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Abstract 

The Saint-Venant equations were integrated by the explicit Method of Characteristics (MOC) and by the 
implicit Preissmann scheme to comparatively analyze and quantify the differences in prediction of flood 
wave propagation in open channels. For this purpose a hypothetical scenario was considered by defining a 
flood wave with a stage hydrograph at the inflow boundary of a prismatic channel. Downstream boundary 
was defined by a zero-gradient condition. The results are presented as stage hydrographs at equidistant 
sections along the channel. Comparative analysis revealed some differences between the compared methods. 
Discrepancies in peak wave heights are more evident in the upstream sections, while the downstream 
sections are more sensitive to differences in arrival times of flood wave peaks. The explicit MOC predicts 
lower wave heights and longer arrival times than the implicit Preissmann scheme.  
Keywords: Saint Venant equations, method of characteristics, Preissmann scheme, flood wave propagation. 

Izvleček 

Saint-Venantove enačbe smo povezali z eksplicitno Metodo karakteristik in implicitno Preissmannovo 
shemo za potrebe primerjalne analize in ocene razlik v napovedovanju širjenja poplavnih valov v odprtih 
kanalih. V ta namen smo opazovali hipotetičen scenarij, pri čemer smo poplavni val opredelili s faznim 
hidrogramom na dotočnem robu prizmatičnega kanala. Dolvodni rob je bil določen s pogojem ničnega 
gradienta. Rezultate študije predstavljajo fazni hidrogrami na ekvidistantnih odsekih vzdolž kanala. 
Primerjalna analiza odkriva nekatere razlike med obema metodama. Razlike v konicah poplavnih valov so 
bolj očitne v višje ležečih odsekih, medtem ko so spodnji odseki bolj izpostavljeni razlikam v času pojava 
konic poplavnih valov. Eksplicitna Metoda karakteristik napoveduje nižje konice poplavnih valov in 
kasnejše nastope konic kot implicitna Preissmannova shema. 
Ključne besede: Saint Venantove enačbe, metoda karakteristik, Preissmannova shema, širenje poplavnih 
valov.   
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1. Introduction 

The importance of developing and studying 
numerical procedures for predicting geometrical, 
kinematical and dynamical properties of flood 
waves is obvious and arises from the need to 
predict their eventual destructive and invasive 
interaction with the environment. Accurate 
prediction becomes even more evident if a flood 
wave travels near or through an unprotected urban 
area. Numerical simulations can be used to 
anticipate the influence of flood wave propagation 
on water depths in open channels, which is crucial 
for planning and executing essential preventive 
actions.  

Several results of such analyses are given in terms 
of stage hydrographs i.e. function h(x,t) that 
defines the water depth h at position x at time t, 
and flow hydrographs i.e. function Q(x,t) that 
defines the spatial and temporal variations of the 
flow rate Q. However, note that the depended 
variables are usually assumed to be h(x,t) and 
v(x,t), since the function Q(x,t) can be expressed in 
terms of average flow velocity v(x,t) and depth 
h(x,t). The functions h(x,t) and v(x,t) must satisfy 
the given boundary conditions and the Saint-
Venant system of differential equations, derived 
for the considered process under a series of usually 
valid assumptions (Chaudhry, 2008). The system 
follows from the principles of conservation of 
linear momentum and mass. If there are no lateral 
inflows along the channel and a prismatic channel 
with rectangular cross section area is considered, 
the principle of mass conservation can be 
expressed in differential form as (Chaudhry, 2008): 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ ℎ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0.         (1) 

On the other hand, the linear momentum equation 
is usually defined by considering the gravity force 
component in the direction of the flow, the 
pressure gradient and friction force. Although 
some other force contributions can also be 
included, this gives: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑔𝑔 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= 𝑔𝑔(𝑆𝑆0 − 𝑆𝑆𝐸𝐸),         (2) 

where g is gravity acceleration (m/s2), S0 denotes 
the channel bed slope and SE denotes the slope of 
the energy gradient line. There are a variety of 
constitutive models that can be used to compute 
the energy loss S0 per unit length of channel and 
unit weight of fluid (Subramanya, 1997). However, 
in the present study the Manning equation is used 
(Chanson, 2004; Mohan Das, 2008): 

𝑆𝑆𝐸𝐸 = 𝑛𝑛2𝑣𝑣2𝑅𝑅−4/3,         (3) 

where n denotes the Manning roughness 
coefficient (s/m1/3), R denotes the hydraulic radius 
(m) defined as A/O, where O is the cross section 
perimeter (m) and A is the cross section area (m2). 
The latter is linearly depended on water depth h 
and the constant of proportionality is defined by 
the channel width B (m). 

