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Abstract

The purpose of the article is to study the traffic characteristics on a 1500 m long road
with one lane and to find out how the flow and carbon dioxide (CO,) emissions are af-
fected by the density of vehicles, the speed limit, and the way of driving. The research
uses a microscopic cellular automaton traffic model (hereafter CA), called the extended
LAI model, which contains new functions and is upgraded for the calculation of dis-
charges. Based on the results of traffic simulations, CO, emissions per kilometre driven
were calculated using the model presented by Panis, Broekx and Liu (2006). The results
show that the maximum flow of 2122 vehicles/hour is achieved at a maximum speed of
70 km/h and a density of 0.25 vehicles/cell. Between densities of 0.22 and 0.28 vehicles/
cell, the traffic flow is in a synchronized phase, with the average speed dropping due to
vehicle interaction. At higher densities, congestion occurs, the average speed continues
to fall, and the amount of emissions increases. The top speed only affects CO, emissions
at lower densities, but at higher densities, they are much more affected by the accel-
eration rate. We believe that it would be beneficial to reduce traffic density in times of
traffic congestion to achieve the most optimal flow and reduce negative impacts on the
environment, for example by encouraging occasional work from home, use of public
transport, and trips before or after the expected traffic peaks.
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1 INTRODUCTION

Vehicular traffic is a source of different problems, namely, congestions, car accidents,
and air pollution. In 2016, the transport sector was responsible for around 25 % of
global CO, emissions, an increase of 71 % over 1990 levels. Fine particle air pollu-
tion can also increase the risk of lung cancer and cardiopulmonary mortality (Escap,
2019; Hoek et al., 2002; Marzoug et al., 2022). The impact of traffic on air pollution is
particularly considerable right next to roads. Pollution due to traffic decreases rapidly
with distance from roads (Ogrin, 2007; Strle et al., 2020). Location and weather con-
ditions strongly influence the pollution (Glojek et al., 2019). Traffic is also a consumer
of space. In cities where noise is also a growing problem, stationary traffic represents
a major spatial burden (Ogrin, 2018).

De Vlieger, Keukeleere and Kretzschmar (2000) showed that driving style can re-
duce traffic emissions and vice versa. Jezek et al. (2015) found that the 25% of diesel-
powered passenger vehicles that pollute the environment the most contribute 63 and
47% of black carbon and NOy emissions, respectively.

For any measures to reduce emissions, it is essential to first assess the emissions.
There are two main approaches to emission estimation: macroscopic and microscop-
ic. The former refers to emission estimation at a larger scale, and the latter refers to
emissions estimation of each vehicle (Ntziachristos et al., 2009; Panis, Broekx, Liu,
2006; Rakha et al., 2000). Microscopic models calculate emissions from traffic with
the help of data on emission factors (EF) of vehicles and their activity. It is a bot-
tom-up approach. There is another way of calculating emissions from traffic, namely
“top-down”, where the contributions of sources are determined on the basis of in-situ
measurements of the concentrations of various tracers in the ambient air. Jezek (2015)
used the tracking method to measure the emission factors of black carbon and NOyx
for vehicles of different categories.

While microscopic models are highly accurate, they dont suit large-scale ap-
plications. Microscopic models need second-by-second vehicle trajectory data for
emission estimation, which requires high computational power. On the other hand,
macroscopic models are more computationally efficient for large-scale networks but
usually offer lower accuracy, in comparison to microscopic methods. Macroscopic
model inputs such as average network speed and density are easy to collect. Loop de-
tectors, already available in many cities and highways, can provide the inputs for mac-
roscopic models (Halakoo, Yang, Abdulsattar, 2023). Microscopic traffic models are
necessary to be used in combination with microscopic traffic simulations. They model
individual vehicles with realistic traffic flow. Among these, the cellular automata (CA)
models are good option to model the traffic flow (Guzman et al., 2018).

