K 0 Z L 1 T 1 N E TEH METALS 1 m JOLOGIES m O) o IV I (N O h- LU IZDAJAJO SŽ ACRONI JESENICE, METAL RAVNE, JEKLO ŠTORE IN INŠTITUT ZA KOVINSKE MATERIALE IN TEHNOLOGIJE LJUBLJANA REVIJA JE PREJ IZHAJALA POD NASLOVOM ŽELEZARSKI ZBORNIK K Navodila avtorjem za pripravo člankov za objavo v reviji Kovine, zlitine, tehnologije V letu 1992 uvajamo nov način tehničnega urejanja in priprave za tisk revije Kovine, zlitine, tehnologije. Da bi pocenili tiskarske stroške, skrajšali čas od prejema članka do njegove objave in prepustili avtorju končno odgovornost za morebitne neodkrite tipografske napake, smo se v uredništvu odločili, da izkoristimo možnosti, ki jih danes nudi namizno založništvo. Avtor lahko pošlje članek napisan klasično - s pisalnim strojem. Zaželeno je, da avtor odda uredništvu članek oz. besedilo napisano na računalnik z urejevalniki besedil: - VVORDSTAR, verzija 4, 5. 6. 7 za DOS - WORD za DOS ali WINDOWS - WORDPERFECT. Če je besedilo napisano z urejevalnikom besedil: CHI WRITFR, naj ga avtor prekonvertira v WORDSTAR DOCUMENT. Naprošamo avtorje, da pošljejo uredništvu disketo z oznako datoteke in računalniškim izpisom te datoteke na papirju. Formule naj bodo v datoteki samo naznačene, na papirju pa ročno izpisane. Vsebina članka Kako naj članek izgleda vsebinsko, naj si avtorji ogledajo v starih izdajah Železarskega zbornika. Vsak članek pa mora vsebovati: • slovenski in angleški naslovi članka, • imena ter naslove avtorjev, • povzetka v angleščini in slovenščini, • reference, ki naj bodo v besedilu članka označene z zaporednimi številkami, primer1 \ Način citiranja članka: avtor, inicialkam naj sledi priimek, naslov članka. ime revije, letnik, strani, leto. Način citiranja knjige: avtor, naslov, založnik in kraj izdaje, leto. po potrebi poglavje ali strani. Besedilo članka naj bo razdel jeno na razdelke (označene z zaporednimi številkami) in po potrebi še na podraz-delke (označene z decimalno številko, kjer celi del označuje razdelek. Slike Vse slike naj bodo na posebnih listih papirja, z jasno označeno številko slike. Slike naj bodo označene z zaporednimi številkami povsod v članku. Originali za vse vrste slik naj bodo ostri in brez šuma. Risbe naj bodo narisane s črnim na belem ozadju. Vse oznake in besedila na risbah naj bodo v istem jeziku kot besedilo članka in dovolj velike, da omogočajo pomanjšanje slike na 8 cm. Le izjemoma lahko slika sega čez obe koloni besedila (16,5 cm). Fotografije so lahko katerekoli običaj- ne dimenzije, na svetlečem papirju in z dobrim kontrastom. Mikroskopska in makroskopska povečevanja označite v podpisu na sliki, še bolje pa z vrisanjem ustrezne skale na fotografiji. Za vsako sliko naj avtor predvidi, kam naj se slika v besedilu članka uvrsti, kjer naj se nahaja ustrezen podnapis z zaporedno številko slike (na primer: "Slika 3 prikazuje...". nikakor pa ne: "Na spodnji sliki vidimo..."). Tabele Avtor naj se izogiba zapletenih tabel z mnogo podatki, ki bralca ne zanimajo, posebej še, če so isti podatki tudi grafično ponazorjeni. Nad vsako tabelo naj se nahaja zaporedna številka tabele s pojasnilom. Tabele naj bodo povsod v članku označene z zaporednimi številkami. Pisanje besedil na računalniku Avtorje naprošamo, da pri pisanju besedil na računalniku upoštevajo naslednja navodila, saj le-ta precej olajšajo naše nadaljnje delo pri pripravi za tisk: • ne puščajte praznega prostora pred ločili (pikami, vejicami, dvopičji) in za predklepaji oziroma pred zaklepaji, • puščajte prazen prostor za vsemi ločili (pikami, vejicami, dvopičji) - razen decimalno piko. • pišite vse naslove in besede z majhnimi črkami (razen velikih začetnic in kratic), • besedilo naj ne vsebuje deljenih besed na koncu vrstice. Če avtor pripravlja ilustracije na računalniku, ga naprošamo, da priloži datoteke s slikami na disketo z besedilom članka, s pojasnilom, s katerim programom so narejene. Krtačni odtis Krtačni odtis - končna podoba članka - bo poslan avtorju v končno revizijo. Avtorja naprošamo, da čim hitreje opravi korekture in ga pošlje nazaj na uredništvo. Hkrati naprošamo avtorje, da popravljajo samo napake, ki so nastale med stavljenjem članka. Če avtor popravljenega članka ne vrne pravočasno, bo objavljen nepopravljen, kar bo tudi označeno. Uredništvo KOVINE ZLITINE TEHNOLOGIJE METALS ALLOYS TECHNOLOGIES II 2 2 9 2 8 G KOVINE ZLITINE TEHNOLOGIJE Izdajajo (Published by): SŽ ACRONI Jesenice, METAL Ravne, JEKLO Štore in Inštitut za kovinske materiale in tehnologije Ljubljana Izdajanje KOVINE ZLITINE TEHNOLOGIJE delno sofinancira: Ministrstvo za znanost in tehnologijo UREDNIŠTVO (EDITORIAL STAFF) Glavni in odgovorni urednik (Editor): Jožef Arh, dipl. ing. Uredniški odbor (Associate Editors): dr. Aleksander Kveder, dipl. ing., dr. Jože Rodič, dipl. ing., prof. dr. Andrej Paulin, dipl. ing., dr. Monika Jenko, dipl. ing., dr. Ferdo Grešovnik, dipl. ing., Franc Mlakar, dipl. ing., dr. Karel Kuzman, dipl. ing., Jana Jamar Tehnični urednik (Production editor): Jana Jamar Lektorji (Lectors): Cvetka Martinčič, Jana Jamar Prevodi (Translations): prof. dr. Andrej Paulin, dipl. ing., dr. Nijaz Smajič, dipl. ing. (angleški jezik), Jožef Arh, dipl. ing. (nemški jezik) NASLOV UREDNIŠTVA (EDITORIAL ADRESS): KOVINE ZLITINE TEHNOLOGIJE, ACRONI Jesenice d.o.o., 64270 Jesenice, Slovenija Telefon: (0641 861-441 Telex: 37219 Telefax: (064) 861-412 Žiro račun: 51530-601-25734 Stavek: Majda Kuraš, Tisk: Gorenjski tisk, Kranj. Oblikovanje ovitka: Ignac Kofol, Fotografija na naslovnici: Vakuumska naprava tipa VD/VOD, Foto: MESSOMETALLURGIE IZDAJATELJSKI SVET (EDITORIAL AI)VISORY BOARD): Predsednik: prof. dr. Marin Gabrovšek, dipl. ing.; člani: dr. Božidar Brudar, dipl. ing., prof. dr. Vincenc Cižman, dipl. ing., prof. dr. D. Drobnjak, dipl. ing., prof. dr. Blaženko Koroušič, dipl. ing., prof. dr. Ladislav Kosec, dipl. ing., prof. dr. Josip Krajcar, dipl. ing., prof. dr. Alojz Križman, dipl. ing., prof. dr. Karel Kuzman. dipl. ing., dr. Aleksander Kveder, dipl. ing., prof. dr. Andrej Paulin, dipl. ing., prof. dr. Boris Sicherl, dipl. ing., dr. Nijaz Smajič, dipl. ing., prof. dr. J. Sušnik, dr. Leopold Vehovar, dipl. ing., prof. dr. Franc Vodopivec, dipl. ing. Po mnenju Ministrstva za znanost in tehnologijo Republike Slovenije št. 23-335-92 z dne 09. 06. 1992 šteje KOVINE ZLITINE TEHNOLOGIJE med proizvode, za katere se plačuje 5-odstotni davek od prometa proizvodov. Contents Vsebina R. lile, M. Lovrečič-Saražin,./. Vojvodič-Gvarcljančič, A. Ažman, Lagoja: Relationship betvveen Fracture Toughness and Mechanical Properties of some Structural Steels at Low Temperatures Odvisnost med lomno žilavostjo in mehanskimi lastnostmi nekaterih konstrukcijskih jekel pri nizkih temperaturah..........................................................................283 M. Torkar, B. Šuštaršič, F. Vodopivec: Recristallization of Ni-based Superalloy after Cold Deformation Rekristalizacija Ni-superzlitine po hladni deformaciji ............................................................289 G. G. Shlomchack, I. Mamuzič: The Rheological Model of Deformation Nidus in the Process of Rollirig Reoloski model deformacijskega prostora v procesu valjanja.................................................295 A. Osojnik, T. Dr glin: Comparision of Graphite Furnace - and Hydride Generation AAS for Trace Analysis of Tin in Steels and Nickel Alloys Primerjava elektrotermične - in hidridne tehnike AAS za analizo sledov kositra v jeklih in nikljevih zlitinah .....................................................................................................301 M. Gojič, M. Balenocič, L. Kosec, L. Vehovar: The Susceptibility to Hydrogen Embrittlement of Lovv Alloy Cr-Mo Steel Tubing Občutl jivost cevi iz nizkolegiranega Cr-Mo jekla na vodikovo krhkost................T.................307 B. Koroušič: Predicting Oxide Activities in CaO-ALO<-SiO, System by Computer Model Napovedovanje aktivnosti oksidov v sistemu Ča0-Al20rSi02 z računalniškim modelom.....313 B. Kosec, L. Kosec: Composite Mechanism of Scale Adhesiveness Kompozitni mehanizem oprijemljivosti škaje .........................................................................319 L. Kosec, V. Gontarev, B. Kosec. M Mlakar: Embrittlement of Copper Wire Due to Oxygen Krhkost bakra zaradi kisika .....................................................................................................323 Letno kazalo............................................................................................................................329 INŠTITUT ZA KOVINSKE MATERIALE IN TEHNOLOGIJE, LJUBLJANA KEMIJSKI INŠTITUT, LJUBLJANA SLOVENSKO DRUŠTVO ZA MATERIALE SLOVENSKO KEMIJSKO DRUŠTVO: SEKCIJI ZA POLIMERE IN KERAMIKO DRUŠTVO ZA VAKUUMSKO TEHNIKO SLOVENIJE organizirajo 45. POSVETOVANJE O METALURGIJI IN KOVINSKIH GRADIVIH 2. POSVETOVANJE O MATERIALIH 14. SLOVENSKO VAKUUMSKO POSVETOVANJE 5.-7. oktober 1994, Hoteli Bernardin, Portorož in vabijo Strokovnjake z industrije, inštitutov in univerz, ki delajo na teh področjih k aktivnemu sodelovanju Posvetovanje je namenjeno predstavitvi temeljnih in aplikativnih raziskovalnih ter razvojnih dosežkov s področja tehnologije in uporabe materialov. Obravnavana bodo naslednja področja: - sinteza sodobnih kovinskih, polimernih, keramičnih in kompozitnih materialov - razvoj modernih tehnologij proizvodnje materialov - kakovost - matematično modeliranje in računalniška simulacija procesov in tehnologij - korozija in propad gradiv - sodobne termične obdelave - karakterizacija materialov - vakuumska tehnika in tehnologije - tanke plasti in površine - tribologija - varstvo okolja V posebni sekciji bodo lahko razstavljalci predstavili najnovejše proizvode in opremo. V okviru posvetovanja bomo organizirali razstavo, na kateri se bodo predstavila slovenska in tuja podjetja, proizvajalci in uporabniki materialov, gradiv in opreme. Delovna jezika na posvetovanju sta slovenski in angleški jezik. Vabimo vas k aktivnemu sodelovanju na področjih znanstvenega programa SMMM-45, SM-2 in SVS-14 Program, bo obsegal vabljena predavanja, govorne prispevke mladih raziskovalcev in postrske prispevke. Povzetek pošljite na naslov: Organizacijski odbor Portorož 94 Inštitut za kovinske materiale in tehnologije pp 431 61001 Ljubljana Zadnji rok za oddajo je 30. april 1994. Dela, uvrščena v program posvetovanja, bodo natisnjena v prvi številki znanstvene revije: KOVINE, ZLITINE, TEHNOLOGIJE v letu 1995 Najbolje ocenjeni prispevki mladih raziskovalcev posameznih področjih (metalurgija in kovinski materiali, kjeramika, polimeri in vakuumska tehnika), bodo nagrajeni z denarno nagrado 300 DEM v tolarski protivrednosti. Prosimo vse mlade raziskovalce, da na poslanem povzetku označijo, da sodeluiejo v sekciji Mladi raziskovalci. Dodatne informacije: tajništvo IMT Ljubljana - telefon (061) 1251161, fax: (061) 213780 Beseda glavnega urednika Težko je pisati uvodnike, ko se razmere v Slovenskih železarnah spreminjajo iz dneva v dan. Nihče v tej družbi ne ve povedati ali Slovenija železarne potrebuje, ali ne. S takšnim občutkom živijo ljudje v teh krajih. Lahko bi rekli, da se lastniki obnašajo do njih precej nestrokovno in neodgovorno. Pa vendar za Jesenice lahko trdimo, da izgledi za nadaljni obstoj in razvoj niso slabi. Pri visokolegiranih nerjavnih jeklih sploh ne. Enako velja rudi za ele-ktropločevine, kjer smo na Jesenicah uspešni. ACRON 1 Jesenice je majhno podjetje, izredno prilagodljivo v današnjih tržnih razmerah. Prav to majhnost moramo izkoristiti, da se uveljavimo na tistih trgih in s tistimi vrastami jekel, ki za druga velika podjetja niso zanimivi. Zelo hitro se v svetu uveljavlja nova tehnologija vlivanja tankih štabov in direktnega valjanja v trakove in pločevino. Le-ta bo v naslednjem tisočletju morala najti pot tudi na Jesenice. 60 do 70 US $ prihranka pri toni dajo misliti. Ali bodo naši bodoči lastniki dovolj modri in pogumni in ali bodo imeli dovolj znanja, da bodo uvideli potrebo po bolj sodobni tehnologiji? Še pred leti je veljala trditev, da je mogoče dobro jeklo za globoko vlečenje izdelati le v LD konvertorjih. Danes v elektro pečeh po novi tehnologiji, tako pri firmi Arvedi, kot pri Nucor Steel, izdelujejo enako kakovostno jeklo za globoki vlek, potreben je le čisti vložek, le seda j moramo misliti na uporabo direktno reduciranih peletov (DRI) na Jesenicah. Vsekakor se prav na področju proizvodnje jekel za globoki vlek za slovenske potrebe na Jesenicah obetajo velike možnosti povečati izkoriščenost jeklarne. Če bo le volja tam pri vrhu. Znanje imamo, le izkoriščati ga ne znamo. 45,h SYMPOSIUM ON METALLURGY AND METALIC MATERIALS, SMMM-45 2nd SYMPOSIUM ON MATERIALS, SM-2 14th SLOVENIAN VACUUM SYMPOSIUM, SVS-14 October 5-7, 1994, BernardinHotels Ltd., Portorož organized by INSTITUTE OF METALS AND TECHNOLOGY, LJUBLJANA NATIONAL INSTITUT OF CHEMISTRY, LJUBLJANA SLOVENIAN SOCIETY OF MATERIALS SLOVENIAN CHEMICAL SOCIETY: DIVISIONS OF POLYMERS AND CERAMICS SLOVENIAN VACUUM SOCIETY Material scientists from lndustry, Universities and Institutes are cordial!y invited to attend the joint SMMM-45/SM-2/SVC-14 symposium and to contribute to its scientific programme. The scientific programme covers - Synthesis of advanced metallic, polymer, ceramic and composite materials - Development of advanced manufacturing technology - Quality - Mathematical modelling and computer simulation of processes and technologies - Corrosion and destruction of materials - Advanced thermal treatment - Characterization of materials - Vaeuum technigue and technology - Thin films and surfaces - Tribology - Environmental proteetion Exhibitors will be able to present their latest products and equipment in a Technical Session During the Symposium a tehnical exhibition of materials, equipment and scientific literature wi!l be held The Symposium languages will be Slovene and English. You are invited to submit contributed papers in the fields of the scientific programmes of SMMM-45. SM-2 and SVS-14. There wi 11 be plenary sessions for invited lecturers, oral sessions for young scientists and poster sessions. Abstract are to be submitted to: Organizing Committee Portorož 94 Institute of Metals and Technology Box 431 61001 Ljubljana, Slovenia Deadline for abstract submission is April 30,1994 The Symposium Proceedings will be published as a special issue of the Slovenian scientific journa! Metals, Alloys, Technologies. The best young scientists' contributions will each be avvarded 300 DEM equivalent in for topics (Metallurgy and Metallic Materials, Ceramics, Polymers and Vaeuum Technique). Young scientists are kindly requested to mark their manuseript clearly vvith the symbol MR. Contact address: Dr. M. Jenko, Organizing Committee, IMT Ljubljana, 61001 Ljubljana, Box 431, Slovenia Phone: 38661 125 11 61, Fax: 38661 213780 e-mail: monika.jenko@quest.arnes.si Relationship betvveen Fracture Toughness and mechanical Properties of some Structural Steels at Lovv Temperatures Odvisnost med lomno žilavostjo in mehanskimi lastnostmi nekaterih konstrukcijskih jekel pri nizkih temperaturah B. Ule, M. Lovrečič-Saražin, Inštitut za kovinske materiale in tehnologije, Ljubljana J. Vojvodič-Gvardjančič, Inštitut za metalne konstrukcije, Ljubljana A. Ažman, A. Lagoja, Acroni Jesenice The effect of strain-aging on the impact toughness characteristic of Charpy specimens (CVN) and on guasi-static fracture toughness values KIC of some structural steels vvas Investigated in the temperature range of nil-ductility temperatures. Strain-aging provokes shifts of Charpy curves to higher temperatures, but it decreases the nil-ductility temperatures regarding to as purchased steels. The correlation betvveen KIC and conventional mechanical properties valid for lovv temperatures confirms that KIC and probably also Karrest of as strain-aged steels are higher than that of as purchased steels vvith the same Charpy energy. Key words: fine-grain low-alloy steels, fracture mechanics, fracture toughness, drop-weight test, nil ductility temperature. Raziskali smo vpliv deformacijskega staranja nekaterih konstrukcijskih jekel na njihovo udarno Charpyjevo žilavost (CVN) ter kvazi-statično lomno žilavost KIC v temperaturnem območju ničelne duktilnosti. Deformacijsko staranje pomakne Charpyjeve krivulje k višjim temperaturam, vendar pa zniža temperature ničelne duktilnosti glede na jekla v dobavnem stanju. Korelacija med KIC in konvencionalnimi mehanskimi lastnostmi, veljavna pri nizkih temperaturah, kaže, da je Ktc in verjetno tudi Karrest vrednost staranih jekel višja kot pri jeklih v dobavnem stanju z enako Charpyjevo energijo. Ključne besede: drobnozrnata malolegirana jekla, mehanika loma, lomna žilavost, test s padajočim bremenom, temperatura ničelne duktilnosti. 