For given initial conditions v0(x,t=0) and h0(x,t=0) 
and boundary conditions, equations (1), (2) and (3) 
can be used to compute the flow properties over 
spatial domain defined between points x=0 and 
x=L, where L denotes the channel length, and over 
temporal domain from t=0 up to a time of interest. 
However, since for a general case, the solution 
cannot be obtained in a closed form, different 
numerical techniques were developed to obtain an 
approximated solution (Crossley, 1999).  

In this paper, we focused on the Method of 
Characteristics (MOC) (Delphi, 2012) and the 
Preissmann scheme (Preissmann, 1961). A 
comparative analysis between the two methods 
was conducted and is presented hereafter. Since 
MOC is mainly viewed as an academic procedure 
(since it is difficult to adequately incorporate 
spatial variability) and the Preissmann scheme is 
widely used in practice and in several commercial 
software packages, the main motivation for the 
comparative analysis was the intention to quantify 
related differences, especially due to the absence of 
such analyses in the available literature (Shamaa, 
2002; Akbari and Firoozi, 2010). 
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To obtain a numerical approximation of the system 
defined by equations (1) and (2), the spatial and 
temporal domains are discretized into a finite 
number of points. The spatial domain is discretized 
by a finite number nx of computational cells with 
length ∆x. The temporal domain is discretized by a 
finite number nt of time steps ∆t. To make a 
discrete reference on the spatial and temporal 
position of relevant geometrical and mechanical 
quantities, the subscript i is introduced to indicate 
their spatial position and the superscript n is 
introduced to denote their temporal position. The 
same nomenclature is hereafter used for both 
methods. 
 

2. Explicit time integration by MOC 

From the computational point of view, MOC is a 
very adequate numerical procedure that results in 
an efficient explicit algorithm which can be very 
easily implemented in any programming language. 
From the theoretical point of view, MOC can be 
used to transform a system of partial differential 
equations into a set of ordinary differential 
equations. However, note that this process is only 
valid for systems of hyperbolic partial differential 
equations such as the one that occurs in dam break 
problem. The essence of this method is to 
introduce a restriction which will specify a solution 
over predefined characteristics which can be 
geometrically interpreted as curves in the space-
time domain (usually approximated by a series of 
straight lines). The restriction is introduced by 
multiplying equation (1) with an unknown quantity 
(Lagrange multiplier), and adding it to equation 
(2). After solving those equations for the unknown 
multiplier, the system defined by (1) and (2) can be 
rewritten in a compact form for the positive C+ and 
negative C- characteristic as: 

𝐷𝐷𝜕𝜕
𝐷𝐷𝜕𝜕

± 𝑔𝑔
𝑐𝑐
𝐷𝐷ℎ
𝐷𝐷𝜕𝜕

= 𝑔𝑔(𝑆𝑆0 − 𝑆𝑆𝐸𝐸),         (4) 

where c(x,t) denotes the wave celerity, D•/Dt is the 
material-time derivative  and dx/dt denotes the 
slopes of the characteristic curve at some position 
in a space-time coordinate system in which the 
solutions of (4) are defined (Chanson, 2004). The 

resulting equation is based on the assumption that 
the celerity can be computed from the known depth 
by the gravity wave formula c(x,t)=(g·h(x,t))0.5. 
Moreover, this equality can be used to further 
simplify (4) by expressing h(x,t) in terms of c(x,t). 
Since in this case h=c2/g, the derivative Dh/Dc is 
2c/g and (4) can be rewritten as: 

𝐷𝐷(𝜕𝜕±2𝑐𝑐)
𝐷𝐷𝜕𝜕

= 𝑔𝑔(𝑆𝑆0 − 𝑆𝑆𝐸𝐸).         (5) 

The material-time derivative D(v±2c)/Dt can be 
approximated by replacing the continuous space-
time domain by a grid generated with a finite 
number of points (Figure 1). The procedure is 
justified from the physical point of view if the 
change of the quantity (v±2c) over time interval ∆t 
can be assumed to be linear. 

