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Abstract

A set S C V is independent in a graph G = (V, E) if no two vertices from S are
adjacent. By core(G) we mean the intersection of all maximum independent sets. The
independence number o(G) is the cardinality of a maximum independent set, while ;(G)
is the size of a maximum matching in G.

A connected graph having only one cycle, say C, is a unicyclic graph. In this paper we
prove that if G is a unicyclic graph of order n and n — 1 = «(G) + u(G), then core (G)
coincides with the union of cores of all trees in G — C.
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1 Introduction

Throughout this paper G = (V, E) is a simple (i.e., a finite, undirected, loopless and
without multiple edges) graph with vertex set V' = V(@) and edge set E = E(G). If
X C V,then G[X] is the subgraph of G spanned by X. By G — W we mean the subgraph
GV = W], if W C V(G). For F C E(G), by G — F we denote the partial subgraph
of G obtained by deleting the edges of F', and we use G — e, if W = {e}. f A BCV
and AN B = (), then (A, B) stands for the set {e = ab: a € A,b € B,e € E}. The
neighborhood of a vertex v € V is the set N(v) = {w : w € V and vw € E}, and
N(A) = U{N(v) : v € A}, N[A] = AUN(A) for A C V. By C,, K,, we mean the
chordless cycle on n > 4 vertices, and respectively the complete graph on n > 1 vertices.
A set S of vertices is independent if no two vertices from S are adjacent, and an in-
dependent set of maximum size will be referred to as a maximum independent set. The
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independence number of G, denoted by «(G), is the size of a maximum independent set of
G. Let Q(G) denote the family {S : S is a maximum independent set of G}, while

core(G) =n{S: S € QUG)}[I1]

An edge e € E(G) is a-critical whenever o(G — e) > «(G). Notice that the inequalities
a(G) < a(G —e) < a(G) + 1 hold for each edge e.

A matching (i.e., a set of non-incident edges of GG) of maximum cardinality u(G) is
a maximum matching, and a perfect matching is one covering all vertices of G. An edge
e € E(G) is p-critical provided (G — e) < u(G).

Theorem 1.1. [13] For every graph G no a-critical edge has an endpoint in N [core(G)].
It is well-known that
(/2] +1 < a(G) +pu(G) <n

hold for every graph G with n vertices. If o(G) + u(G) = n, then G is called a Konig-
Egervdry graph [3, 19]. Several properties of Konig-Egervary graphs are presented in

[ 9 b b b 9 ]'
It is known that every bipartite graph is a Konig-Egervéry graph as well [5, 8]. This

class includes also non-bipartite graphs (see, for instance, the graph G in Figure 1).

b x

a u C v Y

Figure 1: A Konig-Egervary graph with a(G) = [{a, b, ¢, x}| and u(G) = |{au, cv, zy}|.

Theorem 1.2. If G is a Konig-Egervary graph, then
(i) [12] every maximum matching matches N (core(G)) into core(G);
(ii) [13] H = G — NJcore(G)] is a Konig-Egervéry graph with a perfect matching and
each maximum matching of H can be enlarged to a maximum matching of G.
The graph G is called unicyclic if it is connected and has a unique cycle, which we
denote by C = (V(C), E (C)). Let
Ni(C) ={v:v eV (G) = V(C),N(w) NV(C) # 0},

and T, = (V,,, E,) be the tree of G — xy containing x, where € N1(C),y € V(C).
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Figure 2: G is a unicyclic non-Konig-Egervéry graph with V/(C) = {y, d, ¢, c,w}.

Unicyclic graphs keep enjoying plenty of interest, as one can see, for instance, in [, 4,

) b} ’ bl ]'

In this paper we analyze the structure of core(G) for a unicyclic graph G.
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2 Results

If G is a unicyclic graph, then there is an edge e € E (C), such that u(G — ¢) = u(Q),
because for each pair of edges, consecutive on C, at most one could be p-critical. Let us
mention that o(G) < o(G — e) < a(G) + 1 holds for each edge e € E (G). Every edge
of the unique cycle could be a-critical; e.g., the graph G from Figure 2, which has also
additional «-critical edges (e.g., the edge uwv).

Notice that the bipartite graph 7, from Figure 2 has only two maximum matchings,
namely, M; = {ax,uv} and My = {bx, uv}, while for each maximum matching there is
a vertex in core(Ty) = {a, b} not saturated by that matching.

Lemma 2.1. For every bipartite graph G, a vertex v € core(G) if and only if there exists
a maximum matching that does not saturate v.