1. Introduction The relationship of microstructure to mechanical properties in low-alloy structural steels has been the subject of considerable research. Such steels vvith increased yield stress are sometimes alloved vvith small additions of various elements so that the characteristics and the properties of such steels are substantialh affected presumablv due to the reduction of the austenite and ferrite grain size and because their yield stress. strength and toughness increase vvhile the ductile/brittle transition temperature decreases vvhich is perhaps one of the most important aspects of microalloying. In most of the previous investigations. fracture behaviour of steels has been evaluated mainlv by means of the Charpy impact test because of its convenience and familiarity. Although the material requirements for a lot of practical applications are based on concepts of fracture mechanics, they are specified in terms of Charpv V-notch impact test results (CVN). Toughness requirements for thick-vvalled nuclear pressure-vessel steels are based on minimum dynamic toughness values, K,d. Hovvever, the actual material-toughness requirements for steels used in these pressure vessels are specified using NDT (nil-ductility transition) values and CVN impact values using lateral expansion measurements. Empirical correlations, engineering judgment and experience are thus used to translate the fraeture-mechanics guidelines or controls into actual material-toughness specifications". A comprehensive concept for a practical estimation of the dynamic fracture toughness from the CVN impact energy vs. temperature curve vvas proposed by the MPC/PVRC Working Group on Reference Toughness21. It vvas proved that lovver bound curves can be derived from the CVN vs. T-curve for the quasi-static and lovv rate dvnamic fracture toughness (Kk), dynamic and high-rate dvnamic fracture toughness (Kl(l) and crack arrest toughness (K,.,)'1. Besides this. some other correlations betvveen conventional mechanical properties and K„ values for ductile/brittle transition range or for lovver Charpy shelves are also well-known4'51. Hovvever, it is well-known too that strain-aging of several lovv-allov structural steels causes some shifts along the temperature axis vvhich is not the same for both the CVN data and the KIc data. The purpose of the present paper is therefore to determine the more relevant correlation betvveen the conventional mechanical properties and the K„ values for some structural steels in the nil-ductility temperature range. 2. Experimental procedure Nine non-, micro- and low-alloy structural steels in the form of hot-rolled and heat-treated flats vvere used in this investigation. The chemical composition, the designation of the steels and the thickness of the flats are given in Table 1. These steels vvith 0.05 to 0.21 vvi/a carbon vvere either non-alloyed or alloyed vvith chromium, nickel, molybdenum, niobium and vanadium in different combinations. The microstructure of the investigated steels vvhich vvas hol-rolled and subsequently cooled at different cooling rates vvas mainly ferritic vvith different shares of perlite (Nioval 47. Č.0562 and Č. 1204) or bainite (Niomol 490 K). Only tvvo types of low-alloyed steels (Nionicral 70 and Nionicral 90) have a microstructure of tempered martensite. The yield stress of the investigated steels varied from 265 MPa for plain carbon steel to 1003 MPa for Nionicral 96 i.e. for submarine steel alloyed vvith chromium, nickel and molvbdenum. Ali the investigated steels vvere tested as purchased i.e. hot-rolled and cooled at different cooling rates but they vvere tested also after strain-aging, i.e. after cold-rolling vvith a reduction in thickness of 10% and additionnally heating for 30 minutes at 250"C. Table 1: Chemical composition of the investigated steels (weight %) No. Grade (thickness) C Si Mn P s Cr Ni Mo Nb V 1 Nioval 47 l2l)iiinil 0.19 0.42 1.49 0.013 0.005 0.13 0.10 0.04 0.05 (1.07 2 Nioval 47 (65 mm) 0.14 0.33 1.53 0.014 0.005 0.16 0.15 0.01 0.04 0.07 3 Nionicral 7(1 l20iiinii 0.11 0.28 0.27 0.009 0.007 1.07 2.81) 0.26 0.06 t Nionicral 71) (50 mm) 0.11 0.37 0.34 0.009 0.003 1.03 2.63 0.27 (1,08 5 Nionicral 96 (50 mm) 0.14 0.29 0.51 0.017 0.009 1.64 2.76 0.42 d Niomol 49(1 k (M) mm) 0.05 0.35 (1.42 0.011 0.004 0.75 0.29 0.33 0.06 7 Č. (1562 (25 mili) 0.17 0.32 1.28 0.020 0.009 0.21 11.23 (1.115 8 Č. 0562 (80 mm) 0.18 0.46 1.29 0.036 0.004 0.3(1 0.15 0.03 9 f. 1204 (30 mm) 0.21 0.25 0.51 0.011 0.025 0.02 0.04 0.01 Test specimens vvere cut from the plates in transverse orientation and machined to the required dimensions. Besides the standard Charpy V-notch- and Drop-weight test specimens of P3 type (15.9 x 51 x 127 mm), a large number of round-notehed and prefatigue cracked tensile specimens for the low-temperature measurements of quasi-static fracture toughness Kič w;'s made. The drop-vveight test specimens vvere prepared S Ud- i — D I Figure 1: Geometry of a round-notched and precracked tensile specimen Slika 1: Geometrija nateznega preiskušanca z zarezo in razpoko po obodu in accordance vvith the ASTM E208-84a vvhere the crack starter bead application is performed by the one bead technique to avoid the undesirable variation of NDT61. The geometry of the round-notched precracked tensile specimens. prepared according Dieter s recommendation7' is shovvn in Figure 1. At the experiments, it is essential that the fatigue annulus be of a uniform vvidth and concentric vvith the outer diameter of the specimen in order to obtain a state of plain strain at fracture. The fatigue crack grevv to a depth of about 0.2 mm. leaving an unfractured ligament approximately 6.5 mm in diameter. Figure 2: Experimental set-up vvith crvostat chamber Slika 2: Eksperimentalna ureditev s kriostatsko komoro An cryostat chamber f i 1 led vvith liquid nitrogen and petroleum ether vvas used during the test to control the specimen temperature range from - 140"C to room temperature and the fracture in the quasi-static test at crosshead speed of 1 mm/min vvas reached by using a universal testing machine (Figure 2). For a round-notched precracked specimen, the stress intensity factor is given by Dieter7' as K,= ^ (-1.27 + 1.72 D/d) (1) vvhere d is the radius of the uncracked ligament after fatiguing, P is the applied fracture load, and D is the outer diameter of the cylindrical specimen. In order to apply linear-elastic fracture mechanic (LEFM) concepts, the size of the plastic zone at the crack tip must be small compared vvith the nominal dimensions of the specimen. The size requirement for a valid KIc test is given by Shen Wei et. al.81 as B. L le. M. Lovrečič-Saražin, J. Vojvodič-Gvardjančič, A. Ažman. A. Lagoja: Relationship between Fracture Toughness D> 1.5(K„./(t>s) (2) where a;s is the initial vield stress of the material obtained at a strain rate comparable to that attained near the root of the noteh in the fracture test. If the specimens did not comply with requirement (2) for valid fracture toughness (Klc) measurements. K(| values were obtained instead of K„, according to E399. However, the concept of the equivalent energy adopted by Wang Chang91 enabled us to determine the virtual fracture load P* instead of load P in equation < 1 > after the transformations of the surface under the parabolic load-displacement curve into the quantitatively equal surface of the triangle as shown on Figure 3. Figure 5: Charpy V-noteh impact energy versus temperature behaviour »l as strain-aged steels. Arrows indicate the NDT temperatures Slika 5: Charpyjeve energije v odvisnosti od temperature preiskušanja jekel v staranem stanju. S puščicami so označene temperature ničelne duktilnosti transition temperatures vvas approximated with linear elastic fracture behaviour. Displacement Figu re 3: To the e\planation of the concept ofequivalenl energy Slika 3: K razlagi koncepta ekvivalentne energije Therefore. the vveak elasto-plastic fracture behaviour of the investigated steels even in the vicinity of the nil-ductility 3. Results Figure 4 shows the Charpv impact energy of as purchased steels as a function of the testing temperature whereas Figure 5 shows the same relationship for investigated steels as strain-aged. The nil-ductility transition temperatures (NDT) measured at drop-weight test are also indicated in both diagrams. As may be seen, the ductile/brittle transition temperatures of the investigated steels are shifted against higher values due to strain-aging. Hovvcver, the shift of nil-ductilitv transition temperatures nearly in ali the cases shows a slightlv opposite trend vvhich is somevvhat surprising. The CVN impact energv. the vicld stress cr and the fracture toughness Klr of the investigated steels measured at nil-ductility temperatures are given in Table 2 for both as purchased and as strain-aged eondition. Hovvever, because of 200 100 80 E 60 £ 50 s 40 LJ 30 20 10 ---- ! 0 OJ I X« __3s up to a value of 1000 MPa approximately. vvhereas it is diminished at steels vvith higher vield stresses. The general procedure to estimate K]( values in the transition-temperature region from CVN impact results comprises the calculation of KI(I values at each test temperature using Equation (6) vvith follovved shift of K,(1 values at each temperature by the temperature shift calculated vvith Equation (7) to obtain static Kl( values as a funetion of temperature. This procedure vvas adopted from more recent recommendations of Rolfe and Barsom" and it represents a conceptual advantage compared to the previously published methods4'"*'. By comparing our Equation (3) for as purchased steels vvith the Rolfe-Barsom Equation (6) one can scc that the exponents in both equations are relatively close. If the exponent of 0.5 is adopted also in our čase ovving to simplicity and considering some unaccuracy in our calculations (small number of data for relevant statistical analyse), then Equation (3) can be transformed into Klt = 20 (CVN)"5 (8) vvhere the calculated constant of 19.97 was rounded up to a value of 20. It could be assumed that Equation (8) represents the lovver envelope of ali the measured values i.c. it represents the realistic conservative estimation of the fracture toughness of the investigated steels in the temperature range of nil-ductility transition temperatures irrespective by their microstructure or prehistorv. Nevertheless, at very lovv CVN absorbed energies our equation gives higher K„- values compared vvith the values obtained from the previously established Barsom-Rolfe equation for the transition temperature range41. Namely, the mentioned authors41 found that the plane strain fracture toughness KH in the transition region is related to the Charpv energv CVN by K;IC = 0.22 E (CVN)'"2 (9) vvhere the Young modulus E is expressed in GPa, Klr is expressed in MPa m1\ and CVN in Joules. The 54 J Charpy energv commonlv used to determine the transition temperature of similar steels'21 corresponds roughly to 150 MPa m"2 vvlicn the relationship (91 is used. Quite a similar value is obtained also vvith Equation (8). vvhich means that both equations could be applied in the transition temperature range. It is not surprising because the loading rate and the noteh acuity do not have a great influence on the fracture-toughness behaviour at slightlv higher toughness values. Besides the above mentioned equations of Barsom and Rolfe41" /(6),(8|/ there are also some other successful attempts. Namelv. Beglev and Logsdon" suggested that for lovv temperatures vvhere the behaviour is predominantly brittle, the fracture toughness (in MPa m1'2) may be related empirically to the vield stress als (in MPa) alone: K„. = 0.0717 crys (10) Although Equation (10) essentially differs either from the equations of Barsom and Rolfe4'10 or from our equations (3) and (4). it is not in larger disagreement vvith our observations since for lovver Charpy shelves both approaches givc a considerably higher fracture toughness for as strain-aged steels vvith higher vield stress. The empirical correlation (10) is also in good agreement vvith K,(, data'4' so our linking the Eq. (10) vvith the equation of the type K„. = A (CVN)" into a single form (5) vvas relevant. The relatively high regression coefficient for this nevv correlation (5) i.c. a correlation vvhich is compatible vvith the Barsom and Rolfe4'"" approach as vvell as vvith the approach of Beglev and Logsdon51 confirm that Eq. (5) enables the best empirical estimation of the lovv-temperature fracture toughness KI( calculated on the basis of conventional mechanical properties measured in the temperature range investigated as it is also shovvn in Table 2. 5. Conclusions 1. The fracture toughness vvas measured in the temperature range of nil-ductility temperatures of nine non- and low-alloy structural steels either in as purchased or as strain-aged condition and it vvas correlated vvith the Charpy V-notch impact energies. Although the strain-aging reduces the Charpy energies i.c. provokes some shifts of Charpv values to higher temperatures, it also decreases the nil-ductility temperatures of such steels. 