According to the previously introduced notations 
for spatial and temporal associations, the positive 
characteristic C+ illustrated in Figure 1 between 
points W and P can be computed as: 

𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

= 𝜕𝜕𝑖𝑖
𝑛𝑛+1−𝜕𝜕𝑖𝑖−1

𝑛𝑛

Δ𝜕𝜕
,          (6) 

and the negative characteristic C- between points E 
and P can be computed from: 

𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

= 𝜕𝜕𝑖𝑖
𝑛𝑛+1−𝜕𝜕𝑖𝑖+1

𝑛𝑛

Δ𝜕𝜕
.         (7) 

The unknown values v and c at point P can be 
computed from the known quantities at points W 
and E from the previous time level n. However, 
note that the slopes defined by equations (6) and 
(7) are only valid if the flow velocity v and celerity 
c can be assumed as constants inside the time 
interval ∆t, i.e. if the characteristics can be 
geometrically interpreted as straight lines (Figure 
1). On the other hand, for unsteady flow conditions 
the quantity v±c from (5) will change in time (and 
space) and the start point of the characteristic 
curves that crosses point P will not coincide with 
the point W and E from the previous time step. 
Therefore, to compute v and c at point P, two 
simplifications should be introduced. The first is to 
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assume that the adopted time step ∆t is small 
enough so that the characteristics for unsteady flow 
can still be geometrically interpreted as straight 
lines. If this assumption is justified (which it 
usually is), the second simplification is introduced 
so that the slope of the characteristics can be 
computed. Namely, if the positive characteristic 
from Figure 1 is considered as an example, note 
that the slope at point L is unknown since the 
velocity vL and the celerity cL at the same position 
are unknown. On the other hand, the slope of the 
same characteristic when it passes through point P 
is also unknown. The problem is usually resolved 
by computing the slopes using the velocity vO and 
celerity cO, i.e. the relevant quantities at the same 
spatial location i as point P but from the previous 
time step. Accordantly, the positive characteristic 
is defined by ∆xL/∆t=vO+cO and the negative 
characteristic as ∆xR/∆t=vO-cO. For the considered 
case illustrated in Figure 1, the positive 
characteristic C+ from equation (5) can now be 
rewritten in discrete form as (Chanson, 2004): 

(𝜕𝜕𝑃𝑃+2𝑐𝑐𝑃𝑃)−(𝜕𝜕𝐿𝐿+2𝑐𝑐𝐿𝐿)
Δ𝜕𝜕

= 𝑔𝑔(𝑆𝑆0 − 𝑆𝑆𝐸𝐸)𝐿𝐿,         (8) 

and the negative characteristic C- can be defined 
as: 

(𝜕𝜕𝑃𝑃−2𝑐𝑐𝑃𝑃)−(𝜕𝜕𝑅𝑅−2𝑐𝑐𝑅𝑅)
Δ𝜕𝜕

= 𝑔𝑔(𝑆𝑆0 − 𝑆𝑆𝐸𝐸)𝑅𝑅.         (9) 

Note that the source term should also be 
interpolated. However, in order to retain 
simplicity, it can also be computed (i.e. 
approximated) from the known values at point L 
for the positive characteristic C+ (8) and at point R 
for the negative characteristic C- (9). Solving 
equations (8) and (9) simultaneously gives the 
unknown velocity vP and celerity cP at point P. 
This procedure produces an explicit algorithm that 
requires an additional approximation of the 
velocity and celerity at point L and R. However, 
since the relevant quantities at points W and O are 
known and the distance ∆xL is also known, a 
simple linear interpolation can be used for this 
purpose. The same procedure is adapted for 
negative characteristic C-. 

 

 
Figure 1: Staggered space-time grid used in MOC. 

Slika 1: Premaknjena prostorsko-časovna mreža v 
metodi karakteristik. 
 

