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Abstract

If G is a (molecular) graph with n vertices, and d, is the degree of its i-th vertex, then the sum-connectivity matrix of G
is the n x n matrix whose (i, j) -entry is equal to 1/\/dl. + d; if the i-th and the j-th vertices are adjacent and 0 otherwise.
The sum-connectivity energy of a graph G is defined as the sum of the absolute values of the eigenvalues of the sum-
connectivity matrix. Some properties including upper and lower bounds for the eigenvalues of the sum-connectivity ma-
trix and the sum-connectivity energy are established, and the extremal cases are characterized.

Keywords: Randic connectivity index, Randic¢ matrix, product-connectivity matrix, sum-connectivity matrix, sum-con-

nectivity energy, sum-connectivity index

1. Introduction

Let G be a simple (molecular) graph with vertex set
V(G) =11, 2, ..., n}."* For a vertex i € V(G), d; or d(G)
denotes the degree of i in G. Recall that d; = |['(i)|, where
T'(i) is the set of (first) neighbors of i in G. For vertices i
and j of the graph G, i ~ j means that i and j are adjacent,
i.e., ij is an edge of G.

The product-connectivity matrix R = R(G) of the
graph G is defined as

1

R; = M

0 otherwise.

if i~ j,

It was discussed by Rodriguez’, Rodriguez and Si-
garreta®, Hogben® and Bozkurt et al.® under different na-
mes the weighted adjacency matrix®, the degree-adja-
cency matrix*, the normalized adjacency matrix’> and the
Randi¢ matrix®.

Recall that the product-connectivity index or the
Randi¢ index of the graph G is defined as in Ref. 7
and 8

R(G)= ZJ_

The uses of the product-connectivity index and Ran-
di¢-like indices in the structure-property-activity mode-
ling is summarized by Todeschini and Consonni in their
two Handbooks™!°. Similarly these authors also discussed
in their Handbooks the role of graph-theoretical matrices
in deriving molecular descriptors (topological indices)
and in describing molecules from a topological point of
view!"!?. A useful summary of definitions and applica-
tions of graph-theoretical matrices in chemistry appeared
recently?,

In parallel to the definition of the product-connecti-
vity index of Randié, the sum-connectivity index of the
graph G is defined as in Ref. 14 and 15

S(G)= Z\/i

Sum-connectivity index belongs to a family of Ran-
dié-like indices. The uses of the sum-connectivity index in
modeling a number of molecular properties is presented in
the monograph entitled Novel Molecular Structure Des-
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criptors — Theory and Applications I, edited by Gutman
and Furtula'®.

Similarly to the product-connectivity matrix, the
sum-connectivity matrix S = S(G) of the (molecular)
graph G is defined as

1

—_— if i~
d + a'j. j

S. =

if
0 otherwise.

Obviously, S(G) is a symmetric real matrix. Thus its
eigenvalues are all real. The sum-connectivity energy of a
graph G is defined as the sum of the abosulute values of
the eigenvalues of its sum-connectivity matrix of G.

The aim of this report is to study properties of the ei-
genvalues of the sum-connectivity matrix and the sum-
connectivity energy, mainly upper and lower bounds of
the largest and smallest eigenvalues, the spectral diameter
(of the sum-connectivity matrix) and the sum-connecti-
vity energy in terms of other structural invariants and
complete characterizations for the extremal cases (for
which the bounds are attained).

2. Definitions

The adjacency matrix A = A(G) of the graph G is
defined as'?

1 if i~ j,
A:’,r' = o
- 0 otherwise.

For a square symmetric real matrix B, its eigenva-
lues are all real. The energy of B is defined as the sum of
absolute values of its eigenvalues, denoted by E(B). The
energy of the graph G is defined as'” E(G) = E(A(G)) =
2| Ai|, where 4, A,, ..., 4, are the eigenvalues of A(G) ar-
’Fe'mged in a non-increasing manner. The product-connecti-
vity energy or the Randic energy of the graph G is defined
as® RE(G) = E(R(G)). Similarly, the sum-connectivity en-
ergy of the graph G is defined as SE(G) = E(S(G)) = X|u/,
where u,, t,, ..., u, are the eigenvalues of S(G) arranged in
a non-increasing manner.