2. The fracture toughness Klc of the investigated steels in the temperature range of nil-ductility temperatures can be sucessfully predieted either by the Equation (3) for as purchased steels or by the Equation (4) for steel as strain-aged. The estimation of KI(, vvhich vvould bc conservative enough for both slates of steels can bc given by the Equation (8) vvhich has also a simplc form. 3. In general, the most suitable and stili plain procedure for obtaining the aetual fracture toughness K„ of structural steels in the temperature range of nil-ductility temperatures, being also compatible vvith various other concepts1'4'5'"", vvould comprise tensile and Charpy testing at lovver temperatures and further application of the generalized correlation (5). The correlation (5) suggests that K„. and probably also Karnsi of :ls strain-aged steels vvould bc higher than that of as purchased steels vv ith the same Charpv energy because of the inereasing yield stress at strain-aging. Consequently, strain-aged steels have lovver NDT temperatures than those of as purchased steels. REFERENCES 11 Rolfe, S.T.; Barsom, J.M.: Fracture and Fatigue Control in Structures, Applications of Fracture Mechanics. Englevvood Cliffs, Nevv Jersey, Prentice-Hall 1977. 21 Bamford, W.; Oldfield, W.; Marston, T.: An Improved Reference Fracture Toughness Procedure for Pressure Vessel Steels, 5th ICPVT. San Francisco, 9./14.9.1984, p. 932/65. 31 Kussmaul, K.; Demler, T.: Steel Research 63 (1992) No. 12. p. 545/53. 41 Barsom, J.M.; Rolfe, S.T.: Correlations Betvveen KIC and Charpy V-Notch Test Results in the Transition-Temperature Range, Impact Testing of Metals, ASTM STP 466. American Society for Testing and Materials, Philadelphia, 1970, p. 281/302. 51 Begley, J.A.; Logsdon, W.A.: Correlation of Fracture Toughness and Charpy Properties for Rotor Steels, Scientific Paper 71 -1E7-MSLRF-P1. VVestinghouse Research Laboratories, Pittsburg, July, 1971. 61 Tanaka, Y.; Ivvadate, T.; Suzuki, K.: Int. J. Pres. Ves. & Piping 31 (1988), p. 221/236. 71 Dieter, G.E.: Mechanical Metallurgy, McGravv-Hill, 1986, p. 358. 81 Shen Wei et al.: Engng. Fracture Mcch. 16 (1982). p. 69/82. " Wanc Chang: Engng. Fracture Mech. 28 (1987). p. 241/250. 101 Barsom. J.M.: Engng. Fracture Mech. 7 (1975). p. 605/18. 1,1 Havvthorne, J.R.; Mager, T.R.: Relationship Betvveen Charpy V and Fracture Mechanics K„ Assessments of A533-B Class 2 Pressure Vessel Steel. ASTM STP 514, American Society for Testing and Materials, Philadelphia, 1972. 121 Faucher, B.; Dogan, B.: Metallurgical Transactions A. 19A (1988), 505/16. " Langford, W.J.: Canadian Metallurgical Quarterly 19 (1980), p. 13/22. 141 Scarlin, R.B.: Shakeshaft, M.: Metals Technology, Januarv 1981, p. 1/9. IZDELUJE □ žice slovenske železarne** ZELEZAPNA IESENICE--- (PO PROM □ paličasta jekla in vlečene žice □ dodajne materiale za varjenje □ žeblje Slovenske železarne Železarna Jesenice Fl PROM d.o.o. Cesta železarjev 8,64270 Jesenice, tel. centrala: +38 64 861-441, fax: uprava: 861-392, telex: 37219 ZELJSN SI Recrystallization of Ni-based Superalloy after Cold Deformation Rekristalizacija Ni-superzlitine po hladni deformaciji M. Torkar, B. Šuštaršič and F. Vodopivec, Inštitut za kovinske materiale in tehnologije, Ljubljana The strain hardening and isothermal recrystailization after cold deformation of Ni-based superalloy was investigated. Cold deformation belovv 10% and annealing temperature above 1050°C promote the grovvth of recrystallized grains. A cold deformation, not iovver than 10% and annealing betvveen 1000°C and 1050°C for 30 minutes, produce fine recrystallized grains. Key words: Ni-based superailoy, cold deformation, strain hardening exponent, statical recrystallization Izvršena je bila raziskava utrjevanja pri hladni deformaciji in poteka izotermne rekristalizacije po hladni deformaciji Ni-superzlitine. Rezultati kažejo, da končna hladna deformacija pod 10% in temperatura žarenja nad 1050°C pospešujeta nastanek velikih rekristaliziranih zrn. Hladna deformacija nad 10% in 30 minutno rekristalizacijsko žarjenje med 1000°C in 1050°C zagotavljata drobno zrnato rekristalizirano mikrostrukturo. Ključne besede: Ni-superzlitina, hladna deformacija, eksponent napetostnega utrjevanja, statična rekristalizacija. 1. Introduction Ni-based superallovs are used in manufacturing of turbine-tvpe machinerv. for rotors. vanes and combustion chambers, for exhaust valves in automotive industrv, in the tool industry for hot work dies, further in nuclear povver plants and for petrochemical equipment as well as in many other places, where a combination of good mechanical properties and corrosion resistance are de-manded. Despite of the material development, oriented to Fe-, Ni-, Ti-aluntinides and other intermetallics, the Ni-based superallovs remain the base material for use for the critical compo-nents (ref. 1). Ni-based superallovs vvith chromium and other alloying elements are strengthened bv precipitation hardening. The matrix is strengthened by precipitation of (Ni,/AlTi/) particles and the grain boundaries bv carbide particles, vvhich prevent the grain grovvth (ref. 2). As čast Ni-based superallovs have a limited hot workability. The hot vvorking is easier in a narrow temperature range above the creep range and belovv the solidus line, vvhere virtualy no precipitates are found in the microstructures. For most of the allovs vvith limited hot workability the use of hot extrusion is more suitable especiallv if it is performed at Iovver deformation rate (ref. 3). Electric slag remelting also improves the hot vvorkabilitv of the allov (ref. 4.51. The mastering of the hot vvorking in order to obtain the optimal properties, demands a striet control of the grain size and therefore it is important to control the process of grain grovvth and the grain si/e from the solidification to the final cold vvorking. During the hot deformation dynamic recovery and recrys-tallization occur and cause a much Iovver rate of strain hardening than is found at room temperature (ref. 6). After cold deforma- tion only static recrystallization occurs during the annealing. The aim of the research vvas to determine the strain hardening at cold deformation as vvell as to establish the influence of deformation grade and annealing temperature on the start of recrystallization and grain grovvth. 2. Experimental The allov vvith the follovving composition: 21 % Cr. 1.7% Co. 2.5% Ti. 1.7% Al, 0.62% Mn,(X72% Si, 0.74% Fe.0.05% C. bal. Ni, ali in vvt. % , vvas melted in induetion furnace. The ingots of 60 x 60 mm cross seetion vvere čast, electric slag remelted (ESR) into ingot of 100 mm diameter and forged to the bar of 15 mm diameter. Cvlindrical specimens vvith 13 mm of diameter and length of 10 mm vvere machined from the forged bar. solution annealed at 1150"C and vvater quenched. Some samples vvere continuously compressed vvith a maximal logaritmic deformation up to 0.9. The exponent of strain hardening (n) vvas calculated bv the method deseribed in ref. 7. Other samples vvere subjeeted to 3, 5, 10, 20. 30 and 50% of cold deformation vvith compression. In both cases a teflon foil vvas used as lubricant to diminish the friction, betvveen the tool-ing and the specimen. After the cold deformation the specimens vvere isothermal annealed 30 minutes at 900, 1000, 1050, 1100 and 1 150'C. vv ater quenched and submited to the examination in optical micro-scope. 3. Results The microstructure of solution annealed and vvater quenched specimen is shovvn on Figure 1. The strain hardening at cold deformation is shown on Figure 2. Factor k, represents the true yield stress, i.e. the true stress in the sample in the moment of the load action. It vvas established (ref. 7) that the curve of llow stress at compression test in the interval from 7 = 0.2 to 7= 1.0 can be approximated vvith the follovving parabolic function: ^f = ^ri.i) Y The exponent of strain hardening (11) can bc estimated from the equation: n = ln_kflu^ln kfui ln 0.2 using the values for kn)2 and krM, from figure 2. The calculated exponent of strain hardening vvas 11 = 0.44. The value for k, (N/mnr) can be calculated by tising the follovving equation: kf= 1770 x t"'44 The logaritmical deformation

u n - i u rv ! / u (V ~kf = 17 70 K u V -------/. J / v / J / } ( 0 0,2 0,4 0,6 0,8 1,0 Log. deformation ^ Figure 2: The strain-stress relationship Slika 2: Odvisnost med deformacijo in silo Figure 1: Microstructure after solution annealing Slika I: Mikrostruktura po topilnem žarjenju The microstructure of the allov after cold deformation and annealing in temperatures range 900 to 1050°C for 30 minutes are shovvn in Figure 3, 4 and 5. Elongated grains on Figure 3 show the allov remain unre-crystallized after annealing at 900"C. At 1000"Č the recrvstal-lization occurs by at least 10% of cold deformation. The lovvest temperature at vvhich recrvstallization occurs at ali grades of deformation is about 1050" C. At the same annealing temperature the grain size of reervs-tallized grains decreases vvith the inereasing deformation. At higher temperature the recrvstallized grain starts to grow. Figure 6 shovvs the connections betvveen the grade of cold deformation and the temperature on the start and advance of recrvstallization. Both, higher annealing temperature and higher cold deformation promotes the start of recrvstallization. The grain size vvas measured from the micrographs. and rep-resented as ASTM number in Figure 7, as relationship betvveen the size of recrvstallized grains. the grade of cold deformation and the annealing temperature. A fine grained recrvstallized microstructure can be obtained by at least 10% grade of cold deformation at temperature betvveen 1000 and 1050 C and after 30 minutes of annealing. Higher annealing temperature promotes the grain grovvth of recrvstallized grains. O 1200 1100 t 1000 o. £ .v 900 800 o without » partial recrystallization • complete 3 5 10 20 30 40 Deformation 7. 50 60 Figure 6: Relationship betvv een the grade of eold deformation, the temperature of annealing and the start of recrvstallization. Slika 6: Povezava med stopnjo hladne deformacije, temperaturo žarjenja in pričetkom rekristalizacije. 3 o min Figure 3: Microstructure of the alloy after cold deformation 3 to 50% and annealing 30 minutes at 900"C. Slika 3: Mikrostruktura hladno deformirane (stopnja deformacije 3 do 50% ) zlitine po 30 minutnem žarjenju na 900"C. 30 min. 1000°C mm H 30% Figure 4: Microstructure of the alloy after cold deformation 3 to 50' ; and annealing 30 minutes at 1000 C. Slika 4: Mikrostruktura hladno deformirane (stopnja deformacije 3 do 50'/r) zlitine po 30 minutnem žarjenju na IQ00"C. Figure 5: Microstructure of the alloy after cold deformation 3 to 50% and annealing 30 minutes at 1050"C. Slika 5: Mikrostruktura hladno deformirane (stopnja deformacije 3 do 509f) zlitine po 30 minutnem žarjenju na 1()50"C. Figure 7: Effect of cold deformation and annealing temperature on recrystallized grain si/e after 30 minutes of annealing. Slika 7: Vpliv stopnje hladne deformacije in temperature žarjenja na velikost rekristaliziranih zrn po 30 minutnem žarjenju. 4. Conclusions Ni-based superalloy vvas cold deformed by compression lest and a hardening exponent n = 0.44 vvas obtained. The strain hardening can be calculated by the follovving equation: kr= 1770 x V'44 The investigation of the isothermal recrystallization of the superallov shovved that a small grade of deformation (belovv 10%) and a higher temperature (above 1050"C) of annealing promotes the recrystallized grain grovvth. The occurence of partial reerv stallization is limited to a relativen narrovv temperature range near 1050°C at deformation belovv 10% and near 1()00"C at deformation over 10%. Finer reervstallized grains of Ni-based superallov are obtained after a cold deformation not Iovver than 10% and 30 minutes of annealing betvveen 1000°C and 1050°C. At annealing above the 1050"C the reervstallized grains start to grovvth. 5. Aeknovvledgements The authors vvish to express their gratitude to the Ministry of Science and Technologv of Slovenia for the financial assistance of this research. 6. References 1 G.Sauthoff: Z. Metallkde., Bd.81 (1990). H.12. 855-861 2 N.L.Loh. K.Y.Sia: Journal of Materials Processing Technologv. 30, (1992). 45-65 3 CS.N.Maniar, D.A.Nail. H.D.Solomon: Optimization of Processing, Properties and Service Performance through Microstructural Control, ASTM Special Technical Publication 672. Philadelphia 1979 4 M.Torkar, A.Kveder. F.Vodopivec. A.Rodič, I.Kos: Poročilo MIL. Nr. 86-029, 1986. Ljubljana 5 A.Choudhurv: ISIJ International, Vol.32 (1992), No. 5. 563-574 6 H.J.McQueen, G.Gurevvit/. S.Fulop: High Temperature Technologv. Februarv 1983, 131-138 7 B.Ule: Poročilo MIL, Nr.85-033. 1985. Ljubljana. The Rheological Model of Deformation Nidus in the Process of Rolling Reološki model deformacijskega prostora v procesu valjanja G. G. Shlomchack, Dnepropetrovsk Metallurgical Institute, Ukraine I. Mamuzič, Metalurški fakultet, Sisak, Hrvatska F. Vodopivec, Inštitut za kovinske materiale in tehnologije, Ljubljana On the basis of contemporary ideas on the metal pressure shaping theory and investlgation results of the metal stress-strained state during rolling and uslng variation prinolples of mechanics, the plastometric classification of metals and alloys, a nevv rheological model of the high deformation nidus is proposed in this work. The model explains the regularities in the distribution of plastic deformation intensity in the non-contact zones as vvell as the formation of the feed front end deformation in dependence of the plastometric properties of metals. Experimental data confirming the validity of the model are given also. Key vvords: rolling, plastometry, rheology, deformation, straining, deformation nidus. Na osnovi sodobnih pogledov o teoriji oblikovanja kovin, raziskav napetostnega stanja v kovini med valjanjem, z uporabo variacijskih načel mehanike in plastometrične razvrstitve kovin in zlitin, se predlaga nov reološki model visoko deformiranega prostora. Ta model razlaga regularnosti v porazdelitvi intenzitete plastične deformacije v coni brez kontakta in nastanek čela deformacijskega prehitevanja v odvisnosti od plastometričnih lastnosti kovin. V članku so priloženi eksperimentalni podatki, ki potrjujejo veljavnost modela. Ključne besede: valjanje, plastometrija, reologija, deformacijska utrditev, deformacijski prostor. 