2.1 Numerical stability 
Since the numerical algorithm is explicit in time, it 
is only conditionally stable. The essential 
requirement to obtain numerical stability is 
prescribed by the Courant condition. In the case for 
flood wave propagation, it can be formulated as 
(Huang and Song, 1985): 

Δ𝑡𝑡 ≤ Δ𝜕𝜕
𝜕𝜕0+𝑐𝑐0

𝛿𝛿,       (10) 

where δ denotes the stabilization parameter defined 
between 0 and 1. Besides equation (10), to secure 
the numerical stability, it is also necessary to meet 
the almost forgotten Koren condition imposed by 
the inequality (Huang and Song, 1985): 
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Δ𝑡𝑡 ≤
��1 + 2 �𝑣𝑣0𝑐𝑐0

� − 1�

�𝑣𝑣0𝑐𝑐0
� 𝑔𝑔𝑆𝑆0𝑣𝑣0

.
�  

       (11) 

For a coordinate plane with axes ∆x and ∆t, the 
inequalities (10) and (11) define a spatial region in 
which the pairs (∆x,∆t) will ensure a stable 
numerical analysis. 
 

2.2 Boundary conditions 
A stage hydrograph h(x=0,t) is specified at the 
upstream boundary condition at x=0 as a Dirichlet 
boundary condition. Numerical treatment of the 
flow rate Q(x=0,t) at the same cross section 
depends on the local Froude number Fr. Namely, 
for subcritical flow Fr<1 the flow rate Q(x=0,t) 
can be computed from the negative characteristic 
(9), for supercritical flow Fr>1 the flow rate 
Q(x=0,t) should also be specified in advance. At 
the downstream section the Neumann type of 
boundary condition is usually specified, in this 
case a zero gradient condition for both the water 
depth h and flow velocity v. 
 

3. Implicit time integration by Preissmann 
scheme 

It is commonly accepted that amongst the more 
popular implicit finite difference schemes (e.g. 
Abbot-Ionescu scheme, Vasiliev scheme, 
Preissmann scheme etc.) the four point implicit 
scheme – or box scheme – is the most robust 
(Cunge et al., 1980; Szymkiewicz, 2010). Because 
of this it is implemented in several well-known 
commercial software packages such as HEC-RAS 
(US Army Corps of Engineers, 2010) or Bentley 
CivilStorm (Haestad Methods Solution Center, 
2011). Preissmann scheme corresponds with the 
box scheme when the integration point P is in the 
middle of the spatial increment ∆x (Szymkiewicz, 
2010).  

With respect to the other implicit but also explicit 
integration methods, the main advantage of the 
Preissmann scheme is the ability to use variable 
spatial ∆xi and temporal increments ∆tn 

(Szymkiewicz, 2010). The spatial increment ∆xi 
denotes the distance between points i and i+1 and 
the temporal increment ∆tn denotes the time 
interval between the states at n and n+1. 
Preissmann scheme uses a non-staggered grid of 
points in the space-time coordinate system (Figure 
2). Accordantly, a particular flow segment along 
the channel can be discretized more accurately 
(e.g. gradual change in cross section area) and the 
time discretization can be progressively adjusted 
with respect to the required temporal resolution of 
the results.  

Before considering the numerical procedure in 
more detail, it is opportune to rewrite the 
governing differential equations in terms of a flow 
rate Q and water stage H which is measured from a 
predefined datum level. Accordantly, the 
continuity equation, previously defined in equation 
(1), can be rewritten in terms of discharge as the 
depended variable (conservation form) as 
(Szymkiewicz, 2010): 

𝐵𝐵 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0.         (12) 

The momentum equation (2) takes the form: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝛽𝛽𝜕𝜕

2

𝐴𝐴
� + 𝑔𝑔𝑔𝑔 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝑔𝑔𝑛𝑛2 𝜕𝜕|𝜕𝜕|

𝐴𝐴𝑅𝑅4/3,        (13) 

where β denotes the Boussinesq coefficient 
introduced to express the actual momentum in 
terms of average velocity v which is now contained 
in the depended variable Q (Szymkiewicz, 2010). 
The numerical procedure begins by specifying a 
computational grid (Figure 2). 