Let tr(B) be the trace of the matrix B. Then

i;{ =tr(S) =0, (1)

;ﬂ; =tr(87)= ZZ(SU.)‘ = ZZ 7 +d,. (2)

i=l j=1 i=j

A graph is a semiregular graph of degrees r and s if
it is a bipartite graph such that all vertices in one partite
set have degree r and all vertices in the other partite set ha-
ve degree s.

3. Properties of the Eigenvalues
of the Sum-Connectivity Matrix

Obviously the spectrum of the sum-connectivity
matrix of a disconnected graph is the union of the spectra
of the sum-connectivity matrices of its components.

For a vector or matrix X, X" denotes its transpose.

Lemma 1."% Let B be a k x k non-negative irredu-
cible symmetric matrix with exactly two distinct eigenva-
lues. Then B = uu" + 71, for some positive column vector
u and some r where I, is the unit matrix of order .

Proposition 1. Let G be a graph with n > 2 vertices.
Then

2(n-1) |
= \j 2 d +d, ©)

no

with equality if and only if G is an empty graph or a com-
plete graph.

Proof. From (1) and applying the Cauchy-Schwarz
inequality, we have

0= (—Z,u, ] <(n-DY 4.
From (2), we have

2 ] 2
yin ﬁ{n—l}[ZZd 7 —,ul'],

and then (3) follows.

It is obvious that (3) is an equality if G is an empty
graph. Suppose that equality holds in (3) and G is non-
empty. Then u, = - = u, and thus from (1), S(G) has ex-
actly two distinct eigenvalues, and by (1), the eigenvalues
are not equal to zero. Let H be a component of G say V(H)
={1, 2, ..., k}. Then S(H) has exactly two distinct eigenva-
lues. Note that S(H) is a non-negative irreducible symme-
tric matrix. By Lemma 1, S(H) = uu® + 7, for some posi-
tive column vector u and some . Since each diagonal en-
try of S(H) is zero, each entry of u is equal to \—r. Thus
for 1 < i, j <k with i #j all (i,j)-entries of S(H) are equal
to —r, implying that G is a complete graph. Obviously, if G
is a complete graph, then (3) is an equality.

We mention that

1
Za’. +d}.

i~ Hi

is a particular case of the general sum-connectivity in-
dex".

Corollary 1. Let G be a graph with n = 2 vertices.
Then
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n—1

= R(G)

n

with equality if and only if G is an empty graph or a com-
plete graph.

Proof. It is easily seen that

1

1RO
2 Eafi

with equality if and only if every component of G is regu-
lar. Now the result follows from Proposition 1.

Corollary 2. Let G be a graph with n > 2 vertices.
Then

n—1

o= >

with equality if and only if G is a complete graph.

Proof. Note that®® R(G) < % Then the result follows
from Corollary 1.
Let G be a graph with n vertices. By Rayleigh’s
principle?’, an easy lower bound for u, is given by
28(G)
n

=

with equality if and only if S(G) has equal row sums. For
example, the sum-connectivity matrix of a regular graph
or a semiregular graph has equal row sums.

Let G be a graph with n > 2 vertices. Then by Propo-
sition 1 and the Perron-Frobenius theorem,

2(n-1) 1
{2
o \/ n ,-Z_;‘diﬂzf_I

with equality if and only if G is an empty graph or a 2-ver-
tex complete graph.

A classic result is that the number of distinct eigen-
values of (the adjacency matrix of) a connected graph of
diameter d is at least d + 1 [Theorem 3.13 in Ref. 22]. By
the straightforward modification of the argument there to
the sum-connectivity matrix, we have similar result as fol-
lows.

Lemma 2. Let G be a connected graph with diame-
ter d. If S(G) has exactly k distinct eigenvalues, then k =
d+1.

Recall that u, — u, is the spectral diameter of S =
S(G). Consonni and Todeschini*® investigated the use of
the spectral diameter of molecular matrices.