1. Introduction In spite of the intensive development of mathematical mod-elling and experimental methods of mechanics. the theorv of rolling at present doesn't dispose of reliable informations on the mechanism of building-up of the deformation nidus. F.speciallv little is knovvn on the regularities of metal flow at unstable stages of the process. This may result in the slov, development of blooming rolling tcchnologv. a lovv rolling yield and sometimes also in an unsuitable quality of semifabricate. The plastometrical (rheological) properties of metals play a very important role in the formation of the deformation nidus. The influence of rheologv on the development of regularities of deformation at rolling of rheologically complex materials is es-peciallv important by extremes on i r - e curves. In references 1 and 2 the higher order deformation anomalies during the testing of rheologicallv complex materials by means of plastic tension-al are described. The neeking of the sample vvith the decrease of resistance to deformation (da/de<0) on the (r - e curve represents the secondarv deformation heterogeneity. With increased resistance to deformation. according to the o - e curve, a second sccondarv deformation homogeneitv appears in form of uniform elongation of the neck. Thus, changes on the do/de curve are al-ternated by anomalies in deformation gradient and intensity. This is the base for the proposed rheological classification of materials shovvn in fig. 1 and established on the basis of experi-mental data: I class- simple unstrengthenable materials; II class-simple strengthenable materials; III-V classes - complex strengthenable materials. The experimental investigation of the deformation nidus stress strained statc vvas realised considering the requirements of the similarilv theorv (3) and using a laboratory device (4). It vvas necessary to reveal the mechanism of the formation of the knurl on the ends of rollings-a vvide-spread defect on blooming rolling (fig. 2). Figure 2: Widely spread defect: knurl on the front end of the rolling: a-general vievv; b-during rolling on the blooming "1300" at 1150"-1200"C; e-laboratorv model of knurling. Slika 2: Zelo razširjena napaka: odprta ustnica in čelo valjanca: a-splošen pogled; b-po valjanju na blumingu "1300" pri 1150"C-1200"C; c-laboratorijski model ustničenja Rheolody ot the material - classes l-V I 6 J t, Sample initial form ■6r 6 /T^ 6, IV 6,* 6r ! lUT2 S, S2 C, s, S, &4 rti 4-1 Stage of stretching and tensile strain anomalies Het. simple strain [ti rfi 6n„ X6r I V Hom. Het strain strain I order 1 order 6ti Hom. strain I order Hom. strain 1 order rh-6T, r Hom. strain I order Het. strain 2 order ■®TI rh i' A I V Hom. strain 2 order Figure 1: Rheological classes of materials Slika I: Reološki razredi kovin in zlitin 2. Experimental vvork and analvsis of the results Laboratorx device for modelling The investigated unstable process is a complex phvsical phe-nomenon in vvhich ali parameters: geometrical, rheological, evo-lution of deformation, stressed-deformed state and others change in time. A special automated lahoratory equipment vvith modem measuring instruments vvas build for the modelling of this process considering the similarity criteria. The base of this device is a nevv rolling mili vvithout spindles (fig. 3) - a model of blooming (5). vvith roll diameter of 80...200 mm and length of 120 mm, and a rolling force of 0,3 MN. The main drive is a di-rect-current motor of 1,5 kW. The circumferential speed of rolls varies vvithin the ranges of 0-100 mmph and of 2-50 mmps. On the device it is possible to obtain an unfinished rolling (an in-stantaneous deformation nidus) by means of "shooting off' the upper roll at a determined moment and use modern investigation 296 Figure 3: General vievv of the new laboratorv rolling mili Slika 3: Splošen pogled na novo laboratorijsko valjamo methods such as moire, photoelasticity, filming and strain mea-surement to measure the integral characteristics of the proeess (efforts, moments, displacements and others). The laboratorv equipment includes also auxiliary devices for the preparation and realization of the trial: presses, stamps. ten-sometric and optical instruments, etc. Ali parts of the device are unified in an integrated svstem vvith an automatic programmed control vvhich ensures the precision and quality of the tests. The rheological mode! Lead-a natural model of hot steels and allovs. has the remar-cable propertv of recrystallization at room temperature. It de-forms at lovv efforts, it is brazed reliably after grating using the moire method and has a perfect plasticitv. A careful studv of its rheology shovvs one more lead propertv (fig. 4). At various strain rates shovvs plastometric curves of different rheological classes, from simple unstrengthenable I class (at e<0.01 s"1) and strengthenable II class (ate= 1... 13,5 s"1) to complex strengthenable III class (at e = 13,5...60 s"1) and IV class (6 = 0.01 s'1). This behavior makes it possible to use lead and its alloys as rheological models for different steels and alloys. Earlier investigations (61 shovved that its use makes it possible to respect strictlv the similaritv eriteria in the modeling of rolling processes on rolls of optical and organic glass by means of photoelastic observations. Technically pure lead (99,98% Pb) vvas used in this vvork. MPa 120 80 40 Al 2,5 S/ Iš< 60 l$-< 0,2 0,4 0,6 Figure 4: Plastometric curves Pb (99.98% ) and Al (99.7%) at 2()"C Slika 4: Plastometrične krivulje /a 99,98% Pb in za 99.7% Al pri 20"C Nuelea ofmaximum strain rates during the rolling Experimental investigations of the mechanism of the formation of the deformation nidus vvere performed after a theoretical and experimental analysis of the metal stress-strained statc. Fig. 5a shovvs the intensitv field of strain rates H(x,y) obtained by solution of the v ariation problem using the methods proposed in ref. 7. Fig. 5b shovvs the experimental data for a stable proeess of rolling obtained by the moire method. Fig. 5c shovvs the field of strain rates e(x,y) at the initial stage of cogging of the slab edges by edging rolls obtained by mathematical simulation using the method of finite elements (8). / a Figure 5: The field of strain rates in s1 obtained by the methods of: a-finite differences (7): b-moire patterns and c-finite elements (8) Slika 5: Polje deformacijskih hitrosti v s"1 izračunano po metodah: a-končne razlike (7); b-moire figure in e-končni elementi (8) Though the methods vvere different, their results agree vvell and shovv scveral common features of the deformed statc in the deformation nidus: I-high heterogeneity of the deformation; 2-extension of plastic regions far beyond the geometrical limits of the deformation nidus, and the presence of the nuelea vvith maximum intensity of strain rates Hmax (hatched regions). The Hmax nuelea on fig.5a (Hmax = 3 s"1) and'fig. 5b (Hmax = 2.5 s"') are located in the initial contact regions at the very beginning of the deformation nidus. An important conclusion can be derived from these results. the location of Hmax nuelea does not depend on the degree of metal fullness of the deformation nidus (see fig. 5c). Mechanism of the formation of the knurl The unstrengthenable metal through the regions of strain rates maximum intensitv (Hmax nuelea) strives the flovv tovvards the nearest free surface-tovvards the front end of the rolled piece. From the Hmax nucleus, as the source, it strives forvvard in direc-tion of the rolling, overtaking the roll surface and the central part of the metal. This is hovv the knurl is formed (fig. 6a). In čase of rolling of strengthenable metal the size of the knurl depends on the strain hardening degree. This hardening grovvs adjacent, to contact lavcrs and reaches in the nucleus a HmaN suf-ficient to deplace the stretehing to deeper layers of the metal dovvn to the center. Central lavcrs rush forvvard and flatten the front edge of the rolled piece up to the complete elimination of the knurl (6b,c). Thus. the extension of strain in the front end of the rolled piece is determined by the rheological properties of the metal. During the hot rolling alternated by softeming and re-crystallization phenomena the rolling speed plays and important role. At lovv speed the to Hmax strengthened nucleus has the time to soften. This explains the formation of the knurl vvhile at high rolling speed and the virtual absence of softening the knurl is not formed.- Pictures of the samples in fig. 6a vvere obtained at different stages of the formation of the strain nidus and before the stabili-sation of the rolling proeess. The rolling vvas performed in the high-speed regime of the third rheological class, vvhen the addi-tional softening, vvhich causes a strain heterogeneity of the sec- ond order, occurs in the Hlllas nucleus. The layers adjacent to the contact surface do not soften not only because of shortage of time. but also because of the do/de<0 rheological anomaly. Sliding on the roll the metal in these lavers is literally extruded from the strain nidus tvvisting towards the centre of the sample, and the formation of the knurl is intensified to the maximum. During the rolling of lead in the regime of the second rheological class (e = 1... 1,5 s"1) the adjacent to contact layer of the metal has 110 time to soften and that prevents the formation of the knurl (fig. 6b). Several experiments under the same conditions, but vvith different rolling speeds vvere performed additionallv on alluminium vvith the aim to check the reliability of the explained mechanism. The plastometric characteristic of alluminium shovvs that it is a material of the second rheological class vvith strictlv inereasing funetion <7 - e (see fig. 4). In the deformation nidus it practically does not soften at room temperature. Thus the metal adjacent to the contact surface, strengthened by the passage of Hmax nuelea (see fig. 5), is not elongated in the direetion of the exit from the rolls and deeper layers of the metal are deformed. If at the first moment the adjacent to the contact layer of alluminium, vvhich had no time to slrengthen, outpaces the central area then, because of the strengthening, their deformation is delayed, vvhile the central area is rushed forvvard outpacing the adjacent to the contact layers and prevents the formation of the knurl (see fig. 6c). Thus, the mechanism of the formation of the strain nidus during the rolling is determined by the degree of metal rheological complexity. The plants producing rolled carbon steels lose a considerable quantity of metal because of the cuttings. During the blooming rolling the shrinkage cavity is elongated simultaneously vvith the formation of the knurl and the quantity ofrejects is inereased. For 1 1_ _1--1--J 0 0,1 0,4 D,S 0,s 0 D,2 0,4 D,s Z Figure 7: Plastometric eurves of carbon steel (0.43% C; 0.26% Si: 0.74% Mn; 0.022% P: 0.016% S) at 900"C: a-from ref. (9), (10) (dotted line); and b-from ref. tli) Slika 7: Plastometrične krivulje za ogljikovo jeklo (0,43% C: 0,26% Si: 0.74% Mn; 0,022% P; 0.016% S) pri 900"C: a-iz ref. (9), (10) (pikčasta črta); in b-iz ref. lil) Figure 6: The modification of the front end of the rolled piece during the rolling at 20"C: a-lead in the high-speed regime of the third rheological class at do/decO; b-lead in the regime of the second rheological class at dcr/de>0 (moire stripes: u and- vertical and horizontal displacements); e-aluminum (99.7%) at ali speeds Slika 6: Sprememba čela valjanea med valjanjem pri 20"C: a-svinec pri velikohitrostnem režimu tretjega reološkega področja z d0 (moire pasovi, u in v - navpični in vodoravni premiki); c-99,7% Al pri vseh hitrostih that reason the elimination of the knurl with increased speed of gripping during blooming rolling of carbon steel incots (0.43% C; 0.26% Si: 6.74% Mn; 0.22%" P; 0.016% S) was checked. It failed because of the rheological properties of the steel (fig. 7). The plastometric curves from ref. |9| and |10| were used under assumption that the steel vvas rheologically simple and of the second class (see fig. 7a). In reality, according to the investigations of Suzuki. it is complex (fig. 7b) and of the third rheological class 11|. The reason for the knurling vvere the deformation anomalies of the second order at d|/d|<0. A diminution of the knurling could be obtained only by means of decrease of the deformation degree (in Hmax nucleus). The analvsis of the rheology of carbon steels (0.2 - 1.0% C) according to Suzuki shovved that these steels vvere rheologically complex of the third class vvith the maxima on cr - e curves at ali strain rates and temperatures. That means that the propensity to deformation anomalies is inherent to these steels. The formation of the knurl is inevitable and the only way to diminish it remains the change of the rolling regimes or of the form of the ingots. Formation of the prenidus plastie zone Fig. 8 shovvs the results of several experiments performed vvith the aim to explore the development of deformation in the prenidus zone by modelling on the laboratory rolling mili. Samples-ingots 40x40x200 mm prepared vvith high accuracy from preliminarlv pressed and vvith stabilized properties (annealing one hour at 100"C and ageing at 25°C during 60 days) lead (99.98% Pb) vvere rolled vvith 80 mm rolls vvith a deformation e = 25%. Figure 8: The shape of the deformation nidus during the rolling of metals vvith different rheology Slika 8: Oblika deformacijskega prostora med valjenjem jekel z različno reologijo The extension of the prenidus plastie region vvas determined bv means of moire stripes and indicator devices operating vvith the error of+0.01 mm. Differences in rheology of the deformed material vvere achieved by change of strain rates in the range of e = 0.0005.. 0.01 and 1.5 s1. During the rolling in regime of simple unstrengthenable first class the prenidus deformation vvas maximal (see fig. 8, I, AB). During rolling in the regime of the second rheological class (vvith maximum strengthening) the extension of the prenidus plastie zone vvas maximal. Strain homogeneity of ihe first order pro-motes the inclusion of layers of metal more distant from the rolls into ihe deformation. These materials are optimal from ihe rolling technology stand point. The processes of the development of the second order strain heterogeneity vvere observed during the rolling of the material of the third rheological class vvith a maximum on the o - e curve (see fig. 8, III, ACI. The extension of the zone of non-contact deformation in front of the rolls vvas smaller than in the previous čase and the displacement of "C" point-the beginning of contact of the metal vvith the rolls. tovvards the line of roll centres vvas observed constantly. This could produce a strain heterogeneity of the second order vvith elongation of the surface Iayers joining points "D" and "C" in an avalanehe and could lead to the de-struetion of metal. especially vvhen concentrators of stresses in form of defects are present. 3. Conclusions A nevv model for the formation of the plastie deformation nidus during the rolling vvas devcloped using a rheological clas-sification of metals based on experimental data: 1. It is shovvn. that the strained state of metal in the nidus of deformation is characterized by the presence of regions vvith maximum strain rates - H1Ilas nuclea and depends substantiallv on the rheologv of the metal. 2. The mechanism of formation of the widely spread defect-knurl on the ends of the rolled pieces is explained. It vvas ascertained that the formation of the knurl depends on the rheology of the metal and the rolling speed. 3. Regularities of the formation of the non-contact prenidus zone of plastie deformation vvere ascertained. 4. Rheological (r - e data available in scientific literature should be used carefully because in many cases methods of mathe-matical "smoothing" vvere used for processing the results of plastometric investigations and rheological anomalies fell-out of the researcher's field of vision. 5. References 1 G.G. Shlomchack: Deformation features of the rheologicallv complex materials. Deposited in UkrNlINTl 13.08.91 T. No." 1 167-Uk91, Kiev. 1991. 