The unknown values H and Q at time n+1 are 
computed with respect to the time position of point 
P inside the time increment ∆t (Figure 2). All the 
derivatives, functions or algebraic expressions are 
computed with respect to that point. Congruently, 
the value of an arbitrary function fP(x,t) at point P 
is approximated as (Preissmann, 1961): 

𝑓𝑓𝑝𝑝(𝑖𝑖,𝑛𝑛) ≈ 1−𝜃𝜃
2

(𝑓𝑓𝑖𝑖+1𝑛𝑛 + 𝑓𝑓𝑖𝑖𝑛𝑛) +
𝜃𝜃
2
�𝑓𝑓𝑖𝑖+1𝑛𝑛+1 + 𝑓𝑓𝑖𝑖𝑛𝑛+1�, 

      (14) 
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where θ is the weighting parameter ranging from 0 
to 1 and determines how much ‘weight’ is attached 
to the values at time level n+1and how much to 
those at time level n. Note that for θ=1 the 
computation is fully implicit in time and for θ=0 it 
is fully explicit. Furthermore, to obtain a numerical 
approximation of the system defined by equations 
(12) and (13), time derivatives are approximated 
as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
≈ 1

2
�𝜕𝜕𝑖𝑖+1

𝑛𝑛+1+𝜕𝜕𝑖𝑖+1
𝑛𝑛

Δ𝜕𝜕𝑛𝑛
+ 𝜕𝜕𝑖𝑖

𝑛𝑛+1+𝜕𝜕𝑖𝑖
𝑛𝑛

Δ𝜕𝜕𝑛𝑛
�,         (15) 

and spatial derivatives as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
≈ 𝜃𝜃 �𝜕𝜕𝑖𝑖+1

𝑛𝑛+1+𝜕𝜕𝑖𝑖
𝑛𝑛+1

Δ𝜕𝜕𝑖𝑖
�  

+(1 − 𝜃𝜃) �𝜕𝜕𝑖𝑖+1
𝑛𝑛 +𝜕𝜕𝑖𝑖

𝑛𝑛

Δ𝜕𝜕𝑖𝑖
�. 

        (16) 

Geometrical interpretation of the weighting 
parameter θ is illustrated in Figure 2. With 
introduced approximations (15) and (16), the 
continuity equation (12) can be discretized in both 
time and space as: 

𝐵𝐵𝑝𝑝
2
�𝜕𝜕𝑖𝑖+1

𝑛𝑛+1+𝜕𝜕𝑖𝑖+1
𝑛𝑛

Δ𝜕𝜕𝑛𝑛
+ 𝜕𝜕𝑖𝑖

𝑛𝑛+1+𝜕𝜕𝑖𝑖
𝑛𝑛

Δ𝜕𝜕𝑛𝑛
�  

+𝜃𝜃 �𝜕𝜕𝑖𝑖+1
𝑛𝑛+1+𝜕𝜕𝑖𝑖

𝑛𝑛+1

Δ𝜕𝜕𝑖𝑖
�  

+(1 − 𝜃𝜃) �𝜕𝜕𝑖𝑖+1
𝑛𝑛 +𝜕𝜕𝑖𝑖

𝑛𝑛

Δ𝜕𝜕𝑖𝑖
� = 0, 

       (17) 

where the index P is introduced to denote that the 
width B is computed according to the formula 
given in (14). Note that for θ=0 the width BP can 
be explicitly computed and interpreted as the 
arithmetic mean of the width of neighbouring 
points in the computational grid. Similarly, the 
momentum equation defined in (13) can be 
discretized to obtain: 

1
2
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      (18) 

+𝑔𝑔𝑔𝑔𝑃𝑃𝜃𝜃 �
𝜕𝜕𝑖𝑖+1
𝑛𝑛+1+𝜕𝜕𝑖𝑖

𝑛𝑛+1

Δ𝜕𝜕𝑖𝑖
�  

+𝑔𝑔𝑔𝑔𝑃𝑃(1 − 𝜃𝜃) �𝜕𝜕𝑖𝑖+1
𝑛𝑛 +𝜕𝜕𝑖𝑖

𝑛𝑛

Δ𝜕𝜕𝑖𝑖
� ==

−�𝑔𝑔𝑛𝑛2 𝜕𝜕|𝜕𝜕|
𝐴𝐴𝑅𝑅4/3�𝑃𝑃

, 

where the terms AP, BP and friction source term can 
also be computed according to the formula given in 
(14). 

