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Abstract
If G is a (molecular) graph with n vertices, and di is the degree of its i-th vertex, then the sum-connectivity matrix of G
is the n × n matrix whose (i, j) -entry is equal to 1/√di + dj if the i-th and the j-th vertices are adjacent and 0 otherwise.

The sum-connectivity energy of a graph G is defined as the sum of the absolute values of the eigenvalues of the sum-

connectivity matrix. Some properties including upper and lower bounds for the eigenvalues of the sum-connectivity ma-

trix and the sum-connectivity energy are established, and the extremal cases are characterized.
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1. Introduction

Let G be a simple (molecular) graph with vertex set
V(G) = {1, 2, ..., n}.1,2 For a vertex i ∈ V(G), di or di(G)
denotes the degree of i in G. Recall that di = |Γ(i)|, where
Γ(i) is the set of (first) neighbors of i in G. For vertices i
and j of the graph G, i ∼ j means that i and j are adjacent,
i.e., ij is an edge of G.

The product-connectivity matrix R = R(G) of the
graph G is defined as

It was discussed by Rodríguez3, Rodríguez and Si-
garreta4, Hogben5 and Bozkurt et al.6 under different na-
mes the weighted adjacency matrix3, the degree-adja-
cency matrix4, the normalized adjacency matrix5 and the
Randi} matrix6.

Recall that the product-connectivity index or the
Randi} index of the graph G is defined as in Ref. 7
and 8

The uses of the product-connectivity index and Ran-
di}-like indices in the structure-property-activity mode-
ling is summarized by Todeschini and Consonni in their
two Handbooks9,10. Similarly these authors also discussed
in their Handbooks the role of graph-theoretical matrices
in deriving molecular descriptors (topological indices)
and in describing molecules from a topological point of
view11,12. A useful summary of definitions and applica-
tions of graph-theoretical matrices in chemistry appeared
recently13.

In parallel to the definition of the product-connecti-
vity index of Randi}, the sum-connectivity index of the
graph G is defined as in Ref. 14 and 15

Sum-connectivity index belongs to a family of Ran-
di}-like indices. The uses of the sum-connectivity index in
modeling a number of molecular properties is presented in
the monograph entitled Novel Molecular Structure Des-
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criptors – Theory and Applications I, edited by Gutman
and Furtula16.

Similarly to the product-connectivity matrix, the
sum-connectivity matrix S = S(G) of the (molecular)
graph G is defined as

Obviously, S(G) is a symmetric real matrix. Thus its
eigenvalues are all real. The sum-connectivity energy of a
graph G is defined as the sum of the abosulute values of
the eigenvalues of its sum-connectivity matrix of G.

The aim of this report is to study properties of the ei-
genvalues of the sum-connectivity matrix and the sum-
connectivity energy, mainly upper and lower bounds of
the largest and smallest eigenvalues, the spectral diameter
(of the sum-connectivity matrix) and the sum-connecti-
vity energy in terms of other structural invariants and
complete characterizations for the extremal cases (for
which the bounds are attained).

2. Definitions

The adjacency matrix A = A(G) of the graph G is
defined as12

For a square symmetric real matrix B, its eigenva-
lues are all real. The energy of B is defined as the sum of
absolute values of its eigenvalues, denoted by E(B). The
energy of the graph G is defined as17 E(G) = E(A(G)) =
∑
n

i=1
|λi|, where λ1, λ2, ..., λn are the eigenvalues of A(G) ar-

ranged in a non-increasing manner. The product-connecti-
vity energy or the Randi} energy of the graph G is defined
as6 RE(G) = E(R(G)). Similarly, the sum-connectivity en-
ergy of the graph G is defined as SE(G) = E(S(G)) = ∑

n

i=1
|μi|,

where μ1, μ2, ..., μn are the eigenvalues of S(G) arranged in
a non-increasing manner.

Let tr(B) be the trace of the matrix B. Then

(1)

(2)

A graph is a semiregular graph of degrees r and s if
it is a bipartite graph such that all vertices in one partite
set have degree r and all vertices in the other partite set ha-
ve degree s.
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3. Properties of the Eigenvalues 
of the Sum-Connectivity Matrix
Obviously the spectrum of the sum-connectivity

matrix of a disconnected graph is the union of the spectra
of the sum-connectivity matrices of its components.

For a vector or matrix X, XT denotes its transpose.

Lemma 1.18 Let B be a k × k non-negative irredu-
cible symmetric matrix with exactly two distinct eigenva-
lues. Then B = uuT + rIk for some positive column vector
u and some r where Ik is the unit matrix of order k.

Proposition 1. Let G be a graph with n ≥ 2 vertices.
Then

(3)

with equality if and only if G is an empty graph or a com-
plete graph.