Proposition 2. Let G be a graph with n = 2 vertices.
Then

l a2 l
- <+ z 2 < 2
Pt =H JZJ._} d +d ; e 2\] d +d; “)

=g

with either equality if and only if G is an empty graph or
G is a complete bipartite graph with possibly isolated ver-
tices.

Proof. From (2) we have

2 1
W S D =2
i=1 i~ ad; i

and then

| 2
M,z ﬂzzm — M

implying the first inequality, and the second inequality
follows from the Cauchy-Schwarz inequality.

It is obvious that both inequalities in (4) are equali-
ties if G is an empty graph. Suppose that either equality
holds in (4) and G is non-empty. By discussion above and
using (1), S(G) has exactly two nonzero eigenvalues y,
and —, i.e., S(G)* has exactly two distinct eigenvalues u;
(with multiplicity 2) and O (with multiplicity n — 2). Thus
there is (precisely) one component, say H with k > 2 verti-
ces of G, for which S(H)? has exactly two distinct eigenva-
lues 1 (with multiplicity 2) and 0 (with multiplicity k —
2), and if k < n, then all other components are isolated ver-
tices. Suppose first that H is not a bipartite graph. There is
only one connected non-bipartite graph, i.e., the complete
graph on three vertices, for whicih t}?e eigenvalues of its
sum-connectivity matrix are 1, — =,— =, contradicting con-
dition that S(G) has exactly two nonzero eigenvalues u,
and —u,. Thus k = 4. By the Perron-Frobenius theorem,
S(H)? is irreducible. By Lemma 1, S(H)* = wu" + r1, for
some positive column vector u and some ~ Thus there is
an orthogonal matrix U such that UT(uu" + rI)U = diag
(,u%, 0,..,0, ,u%). Lety=(y,, ..., yk)T =U"u. Then yy" = di-
ag (U — 5 — 1, ..., — 1, u; — r). Note that the rank of yy'is at
most one. Then » = 0, and thus ,uf = 0, a contradiction.
Thus H must be a bipartite graph, and by Lemma 2, the
diameter of H is at most two, implying that H is a comple-
te bipartite graph. It follows that G is a complete bipartite
graph with possibly isolated vertices. Conversely, if G is a
complete bipartite graph with possibly isolated vertices,
then u,=0fori=2,..,n—1 and thus (4) is an equality.

Let G be a graph with n > 2 vertices. By the argu-
ments as in Corollaries 1 and 2, we have

M=, <3J2R(G)
‘t{l - J”n S ‘j;

with the first equality if and only if G is an empty graph or
G is a regular complete bipartite graph with possibly iso-
lated vertices, and with the second equality if and only if
G is a regular complete bipartite graph.
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4. Properties of the Sum-Connectivity
Energy

Proposition 3. Let G be a graph with n vertices.

Then
1’ 5
=y !+d}. o)

with equality if and only if G is an empty graph or a regu-
lar graph of degree one.

Proof. By Cauchy-Schwarz inequality and using
(2), we have

SEG) =Y 1= [Z| “, J]

n " ]
< /nz,u‘.‘ = ZHZd d
i= -y Y i

Suppose that equality holds in (5). Then u, = |u)| = ...
=|u |. If 4, =0, then G is an empty graph. Suppose that u, >
0. From (1), we have u, < 0 and then S(G) has exactly two
distinct eigenvalues, implying that for any component H of
G, S(H) has exactly two distinct eigenvalues u, and —u,. By
the Perron-Frobenius theorem, the multiplicity of u, as an
eigenvalue of S(H) is one. Then u, <(|V(H)|-1) y, =0 ie,
|V(H)| =2 and thus G is a regular graph of degree one. Con-
versely, if G is an empty graph or a regular graph of degree
one, then it is easily seen that all eigenvalues of S(G) have
equal abosolute values and thus (5) is an equality.

Let G be a graph with n vertices and m edges. Then
by Proposition 3,

SE(G) <~/nm

with equality if and only if G is an empty graph or a regu-
lar graph of degree one.

Let G be a graph with n vertices. Then by Proposi-
tion 3 and the proof of Corollaries 1 and 2,

SE(G) £+/nR(G)

SE(G) =< \/_
with the first equality if and only if G is an empty graph or
a regular graph of degree one, and with the second equa-
lity if and only if G is a regular graph of degree one.