The CA models can describe many physical systems and processes. They proved
to be useful, not only in traffic flow modeling but also in many different applications,
such as the spreading of forest fires, population growth, pedestrian behavior, etc. In
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geography, they are used for simulations of land use changes, as they are able to con-
nect the interactions of different factors in space (Pinto, Antunes, Roca, 2021; Xu,
Xing Zhu, Liu, 2023). Since CA models calculate the amount of phenomena in space,
CA transport models can measure the impact of intersections, road narrowing, speed
limits, or other traffic features and factors anywhere in the study area.

A CA model consists of a regular uniform n-dimensional lattice (or array) of cells.
Different values of each cell are updated simultaneously at discrete time steps accord-
ing to the values of its adjacent cells at the preceding time step (Karafyllidis, Tha-
nailakis, 1998; Maerivoet, De Moor, 2005). In the case of the upgraded extended LAI
model, the speed, acceleration, and distance traveled of all vehicles are updated simul-
taneously at each time step.

In the case of traffic CA models, road is discretised into cells of certain size. In
single-cell models, each cell is either empty or contains a vehicle. Time is described
in discrete time steps, and according to different rules, the states of cells in the system
change in time in the sense that it mimics moving vehicles (Maerivoet, De Moor,
2005).

Traffic CA models have become popular in traffic flow modelling due to their ef-
ficient and fast performance in computer simulations. Based on a simple set of rules
and low computational cost, they can conduct large-scale real simulations. They can
also mimic realistic driving behaviour and consider drivers psychological aspects
(Benjamin, Johnson, 1996).

Wolfram’s rule 184 is known as the first deterministic traffic flow CA model. It is
based on the representation of how a central cell changes in time, depending on two
adjacent cells. The physical meaning of the model is that a vehicle moves one step to
the right if the space is empty or remains motionless if the space is occupied (Wolf-
ram, 1983).

In 1992, Nagel and Schreckenberg (NaSch) constructed the first stochastic traffic
CA model, which includes a stochastic part in one of its rules. With random breaking
maneuvers, it can simulate spontaneous traffic jam formation. In the NaSch model,
vehicles can speed up only by one level if they have space. The maximum velocity in
the NaSch model is 5 (Nagel, Schreckenberg, 1992).

Traffic CA models evolved through time as authors introduced new rules for ac-
celeration, maintaining distance and updating procedure (Barlovic et al., 1998; Benja-
min, Johnson, 1996; Knospe et al., 2000; Takayasu, Takayasu, 1993). Kerner, Klenov,
and Wolf (2005) made progress by incorporating synchronization distance into their
KKW CA model. When a vehicle is within the zone of interaction (i.e., the synchro-
nization distance), it always tries to adjust its speed to the speed of the vehicle in front
(Kerner, Klenov, Wolf, 2002).

In 2010, Larraga and Alvarez-Icaza upgraded the CA approach with their LAI
model (it is an abbreviation of the authors’ names, Larraga and Alvarez-Icaza),
which simulates free flow, congested traffic, synchronized flow, and other complex
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spatiotemporal patterns. At the same time, the model avoids complex rules, charac-
teristic of models based on the KKW model. In the LAI model, vehicles adjust their
speed according to the distance to the vehicle in front of them. Driver’s response is
based on a safety analysis, which consists of his reaction time, the vehicle’s speed,
the speed of the vehicle in front, and the gap between them (Larraga, Alvarez-Ica-
za, 2010). The LAI model was subsequently improved and extended (Guzman et al.,
2015; Liet al., 2016).

There are also different microscopic emission models. The model, developed by
Panis, Broekx, and Liu in 2018 (PBL model) needs only instant speed and accelera-
tion rate data to calculate PM, VOC, CO,, and NOy emissions for urban traffic. The
coefficients in the function are obtained from empirical observations. Some models
use other data to calculate emissions, such as engine power, road gradient, or vehicle
load (Quaassdorff et al., 2022).

Many authors have used a combination of CA models and microscopic emission
models. Pan et al. (2018) studied the relationship between traffic flow, fuel rate, dis-
sipation, and particle emissions on a single lane. They used the NaSch CA model for
traffic simulations and the PBL model for PM emissions calculation.