Proof. Since v € core(G), it follows that a(G — v) = a(G) — 1. Consequently, we have
a(G) + p(G) — 1 = [V(G)| — 1 = [V(G — )| = a(G — v) + (G — v)

which implies that 4(G) = (G — v). In other words, there is a maximum matching in G
not saturating v.

Conversely, suppose that there exists a maximum matching in GG that does not saturate
v. Since, by Theorem 1.2(i), N(core(G)) is matched into core(G) by every maximum
matching, it follows that v ¢ N (core(G)).

Assume that v ¢ core(G). By Theorem 1.2(ii), every maximum matching M of G is
of the form M = My U M, where M; matches N (core(G)) into core(G), while M, is a
perfect matching of G — N [core(G)]. Thus v is saturated by every maximum matching of
G, in contradiction with the hypothesis on v. O

Remark 2.2. Lemma 2.1 fails for non-bipartite Kénig-Egervary graphs; e.g., every maxi-
mum matching of the graph G from Figure | saturates ¢ € core(G) = {a, b, c}.

Lemma 2.3. If G is a unicyclic graph of order n, thenn — 1 < a(G) 4+ u(G) < n.

Proof. If e = zy € E(C), then G —e is a tree, because G is connected. Hence, o(G —e) +
w(G —e) = n. Clearly, a(G — e) < a(G) + 1, while u(G — e) < u(G). Consequently,
we get that

n=a(G—e)+ u(G—-re) <al(G)+ ulG)+1,
which leads to n — 1 < a(G) 4 u(G). The inequality a(G) + u(G) < n is true for every
graph G. O

Remark 2.4. If G has n vertices, p connected components, say H;,1 < ¢ < p, and each
component contains only one cycle, then one can easily see that n—p < a(G)+p(G) < n,

because a(G) = Xp: a(H;) and u(G) = :i:l w(H;).

=1

While Cyk, k > 2, has no a-critical edge at all, each edge of every odd cycle Cyp_1,
k > 2, is a-critical. This property is partially inherited by unicyclic graphs.

Lemma 2.5. Let G be a unicyclic graph of order n. Then n — 1 = «(G) + u(G) if and
only if each edge of its unique cycle is a-critical.
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Proof. Assume that n — 1 = a(G) + u(G). Since G is connected, for each e € E(C') the
graph G — e is a tree. Hence, we have

a(G —e) —a(G) + u(G —e) — u(G) =1,
which implies u(G — e) = pu(G) and a(G — e) = «(G) + 1, since
1< (G- pu(G) <0< alG—e) —a(@) < 1.

In other words, every e € E(C') is a-critical.

Conversely, let e € E (C') be such that (G — e) = u(G); such an edge exists, because
no two consecutive edges on C' could be p-critical. Since e is a-critical, and G — e is a
tree, we infer that

n—1=a(G—-e)+u(G—e)—1=a(G)+ uG),
and this completes the proof. O
Combining Lemma 2.5 and Theorem 1.1, we infer the following.

Corollary 2.6. If G is a unicyclic non-Konig-Egervary graph, then no vertex of its unique
cycle belongs to N[core(G)].

Remark 2.7. Corollary 2.6 is true also for some unicyclic Konig-Egervary graphs; e.g.,
the graph H; from Figure 3. However, the Konig-Egervary graph Hs from the same figure
satisfies N[core(H2)] NV (C) = {u} # 0.

b iy Y
a c dH2 U v z

® L ®
Figure 3: H;y and Hs have N [core(H,)] = {a,b,c}, N [core(H2)] = {x,y, z,u, v}.

H,y

Lemma 2.8. Let G be a unicyclic graph of order n. If there exists some z € N;(C), such
that x € core(T}), then G is a Kénig-Egervary graph.

Proof. Let z € core(T,),y € N(x) NV (C),and z € N (y) N V(C). Suppose, to the
contrary, that G is not a Konig-Egervary graph. By Lemmas 2.3 and 2.5, the edge yz is
a-critical. Hence y ¢ core(G), which implies that o(G) = a(G — y). In accordance with
Lemma 2.1, there exists a maximum matching M, of T}, not saturating z. Combining M,
with a maximum matching of G —y —1, we get a maximum matching M, of G —y. Hence
M, U {zy} is a matching of G, which results in i (G) > p (G — y) + 1. Therefore, using
Lemma 2.3 and having in mind that G — y is a forest of order n — 1, we get the following
contradiction

n—1=a(G)+pu(G>a(G-y)+pu(G—y)+1=n—-1+1=n,

that completes the proof. O
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Remark 2.9. The converse of Lemma 2.8 is not generally true; e.g., the graph H; from
Figure 3 is a unicyclic Kénig-Egervary graph, while both ¢ ¢ core(T.) = {a,b}, and
d ¢ core(Ty) = 0.

