
responsible for the respective skew factors fr and f,
through the relationship (4).

The motion likelyhood / and its skew f are assigned to
the space between discrete spatial locations rather than
to the locations themselves. The reason for this can be
understood physically if we consider the case where the
point (x - Ax,y) belongs to the conducting region and the
point (x,y) to an insulating layer characterized by /= 0.
The particles can move into the insulator but they could
neverescape if the property of space /= 0 were assigned
to (x,y) itself. On the other hand, if / = 0 is assigned to
the space between the two points, no particle exchange
cantake place across the boundary. Force factor f, being
a bias to / must share the same space. The rule is
implemented in Fig.4 by making the subscript "x." to
mean "half Ax to the left of x" and "y." to mean "half Ay
below y'. Using this notation we can state that during
one time interval At there will be [Ix(x.y) + K(x.,y)]C(x-
Ax,y,t) particles flowing from left to right and [/x(x-,y)-f(x.
YNCx.y.t) particles flowing from right to left. The net
number of particles Nx(x.,y) flowing from (x - Ax,y)to (x,y)
is the difference of these two terms

Ne(.,y) = [L(e,y) + L ap)]C-Axyt)

- [Le(xy) - Lo )ICxy.r) (6)

Similarly we get for the vertical or y-direction the follow-
ing expression for the net number of particles Ny(x,y.)
flowing from (x,y - Ay) towards (x,))

Nyxy.) = [[(xy.)+f,(xy)IC (xy -Ay,t)

(7)
- [l @y.) - £,y JICy,t)
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Equations (6) and (7) containthe particle flux information
which we intend to address later. At this time we remain
focussed on our goal to obtain the complete transport
equation of the form (3) in two dimensions and for

[ ]
x,y +Ay
Fy+ 9Ny+ 1y¢ fy+
‘ IX+ fx# .
X,y x +Axy
Fx‘ ’Nx+

Fig. 5: The other points in two-dimensional space

variable diffusivities and forces. This requires that we
know all the influxes and outflows from (x,y). Fig.4
guided us to obtain two of them, expressed in (6) and
(7). With the aid of Fig.5 we obtain the other two which
flow to the right and upward of (x,y) respectively.

We denote the net number of particies flowing out of (x,y)
towards (x + Ax,y) by Nx(x;,y). Their count is

Nx(x +1)’) = [lx(x +»Y)+ft(x +’y)]C(x9.Y7t)

() - file s WIC e+ Bx0) 8)

The net number of particles Ny(x,y.), flowing from (x,y)
upward towards (x,y+ Ay) is

Ny(xy +) =[xy +)+fxy )IC 1)

- [y +) - f oy +v)]C(X,}’ +Ay,t) (9)

We can write an expression for the particle count at time
t + At at the point (x,y) by adding all inflowing particles
to C(x,y.t) and subtracting all outflowing particles from
it. We will allow for the possibility that in addition to
particle exchange some of them are being generated at
the rate G(x,y) while some are being lost at the rate
R(x,y). This produces a net particle increase of [G(x,y) -
R(x,y)] At during the time interval At The total particle
count at (x,y) at t + At. The total particle count at (x,y) at
t+ Atis then

Clxy,t +At) = C(xy,t)
+N, (X, y) + N () - Ne(x 4,y) -Ny(xy 4 )

+ [G (xn)}) -R (X,y)]Af
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Equation (10) in association with (6) through (9) is the
discrete form of the two dimensional transport equation
andwe will make use of it shortly. But firstwe will perform
a limiting process on it to obtain the equivalent differen-
tial equation. Rather than blindly substituting express-
ions (6) through (9) into (10) by noting that the difference
Nx(x..y,t) - Nx(x.,y,f) refers to the midpoint between (x., )
and (x.,y). But this is excatly (x,y) by our definition of x.
and x,. Consequently we can write the difference
Nx(x:,y,t) - Nx(x., y,B as AxNx(x,y,t) where Ax signifies that
the difference is with respect to x. When we do the same
with the y-difference we get for (10)

C(x)y" +At) = C(xyy7l)'AxNx(xay’t)'AyN)'(xryyt)

+HG @y)-R@xy)lat 1)

The value for Nx(x,y,t) can be formally derived from (6)
or (8) by respectively incrementing or decrementing all
x-arguments by x/2. The result is

Ne(6y,0) = [l (xy) + £ (x,y)IC (1)

-[LGy) - LE)IC (x4 ,p,t) (12)

In the above we have used the established notation for
half-Ax values as, for example, C(x- Ax/2,y,f) = C(x. y,0).