11 pp. 2 G.G. Shlomchack: Detection of regularities of deformation heterogeneities and anomalies of plasticity of rheologicallv complex and supercomplex materials. Deposited in UkrNlINTl 12.12.91.. No. 1589-Uk91. Kiev. 1991.21 pp. 3 G.G. Shlomchack. G.A. Fen, V.G. Kutsav: Izv. Vuzov. ChM.No. 3. M. 1980, pp 79-82. 4 G.G. Shlomchack, G.A. Fen, V.G. Kutsav: "Pressure shaping of metals", M. "Metallurgia", Dmetl, Research No. 60, pp. 121-122. 5 G.G. Shlomchack: Laboratory rolling mili, Russian patent 29.08.91. on the claim No. 4930929/27/035063. 6 G.G. Shlomchack: Izv. Ac. Sc. USSR. Metals No. 6, 1978. pp. 102-106. 7 G.A. Fen, G.G. Shlomchack and coll.: Metallurgia and coke chemistry, issue 46, Technicka, 1975. pp. 109-113. 8 H. Nicaido. T. Naoy, K. Sibata: Transi, from Jap. KI-73789, COONTI, Sosei to kako. v. 24. No. 268, 1983. pp. 486-492. 9 I.Y. Tarnovsky and coll.: Mechanical properties of steel at hot pressure shaping. Metallurgizdat, Sverdlovsk, 1960. p. 264. 1,1 V.I. Zyzin, M.Y. Brovman, A.F. Melnikov: M., Metallurgia. 1964. p. 270; 1964. p. 270. " H. Suzuki: Report of the Inst. of Industrial Science, the University of Tokyo, 1968, v. 18. No. 3. pp. 139-240. slovenske železarne*! ZELEZAPNA IESENICE (PQ PROM OUR PRODUCTION PROGRAM INCLUDES: □ MILD AND CARBON STEEL WIRES □ STEEL BARS AND VVIRES □ □ WELDING CONSUMABLES NAILS Slovenske železarne Železarna Jesenice Fl PROM d.o.o. Cesta železarjev 8,64270 Jesenice, tel. centrala: +38 64 861-441, fax: uprava: 861-392, telex: 37219 ZELJSN SI Comparision of Graphite Furnace - and Hydride Generation AAS for Trace Analysis of Tin in Steels and Nickel Alloys Primerjava elektrotermične - in hidridne tehnike AAS za analizo sledov kositra v jeklih in nikljevih zlitinah A. Osojnik, T. Drglin, Inštitut za kovinske materiale in tehnologije, Ljubljana The determination of tiri in various types of steel and nickel superalloys at lovv concentration level using graphite furnace atomic absorption spectrometry (GF AAS) and batch system hydride generation atomic absorption spectrometry (HG AAS) is described. The analytical and instrumentaI parameters for both methods vvere optimized. The interferences of matrix elements and some metalloids vvere investigated. Certified standard reference materials of steels and nickel alloys vvere used to test the methods. Some performances and characteristic data (detection limit, characteristic mass, accurace and relative standard deviation) of the tvvo methods are established and compared. The critical estimate of the both methods is performed. Key words: graphite furnace AAS, hydride generation AAS, interferences, steel, nickel alloys, tin determination. Opisana je metoda ter optimizirani instrumentalni in analizni parametri za določanje sledov kositra v jeklih in nikljevih zlitinah z metodo elektrotermične atomizacije (GF AAS) in hidridne tehnike-AAS (HG AAS). Študirali smo interference elementov osnove in nekaterih metaloidov. Rezultati so bili preverjeni s certificiranimi referenčnimi materiali jekel in nikljevih zlitin. Podani so nekateri karakteristični podatki (meja zaznavnosti, karakteristična masa, točnost, relativni standardni odmik) ter primerjava in kritična ocena obeh uporabljenih metod. Ključne besede: elektrotermična AAS, hidridna tehnika AAS, interference, jeklo, nikljeve zlitine, določanje kositra. Introduction Mechanical, phvsical and technological properties of various types of steel, and especiallv vacuum čast nickel superalloys for high temperature application strongly depend on trace elements contents such as Bi. Sb. Sn. As. Se. Te. and others. Because of their harmful effect alreadv at the p,g g 1 levels and lovver, the permissible concentrations of these elements are strongly limit ed. depends upon the element, the alloy type and application pur-pose. The traces of surface aetive elements such as Sb. Sn, Se, Te, and others influence the magnetic properties of nonoriented steel sheets. The knovvledge of their contents is one of the useful factors for studv of segregation phenomena. Therefore the determination of these elements is extremely important and the development of a suitable, sensitive analytical method is necessary. Graphite furnace - and hydride generation atomic absorption spectrometry scems to be the appropriate tech-niqucs for this purpose, because of their sensitivity and relative simplicitv. The main problems in the determination of tin by GF AAS are the formation of volatile Sn compounds, interactions of tin vvith graphite during the atomization step (1,2, 3, 4, 5) and mata interferences (9, 13). In order to overcome these problems, different chemical modifiers (5, 6. 7. 8). the oxidation of solution vvith nitric acid (1,5, 7. 9) and pretreatment of the graphite tubes vvith refraeto- ry metals (1, 4, 6, 10, 11) and aluminium solution (9) have been suggested. In this way the losscs of tin are diminished and effi-ciency of tin atomization is improved. The use of coated graphite tubes for tin determination has been proposed by many authors (1,4, 6. 9, 10, 11). This treatment results in the enhancement of sensitivity (1,4, 6, 7, 9, 10) and reproducibility of signal (9. 10). a reduetion of interferences (6, 10), and in the increased life time of the graphite tubes (10). The knovvledge and explanation of chemical reactions vvhich occur in graphite furnace during tin determination (1,2, 12) contribute to better understanding of the actions and the rolc of metal coatings, matrix modifiers and in-terfering elements. Determination of tin by HG AAS has been described by a number of authors (14-20), although many problems exist for this element. It is vvell knovvn that sensitivity of Sn signal depends strongly on the pH of the sample solution (14. 15, 19). Therefore for tin determination saturated solution of boric acid vvith addition of lovv concentrations of nitric (15) or hydrochlo-ric acid (19, 20) for standards, sample and carrier solutions is rec-ommended. Different reagents (acid, sodium tetrahydroborate reduetant solution, sodium hydroxide) and their concentrations significantly influence not only sensitivity and peak shapes but also interferences in tin determination by HG AAS. Among the difficulties described in the literature are also high blank values (18. 20. 21). memory effects (20, 21), and interferences from transition metals ions such as Fc. Ni, Co. Cu vvhich cause very serious reduetion of the lin signal (17, 22). The interferences caused hy those elements can hc partly or completely eliminat-ed. The most common way to eliminate the interferences is masking of interfering ions by different masking agents (17. 22. 23). although the changes of acid and reduetant solution concentrations are also useful for this purpose (15. 20). An additional problem in tin determination by HG AAS reported by B. Welz et al. (20) is the appearance of pre-peaks originated from the silica of quartz tube atomizer which can be volatilized and atomized in the presence of hvdrogen. most probably via hydrogen radicals. These prepeaks are difficult to separate from the analvtical signal and mav cause errors in signal evaluation. The present work involved an extensive studv of optimal analvtical and instrumental parameters for low level tin determination in steels and nickel alloys using GF AAS and HG AAS. The determination has been discussed regarding: GF AAS - influence of graphite tube coatings and modifier used on sen-sitivity and reproducibility of signal - interferences of matrix elements - seleetion of optimal pyrolysis and atomization temperature with regard to volatilization of analyte, background, interferences, sensitivity of signal and lile time of graphite tube - evaluation of results HG AAS - influence of acid concentration on analyte signal - interferences of matrix elements and some metalloids - evaluation of results Experimental Aparatus The GBC 902 atomic absorption spectrometer, equipped with deuterium-arc background correction system. automated graphite furnace GF 2000, programmable auto-sampler PAL 2000 and CL 2000 controller vvas used for the measurements of anafvte absorbances using GF AAS. The instrumental parameters and operating conditions are given in Table 1. The furnace program is shovvn in Table 2. A Perkin-Elmer 2380 atomic absorption spectrometer. equipped vvith hvdride generator MHS-10 and printer PRS-10 vvas used for hvdride generation and absorbances measurements using HG AAS. The instrumental parameters and operating conditions are listed in Table 3. Table 1:Instrumental parameters and operating conditions for GF-AAS Table 2: Graphite furnace temperature program for the determination of tin in steels and nickel allovs Spectrometer Wavelength Slit Light source Measurement mode Furnace Graphite tube Char temperature Atomization temp. Sampler Sample volume Standard preparation Stock solution Standard solutions Sample preparation Dissolved in Mass/volume GBC, double beam, 902 286.3 nm 1.0 nm HCL. 10 niA peak height coated vvith Na,W04 800°C 2600 C 20 nI 1000 p,g/ml Sn in 1 M HCI serial dilutions vv ith 0.3 M HNO, 20 ml aqua regia 0.5 g/50 - I to 10/100 ml (diluted vvith 0.3 M HNO,) Step Temp. Ramp time Hold time Ar flovv number (°C) (s) (s) (1 min 1) 1 90 1 9 1.3 2 120 10 10 1.3 3 80 10 10 1.3 4 800 1 1 - 5 2600 1 3 - 6 2650 1 6 1.3 7 20 1 5 1.3 Table 3: Instrumental parameters and operating conditions for HG-AAS Spectrometer Wavelength Slit Light source Hvdride svstern Stock solution Standard solutions Carrier solution Calibration volume Reduetant Flame Sample Dissolved in Mass/volume Measuring volume Elimination of interferences Perkin-Elmer, 2380 286.3 nm 0.7 nm F.DL. 6 W Perkin-Elmer, MHS-10 1000 p.g/ml Sn (in 1 M HCI) serial dilutions vvith 0.1 M HCI 11 BO . sat./O.l M HNO, 25 ml 3 g NaBH4 + 0.5 g NaOH/lOO ml air/acetv lene: blue 20 ml aqua regia 0.5 g/50 mf 0.1-1.0 ml 3 g sodium oxalate/10() ml Reagents Ali reagents vvere of highest available puritv (p.a. or puriss. p.a.) obtained from Merck or Fluka. The solutions prepared vvere: G F AAS - aqua regia - nitric acid. 0.3 M - Pd/Mg nitrate modifier: 300 mg Pd (dissolved in nitric acid) +200 mg Mg(NOi), . 6H O in 100 ml of vvater - sodium tungstate dihvdrate. 5 g in 100 ml of vvater H G AAS - aqua regia - carrier solution: saturated boric acid containing 0.1 M nitric acid - reduetion solution: 3 g of sodium tetrahvdroborate (Fluka) in 100 ml of vvater stabilised vvith 0.5 g of sodium hydroxide - sodium oxalate, 3 g in 100 ml of vvater Standard solutions Stock solution of 1000 p.g ml 1 Sn vvas prepared by dissolv-ing of 1.000 g of tin metal in 100 ml hvdroehlorie acid (1.16) and diluting tii 1 1 vvith deionized vv ater. The other standard solutions vvere prepared from stock solution by serial dilution vvith 0.3 M nitric acid for GF AAS or vvith 0.1 M hvdroehlorie acid for HG AAS. Standard Sn solutions containing the interfering ions vvere prepared by adding the appropriate amounts of interfering ions to the standard solutions. Sample preparation 0.5 g of sample vvas carefullv dissolved in 20 ml of aqua regia (2 hours at 90"C). After eooling the digest vvas diluted to 50 ml vvith deionized vvater. Further dilution of sample solution (10-10(1 times) vvith 0.3 M nitric acid vv as used for GF AAS measurements. 0.800 x= 286,3 nm , TQtorTI = 2600 °C □ Na2W04 coated tube • Na2W04 coated tube * Pd/Mg modifier o TPG tube • TPG tube * Pd/Mg modifier 200 400 600 800 1000 1200 Pyrolysis temperature t °C D 1400 Figure 1: Effect of graphite tube coating and matrix modifier on signal for 2 ng Sn at different pvrolvsis temperatures Slika I: Vpliv prevleke grafitnih cevk in modifikatorja na signal za 2 ng Sn pri različnih razkrojnih temperaturah d) O c CJ _a i— o < 0,700 0,600 0,500 0,400 0,300 0,200 0,100 0,000 1 - 2600°C - 2 - 2300°C - 1 1 3 - 2000°C 2 A \ 3 _ te I * 60,3 x 4.83 mm for oil industrv. Heat treatment The temperatures of phase transformations needed for heat treatment vvere tested by dilatometer Lk.02 "Adamel Lhomargy". The specimens <|> 2 x 12 mm vvere heated and cooled by heating and cooling rate of 0,05"C/s. On registered diagram dilatation/temperature, the temperature values of particular phase transformation vvere read off. On Ihe basis of there results. the heat treatment of pipes vvhich is consisling of normalization and tempering as vvell as quenching (vvith cooling in vvater and oil) and tempering vvere carried out in the laboratorv electric resistance chamber furnace. Before and after heat treatment me-chanical properties of ASTM standardized specimens vvere tested. The hardness lest vvas performed by BrinelFs method. In a vievv of obtaining phase composition a phase analysis by X-ray diffraction device and Philips numerical couting technique by tise CoKa radiation. Corrosion tests Since the hvdrogen embrittlement of the material presents in faet the loss of its ductil ity (due to absorbed hvdrogen) a decrease of ductility parameters is obvious, i.e. the reduetion area and elongation of specimens are always reduced2'4'6. Among many electrochemical methods the cathodic polarization is one of the most appropriate methods for the determination of relative material susceptibilitv to hydrogen embrittlement. The specimens <|> 3.5 x 1 1(1 mm made from steel investigated in as-rolled and heat treated state vvere put into electrochemical celi (fullfilled vvith 0.5 M II,SO, + 10 mg As,(),/1 solutin) vvhich vvas put in Zvvick 50 kN tensile machine and subjeeted lo static load of 60 and 8()'/f ils of yield strenght7. The cathodic polarization vvas carried out by Wenging's potentiostat at current density of 1,6: 4,0: 8,0 and 12.0 mA/cnr. After cathodic polarization (duration of tvvo hours) of stressed specimens testing to ihe fracture vvith deformation rate of 2.4 x 10'V vvas immidiately carried out. On the base of change of specimens' reduetion area embrittlement index vv as calculated according lo the follovving equation: vvhere are: RAji, - reduetion area prior cathodic to polarization (uneharged by hydrogen) RAh - reduetion area after cathodic polarization (charged b\ hvdrogen ) After corrosion tests the content of absorbed hvdrogen in cathodic polarized specimens is determined on the exalograph EA-1 by the method of hot extraction. Metallographic and fractographie testing Microstructure of polished and etehed (in nital) specimens before and after heat treatment vvere carried out by the scanning electronic microscope (SEM) tvpe JOF.L JXA-50 A. voltage to 50 kV. For determination series and manner fracture the analy-sis fraetured surfaces of specimens vvere carried out. 3. Results of investigation Investigation of mechanical properties vvere carried out b\ Instron 1196 tensile machine on tvvo samples in as-rolled and heat treated state. Energv impact testing vvas carried out bv Charpv clapper on three IŠO specimens vvith V-notch at temperature 20"C. Average testing values of mechanical properties are shovved in table 2. On table 2 can be seen that the tubing vvithout heat treatment according to mechanical properties correspond to P-l 10 API grade vvhich does not belong to the corrosion resistant oil coun-try tubular goods. By normalizing at 900"C and tempering at 700°C vvas obtained corrosion resistance L-SO API grade. By the tubing heat treatment consisting of quenching at 870"C and tempering at high temperature of 720"C (specimens 36 and 39) there vvere obtained OCTG vvith mechanical properties C-90 grade. The index embrittlement as per equation (1) taking into account the specimens reduetion area prior and after cathodic polarization. The average values of embrittlement index for as-rolled and heat treated tubes are shovvn in table 3. 