Theorem 2.10. If G is a unicyclic non-Ko6nig-Egervary graph, then
core (G) = U{core (T) : . € N1(C)}.

Proof. Claim I. Every maximum independent set of 7;, may be enlarged to some maximum
independent set of G, for each z € N1 (C).

Let A e QT,),y € Nx)NnV(C),and z € N (y) N V(C). According to Lemma
2.5, the edge yz is a-critical. Hence there exist S, € Q(G), S, € Q(G — yz), such that
ye€Syandy,z € Sy,.

Case 1. Assume that © ¢ A.

If S, —V(T})| < (G — T,) = |So|, where Sy € Q (G — T5), then the set S; =
So U (Sy NV (Ty)) is independent in G, and we get the contradiction

a(G) = ‘Sy - V(Tw)| + ‘Sy n V(T1)| < |SO| + |Sy NV(T,)| = |Sl‘ .

Therefore, we have |S, — V(T;)| = a(G — T,). Then AU (S, —V (Iy)) € Q(G),
otherwise we obtain the following contradiction

1Sy = V(T2)| + |A] < (G) < (G = T) + oT) = |Sy — V(T2)| + | A

Case 2. Assume now that z € A.
Then we have |A| > |S,. NV (T})|, because S,. NV (T}) is independent in 7’,. Hence
we infer

a(G) =[Sy —{y} < [(Syz —{y} — (Sy= NV (T3))) U A| =
=[(Sy: —{y} -V (Iz)) U A].

Since W = (Sy. —{y} — V (I})) U A is independent and its size is o (G) at least,
it follows that W is also a maximum independent set, i.e., we have A C W € Q(G), as
needed.

Claim 2. SNV (T,) € Q(Ty) forevery S € Q(G) and each z € N (C).

Let S € Q(G), and suppose, to the contrary, that A = SNV (T,) ¢ Q(T,). By
Lemma 2.8, = ¢ core(T}). Thus we can change A for some B €  (T,) not containing
x. The set (S — A) U B is clearly independent in G, and this leads to the contradiction
[(S—A)UB|=|5—A|+|B| > |S| = «(G).

Combining Claims 1 and 2, we infer that:

core(T,) =N{A: A QT,)} =n{SNV(T,): S €Qq)}
=(N{S:5€QG)})NV (T,) =core(G)NV (T,),

which clearly implies
core (G) = U{core (T,) : x € N(V(C)) - V(C)}

as required. O
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Remark 2.11. The assertion in Theorem 2.10 may fail for:
(i) bipartite unicyclic graphs; for example, the graphs H;, Hs from Figure 4 satisfy

core (Hy) = U{core (Ty) : ® € N1 (C)}, and
core (Hs) # {x,z} = U{core (T) : x € N1(C)};

H1 a H2

Figure 4: Hy, Hy are bipartite unicyclic graphs, core(H;) = {a,b}, core(Hs) =
{t,z,y, z}.

(ii) non-bipartite Konig-Egervary unicyclic graphs; for instance,

core (Gy) # {t,z} = U{core (Ty) : x € N1(C)}, while
core (G1) = U{core (T,) : x € N1(C)},

where G; and G5 are from Figure 5.

e e e

Figure 5: G1, G5 are Konig-Egervéry graphs, core(G1) = {a, b, ¢}, core( = {t,y,z}.

It is worth mentioning that the problem of whether there are vertices in a given graph
G belonging to core (G) is NP-hard [2]. In [17] we have presented both sequential and
parallel algorithms finding core (G) in polynomial time for Konig-Egervary graphs. By
Theorem 2.10, a unicyclic graph is either a Kénig-Egervary graph or its core (G) equals a
union of cores of a finite number of some special subtrees. Therefore, we get the following.

Corollary 2.12. If G is a unicyclic graph, then core (G) is computable in polynomial time.

3 Conclusions

The main purpose of this paper is to investigate the structure of core (G) for unicyclic
graphs. One the one hand, we have succeeded to represent core (G) as the union of cores
of some specific subtrees of a non Konig-Egervary unicyclic graph G. On the other hand,
it is still not clear if there exists a characterization of this kind for bipartite unicyclic graphs
and/or non-bipartite Konig-Egervary graphs.
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