Similarly we get by eitherincrementing (7) or decrement-
ing (9) by Ay/2 the expression for Ny(x,y)

Ny Gy, )=l (x,y) + £,e0)IC (x,y 1)

- [ly(x»y) - fy(x’y)]c (xxy + ,t)

Substitution of (12) and (13) into (11) yields

Clant +81) = Clept) - A LepC @) - Clr, 0]
A ENICEIN+CE O] -4 EHICEy.0)

-y DI -8 [HENIC .0 +C 0] +16 ()

-R(xy))Aat

This time we recognize the term C(x.,y,t) - C(x,,y,t)to be
the negative difference centered on (x, ). Consequently
we can denote it by - AxC(x,y,t). Similarly for the y-direc-
tion. Furthermore the sum of Cix.y,t) + C(x.,y, Y =
2C(x,y,f) and becomes exact when the increments goto
zero which we are just about to do. We have now
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Clmt +A1) = Cloyt) + Adfl(ey)AcC ()]
“Acfe(xy)2C 0]+ Ay (xy)A, C (xy,1)]

-4, [f;x)2C (e, 0)]+[G (xy) -R (r,y)]AL
By means of (4) we convert f-factors to /and then employ
(2) to convert I-factors to diffusivity D. We also subtract

C(x,y,t)on both sides of equation and divide them by At.
A straightforward algebraic manipulation leads to

AC (xyp,0)
Ay

C(X,)’»’ +At) 'C(xv.))»t) = ._A_X._
At Ax

FL(,"‘—;V.—’QC<xy,:)] ;

ACxy,t)
Ax

[D,r (xy)
A,

faw
P (X,Y) A*y

A [Dy(xx)’)

Fy(x’y,t)

kT

[D
-%[Dy(xw C<x,y,z)]+lc ()R ()]

In the limit when all increments go to zero the above
becomes a differential equation

AC(xyt) 8 3C (xyt)  Frloy)Clxy,t)
ar axD‘(x’y)[ & KT
LY % « e
(60 H (D (J‘K‘x)ae}(“) Tg +

+ G (x,y)-R(x,y)

While this equation may be the correct starting point for
a computerized solution of the transport equation when
diffusivities, forces and concentrations vary in both
dimensions it certainly does not guarantee the correct-
ness of the solution. There are countless possible ways
to discretize a differential equation but very few of them
yield correct answers. Therefore it is strongly advisable
to start from equation (10) which is derived from fun-
damental physical principles and circumvents the dis-
cretization problem altogether.

4. Flux of Particles in Two Dimensions.

Equations (12) and (13) provide us with the number of
particles moving in the x and y direction, respectively,
across the point (x,y). The corresponding flux is that
number multiplied by the particle velocity. Our initial
supposition was that particles move one space interval
inone time interval At. Consequently their velocity is Ax/
Atinthe x-direction and Ay/ At in the y-direction. The two
respective fluxes are then
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C(X+,y,l) Cx.)
Ax

S (xt) = -4 (xy)

+ﬂ(xy)[C(x_y,t)+C(x+,y,t)]

Ay2 Cxy.,t) -Clry.t)
Ay

O, (xy,t) = -h(xy)

+HEVCEy D+ CEy 1)

The same kind of reasoning which led to the last differen-
tial equation in the previous Section guided us from here
to the particle flux equations in differential form

aC (xy,t) x( ,y)

B (xyt) = -Di(xy) [ ox

C (xw)}

B, (xy,t) = -Dy(x,y) [ac g‘yay,t) y( )