4. Diseussion of results The mechanical properties of Cr-Mo steel tubing in as-rolled state are high (API grade P-105, table 2) due to the chemical composition (modification vvith molybdenum and microallov ing vvith niobium) and the presence of bainite microstructure (figure Table 2: The mechanical properties of tubings Cr-Mo steel in as-rolled and heat treated state Tabela 2: Mehanske lastnosti cevi iz Cr-Mo jekla v valjanem in toplotno obdelanem stanju Specimen Heat treatment Yield strenght MPa Tensile strenght MPa Elongation ck Hardness HB Energv impact at+20°C Fracture toughnes MPa \ M ? - 972 1145 8.9 400 4 50 30 Normalized 900 C/min, air + Tempered 700°C/60 min, air 605 725 25.5 230 IS 84 36 Quenched 870°C/30 min. vvater + Tempered 720°C/60 min, vvater 721 765 25.5 252 19 94 39 Ouenched 870 C/30 min, oil + Tempered 720°C/60 min, air 703 759 22.1 250 22 100 Table 3: The values of embrittlement index and content absorbed hydrogen Cr-Mo steel by cathodic polarization Tabela 3: Vrednost indeksa krhkosti in vsebina absorbiranega vodika Cr-Mo jekla pri katodni polarizaciji Yield lndex Current Content Specimen Heat treatment strenght embrittlement dcnsity hydrogen MPa F(%) M A/cm2 ppm 3-6 - 972 87.6 1.6 2.7 30 - 4 Normalized 900°C/30 min, air 27.2 4.0 30 - 7 + 605 55.2 8.0 - 30 - 6 Tempered 700°C/60 min, air 88.5 12.8 36 - 3 Quenched 870°C/30 min, vvater 11.1 4.0 3.2 36 - 5 + 721 30.7 8.0 4.0 36-4 Tempered 720°C/60 min, air 86.2 12.0 4.8 39 - 3 Quenched 870°C/30 min. oil 23.6 4.0 3.4 39 - 5 + 703 31.1 8.0 4.4 39-4 Tempered 720°C/60 min, air 88.6 12.0 7.0 vvhere are: KIC = ReH(0,646 CVN/ReH-0,00635)"2 ( 2 ) ReH - Uppcr yield strenght (MPa) CVN - Charpy energy impact (J) On the base of calculated K[c - values (table 2) it is clear that the fracture toughness of quenched and tempered pipes has high values vvhich may be up to 100 MPam"2. The figure 1, in the manner of histogram, shovvs the change of embrittlement index at the cathodic polarization both for different states of material and different current densities and it can be seen that pipes resistance to hydrogen embrittlement increases through appliance of the heat treatment, specially quenching and tempering. Although pipe specimens in as-rolled state vvere at test stressed on the level of 60% yield strenght and polarized at current density of 1,6 mA/cnr a small resistance to hydrogen embrittlement vvith embrittlement index of 87,6% vvas obtained. The microfractography (figure 2a) of a fractured specimen made after cathodic polarization shovvs the presence of mixed fracture in vvhich predominantes brittle cleavage type of fracture. The reason for such a small resistance to hydrogen embrittlement is in the presence of untempered bainite microstructure (figure 3) vvhich is by many investigators9'10 considered, after martenzite structure. to be the most unfavourable microstructure vvith regard to the resistance in corrosion environmetals, expecially in sulfide environmetals. By normalization and tempering at 700"C" the resistance to hydrogcn embrittlement vvas increased can be seen from the in-dex value of embrittlement 27.2% and from the ductile fracture vvith a small energy fracture (figure 2a). The fracture began at the large inclusion particle being hovvever mighty traps fro hy-drogen because their great intersurface encures the accummula-tion of sufficient hydrogen quantites for the initation of cracking"'12. By quenching and tempering at 720"C the tube resistance to hydrogen embrittlement vvas increased vvhich vvas expressed by a smaller embrittlement index, particulary specimens quenched in vvater vvhere the embrittlement index is only 11.1 c/<. The fracture are ductile, vvith fine dimple appearence (figure 2c). The increase of embrittlement index vvas induced mosttly by presence of high tempered martenzite microstructure (figure 3b) in vvhich by means of X-ray diffraction the distribution of fine sphero carbides FeC, Fe,C, Cr,C2 and aMo,C vvas determined. Fine carbides microstructured is a main microstructural parameter for improving of hydrogen embrittlement because in this čase a longertime is needed for the accummulation of critical amount 3a) appearing at usual air cooling of tubes vvith finish rolling temperature. The hardness is homogenous through the vvhole cross seetion and amounts to 400 HB and 230-250 HB for the pipes in as-rolled and heat treated state as vvell. As OCTG are also used in arctic fields they are supposed to be as tough as possible. expecially at lovv temperatures. Energy impact of heat treated pipes is high and amounts to 18-22 J at 20"C retaining to same values also at -40"C. The fracture toughness (KIC-value) is knovvn to be an important characteristic of material, hovvever, because of vv all-thinnes (4,83 mm) KIC vvas not defined by the way of Charpy's energv at 2()"C as per Rolf-Novak's equation8. 100 80 60- 40 20 1.6 mA/cm 4.0 mA/cm 8.0 mA/cmz 12.0 mA/cm2 / M / without heat 900°C/air 870"C/water 870°C/oil treatment + » ♦ (as-rolled) 700'C/air 720°C/air 720°C/air Heat treatment Figure 1: The influence heat treatment on embrittlement index of lovv allov Cr-Mo steel Slika 1: Vpliv toplotne obdelave na indeks krhkosti malolegiranega Cr-Mo jekla Figure 2: The microfractography of fractured surfaces of low alloy Cr-Mo steel after cathodic polarization a) as-rolled. current density 1.6 mA/cnv b) quenched and tempered. current density 4,0 mA/cm c) normalized and tempered, current density 4.0 mA/cm' d) quenched and tempered. current density 12.0 mA/cnr Slika 2: Mikrofraktografije prelomnih površin malolegiranega Cr-Mo jekla po katodni polarizaciji a) valjano, gostota toka 1,6 mA/cnr b) kaljeno in popuščeno, gostota toka 4,0 mA/cnr c) normalizirani in popuščeno, gostota toka 4.0 mA/cnr d) kaljeno in popuščeno, gostota toka 12.0 mA/cnr' of hydrogen inducing the brittlc material decay. Since the microstructure influence is manifested mainly through the absorption and trapping of hydrogen on the interfaces carbide/matrix. the defined fine chrome carbides Cr,C, and «Mo,C inerease resistance to hvdrogen embrittlement. 5. Conclusion The tubing of investigated Cr-Mo steel in as-rolled state (without heat treatment) in regard to mechanical properties cor-respond to API grade P-110 vvith bainite microstructure appeared in usual way by air cooling of pipes at finished rolling temperature. Their resistance to hydrogen embrittlement is small vvith high values of embrittlement index of 87,6 %. It proves also the presence of mixed fracture vvith mainlv brittle cleavage frac-tures. By normalizing of tubing at 900"C and tempering at 700"C is obtained API grade L-80 vvith a great resistance to hvdrogen embrittlement (F = 27,8%) and ductile fracture vvith a small fracture energv. I lovvever, by quenching and tempering at 720"C API grade vvas obtained C-95 vvith significant resistance to hydrogen vvilh ductile mainly fine dimple fraetures. The reason of there are carbides Cr,C2 and aMo.C in tempered martenzite microstructure. Hovvever, by inereasing of current densitv from 4,0 mA/cm2 to 12.0 mA/cm2 at cathodic polarization some quintity of hydro-gen (5-7 ppm) vvas absorbed vvhich remarkably decreased resistance to hydrogen embrittlement (F = 86-89% ) in the presence of the brittle cleavage transgranular fracture. The results of the test shovv that for the obtaing of API grade C-95 vvith high resistance to hvdrogen embrittlement the heat treatment of tubing from investigated Cr-Mo steel needs to bc carried out by quenching in vvater after having reached the temperature at 870"C and air tempering from 720"C. Figure 3: The microstructures tubings from lovv alloy Cr-Mo steel in as-rolled (a) and quenched and tempered state (h) Slika 3: Mikrostruktura cevi iz malolegiranega Cr-Mo jekla v valjanem (a) ter kaljenem in popuščanem stanju (b) Literature 1 H.A. Uljanin: Struktura i korrozija metallov i splavov. Metalurgija, Moskva, 1989, s 139 2 G.M. Pressouvre: Current solutions to hydrogen problems in steel, Proceeding of the first International Conference on Current Solutions to Hvdrogen Problems in Steels, Washington, 1.-5. 11.1982. s 18 3 API Specification 5CT, American Petroleum Institute. Washington, 1990, s IS 4 F. Mansfeld: Corrosion mechanisms, Marcel Dekker Inc. Nevv York, 1987, s 344 5 P. Mclntyre: Hydrogen effects in high strenght steels, Edited by R.A. Oriani, J.P. Hirth: Hydrogen degradation of ferrous alloys, Noyes Publication. Nevv Jcrsev, 1985. s 763 6 L. Vehovar: International Conference on Materials Development in Rail. Tire, Wing. Hull Transportation, Euromat 92, Genoa, s 1367 7 M. Gojič et al.: Evaluation of Mn-V steel tendency to hvdrogen embrittlement, Kovine Zlitine Tehnologije, 26, 1992, s 349 s S.T. Rolfe, S.R. Novak: Slovv-bend KIC testing of medium-strenght high-toughness steels - STP 463, Philadelphia, American Society for Testing and Materials, 1970. s 124 ' E. Snape: Rolles of composition and microstructure in sulfide cracking of steels, Corrosion, 24, 1968. s 261 111 J.B. Greer: Fractors affecting of sulfide stress cracking per-formance of high strenght steels. Materials Performance, 3, 11, 1975 " G.M. Pressouyre, I.M. Bernstein: A Quantitative Analvsis of Hydrogen Trapping, Metallurgical Transactions A. 9A. 1978. s 1571 12 J.P. Hirth: Effects of Hydrogen on the Properties of Iron and Steel, Metallurgical Transactions A, 11A. 1980, s 861. M UNIVERZA V MARIBORU TEHNIŠKA FAKULTETA KEMIJSKA TEHNOLOGIJA 62000 Maribor, Smetanova ul. 17 OBVESTILO O IZIDU PRIROČNIKA ZA ZMANJŠEVANJE NASTAJANJA ODPADKOV IN EMISIJ Dovolite, da vas obvestimo, daje oddelek kemijske tehnologije Tehniške fakultete Maribor izdal PRIROČNIK ZA ZMANJŠEVANJE NASTAJANJA ODPADKOV IN EMISIJ. Priročnik smo prevedli iz ameriške publikacije Waste Minimization Opportunity Assessment Manual (United States Environmental Protection Agency), pomagali smo si z nemško publikacijo Handbuch der Abfall- und Emissionsvermeidung (Tehniška univerza Graz). Priročnik opisuje metode in tehnike minimiranja proizvodnje vseh vrst odpadkov na viru, tehnike izbire ter tehničnega in ekonomskega vrednotenja alternativ za zmanjšanje nastajanja odpadkov in emisij. Podana metodologija je uporabna za vse vrste industrij in storitvenih dejavnosti, kjer nastajajo odpadki, koristno jo lahko uporabimo tudi za študi možnosti manjše porabe energije v proizvodnji in povečanje njene izrabe. Minimiranje odpadkov in emisij je obsežen postopek sestavljen iz štirih faz: planiranja in organiziranja, poizvedovanja, analize možnosti izvedbe in končne izvedbe. Priročnik opisuje in podaja vse aktivnosti v podjetju, ki so potrebne za uspešno izvedbo ukrepov za zmanjšanje proizvodnje odpadkov in porabe energije. Končni rezultat je vedno profit (povečani prihranki), zmanjšanje onesnaževanja okolja, boljši položaj na trgu in ugled podjetja. V prilogi so podani delovni listi za izvedbo predraziskav in raziskave z navodili za tehnično in ekonomsko analizo izbranih ukrepov. Priročnik je namenjen vsem podjetjem, kjer nastajajo odpadki; vodjem obratov, razvojnim oddelkom, zadolženim za varstvo okolja, izobraževalnim ustanovam in ostalim, ki se ukvarjajo z varovanjem okolja. NAROČILA: Janez Petek, Tehniška fakulteta Maribor, Oddelek kemijske tehnologije, Smetanova 17, Maribor oz. po telefonu (062) 25-461 int. 643 ali po faksu (062) 227-774. Cena priročnika je 1.300 SIT. Predicting Oxide Activities in Ca0-Al203-Si02 System by Computer Model Napovedovanje aktivnosti oksidov v sistemu Ca0-Al203-Si02 z računalniškim modelom B. Koroušič, Institut for Metals and Technology, Ljubljana The most important metallurgical effects of ladle treatment of aluminium - killed steels with calcium, are associated vvith the modification of alumina inclusions. For the development of the deoxidation - control model for inclusions, the thermodynamic slag model, based on the Gibbs energy minimization and modelling approaches postuiated from Hastie et al., vvas used to calculate component oxide activities in the system CaO-AI203 and part of the system 3Ca0.AI203-Si02, 12CaO. 7AIPOrSiOP and Ca0.AI203-Si02 a t 1500°C and 160CPC. Key vvords: Slag activities, model computations, Gibbs energy minimization Najpomembnejši metalurški učinki pri uporabi kalcija za obdelavo jekel pomirjenih z aluminijem so povezani z modifikacijo aluminatnih vključkov. Pri razvoju modela za kontrolo vključkov smo uporabili termodinamični model, ki sloni na Gibbsovem modelu minimizacije energije in postulatu, ki ga je postavil Hastie et a/. Izračunavanja aktivnosti oksidnih komponent smo izvršili za sistem 3Ca0.AI203-Si02, 12CaO 7AI?0~-Si09 in Ca0.AI203-Si02 pri temperaturi 150CPC in 160CPC. Ključne besede: aktivnosti žlinder, modelna izračunavanja, Gibbsova energija minimizacije. 1. Introduction In last two decades calcium-based additions are made to molten steel not only for deoxidation and/or desulfurisation pro-poses, but also for the control of inclusion composition and mor-phologv. The ladle metallurgy offers today excellent possibili-ties to control of the cleanness and quality of steels. The most important metallurgical effects of ladle treatment of aluminium-killed steels vvith calcium, are associated vvith the modification of alumina inclusions preventing his precipitation during the continuousllv casting known as nozzle clogging process. Also the role of the syntetic slags Ca0-Al,0rSi02 for the secondarv refining of steel is growing dramatically because of it s excellent refining capabilities. In order to put inclusion engineering into practice. it is essential that the equilibrium relationship betvveen the liquid steel and the corresponding inclusion should be determined. With suitable seleetion of the deoxidation practice (changing ratio Ca/Al) is possible to avoid nozzle clogging, en-suring inclusions vv ith melting points lovver than the steel melt temperature. In this paper are presented equilibrium thermodynamic ac-tivitv of the Al/T, CaO. and SiO, in system CaO-Al,OrSiO:. determined vvith new Gibbs Energy Minimization Model -GEMM (The equilibrium calculation in the GEMM program is a minimization of the integral Gibbs free energy using a Langrangian multiplier method for the constraints) and discussed in relation to their use in deoxidation and calcium treatment control. 