Proof. From (1) and applying the Cauchy-Schwarz
inequality, we have

From (2), we have

FORMUL

and then (3) follows.
It is obvious that (3) is an equality if G is an empty

graph. Suppose that equality holds in (3) and G is non-
empty. Then μ2 = ··· = μn and thus from (1), S(G) has ex-
actly two distinct eigenvalues, and by (1), the eigenvalues
are not equal to zero. Let H be a component of G say V(H)
= {1, 2, ..., k}. Then S(H) has exactly two distinct eigenva-
lues. Note that S(H) is a non-negative irreducible symme-
tric matrix. By Lemma 1, S(H) = uuT + rIk for some posi-
tive column vector u and some r. Since each diagonal en-
try of S(H) is zero, each entry of u is equal to √–r. Thus
for 1 ≤ i, j ≤ k with i ≠ j all (i,j)-entries of S(H) are equal
to –r, implying that G is a complete graph. Obviously, if G
is a complete graph, then (3) is an equality.

We mention that 

is a particular case of the general sum-connectivity in-
dex19.

Corollary 1. Let G be a graph with n ≥ 2 vertices.
Then
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with equality if and only if G is an empty graph or a com-
plete graph.

Proof. It is easily seen that

with equality if and only if every component of G is regu-
lar. Now the result follows from Proposition 1.

Corollary 2. Let G be a graph with n ≥ 2 vertices.
Then

with equality if and only if G is a complete graph.

Proof. Note that20 R(G) ≤ n
–
2
. Then the result follows

from Corollary 1.
Let G be a graph with n vertices. By Rayleigh’s

principle21, an easy lower bound for μ1 is given by

with equality if and only if S(G) has equal row sums. For
example, the sum-connectivity matrix of a regular graph
or a semiregular graph has equal row sums.

Let G be a graph with n ≥ 2 vertices. Then by Propo-
sition 1 and the Perron-Frobenius theorem,

with equality if and only if G is an empty graph or a 2-ver-
tex complete graph.

A classic result is that the number of distinct eigen-
values of (the adjacency matrix of) a connected graph of
diameter d is at least d + 1 [Theorem 3.13 in Ref. 22]. By
the straightforward modification of the argument there to
the sum-connectivity matrix, we have similar result as fol-
lows.

Lemma 2. Let G be a connected graph with diame-
ter d. If S(G) has exactly k distinct eigenvalues, then k ≥
d + 1.

Recall that μ1 – μn is the spectral diameter of S =
S(G). Consonni and Todeschini23 investigated the use of
the spectral diameter of molecular matrices.

Proposition 2. Let G be a graph with n ≥ 2 vertices.
Then
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with either equality if and only if G is an empty graph or
G is a complete bipartite graph with possibly isolated ver-
tices.

Proof. From (2) we have 

and then

implying the first inequality, and the second inequality
follows from the Cauchy-Schwarz inequality.

It is obvious that both inequalities in (4) are equali-
ties if G is an empty graph. Suppose that either equality
holds in (4) and G is non-empty. By discussion above and
using (1), S(G) has exactly two nonzero eigenvalues μ1

and –μ1 i.e., S(G)2 has exactly two distinct eigenvalues μ1
2

(with multiplicity 2) and 0 (with multiplicity n – 2). Thus
there is (precisely) one component, say H with k ≥ 2 verti-
ces of G, for which S(H)2 has exactly two distinct eigenva-
lues μ1

2 (with multiplicity 2) and 0 (with multiplicity k –
2), and if k < n, then all other components are isolated ver-
tices. Suppose first that H is not a bipartite graph. There is
only one connected non-bipartite graph, i.e., the complete
graph on three vertices, for which the eigenvalues of its
sum-connectivity matrix are 1, – 

1
–
2
,– 

1
–
2
, contradicting con-

dition that S(G) has exactly two nonzero eigenvalues μ1

and –μ1. Thus k ≥ 4. By the Perron-Frobenius theorem,
S(H)2 is irreducible. By Lemma 1, S(H)2 = uuT + rIk for
some positive column vector u and some r. Thus there is
an orthogonal matrix U such that UT(uuT + rIk)U = diag
(μ1

2, 0, ..., 0, μ1
2). Let y = (y1, ..., yk)

T = UTu. Then yyT = di-
ag (μ1

2 – r, – r, ..., – r, μ1
2 – r). Note that the rank of yyTis at

most one. Then r = 0, and thus μ1
2 = 0, a contradiction.

Thus H must be a bipartite graph, and by Lemma 2, the
diameter of H is at most two, implying that H is a comple-
te bipartite graph. It follows that G is a complete bipartite
graph with possibly isolated vertices. Conversely, if G is a
complete bipartite graph with possibly isolated vertices,
then μi = 0 for i = 2, ..., n – 1 and thus (4) is an equality.

Let G be a graph with n ≥ 2 vertices. By the argu-
ments as in Corollaries 1 and 2, we have

with the first equality if and only if G is an empty graph or
G is a regular complete bipartite graph with possibly iso-
lated vertices, and with the second equality if and only if
G is a regular complete bipartite graph.
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4. Properties of the Sum-Connectivity
Energy

Proposition 3. Let G be a graph with n vertices.
Then

(5)

with equality if and only if G is an empty graph or a regu-
lar graph of degree one.