C (xy,t)]

if we multiply the flux by electric charge q we get the
electric current density. The forces in this case are gEx
and gE,, respectively for positive charges, i.e., holes and
-GEx and -qE, for electrons where Ex and Ey are the
electric fields. The concentrations C(x,y,t)are n{x,y,t) for
electrons and p(x,y,t) for holes. The corresponding four
current density equations are

JaeEYt) = anx(xry) [?L%—;XL’)_ + "I;quX(xlyJ)" (X,y,f)]

. on (x,y,
Jry®:yst) = @Dy (x,y) —LLl

LE,cym <xy,:)]

. ¢/
Jne3:0) = -aDpe(x) [i’—%}'l LBy (W)]

Iy Et) = -qDpy(x,y) [M —q-E MESAY (x.y,t)]

The reader may note that the so called Einstein relation-
ship between carrier diffusivity D and their mobility p is
contained in the above equations

p-4
#= kT

Before we leave this section let us examine equations
(12) and (13) for physical consistency. Assume that the
torce factor f which depends on the electric field
becomes larger than /in (12) or (13). This implies that
the particle flow represented by the secondtermof either
equation reverses its direction. This could quickly de-
plete the particles at the adjacent point and would even
make their concentration go negative. Such physical
impossibilities usually present themselves as numeric

instabilities. We can therefore derive a stability condition
from requiring thatf never exceedes the value of /. Using
(4) this condition can be writen as FAX/KT < 1. For the
electric case this translates into EAx < kT/q. Because E
Axrepresents the potential difference over one grid point
our stability condition requires that this potential dif-
ference never exceeds 25 mV at room temperature.

5. Forces on Particles in Two Dimensions.

The last unresolved quantity that appears in equations
(6) through (9) is the force factor f. According to (4) this
is directly related to the electric field for the two respec-
tive directions. The electric field, on the other hand,
emanates from electric charges as suggested by the
Coulomb's law. Before we apply it to our case a discus-
sion is in order.

In real, three-dimensional space the electric field sur-
rounding a charge possesses spherical symmetry and
is as such decaying as the square of the distance from
the charge. If we were dealing with a three-dimensional
case we would compute the field at a given position (x,y)
by adding vectorially the contributions from all surround-
ing charges using an inverse square law. Thenwe would
resolve that field into its Cartesian or other components
as needed by the analysis. Instead of spherical sym-
metry we have a cylindrical symmetry for our two-dimen-
sional case and consequently we can allow the electric
field to decay only linearly with distance away from the
source charge. This may appear unconventional but is
no more so than is a two-dimensional space. in a
one-dimensional space the field does not decay at all
and we therefore compute the field as the sum of net
charges without prorating their effects for distance. One
must be quite cautious when applying natural laws to
unnaturals spaces. With this in-mind we continue now
with the evaluation of force factors to be applied to
equations (6) through (9).

) Qu,v)
25 () )
.
VTt -y + By /2]
re =Va 2+ Bx/DTH () yeV ey Ay
(xy.)
) [} L]
(-any) () (&) (xy-65)
Fig. 6: Aid to calculation of the electric field
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components

We remember that the force factors have been defined
halfway between discrete points. With the aid of Fig.6
we compute the x-component of the electric field at the
point (x,y) as produced by the charge Q(u,v) a distance
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rx away. A linear decay of the field with distance is
employed as appropriate for our two-dimensional case.

u-x. - Qiu}v) u-x. -

re 2rr, e

E.(x.y) = E(x.y)

u-x.
(-2 +(v-y)

Q)
2x

Similarly we get for the y-component at (x,y.) according
to Fig.6

v-y Qy) V).
/{ = - ) =
Eyxy.) = E(xy.) ,y awr, T
Qu,v) V-y.
2 vy ) t(ux)

The total field is the summation of components due to
all charges Q(u,v)

.M( _x+____)

2n

x,y) =33y

Xy uv (u x+A—)2+(V y)2
and

__Q._Q'.‘_!E).(v -y + é_y_)

2
E (x>y ) = EEEE
Xy Uy (g-x)2+(v y+—x)2

(17)

We will now illustrate how (10) can be applied to impurity
redistribution and to subsequent charge migration and
how (16) and (17) can be used to compute the resuiting
forces opposing such migration. This is done in the
hopes that the reader will be encouraged to experiment
with multidimensional electric transport problems on his
own.