Since the cross section area A is a function of water 
stage H, the only unknowns are the flow rate Q and 
water stage H in time n+1. Therefore, there are 
only four unknowns in equations (17) and (18). To 
start the computation, the state at time n is known 
from the initial conditions or from the previous 
time step. Such a pair of equations can be written 
for each spatial interval ∆x. For a total number of 
nx computational cells along the channel, the 
procedure defines a set of 2(nx) algebraic equations 
with 2(nx+1) unknowns, representing the values for 
water stage H(x,t) and flow rate Q(x,t) inside the 
flow domain. The resulting two equations obtained 
by applying the Preissmann scheme are nonlinear, 
due to the convective term and the friction source 
term, so an iterative solution technique, such as the 
Newton-Raphson method (Kreyszig, 2006) is 
required. If parameter θ is greater than zero, the 
computation results in a time marching procedure 
in which the step from one time line to the next is 
simultaneously performed for all points along the 
current time line (Figure 2). 

The non-staggered space-time grid is an attractive 
feature of the Preissmann scheme since it can 
readily be used with unequal spatial increments, 
which is particularly important for natural 
waterways where channel characteristics are highly 
variable even at short distances. Similarly, the 
applicability of unequal time steps is another 
important characteristic of the scheme, particularly 
for the case of hydrograph routing where 
floodwaters would generally rise relatively quickly 
and recess gradually in time. 

6 



Krvavica N., Travaš V.: A comparison of method of characteristics and Preissmann scheme for flood propagation 
modeling with 1D Saint-Venant equations – Primerjava metode karakteristik in Preissmannove sheme poplavnih valov 

z 1D Saint-Venantovimi enačbami 
Acta hydrotechnica 27/46 (2014), 1-12, Ljubljana 

 

 

 
Figure 2: Non-staggered space-time grid used in 
the Preissmann scheme. 

Slika 2: Nepremaknjena prostorsko-časovna mreža 
v Preissmanovi shemi. 
 

3.1 Boundary conditions 
Since this procedure defines two unknowns for 
each grid point with a total of 2(nx+1) unknowns, 
and the total number of algebraic equations is 
2(nx), there are four additional unknowns that 
should be determined from the boundary 
conditions. So, in addition to equations (17) and 
(18), a unique solution of the system is obtained by 
defining the upstream and downstream boundary 
conditions. Like in the previous case, only the 
water stage H(x=0,t) needs to be specified at the 
upstream cross section if Fr<1 and in the case of 
supercritical flow (i.e. if Fr>1), both water stage 
and flow rate should be specified at the same 

boundary. Similarly, the downstream boundary 
conditions are defined as zero gradient conditions 
for both water depth h and velocity v. 
 

3.2 Numerical stability 

The Preissmann scheme is second-order accurate 
in both time and space if θ=0.5 and first-order 
accurate otherwise. Moreover, if applied to Saint-
Venant system of equations, Lyn and Goodwin 
(1987) showed that it is unconditionally stable for 
θ>0.5 and neutrally stable if θ=0.5. For practical 
analysis it is common practice to set θ=0.55-0.65. 
However, it must be mentioned that in this case the 
scheme gives an approximation of first-order and 
thus generates a numerical diffusion that can affect 
the numerical solution. The magnitude of diffusion 
depends on the values of spatial and temporal 
increments and the weighting parameter θ 
(Szymkiewicz, 2010). In other words, for θ>0.5 the 
scheme is computationally-diffusive. 
 

4. Comparative analysis 

Major advantage of the Preissmann scheme, but 
also other implicit schemes, in comparison with 
MOC and other explicit algorithms is the fact that 
the numerical stability is ensured for θ>0.5 (Lyn 
and Goodwin, 1987). In other words, the 
Preissmann scheme is unconditionally stable 
without the need to satisfy the Courant condition 
(10) which defines the maximum allowable time 
step. In spite of the fact that implicit schemes 
require iterations at every time step, the 
requirement of explicit schemes to satisfy Courant 
conditions often makes them less attractive in 
terms of computational efficiency. 

However, if only computational efficiency is 
considered, it should also be mentioned that by 
increasing the number of grid points nx the 
situation can be reversed. Namely, by increasing nx 
the explicit time integration becomes more 
attractive, since the computational efficiency of 
explicit algorithm reduces linearly while efficiency 
of implicit algorithms reduces exponentially (since 
it involves a solution of a system of non-linear 
algebraic equations). 
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4.1 Numerical examples 
To perform a comparative analysis, the considered 
numerical procedures were implemented in 
MATLAB (2011). Those numerical algorithms 
were used to simulate a hypothetical scenario in 
which a flood wave enters from the upstream 
boundary in a prismatic open channel with 
rectangular cross section. The considered channel 
is L=20 km long with constant width of B=30 m.  