Proof. By Cauchy-Schwarz inequality and using
(2), we have

Suppose that equality holds in (5). Then μ1 = |μ2| = ...
= |μn|. If μ1 = 0, then G is an empty graph. Suppose that μ1 >
0. From (1), we have μn < 0 and then S(G) has exactly two
distinct eigenvalues, implying that for any component H of
G, S(H) has exactly two distinct eigenvalues μ1 and –μ1. By
the Perron-Frobenius theorem, the multiplicity of μ1 as an
eigenvalue of S(H) is one. Then μ1 –(|V(H)| –1) μ1 = 0 i.e.,
|V(H)| = 2 and thus G is a regular graph of degree one. Con-
versely, if G is an empty graph or a regular graph of degree
one, then it is easily seen that all eigenvalues of S(G) have
equal abosolute values and thus (5) is an equality.

Let G be a graph with n vertices and m edges. Then
by Proposition 3,
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with equality if and only if G is an empty graph or a regu-
lar graph of degree one.

Let G be a graph with n vertices. Then by Proposi-
tion 3 and the proof of Corollaries 1 and 2,

with the first equality if and only if G is an empty graph or
a regular graph of degree one, and with the second equa-
lity if and only if G is a regular graph of degree one.

Proposition 4. Let G be a regular graph with n ver-
tices and degree r. Then

Proof. Note that √2r S(G) = A(G). Then √2r μi = λi
for i = 1, 2, ..., n. Now the result follows by the definitions
of SE(G) and E(G).

Proposition 5. Let G be a semiregular graph of de-
grees r ≥ 1 and s ≥ 1. Then

Proof. Note that √r + sS(G) = A(G). The result fol-
lows.

Proposition 6. Let G be a graph with n vertices.
Then

(6)

with equality if and only if G is an empty graph or G is a
complete bipartite graph with possibly isolated vertices.

Proof. From (1), we have ∑
n

i=1
μi

2 + 2   ∑
1≤ i<j≤n

μi μj = 0,

i.e., 2  ∑
1≤ i<j≤n

μi μj = – ∑
n

i=1
μi

2.  Thus

which together with (2) implies that SE(G)2

Then (6) follows.
It is obvious that (6) is an equality if G is an empty

graph. Suppose that G is non-empty. From (1), we have μl

> 0, μn < 0. It is easily seen that equality holds in (6) if and
only if there are not both positive and negative terms in
the sum

or equivalently, μi μj ≤ 0 for all i and j with 1 ≤ i < j ≤ n,
i.e., μi = 0 for i = 2, ..., n – 1. By the proof of Proposition
2, equality holds in (6) if and only if G is a complete bi-
partite graph with possibly isolated vertices.

Recall that the first Zagreb index of the graph G is
defined24–28 as M1(G) = ∑

n

i=1
d2

i. Observe that14 M1(G) =  ∑
i∼j 

(di
+ dj).

Corollary 3. Let G be a graph with n vertices and m
≥ 1 edges. Then

FORMUL

with equality if and only if G is a complete bipartite graph
with possibly isolated vertices.

Proof. By Cauchy-Schwarz inequality,
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with equality if and only if di + dj is a constant for all ed-
ges ij of G which is obviously satisfied by complete bipar-
tite graphs with possibly isolated vertices. Then the result
follows from Proposition 6.

Corollary 4. Let G be a triangle-free graph with n
vertices and m ≥ 1 edges. Then

FORMUL

with equality if and only if G is a complete bipartite
graph.

Proof. From Ref. 27 and 28, we have M1(G) ≤ nm
with equality if and only if G is a complete bipartite
graph. The result follows from Corollary 3.

Let G be a tree with n vertices. By Corollary 4, 

with equality if and only if G is a star.

5. Concluding Remarks

In this report, we study some properties of the eigen-
values of the sum-connectivity matrix and sum-connecti-
vity energy of (molecular) graphs. We give a number of
upper and lower bounds for the largest eigenvalue, the
spectral diameter and the sum-connectivity energy using
some other structural invariants, such as the number of
vertices (atoms) and their degrees (valencies) of a graph
(molecule), and characterize the extremal cases. The
bounds of a descriptor are important information of a mo-
lecule (graph) in the sense that they establish the approxi-
mate range of the descriptor in terms of molecular structu-
ral parameters.
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Povzetek
^e je G (molekulski) graf z n vozli{~i in je di stopnja i-tega vozli{~a, potem je matrika vsot povezljivosti grafa G n × n
matrika, katere element (i,j) je enak 1/√di + dj, ~e sta vozli{~i i in j sosednji in 0, ~e nista sosednji. Energija vsot-pove-

zljivosti grafa G je definirana kot vsota absolutnih vrednosti lastnih vrednosti matrike vsot-povezljivosti. Vpeljane so

nekatere lastnosti, vklju~no z zgornjo in spodnjo mejo lastnih vrednosti matrike vsot-povezljivosti in energije vsot-

povezljivosti, in okarakterizirani ekstremni primeri.