4 C ey, Snun)

”\i\i‘
‘\"‘“{“&&&\\}\}&}\\\v _

'III[\\\\
I

I

&-\

Fig. 7: Impurity profile before and after annealing.
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6. An Example of a Two-Dimensional
Semiconductor Structure

We start with the doping profile C(x,y)shown on the LHS
of Fig.7. It represents a PIN junction with a very narrow
intrinsic region, with a donor density of Np=4*10 *® and
anacceptor density of Na=2*10 '®. The profile shows the
difference C(x,y) = Np(x,y) - Na(x,y).

The widths of the two regions are approximately 2.5u
each. Next we anneal the sample by subjecting it to
1100°C for about 5 minutes. The diffusivity was chosen
to be 5*10°" at this temperature which is representative
of commonly used dopants. The redistributed impurities
are shown on the RHS of Fig.7.

This result was achieved by using (6) through (10) with
the following parameters:

Ix =1y =125 independently of xand y, and fy = f, = 0
and G - A= 0 everywhere.

Equation (10) simplifies then into
Cleyt +At) = 05C,y,1)+0.125[C{x-Ax,1)

O +AXN)+C(xy -Ay,t)+C(xy +Ay,t)]
(18)

Denote the number of Ax steps by X and the number of
Aysteps by Y and assign a two-dimensional array C(x,y)
to the impurity concentration. We can then write the
algorithmwhich represents the above equation in C-lan-
guage as

for {y = 0; y<VY; y++)
Lyl = OO for (x = 1;x < X; X++)
{ for ( y <Y y++)
Clx,y] + .125"(C[x - 1,y] + C[x + 1,y]
] + Clxy +1]);
LIy} LIyl = temp;

~

}
}or (y

=0;y <Y, y++)
{CIX -1y]=

0;
yl= LIyl LIyl = 0.00;}

A few explanations are in order. First, the choice of /
seems fairly open since it represents the diffusivity in
conjuction with space and time steps according to (2).
But if you consider the case where all the matter is
initially concentrated in position (x,y) then we can have
no more than 1/8 of the central matter moving outin each
direction while preserving an equal amount of matter in
the center. If we allow higher depletion, instabilities may
occur. The rule of thumb is then to choose Imax=0.125
for highest diffusivity and proportionately less for all
other values of D. In a three-dimensional case the
maximum value of /should be chosen to be 1/12 and for

the one- dimensional analysis /max=.25.

For our example we have chosen 25 segments along
the entire width and 25 along the entire lenght of the
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sample corresponding to a space step of 0.2u . Accord-
ing to (2) the time step At for our chosen diffusivity
amounts to 100 seconds, meaning that every time we
traverse the algorithmthe time advances by this amount.
Consequently, the annealed profile in Fig.7 is achieved
by executing the algorithm only three times (five
minutes).

In the C-algorithm above we have taken care of timing
implied by (18) which demands that all RHS variables
be taken at time t. As the execution moves from lower
to higher values of x and y we must postpone the update
of concentrations until we have moved to the next x-col-
umn. Therefore we save one whole x-column in L[y] and
load it into C[x - 1,y] column after the old values are no
longer needed. The first "for-loop” initializes the L-array
to whatever boundary value we wish to assign to the x
= 0 column. As the x-loop starts with the index 1, the
column x = 0 receives the initial values contained in L[y].
The very last "for-loop" updates the last x-column at X-1
and resets the L-array to the initial value which will
subsequently restore the boundary value at the x = 0
column again. Whatever we load into the X column
which lies outside the reach of the x-loop becomes the
upper boundary value for x. This column never gets
updated so it supplies the boundary conditions which it
contains to the X-1 column. In a similar fashion we can
impose the boundary values to the y-column or to any
point in the x-y domain, for that matter. This we do by
loading such conditions into the appropriate location
everytime the loops are traversed and the initial value
there has been changed by the algorithm.