Two different channel slopes where considered, 
moderately steep slope S0=0.05 for Test Cases 1 
and 2, and very mild slope S0=0.005 for Test Cases 
3 and 4. The Manning roughness coefficient was 
constant along the channel for all test cases and 
was defined as n=0.015 s/m1/3.  

The initial conditions were given as a velocity 
v0(x,t=0) and depth h0(x,t=0) along the flow 
domain (0≤x≤L) at the beginning of the 
computational process. Since the considered 
channel was prismatic, i.e. characterized by 
constant bed slope S0, cross section area A and 
roughness n, the initial conditions were defined 
with normal depth hn=const. calculated for a given 
initial discharge Q0. The initial flow rate Q0 is 20 
m3/s and corresponding normal depth was 
computed as h0=0.627 m for S0=0.05 and h0=1.27 
m for S0=0.005.  

The stage hydrograph at the upstream inflow 
boundary was defined by a triangular shape in 
which the peak value hp is reached at Tp=2 hours 
for Test Cases 1 and 3, or after 20 minutes for Test 
Cases 2 and 4. Total duration of the flood wave, or 
base time, was set to Tbase=3Tp for all test cases. 
Peak flood wave height was set to hp=2.0 m also 
for all test cases (Table 1). 

At the last computational node a zero gradient 
boundary condition is defined for both velocity v 
and depth h (i.e. celerity c). From the physical 
point of view this kind of boundary condition will 
describe a free boundary condition. At the 
numerical implementation level, this boundary 
condition can be simply defined by specifying that 
qnx=qnx-1 where q can be any relevant quantity. 

The temporal domain was defined between t=0 and 
t=10 hours. The spatial discretization in both cases 
was conducted equidistantly with a total of nx=200 
number of points, which for the considered case 
defines the spatial increment ∆x=100 m. The 
temporal domain was discretized by nt=3600 time 
increments with individual period of ∆t=10 
seconds. The results of the analysis are given in 
Tables 2 and 3 and Figures 3a, b, c and d in which 
the stage hydrographs are shown for sections every 
5 km along the channel. 

Observing the results, differences between the 
methods are more obvious for milder channel 
slopes (Figures 3c and 3d) and for steeper flood 
waves (Figures 3b and 3d). The greatest 
differences where observed for Test Case 4 (Figure 
3d). 

It should be mentioned that an unexpected 
difference between the methods was recognized at 
the upstream part of the considered channel. 
Namely, for Test Cases 2 and 4 (steeper flood 
wave) the first two stage hydrographs at the 
upstream section are different in all the 
characteristics: especially the amplitude (up to 
3.8%), but also in peak, rising and descending 
time. In the downstream part amplitudes were 
similar but arrival times differed significantly (up 
to 10.6%). Even if the time step was reduced in the 
explicit integration, the same differences were 
seen. 

Table 1: Model input parameters for all test cases.  

Preglednica 1: Vhodni modelni podatki za vse 
testne primere. 

Test 
Case 

Channe
l slope 

Time to 
peak 

Base 
time 

Norm. 
depth 

Peak 
height 

nr 
S0 

(m/m) Tp (s) Tbase (s) hn (m) hp (m) 
1 0,05 7200 21600 0,627 2,0 
2 0,05 1200 3600 0,627 2,0 
3 0,005 7200 21600 1,270 2,0 
4 0,005 1200 3600 1,270 2,0 
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Figure 3: Graphical results for Test Cases a) 1, b) 2, c) 3 and d) 4, every 5 km along the channel for both 
MOC (Explicit) and Preissmann scheme (Implicit).  

Slika 3: Grafični prikaz rezultatov testnih primerov (a) 1, (b) 2, (c) 3 in (d) 4, vsakih 5 km vzdolž kanala za 
eksplicitno (metodo karakteristik) in implicitno (Preissmannovo) shemo. 
 

 
Figure 4: Results from Preissmann scheme for Test Case 4 with different temporal increments.  