Proposition 4. Let G be a regular graph with n ver-
tices and degree . Then

V2rSE(G) = E(G).

Proof. Note that V2rS(G) = A(G). Then \2r p, = A,
fori=1, 2, ..., n. Now the result follows by the definitions

of SE(G) and E(G).

Proposition 5. Let G be a semiregular graph of de-
grees ¥ = 1 and s = 1. Then

Vr+sSE(G) = E(G).

Proof. Note that Vr + sS(G) = A(G). The result fol-
lows.

Proposition 6. Let G be a graph with n vertices.
Then

SE@G)=2 [ (6)

i d,+d,

with equality if and only if G is an empty graph or G is a
complete bipartite graph with possibly isolated vertices.
Proof. From (1), we have Zyz +2 ¥ =0,

1<i<j<n

ie. 22 = Z,uz Thus

SE(GY' = [Z| “ |]
> Z,u +2
= 2i;;§,

Zﬂ +2 ) luu,
ISi<fsn
Z s

1€i<j<n

which together with (2) implies that SE(G)? = 42 >
Then (6) follows. il d

It is obvious that (6) is an equality if G is an empty
graph. Suppose that G is non-empty. From (1), we have g
>0, u, <0.Itis easily seen that equality holds in (6) if and
only if there are not both positive and negative terms in
the sum

Z yTy7.

lgi<jzn

or equivalently, :U, < Oforalliandjwith1 <i<j<n,
ie,u=0fori= , n — 1. By the proof of Proposition
2, equality holds in (6) if and only if G is a complete bi-
partite graph with possibly isolated vertices.

Recall that the first Zagreb index of the graph G is
defined* ™ as M,(G) = Zd2 Observe that'* M ,(G) = Z(d
+ d/)

Corollary 3. Let G be a graph with n vertices and m
> 1 edges. Then

2m

SE(G)z —
M,(G)
with equality if and only if G is a complete bipartite graph
with possibly isolated vertices.
Proof. By Cauchy-Schwarz inequality,
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1
Zd,»fd,.'z(dﬂn} Z /d+d Wi+,

i~f

with equality if and only if d; + d; is a constant for all ed-
ges ij of G which is obviously satisfied by complete bipar-
tite graphs with possibly isolated vertices. Then the result
follows from Proposition 6.

Corollary 4. Let G be a triangle-free graph with n
vertices and m = 1 edges. Then

S!:(G)>2\[E

with equality if and only if G is a complete bipartite
graph.

Proof. From Ref. 27 and 28, we have M,(G) < nm
with equality if and only if G is a complete bipartite
graph. The result follows from Corollary 3.

Let G be a tree with n vertices. By Corollary 4,

ﬁ'—l

EG)z2,|—
n

with equality if and only if G is a star.

5. Concluding Remarks

In this report, we study some properties of the eigen-
values of the sum-connectivity matrix and sum-connecti-
vity energy of (molecular) graphs. We give a number of
upper and lower bounds for the largest eigenvalue, the
spectral diameter and the sum-connectivity energy using
some other structural invariants, such as the number of
vertices (atoms) and their degrees (valencies) of a graph
(molecule), and characterize the extremal cases. The
bounds of a descriptor are important information of a mo-
lecule (graph) in the sense that they establish the approxi-
mate range of the descriptor in terms of molecular structu-
ral parameters.
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Povzetek

Ce je G (molekulski) graf z n vozlis&i in je d, stopnja i-tega vozlii&a, potem je matrika vsot povezljivosti grafa G n x n
matrika, katere element (i,j) je enak 1/Nd; + d;, Ce sta vozli§¢i i in j sosednji in 0, Ce nista sosednji. Energija vsot-pove-
zljivosti grafa G je definirana kot vsota absolutnih vrednosti lastnih vrednosti matrike vsot-povezljivosti. Vpeljane so
nekatere lastnosti, vklju¢no z zgornjo in spodnjo mejo lastnih vrednosti matrike vsot-povezljivosti in energije vsot-
povezljivosti, in okarakterizirani ekstremni primeri.
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