This lenghty discussion of the boundary value problem
is intended to encourage those who have experienced
difficulties with similar problems in the continuous do-
main. The discrete nature of computerized analysis
makes the imposition of boundary conditions almost
intuitive.

Next we must compute the concentrations of holes and
electrons produced by the annealed profile. This is quite
straightforward when we invoke the neutrality condmon
Np-Na + p-n = 0 and the mass- actionlaw np = nf[3,4].

The following algorithm has been used to obtain Fig.8

n{xy) pxy)

\

.

IIII

III\\\\\

i

Fig. 8: Electron and hole distribution.
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for (x = 0; X < X; X++)
{for(y= 0;y<Y,;y++)
{if (C[x,y]>0.0)
{nlx,y] = Cix,y}2.0 + sqrt{C[x,y]"C[x,y}/4.0 +
2.0e20);
pix.y] = 2.0e20/n{x.y];

}
if (C[x,y] < 0.0)

{pIx,y] = - C[x,yy2.0 + sqrt(C{x,y]"C[x,y)/4.0 +
2.0e20);

n[x.yl = 2.0e20/p(x,y);
}

if (C[x,y]== 0.0) (n[x,y] = 0.0; p{x,y] = 0.0;}
}
}

where 2.0e20 stands for squared intrinsic concentration
of Silicon.

Gradients of holes and electrons seen in Fig.8 give rise
to their migration into the adjacent regions of iow density
whichdestroys the initially imposed neutrality. This gives
rise 1o electric fields which tend to oppose the migration
and which we will compute later. First we use (10) again
to compute the movement of charges but this time we
want to distinguish the migration rates of holes and

Qxy)=Clry)+p(xy)-nixy)

Fig. 9:

Net charge distribution after 10 picoseconds

electrons. We assign a diffusivity D, = 28 to the latter
and Dp = 9 to the former. These numbers are in fair
agreement with the respective impurity concentrations.
We assign the value I, = .125 to the highest diffusivity.
The corresponding value of Jp must then be .125x9/28 =
.04. With these values and with the force tactors initially
set to zero we have obtained the net charge density
distribution Q(x,y) shown in Fig.9 after approximately 10
picoseconds.

it is apparent from Fig.9 that the departure of electrons
along the four boundaries of the N-region produces a
net positive charge. Similarly the departure of holes from
the P-region produces a net negative charge all around
the boundary. A charge reversal is observed at the
junction. Implemention in C-language of equations (8)
through (10) which have produced Fig.9 is shown below.
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for(i=0;i<5;i++)
{for (x= 0; x < X; x++)
{for(y= 0;y <Y;y++)
{Fxy = .125%(fx[x,y] - fx[x+1,y] + fy[x.y]
-fyly+ 1]);
tempN = (.5-Fxy)*n[x,y] + .125"(1.0-fx[x,y])*n[x-1,y]
+ .125%(1.0 + fx[x+1,y])*n[x+1,y]+.125%(1.0-
fy[x,y])nlx,y-1] + .125*(1.0 + fy[x,y+1])" n[x,y+1];
nix-1,yl = Lly]; L[y] = tempN;
tempP= (.84 + Fxy)'p[x,y] + .04"(1.0 + fx[x,y] *px-
1.y] + .04*(1.0 - fx[x+1,y]*p[x+1,y] + .04*(1.0 +
fylx.yl)*plx,y-1] + .04*(1.0 - fy[x,y+1])*p[x,y+1];
pix-1,y] = Lly]; LIyl = tempP;

} Yfor(x= 0;x < X; x++)
for (y= 0;y < Y;y++)
Q[x,y] = C[x,y] + p[x.y] - n[x.y];

In the above we have made the following substitutions

by = Ee)dxsle  ffxt1y] = Exrap)axs
fylxyl = By Ay Blxy+1] = B(oy Ay

Ei(xy)

W
\\\\3‘ \“‘“\\\“""l,
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Fig. 10:  Components of the electric field.