Slika 4: Rezultati Preissmannove sheme za primer 4 z različnimi časovnimi koraki. 
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Figure 5: Results from Preissmann scheme for Test Case 4 with different spatial increments.  

Slika 5: Rezultati Preissmannove sheme za primer 4 z različnimi prostorskimi koraki. 
 

Table 2: Peak wave height results for MOC and Preissmann scheme.  

Preglednica 2: Rezultati višine vala za MOC in Preissmannovo shemo. 

  
Preissmann MOC 

Test Case Section hp hp diff. 
nr. (km) (m) (m) (%) 

1 

5 2,483 2,493 0,4% 
10 2,408 2,42 0,5% 
15 2,351 2,364 0,5% 
20 2,334 2,336 0,1% 

2 

5 1,916 1,954 2,0% 
10 1,622 1,652 1,8% 
15 1,457 1,483 1,8% 
20 1,386 1,396 0,7% 

3 

5 2,865 2,89 0,9% 
10 2,595 2,608 0,5% 
15 2,539 2,46 -3,1% 
20 2,542 2,448 -3,7% 

4 

5 2,280 2,362 3,6% 
10 1,823 1,892 3,8% 
15 1,583 1,639 3,5% 
20 1,559 1,556 -0,2% 
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Table 3: Arrival times of flood wave peaks for MOC and Preissmann scheme.  

Preglednica 3: Časi prihoda vala pri metodi karakteristik in Preissmannovi shemi. 

  
 

Preissmann MOC 
Test Case Section Tp Tp diff. 

nr. (km) (s) (s) (%) 

1 

5 8490 8410 -0,9% 
10 10030 9950 -0,8% 
15 11600 11500 -0,9% 
20 12690 12865 1,4% 

2 

5 2530 2485 -1,8% 
10 4300 4265 -0,8% 
15 6250 6215 -0,6% 
20 7990 8140 1,9% 

3 

5 8540 8385 -1,8% 
10 11090 10710 -3,4% 
15 13970 14140 1,2% 
20 14500 15695 8,2% 

4 

5 2270 2215 -2,4% 
10 3720 3790 1,9% 
15 5330 5525 3,7% 
20 6790 7510 10,6% 

 

Generally speaking, it can be concluded that for 
some examples explicit time integration leads to a 
more diffusive results with respect to the implicit 
time integration which predicts stiffer flood wave 
propagation – higher peak amplitudes, shorter 
rising and peak arrival times. 
 

4.2 Parameter selection analysis for Preissmann 
scheme 

Influence of both temporal and spatial increments 
was studied for implicit Preissmann scheme to test 
the magnitude of expected numerical diffusivity. 
For Test Case 4 (which showed the largest 
differences between the methods) time step was 
altered from ∆t=10 s to ∆t=600 s (Figure 4), while 
the spatial step was altered from ∆x=50 m to 
∆x=1000 m (Figure 5). Although some differences 
were observed, namely more numerically diffusive 
results occurred with increase in temporal and 
spatial increment, those differences were still much 
smaller in comparison to differences between 
explicit and implicit method. 
 

5. Conclusion 

A comparative analysis between the results 
obtained by MOC and Preissmann scheme for 
hypothetical flood wave propagation along a 
prismatic open channel was presented and 
discussed. In both cases the velocity and water 
depth distribution along the channel were 
estimated by approximating the Saint-Venant 
system of differential equations.  

Given the same spatial and temporal increments, 
and considering only the computational efficiency, 
explicit methods are undoubtedly more suitable 
than the implicit ones. Moreover, the numerical 
implementations of the implicit methods are more 
complicated when a solution to a non-linear system 
of equations must be obtained. It should also be 
noted that the original Preissmann scheme is not 
suitable for transcritical flows (Meselhe and Holly 
Jr., 1997) although there are several recent 
adaptations that successfully solved that problem 
(Sart et al., 2010). 
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On the other hand, implicit methods are much 
more stable and accurate. Their greatest advantage, 
however, is in the freedom to choose much larger 
spatial and especially temporal increments, 
whereas explicit methods are bounded by the 
Courant condition.  

Nevertheless, whichever method is chosen to 
model flood wave propagation through an open 
channel, selection of the appropriate numerical 
parameters should be considered with great care if 
precision and accuracy are important. 
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