2. Thermodvnamic model of oxide phase equilibria -GEMM Many thermodvnamical models are developed in last tvvo decades for the investigation of multiphase equilibria and for thermodynamic predietions of multicomponent high-tempera-ture oxide systems'"'". Calculations involving thermodynamic equilibria in multi-phasc oxide systems are extremely time con-suming, even in the systems vvith relatively fevv components. In recent years, there has been rapid progress in the use of thermo-dynamic models achieving better understanding of many metallurgical, ceramical and chemical systems of commerical significance. This progress has been made possible largely by develop-ments in computer softvvare technology as vvell as the inereasing availability of reliable and comprehensive thermodynamic values compared vvith "hand" calculations vvhich have traditional-ly been assigned to specialists. A new modelling approach for thermodvnamic predietions of multiphase high-temperature oxide systems developed by J.W. Hastie and D.W. Bonnell" has been extended and applied for the investigation of the binary and ternary systems CaO-A1,0, and Ca0-Al;0,-Si0,. Well-known examples of solution models in current use include, ideal, regular, and the molecular-level associated liquid or cluster models4"71. The basic approach used in the GEMM predietion model is a deseription of non-ide-al mixture and the formation of complex liquids and solids as mixing componenets. This model has a thermodynamic basis and does not rely on assumed molecular or ionic entitics in the liquid phase. The liquid components are not independent molecular species, but are essentially subphases that serve as models for the local associative order-an idea that Schenk himself great-ly expanded some 50 years ago". Although the components are included individualy, it is assumed that in most cases, the components form short range order, and do not necessarily represent diserete molecular, ionic or other structural entities. The component and complex-compo-nent oxides formed are assumed to mix idealy, in accordance with Raoult' law. Henee, thermodvnamie aetivities and apparent mole fractions (X ) are equivalent quantities for this model. In the GEMM-predietion model, the thermodynamie activi-ty of oxides CaO, A1:0„ and SiO, can be calculated from the cor-responding thermodynamic functions. The modelling approach has been validated by comparison with experimental activitv dala. obtained from Taylorsl, Kav'", and recently published data from Fujisavva"", and Nagata"1. While the thermodvnamie data are incomplete they are stili sufficiently extensive to allovv their tise in the performance of common thermodynamical calcula-lions for manv high-temperature slags and other systems. Good agreement between the model predictions and experimental activitv data is obtained. The utility of even sparse experimental data can, in principle, be greatlv enhanced by GEMM optimiza-tion techniques. 3. Thermodynamic data bases Before actual calculations can begin. the necessarv thermo-dynamic data must be collected. For most oxide svstems relevant lo industrial steelmaking practice, the experimental thermody-namic data base are often a variety of somewhat obscure sources or are incomplete. The CaO-AfO, and Ca0-Al,0,-Si0. svstems are an excep-tion, in that there is an adequate thcrmodynamic data base which can be applied lo test the model computations. Such a thermo-dynamical optimization technique offers the important benefit thal it can drastically reduce the need to conduct costlv experi-ments. The Gibbs free energy data for the corresponding oxide phase at 1600"C are given in table I. Table 1: Compounds Gibbs energy of fonnation, negative (kJ/mol) (s)=solid, (l)=liquid Tabela 1: Prosta tvorbena energija nekaterih oksidov, minus (kJ/mol) Components 1873 K(s) 1873 K(l) Al,O, 1089.81 1065.70 CaO 431.08 427.47 SiO, 578.50 - 3Ca0AI,0, 2454.77 - 12Ca07AI,0, 13222.86 13280.00 CaOAl.O, 1564.62 1564.33 Ca02AI,0, 2693.83 2688.12 Ca06AI,0, 7063.18 7051.92 The GEMM-computer program used for calculation of the equilibrium composition, and hence aetivities. utilizes a data base made up of Gibbs energies of formation A(Gf) as a funciton of temperature (T). The free energies of formation A (Gf) are ei-ther known or can be estimated for these complex component liquids and solids. The data for most oxides vvere obtained mainly from data base made by J. Ilastie and Bonnell121. In a fevv instances, the co-efficients lo lite A (Cif) equation have been re-evaluted using nevv thermodv namie data obtained in the literature. 4. Results Cu0-Al203 Svstcm The CaO-AUO, system is one of the fundamental systems of the calcium-based slags and non-metallic inclusions, and there have been manv reports on the thermodynamics of this system. Much of the published information on lite thermodvnamie properties for some binarv aluminates has been based on vvork conducted and published in 1960's. Extrapolation of these data to steelmaking temperatures ntav introduce large errors. espe-c i a 11 y for a particular composition range. The CaO and AKO, activitv data shovvn in figure 1 are con-sistent vvith the bulk of literature experimental data at T=1600' C. Electromotive force (emf) and cell-activity data have recentlv been obtained by Fujisavva et al"" covering a vvide range of com-positions. Our model activitv data at T = I500"C have been com-pared vvith recently published data by Nagata et al"1 and as is shovvn in figure 2. Good agreement betvveen the model predic-tion and experimental activitv data for a vv ide range of composition is demonstrated. SVSTEM Ca0-Al203 T = '530 °C a(CqO)(s)-Modeli -a (CaO) - Nagata a (AI2O3) (s) - Modeli a (AI2O3)- Nagata 0,001 3 1 12:7 _I__i_ 1:1 _j_ 1:2 1:6 0 10 20 30 40 50 60 70 30 90 10C Al703 (mol/%) Figure t: Model dependance of computed activitv data in CaO-A I.O, at T=I500"C. Slika t: Modelna izračunavanja aktivnosti oksidov v sistemu CaO-AI.O, pri T=I500"C O < O o o 0,001 30 40 50 60 A1203 (mol/%) Figure 2: Model dependance of computed activitv data in CaO-AKO,, at T=1600"C Slika 2: Modelna izračunavanja aktivnosti oksidov v sistemu CaO-Al,Q, pri T=1600"C SVSTEM Ca0-Al203-Si02 (3Ca0-AI;03) mol % SiO2 0,0001 oooooi -a (A1203) (s)-Modeil O a {AI2O3) - Taylor 10 20 mol % SiO2 Fig. 3a o a O 0,1 > t! < 0,01 Ca0-AI203-Si02 System The control and prevention of multiphase in CaO-AKO,-SiO, and a suitable deoxidation practice should be applied to avoid undesirable alumina inclusions, thcy are not deformable and. besides, provoke tundish no/zle blockage problems. In order to determine oxygen und sulphur contents in molten steel and the conditions for aluminate and solid sulphide coprecipitation during casting, the knowledge of the activitv of CaO, AUO, and SiO, 111 molten slag and inclusions is important. One of the main advantages in the used model is the treatment as a high order sys- Fig. 3c Figure 3: Model computed dala of CaO, Al,O, and SiO, in CaO-AI,OrSiO: system for 3CaO.AfO, composition and T=1600"C Slika 3: Modelna izračunavanja CaO. Al,O, in SiO, v sistemu CaO-A 1,0,-SiO; za sestavo 3CaO.AfO< pri T=1600"C SYSTEM Ca0-Al203 -Si02 (12CaO-7 Al203 ) c 0 1 / T 1600°C - - a (/ 0 a (/ M203) (s) M203) - Tt -Modeli iylor 0 10 20 30 40 50 mol % Si02 Fig. 4a tem at high temperatures where extrapolation of thermodynam-ic dala may introduce large errors. For CaO-Al,OrSiO, system, several experimental studies of activity measurement and phase - diagram determination are reported in the literature*1. But. because of experimental difficulties, large discrepancies are observed between different experimental works. Tha activitv of [SVSTEM Ca0-Al203-5i02 (3CaO -Al^Og)] 20 mol % Si02 Fig. 3b T = 1600°C - a (CaO) (s)-Modeli o a (CaO) - Taylor mol % Si02 Fig. 4b SYSTEM Ca0-Al2d3-Si02 (CaO AI2O3) T = 1600°C - a (t 0 a ( U203) (s) M2O3) - Ta -Modeli y lor 0 10 20 30 40 50 mol % Si02 Fig. 5a F'g- 4c Fig. 5b and alumina were calculated in ali of liquidus domains. The com-positions are expressed in mole fractions of CaO, A1015 and SiO,. The reason for choosing A1015 rather then A1,0, is because in the basic melts, A 1,0, give rise to tvvo foreign ions AlO2", vvheres SiO, gives rise onlv to one SiO4". Thermodynamic activ-ities calculated using Gemm - computer program are shovvn in figures 3 - 5. Experimental activity data for the Ca0-Al,0;-Si0, system is particularly sparse and disparate8"3"41. Very good agreement betvveen the model and experiment data for the silica- Figure 4: Model computed data of CaO, Al,O, and SiO, in CaO-Al,OrSiO, system for 12Ca0.7AI,0, composition and T=1600"C Slika 4: Modelna izračunavanja CaO, Al,O, in SiO, v sistemu CaO-Al ,(),-SiO, za sestavo 12Ca0.7Al,0, pri T=1600"C CaO, Al.O,. and SiO, in CaO-Al,OrSiO, molten slag at 1500"C vvas measured by Rein and Chipman in 1963 and 1965131. The ac-tivity data determined the activity of silica by cquilibrium vvith a metallic phase, of carbon - saturated iron vvith silicon in solution. By integration of the Gibbs - Duhem lavv. the activitics of lime 0,01 o in 0,001 0,0001 SYSTEM Ca0-Al203-Si02 (CaP-A^Ps) 0,00001 0 10 20 30 mol % Si02 Fig. 5c Figure 5: Model computed data ofCaO, AUO, and SiO, in CaO-AKOrSiO, system for CaO.AbO, composition and T=1600"C Slika 5: Modelna izračunavanja CaO, Al,O, in SiO, v sistemu CaO-Al,0,-Si0, za sestavo CaO.AfO, pri T=f600"C activities and computed thermodynamic activity data for A1:0, and CaO at 1600"C is demonstrated. 5. Conclusion The Gibbs energy minimization model (GEMM) is used with the corresponding thermodynamical data base to calculate the predicted composition of solids, liquids (non-ideal solu-tions), and the vapour phase. The calculated composition of the CaO, Al20,, and SiO, are taken as the activity. Numerous comparisons between model and the experimental activities in the systems CaO-AkO, and CaO-Al:0,-Si02 at different temperatures have confirmed the realia-bility of this approximation. Considering the large number of the data base components, and the cumulative errors in the thermodynamic functions. the possihility exists that the present data base is not unique. However, as has been pointed out by J. Hastie and D. Bonnell", the author expects that some future modifications of the data base will be relatively ntinor. 6. References " Eriksson, G.: Chem. Scripta 8, 100, (1975) 21 Gaye, H„ D. Coulombet: Irsid PCM-RE. 1064. March, 1984 " Hastie. J.W„ Horton, W. S„ Plante, E.R., and Bonnell, D.W.: Thermodynamic Models of Alkali Vapor Transport in Silicate Systems, IUPAC Conf., Chemistry of Materials at High Temperature, Harwel, U.K.. August 1981: High Temp.-High Pres. 14, 669, (1982) 41 Ansara, I.: The modern computer applications in thermody- namics, Mattech '90, June 14-15 (1990), Helsinki 51 Lin, P.L., Pelton, A.D. Bale,C.W„ and Thompson, W.T.: CALPHAD 4. 47(1980) 61 Sundman, B.: Thermo-calc course, Mattech '90, June 14-15 (1990), Helsinki 71 Barin, 1„ G. Eriksson, F. Sauert, M. Zeitler. B. Witting, W. Schmidt: Equitherm, Databank and computer program for thermodynaniic calculation, Privat comunication (1990) 81 Verein Deutscher Eisenhiittenleute (Hrsg.) Schlackenatlas; Dusseldorf Verlag Stahleisen (1981) '" Kay, D.A.R.. S.V. Subramanian and R. V. Kumar: Inclusions in Calcium Treated Steels, Proceedings of the Second International Symposium on the Effects and Control of Inclusions and Residuals in Steels, 25th Conference of Metallurgist, Toronto, (1986) C1M "" Fujisavva, T., Ch.Yamauchi. H.Sakao: Activity of CaO and A1,03 in CaO-CaS slags satturated with CaS and the equilib-rium between the slags and molten iron alloys at 1873 K. The Sixth Internat. Iron and Steel Congress, Vol.I, 201-208 (1990) 111 Nagata, K„ J. Tanabe, and K.S. Goto: Activities of Calcium oxide in CaO-based Inclusions, measured by galvanic cells, The Sixth Intern. Iron and Steel Congress, Vol. 1, 217-224 (1990) 121 Hastie, J., D.W.Bonnell: A predictive phase equilibrium model for multicomponent oxide mixtures Part II. Oxide of Na-K-Ca-Mg-Al-Si, High Temperature Science, Vol. 19, (1985) 275-306 131 Rein, R.H., J. Chipman: J. Trans. Metali. Soc. AIME 233,415 (1965). INŠTITUT ZA KOVINSKE MATERIALE IN TEHNOLOGIJE p o. INSTITUTE OF METALS AND TECHNOLOGIES p.o. 61000 LJUBLJANA. LEPI POT 11. POB 431 SLOVENIJA Telefon: 061/1251-161, Telefax: 061 213-780 SLOVENSKO DRUŠTVO ZA MATERIALE SLOVENIAN SOCIETY OF MATERIALS 61000 Ljubljana, Lepi pot 11 tel.: 061 1251 161, Fax.: 061 213 780 SLOVENSKO DRUŠTVO ZA MATERIALE PROGRAMSKA IZHODIŠČA Slovensko društvo za materiale je bilo ustanovljeno z namenom, da se v njem povežejo vsi strokovnjaki, ki se ukvarjajo z materiali (anorganski nekovinski, polimeri in kovinski materiali), da bi v javnosti delovalo kot asociacija, ki mora biti konsultirana pri pomembnih odločitvah. Programska izhodišča Slovenskega društva za materiale so naslednja: • povezava strokovnjakov, ki se ukvarjajo z materiali (anorganski nekovinski, polimerni, kovinski) v strokovno združenje; • pričetek konstruktivnega sodelovanja na področju raziskovanja in izobraževanja; • organizacija strokovnih predavanj, ki naj služijo boljšemu medsebojnemu poznavanju in afirmaciji mladih strokovnjakov; • organizacija izobraževalnih seminarjev; • razširitev vsakoletnega jesenskega srečanja v Portorožu; • priprava spiska neodvisnih ekspertov za ocenjevanje projektov na področju materialov; • vključitev v Evropsko federacijo za materiale, kar bi omogočilo tudi organizacijo mednarodnih manifestacij; Sedež Slovenskega društva za materiale je na Inštitutu za kovinske materiale in tehnologije, Ljubljana, Lepi pot 11. V društvo se lahko včlanijo vsi strokovnjaki z visoko izobrazbo in študentje. Composite Mechanism of Scale Adhesiveness Kompozitni mehanizem oprijemljivosti škaje B. Kosec, L. Kosec, FNT, Odsek za metalurgijo in materiale, Ljubljana In the scale vvhich is formed on the surface of alloys during the annealing process, metallic and oxidic phases are mtervvoven in various ways, vvhich are characterized by the shape, portions, and size of both phases. Duetile scale component enables certain deformation of the scale, and it hinders propagation of cracks in the brittle oxidic phase. Key vvords: scale, composite material, crack, propagation, separation, adhesiveness. I/ škaji, ki nastane med žarjenjem na površini zlitin, se kovinska in oksidna faza prepletata na različne načine, kijih karakterizira oblika, delež in velikost obeh faz. Duktilna sestavina škaje omogoča določeno deformacijo škaje in preprečuje širjenje razpok, nastalih v krhki oksidni fazi. Ključne besede: škaja, kompozit, razpoka, napredovanje, ločitev, oprijemljivost. Scale is product of the high temperature oxidation of metals and allovs. Structure of scale depends on the chemical composi-tion of allov. temperature atmosphere and on the time of annealing. The scale vvhich adheres to metal during working and ser-vice reduces in most cases the quality of ihe surface of product. Therefore it should be rentoved in single stages of technological process. The most simple ways of scale removal are mechanical forces vvhich appear due to temperature changes or in vvorking. Scale and metal differ in their physical properties, among others, also in ali mechanical properties and in thermal expan-sion. Great differencess in thermal