We have allowed five passes through the algorithm.
Because the time interval is At = / (Ax) /D each pass is
somewhat shorter than 2 picoseconds. The net charge
density Q(x,y)is obtained fromthe resulting distributions
of p(x,y) and n(x,y) as the last step in the algorithm.
When we substitute this into (16) and (17) we obtain the
two components of the electric field. These are shown
in Fig.10 and a C-version of the algorithm which gener-
ated the numeric values is reproduced helow the figure.

for(y= 0,y <Y, y++)
for (x = 0; x < X; X++)
{EX= EY = 0.0;
for (U= 0;u < X; u++)
for(v= 0;v<Y;v++)

{delY = v-y;
if(delY! = 0)
{delX = u-x+.5;

EX= EX+ Q[uyv] *delX/(delY*delY + delX*delX);
}
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delX = u-x;
if (delX!= Q)
{delY = v-y +.5;
EY = EY + Q[u,v] *delY/ (*delY*delY + delX*deiX),
}
}
fx[x,y]
fy}[x Yl

X*1.0e-10;
Y*1.0e-10;

The factor 107'° in the above takes account of the
permittivity of Silicon, of the integration intervals of the
factor g/kT and of the conversion between surface and
volume density of charges involved. An interpretation of
the major features of Fig. 10 tells us that the force on
electrons and holes is directed inward both along the
x-axis. The y field shows more intensity in the N-region
than in the P which has its origin in the higher donor
concentration and electron diffusivity. One major but
expected feature of the electric field Exis its high intens-
ity along the junction region. This field eventually blocks
the further migration of electrons and holes into the
adjacent regions. An actual simulation of a semiconduc-
tor structure would alternate between the last two algo-
rithms, computing the net charges fromthe first one and
finding the resulting force factors from the latter one.
These would then be substituted back into the first one.
An equilibrium would eventually be established at which
point te migration would cease completely.

Before we conclude let us recognize that the electronic
fields could be computed in an alternate way. Itis known
{5], [6], [7] that the expression we have derived for the
electric field from Coulomb’s law is in fact the formal
solution of the Poisson’s differential equation

OEx Oy _ Qxy)

& O . €

Where Q is the charge density. Unfortunately this one
equation withtwo unknowns and as such notvery useful.
But it is also known from the field vector theory [8] that
field components Ex and E, are the gradients of a
function V(x,y) which satisfies the Poisson equation in
the following way

3V (x,y)
ax2

LYy Q)
? ¢
When this equation is solved for the scalar quantity

V(x,y) the field components can be obtained as the
respective partial derivatives

WV (x
Ex(x)y) =- —_a%ﬂ

av (x,y)
Ey(xx)') =- ay
It turns outthat the effort in solving the Poisson equation
for the potential is comparable to what we have done

and our approach is more in keeping with the promise
of staying close to first principles. Nevertheless it ought

and
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to be pointed out that the Poisson equation in terms of
potential V(x,y) can be solved by the same algorithmwe
have developed for the particle transport by diffusion.
The diffusion equation in two dimensions with constant
diffusivity has the differential form

aV@yt) _ 8*Vy) 2V (xy,t)
at ax2 ay2
When add a source function L2 to the RHS of the

above and solve the equation for steady state condition,
i.e. aV(x,y,t)/otthe equation goes over into the form

2 2
OV(xy) , Vxy) | Qxy)
ax? 3y? €

Consequently we can solve the Poisson equation with
the aid of equation (15) as implemented inthe respective
C-algorithm when we add the source function Q(x,y)/e
to the RHS of the temp expression. When there are no
more changes between two successive evaluations of
temp the resulting distribution C{x,y]is the solution of the
Poisson equation. The results obtained for our test case
are identical with one or the other method and the time
consumed is about the same.

7.Conclusions

The transport equation and the equivalent of the Poisson
equation were derived from first principles without invo-
cation of unsubstantiated abstraction. The two-dimen-
sional case has been tested on a simple semiconductor
structure and the corresponding algorithms have been
presented in the C-language. The intent was to show
that the availability of computers warrants a fresh look
at the traditionally accepted mathematical models and
that more intuitive approaches are made possible by
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taking advantage of present-day computer perfor-
mance.
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