Marzoug et al. (2018) studied traffic emissions at signalized intersections. They use
the NaSch CA model and a lane-changing model for vehicle movement, traffic light
algorithms for signalized intersections, and the PBL model for CO,, PM, VOC, and
NOx calculation.

Xue et al. (2020) used the KKW three-phase CA model to simulate the traffic flow
and study the fuel consumption of vehicles using the method proposed by Treiber,
Kesting and Thiemann (2007) on one-way lanes under open boundary conditions.
It uses Newton’s formula to calculate mechanical power as a function of acceleration
and velocity.

The purpose of the article is to study the traffic characteristics on a 1500 m long
road with one lane and to find out how the flow and CO, emissions are affected by
the density of vehicles, the speed limit, and the way of driving. The road is imaginary
and does not represent an actual section of the road. By understanding the dynam-
ics of the traffic flow, it is easier to take measures on busy road sections (for example,
speed limits, road widening or narrowing, and traffic diversion), which help to reduce
the flow and traffic load in the environment. In the Slovenian geographical literature
and Slovenian scientific literature in general, we did not find the use of CA models.
Although derived from physics, the CA models are also used in geography, especially
in the study of land use changes. Also, in the Slovenian literature, we have not seen
the invention of a traffic simulator without the use of tools that have already been
developed for this purpose. The CA model is suitable for research because it can nu-
merically evaluate a particular phenomenon in time and space. In transport studies, it
calculates speeds, accelerations, and locations of vehicles in a unit of time. In combi-
nation with the emission model, it is suitable to estimate emissions. At the same time,
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it is relatively simple to develop a simulator. The CA model enables performing traffic
simulations in relatively large areas. Due to the application of kinematics theory and
realistic acceleration and deceleration rates, the extended CA LAI model imitates the
actual traffic situation (Guzman et al., 2018).

2 METHODOLOGY

2.1 Traffic component

The model we used in our research is the LAI extended model, which we upgraded to
calculate emissions. It originates from the LAI model and its collision avoidance logic
that preserves safety. For both models, at each time step, the safe distance of the fol-
lower vehicle is calculated according to the speed of the follower vehicle, the speed of
the leader vehicle, the emergency braking capability of both vehicles, and the distance
between both vehicles. According to the calculated distance, the follower vehicle then
decides if it is going to accelerate, keep its velocity, decelerate, or take an emergency
braking action.
The authors introduced two novelties in the new version:
1. different limited acceleration and deceleration capabilities for different vehicles,
2. vehicles” acceleration is based on uniform accelerated motion instead of impulsive
accelerated motion characteristic for most CA models.

Also, the proposed model calculates three safe distances between vehicles with dif-
ferent driving capabilities. These distances are then used to determine the follower’s
decision according to the worst-case scenario. However, the improved model is more
in line with the realistic traffic than the old one because it uses realistic acceleration/
deceleration rates for the vehicles that approach smoothly to slower or stopped vehicles.
Furthermore, it is based on the simple rules of kinematic theory and its parameters ac-
cording to the neighbors’ positions and velocities. The model derives from uniformly
accelerated motion, where vehicle state evolution in time is described as follows:

1
X (1) = X, + Vy t + Eant2 (1)
v, (1) = vy, + ant (2)

where x, and v, denote the position and velocity of the vehicle n, ¢ is time, x;,
and v, are the initial position and velocity of the vehicle, respectively, and a,, is the
acceleration. Parameter values for accelerations, decelerations and human reaction
times derive from real-life observation (Guzman et al., 2018). Therefore, the model
overcomes abrupt unrealistic deceleration actions and the complexity of CA models.
Simulation results of the LAI extended model show that it can reproduce empirical
findings (Guzman et al., 2018).
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Figure 1: A schematic diagram for calculating the safe distance.
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The LAI extended model is a probabilistic CA model that consists of N vehicles
moving in one direction on a one-dimensional lattice of L cells. Each cell is either
empty or is occupied by only one vehicle. Their velocities are values that vary from 0
t0 Vpnayx Which denotes its maximum velocity. Up to this point, there are differences
between the LAI extended model and the version used in this research. Namely, in the
first model, a vehicle can occupy more than one cell, but in the latter model, it can oc-
cupy only one cell. The length of a cell in the later model is 7.5 m, which is the size of
a place each car occupies in a complete jam, while the LAI extended model amounts
to 1 m (Nagel, Schreckenberg, 1992). Unlike in the LAI extended model, in the new
version, the values of velocities are not integer values but real numbers. Regarding the
position of a vehicle, two values relate to the vehicle’s front bumper. The first value
is the exact position of it on the road, and the other is the position that coincides
with a sequential number of a cell. The second value is used to calculate emissions.
However, except at the beginning, when the vehicle enters the roadway and occupies
the entire cell and only one cell, it is later no longer in a single cell. Therefore, the cell
value represents the cell that the vehicle entered entirely. The number coincides with a
multiplier of the cell size. For example, if the vehicle has the position 7.5 m, it means
it has just appeared on the lattice and occupied the first cell. At the position of 14 m,
it still occupies the first cell with the remainder of 6.5 m. At position of 15 m, it has
just occupied the second cell. There is no possibility that two vehicles would emerge
in the same cell because there must be a minimum space gap of a cell size between
them. Our upgraded model includes two time variables. The reaction time variable t,
is used to calculate safe distances to determine the new acceleration of a vehicle and is
equal to 1 s, which corresponds to human reaction (Guzman et al., 2018).

Based on this acceleration, the other time variable corresponds to the time step At
used to calculate the updated velocity and the position of a vehicle. Unlike ¢,, the vari-
able At does not depend on driving styles. This is the second difference with respect
to the LAI extended model, which does not include the time variables, because time
step and reaction time are always one.
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2.2 Updating rules

Step 1:
Safe following distances calculation.

In the first step, the minimum safe following distance for vehicles dycc,, Aieep, OF
dgec,y is determined, where the variables represent the distances between the leader
vehicle n and the follower vehicle n+1, if the latter wishes to accelerate, keep its dis-
tance, or decelerate, respectively (Guzman et al., 2018).

Step 2:
Slow to acceleration.

According to the vehicle’s velocity v,,4, the stochastic noise parameter R, is
determined.

R, = min (Rd,RO + Vs Rd:") 3)

where R is the stochastic noise parameter, which denotes the probability of accel-
erating based on the velocity of the vehicle. It is assumed that vehicles whose velocity
is smaller than vy in the previous time step have a lower probability of accelerating
than the rest of the moving vehicles v, 1>¥; meaning that slow vehicles must wait
longer before they can continue their journey. The stochastic parameter R ,(<1) lin-
early interpolates between Ry and R; (Rg < Ry) if V41 is smaller than the velocity
Vg, which is in our case 8 m/s (Larraga, Alvarez-Icaza, 2010). All parameter values are
defined in the chapter 3.1.

Step 3:
Decision making.

According to the vehicle’s space gap d,, (t), compared to previously calculated
safety distances in step 1, the follower’s acceleration is determined. Acceleration prob-
abilities are also considered (step 2).

Step 3a:
Acceleration.

if daee, < dp(t) then
accy n(0) ifrandf() < R,,

a
t) =
41 (8) { 0 otherwise

where a,,,1(t) is the acceleration rate that the follower vehicle will use in the next
time step At.
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Step 3b:
Random slowing down.

if dkeepn < dn (t) < daccn then
—a ifrandf() < R,
1 (1) = { 0 otherwise
where R denotes probability of random slowing down despite it has enough space
to keep its speed.

Step 3c:
Braking.

if dec, < dn(t) < dieep, then

an+1(t) =-a
Step 3d:
Emergency braking.
if dp(t) < dgec,, then

An+1() = —Amax

where a,,,, denotes emergency acceleration rate of the follower vehicle.