expansion during the temperature changes cause stresses vvhich practically separate both con-stituents. or thev fraetured only oxide. Scale adhesiveness depends on the microstructure, geometry of constituents, and the boundarv vvith the metallic matrix. Due to properties and the way hovv scale constituents are in-tervvoven. and depending on its properties, the scale can be treated as a composite material. Composite materials have different properties in comparison to the properties of constituents. One of essential characteristics Fig. 2: Scale region with pronounced composite structure, vvith long, wide and overlapping metallic lamellae vvhich successfully stop the propagation of cracks (200 x) Slika 2: Del škaje /, izrazito kompozitno zgradbo, dolgimi, širokimi in prekrivanimi lamelami kovine, ki dobro zaustavljajo razpoke (200 x) Fig. 1: Well defined simple boundary betvveen scale and parent metal in carbon steel (200 x) Slika 1: Dobro definirana enostavna meja med škajo in kovino v ogljikovem jeklu (200 x) Fig. 3: Weak regions in the scale on the boundarv betvveen composite and oxide part Slika 3: Šibka mesta v škaji na meji. ki loči oksidni del od kompozitnega Fig. 4: Composite scale with a great amount of metal phase, vvhich is not ahle to stop the crack propagation (100x) Slika 4: Kompozitna škaja z veliko kovinske komponente, ki nisposobna ustavljati razpoke (I0()x) of composite materials is crack arrest. In composite materials vvith ductile matrix (e.g. metallic or of polymers) cracks appear usually in rigid constituents of the armature (most frequently in fibres). vvhile in composite materials vvith ceramic matrix and ductile fibres the situation is reversed. In the scale the nonmetallic constituents are alvvavs more brittle than the metallic ones, and thev have also more defects vvhich appear alreadv during the grovvth. Portion, way of being intervvoven, and geometrv of both constituents determine the ahilitv for stopping crack propagation and thus the obstinacv vv ith vvhich the scale resists to separation from the metal. In the čase s. illustrated in Figs 2, 5 and 6. the microstructure has such portions of metallic constituent, and such combination of both phascs. that separation on the boundarv vvith pure metal cannot be expected, and scale can be removed onlv by additional ma-chining of the surface. On pure metals the scale has usually a vvell defined boundarv vvith the metal. The oxide metal boundarv is the vveak point for ideal fracture and thus good separation of scale from metal (Fig. 1). In allovs the metallic and o.xidic con- Fig.5,6: Weak directions for crack propagation in the compositescale vvith variouslv big metal "fibers", and along boundaries rich vvith oxide of alloving element (Cr) (200x) SI. 5,6: Šibki mesti na meji dveh kompozitnih con z različnovelikimi "vlakni" kovine in vzdolž mej. bogatih z oksidom legirnega elementa (Cr) (200x) Fig. 7: Scheme of microstructural composition oi" some scales vvith composite structure Slika 7: Shema mikrostrukturne zgradbe nekaterih škaj s kompozitno zgradbo (3a.b,4) Fig. 8: Variations in mechamcal characteristics of oxyde and metal in the scale Slika 8: Razlike v mehanskih lastnostih oksida in kovine Fig. 9: Arrest of crack propagation in oxide on the metallic fibres Slika 9: Ustavljanje širjenja razpok v oksidu na vlaknih kovine stituents are most frequently intervvoven. the boundary betvveen scale and metal is not even vvhich highly renders the separation of both phases more difficult (Fig. 2). In steels composed of elements vv ith thermodynamic properties different from those of iron, the scale of heterogeneous composition is formed. In the lovver part of scale. metal and oxide particles are intervvoven. This part behaves under mechanical loading identically to composite materials. The stresses vvhich appear due to temperature variations or other loads can cause eracks in the oxide. Their propagation can be stopped by suitably distributed metal in the scale, and thus the fracture of scale is pre- geometrv of metallic phase SI. 10: Širjenje razpok v kompozitni škaji / neugodno geometrijo kovinske faze. vented. The vveak point in sueh scales is the surface betvveen the composite zone and the upper scale layer being vvithout metal (Fig. 3). Some heterogeneous lovver scale parts have infavourable shape of metallic phase to stop the crack propagation in oxide. In sueh a scale crack propagates betvveeen metallic grains, and it can even cut some thin grains (FTg. 4). In the oxide grains of parent metal there are also oxides of al-loying elements, being either dispersed or predominantly pre-cipitated in certain direetions or in form of a net vvhich corre-sponds to metal grain boundaries before the oxidation. These direetions are mechanicallv vveak points in the scale and cracks can propagate along them to parent metali matrix (Figs. 5, 6). Some patterns hovv the boundary scale metal region is formed, are presented in Fig. 7. Intervvoven mineral and metal constituents give to scale ali the characteristics of composite materials vvith the usuallv pre-dominant oxidic phase also in the respect of microstructure vvhile in the boundary vvith metal often metallic phase in the scale is prevailing (Figs. 7. 9 and 10). Rigid mineral components render rigidness and compression strength to oxide, bul they are very sensitive to various flavvs vvhich appear during the grovvth of sueh oxide. Metallic matrix of suitable geometry is able to stop cracks, and it inereases the adhesiveness of scale (Fig. 9). If a scale vvhich vvill easily separate from metal is to be obtained. il must be composed mainly of mineral constituents. Metallic particles being intervvoven in the scale, especially if they are also connect vvith parent metali, can only increase the scale adherence. INŠTITUT ZA KOVINSKE MATERIALE IN TEHNOLOGIJE p.o. INSTITUTE OF METALS AND TECHNOLOGIES p.o. 61000 LJUBLJANA, LEPI POT 11, POB 431 SLOVENIJA Telefon: 061/1251-161, Telefax 061 213-780 VACUUM HEAT TREATMENT LABORATORY Vacuum Brazing Universally accepted as the most versatile method of joining metals. Vacuum Brazing is a precision metal joining technique suitable for many component configurations in a wide range of materials. ADVANTAGES • Flux free proeess yields clean, high integrity joints • Reproducible quality • Components of dissimilar geometry or material type may be joined • Uniform heating & cooling rates minimise distortion • Fluxless brazing alloys ensure strong defect free joints • Bright surface that dispense with expensive post cleaning operations • Cost effective Over five years of Vacuum Brazing expertise at IMT has created an unrivalled reputation for excellence and quality. Our experience in value engineering will often lead to the use of Vacuum Brazing as a cost effective solution to modern technical problems in joining. INDUSTRIES • Aerospace • Mechanical • Electronics • Hydraulics • Pneumatics • Marine • Nuclear • Automotive QUALITY ASSURANCE Quality is fundamental to the IMT philosophy. The choice of proeess, ali processing operations and proeess control are continuously monitored by IMT Quality Control Department. The high level of quality resulting from this tightly organised activity is recognised by government authorities, industry and International companies. Embrittlement of Copper Wire Due to Oxygen Krhkost bakra zaradi kisika L. Kosec, V. Gontarev, B. Kosec, FNT, Odsek za metalurgijo in materiale, Ljubljana N. Mlakar, Kolektor, Idrija An example of the reversible oxygen embrittlement of copper is deseribed in the paper. This phenomenon is combined vvith the drastic reduetion of ductility and workability. It appeared at the lovv temperature annealing (500 C) of copper in the nitrogen atmosphere vvith a lovv oxygen concentration (5 ... 6ppm), when diffusion of oxygen in copper took plače preferentially on grain boundaries. During the eooling to the surroundings temperature oxygen precipitated from the saturated solution in the form of copper oxide (Cu20) on the grain boundaries, thus the conditions for the intergranular dimple fracture have been created. Key vvords: oxygen, grain boundary diffusion, supersaturation, precipitation, intergranular dimple rupture, reversible embrittlement due to oxygen. V prispevku je opisan primer reverzibilne krhkosti bakra zaradi kisika. Pojav je povezan z drastičnim zmanjšanjem duktilnosti in preoblikovalne sposobnosti bakra. Nastal je pri nizkotemperaturnem (500°C) žarenju bakra v dušiku z majhno koncentracijo kisika (5 ... 6 ppm), med katerimi je prišlo do prednostne difuzije kisika po kristalnih mejah bakra. Med ohlajanjem na temperaturo okolice je kisik iz nasičene raztopine precipitiral v obliki bakrovega oksida (Cu20) na kristalnih mejah in ustvaril pogoje za interkristalni prelom z jamicami. Ključne besede: kisik, difuzija po kristalnih mejah, prenasičenje, izločanje, intergranularni jamičasti lom, krhkost zaradi kisika. 1. Introduction Copper and some its alloys represent of high duetile and well cold workable materials. These properties can be usually obtained by annealing in the proteetive atmosphere. But there exist frequent exceptions. They are numerous since many products are made by advanced technology of the bulk shaping instead of machining. Limited ductility in the bulk shaping allowed only a certain amount of plastic deformation. Further plastic deformation initiated cracking till final fracture of material (Fig.l). These problems are often caused by oxygen vvhich concentration could be detected by the metallographic analyse of oxide inclusions or chemical"'21. The copper oxide inclusions vvell fol-low the deformation of metal if extreme degrees are not exceed-ed. Oxygen in the solid solution vvhich simultaneously hardens copper and reduces its ductility is harmful. In some cases the chemically measured differences in the oxygen concentration betvveen duetile and brittle copper are very small, even vvithin the measuring error. In sueh cases oxygen is expected to be concen-trated on certain sites in the microstructure, for instance on the grain boundaries, but it could be detected only by an analitical in situ method. Before rolling, the copper wire of 12.8 mm in diameter have been annealed for 1 hour at 500"C in the nitrogen atmosphere vvith 5 ... 6 ppm of oxygen. During the annealing proces the average concentration of oxygen in the copper inereased from ap-proximately 0.001% to approximately 0.002%. Already after first or second pass through the grooved roll (round - square) the surface cracked. It vvas an obviously sign that further rolling vvas not possible any more. The cracks vvere approximately in the radial direetion vvith characteristic changes of direetions on the short sections. In single areas the surface damages vvere so intensive that even some small metalic parti-cles split off. The vvire vvith the limited ductility had the same strength and the yield stress as that vvhich vvas be shaped into the demanding sections. The reduced ductility vvas explained by fracture surfaces and by the careful analysis of the microstructure. The contraction of the copper vvire before annealing vvas ap-proximately 90%, and it vvas reduced to less than 30% after the annealing process. Essential difference betvveen the tvvo vvires vvas in the form of fracture. Not annealed copper vvire exhibited duetile transgranular dimpled fracture vvith characteristic deep unidireeted dimples (Fig. 6). On the fracture surface of the test bar broken in the air, the adsorbed carbon and oxygen have been measured (Fig. 9). After annealing the ductility vvas rapidly reduced vvhile the fracture vvas completely intercrystalline. Intergranular fracture surface consisted of many fine and shal-low dimples vvith inclusions of copper oxyde (Fig. 2-5). High oxygen concentration on that fracture surface vvas proved by the AES analysis. Oxygen vvas distributed obviously deeper under the fracture surface when compared vvith the no-tannealed copper (Fig. 10). The oxygen concentration on the surface corresponded to the composition Cu;0 and vvas rapidly reduced away from the grain boundaries. The initiation of cracks in the annealed copper is Figure 1: Cracks on copper wire surface after cold rolling (first step of reduetion); 10()x Slika 1: Površina bakrene žice /. razpokami po prvi redukciji pri hladnem valjanju; l()()\ Figure 3: Intergranular dimple rupture in copper wire resulting from microvoids coalescence at grain boundaries (Z = 2?'!); 200\ Slika 3: Intergranulama jamničasta površina preloma bakrene žice (Z = 25r/r); 200x Figure 2: Intergranular dimple rupture in copper wire resulting from microvoids coalescence at grain boundaries; 100x Slika 2: Intergranulama jamničasta površina preloma valjane bakrene žice: 10()x Figure 4: Detail of intergranular rupture surface with copper oxyde inclusions in dimples (fig.3); 6000x Slika 4: Detalj intergranularne prelomne površine z vključki Cu O " v jamicah (siJ); 6000\ /"**"' t--- ) / J^ f Figure 5: Small cracks on grain boundaries and copper oxyde precipitates; 20()x Slika 5: Kratke razpoke na kristalnih mejah s precipitati bakrovega oksida; 2()0x Figure 6: Copper oxyde precipitates on grain boundary: 6000x Slika 6: Precipitati bakrovega oksida na kristalni meji: 6000x connected vvith the inclusions of copper oxide on the grain boundaries (Fig. 3,5). As reference, also the surface of copper vvire vvhich has been covered vvith thin layer of corrosive prod-ucts during storing has been analysed. The composition vvas not the same on the vvhole surface. On one section of the surface the chemical composition of the corrosive products corresponded to the CuO copper oxide (Fig. 13). The layer is thin and it adheres to the unchanged metal at a high oxygen concentration gradient. In the other surface area. there vvas found u layer vvith high carbon concentration and it vvas thicker than that rich in oxygen (Fig. 14). The oxygen embrittlement of copper exhibited re-versibility. Annealing in the vacuum (5.10"6mbar. 85()"C, 10 hours) essentialy increased (Z = 75%) the copper ductility. The fracture surface of that annealed copper vvas predominantly transgranular dimpled ductile fraetured vvith a very small amount of residual intergranular dimpled fracture (Fig. 8). The chosen annealing conditions in the vacuum vvere obviously not so Figure 7: Ductile fracture of copper vvire (Z = 90%); l()()()x Slika 7: Duktilni prelom bakrene žice (Z = 90%): l()()()x Figure 8: Fracture surface of copper vvire after vacuum annealing (Z = 90%); 200x Slika S: Prelomna površina žice po žarenju v vakuumu (Z = 75%): 200x favourable enough to remove ali the oxygen accumulated in the copper during the annealing in the nitrogen atmosphere. The not uniform removal of oxygen vvas proved also by the AES analy- 100 80 j A A P f li t 4 6 8 10 12 Sputter time Iminl K Figure 9: Copper, oxygen and carbon concentration distribution on fracture surfaces of high ductility copper (Z = 90%) Slika 9: Profil koncentracij bakra, kisika in ogljika na prelomu bakra z veliko duktilnostjo (Z = 90%) 100 80 60, o