Step 4:
Action.

Vp41(t + At) = min(max(0, 17n+1(t) + an+1(t)At)f Vmax)

where v, 1(t) is the velocity that the follower vehicle uses in the time step t,
Vp41(t+AL) is the velocity that the follower vehicle will use in the next time step t+At

Step 5:
Vehicle movement.

if (@p41(t) = 0) then
A1 (D)AL?

xn+1(t + At) = xn+1(t) + vn+1(t)At + 2
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where x,,1(t+At) is the position of the follower vehicle in the next time step
t+At

if (Ap41(t + At) < 0)then

A1 (DAL
Xny1(E+ AL) = X11(8) + vy (DAL + A1 (DAL

2

where At is the time difference between t and the time when the vehicle stops. If
this value is less than At, At should be used. The rule is written as follows:

. V41 (2)
Aty = min (At, abs (M))

(Guzman et al., 2018).

2.3 CO, emission component

In this research, we use the PBL model (Panis, Broekx, Liu, 2006), which allows us
to calculate the CO, emission of each vehicle at each iteration based on its accelera-
tion (positive or negative) and its instantaneous speed. Panis, Broekx and Liu (2006)
showed that this model is appropriate for vehicles’ traffic emissions in cities, with a
95 % confidence. Based on empirical measurement and using the multiple non-linear
regression technique, they proposed the following general emission function:

En(t) = max(Eo, fi + f,un(8) + fsvn(0)* + f20n (D) + f500 (D) + fevn(Dan(0)) (4)

where E,,(t) is the instantaneous emission (g/s) of vehicle. Variables v,,(t) and
a,(t) are the instantaneous speed and acceleration of the vehicle n at time t. E is
a lower limit of emission (g/s) specified for each vehicle and pollutant type, and f
to f¢ are emission constants specific for each vehicle and pollutant type. The model
can predict CO,, NOx, VOC, and PM emissions (Panis, Broekx, Liu, 2006). The PBL
model is used in many studies, and it is also the default microscopic emission model
in the Aimsun traffic simulator (Halakoo, Yang, Abdulsattar, 2023). The emission
constants of the PBL model for CO, emissions for petrol and diesel passenger cars are
given in Table 1.
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Table 1: Parameters for Eq. (4).

Pollutant V;I;l‘ie B | £, £, f, f, £,
CO, Petrol Car | 0 | 5,53-10! | 1,61-107! | -2,89-103 | 2,66-107! | 5,11-107! | 1,83-10!

CO, Diesel Car | 0 | 3,24-10°! | 8,59-107! | 4,96-103 | -5,86-10! | 4,48-10°! | 2,3-10°!

2.4 The application of CA and PLB methods in geography

The CA transport model method combined with a microscopic emission model, such
as the PBL model, is applicable in geographic science primarily because it can meas-
ure various phenomena anywhere in the space of study. With the findings, it is then
possible to understand traffic phenomena and take measures that would, for example,
help reduce its negative environmental impacts. In the case of the research we car-
ried out, the method examines the flow, average speed, and CO, emissions on a 1500
m long one-way road depending on various parameters, density, maximum speed
limit, and driving aggressiveness. The method also makes it possible to measure other
emissions at specific locations, for example, at intersections, traffic lights, pedestrian
zones, or larger systems of roads or streets. By determining the flow in different loca-
tions, we can also assess other effects of traffic on the environment and make it easier
to decide on specific measures helpful for improving the efficiency of traffic.

2.5 Model and parameter settings

The simulation is conducted by Wolfram’s Mathematica software, version 13.2. The
model simulates a one-lane circular road with periodic boundary conditions. Each
cell represents 7.5 m, and one cell is occupied of a maximum of one car. The determi-
nation of the cell size derives from the size of an occupied place by a car in a complete
jam (Nagel, Schreckenberg, 1992).

Each time step is At = 1 s. The length of the road L = 200 corresponds to the actual
road length of 1500 m. In the initial state, the model randomly distributes the vehicles
on the road with an initial speed, which is also RANDOMLY selected between 0 and the
highest possible speed in relation to the space the vehicle has in front of it. For calcula-
tion of the CO, emissions, different values for v,,,, were defined. Eventually, the safety
distance estimation, depending on neighboring vehicles, adjusts the maximum velocity
by using a quadratic equation, which determines the highest possible speed according
to the prerequisite that they are not accelerating at the initial state. In this way, the model
is safe and accident-free at the beginning. The density of vehicles on the road amounts
to p=vehicletell. Their velocities and positions are updated according to the rules, de-
scribed in the methodology chapter. The parameters of the model for the stochastic part
are set to the same values as in the LAI extended model Ry= 1, Ry= 1, v;=8 m/s
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and R;=0.01. The parameter V5 means that only vehicles with smaller velocity than 8
m/s can accelerate with delay (Guzman et al., 2018).

Defining acceleration and deceleration rates was a more complex task. Based on
empirical observations, Guzman et al. (2018) used the value 8 m/s? for the maximum
deceleration rate and 4 m/s? for the acceleration rate. In the second part of the study,
in which they simulated heterogeneous flow, they used the last values for ordinary
vehicles but different values for trucks. Their maximum deceleration rate is (4 m/s?),
while their acceleration rate was 2 m/s2.

Zeng et al. (2023) used the value 3 m/s? for the acceleration rate. Feng, Liu and
Liang (2023) considered different driving styles in their research. According to the
information they collected during time measurement on the road section where the
maximum velocity was 73.21 km/h, they concluded that 20 % of drivers are aggressive
with acceleration and deceleration rate of 4 m/s?, 20 % of drivers are calm with ac-
celeration and deceleration rate of 1 m/s? and 60 % of drivers have moderate driving
style with acceleration and deceleration rate of 2 m/s

Based on the collected data, we determined the rate of acceleration for the driv-
ers. We summarized the findings of Feng, Liu and Liang (2023). They concluded
that 20% of drivers are aggressive, 60% of drivers are moderate, and 20% of drivers
are calm. The aggressive drivers accelerate with an acceleration rate of 4 m/s?, calm
drivers with 2 m/s?, and moderate drivers with 3 m/s?. The maximum deceleration
rate of aggressive and moderate drivers is 8 m/s% and the one of calm drivers is 4
m/s? (Table 2).

In contrast to Guzman et al. (2018) and Feng, Liu and Liang (2023), the model in
this research allows aggressive drivers to accelerate with a lower acceleration rate if
they don’t have enough space to accelerate with their highest acceleration rate. On the
other hand, as in Guzman et al. (2018), they decelerate with only one acceleration rate
besides the emergency deceleration rate, which allows aggressive drivers to drive with
higher velocity and start decelerating later when they are closer to the vehicle in front.
Simulation data for the flow-density, and speed-density diagram, was generated by
simulations of 400 seconds. For each density from 0 to 1 10 simulation runs are car-
ried out. The results obtained are then averaged. For the calculation of the CO, emis-
sions, different combinations for acceleration and deceleration rates were defined.

Table 2: The parameters of driving styles.

Driving style Share of Maximum Deceleration Emergency
Vehicles Acceleration Deceleration
Aggressive Style 20 % 4 m/s? 4 m/s? 8 m/s?
Moderate Style 60 % 3 m/s? 3 m/s? 8 m/s?
Calm Style 20 % 2 m/s? 2 m/s? 4 m/s?
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3 SIMULATION RESULTS AND DISCUSSION

3.1 Fundamental diagram analysis

In Figure 2, the flow-density relation of the improved LAI extended model, the so-
called fundamental diagram is presented. As seen, the traffic flow reaches its maxi-
mum value of 2122 vehicles/hour at the density of 0.25 vehicle/cell, the optimal den-
sity above which the traffic flow starts to decrease. Namely, at the density of 0.28, a
sudden drop in a traffic flow process occurs and it changes into the congestion phase.
The change from the free-flow phase to the synchronized-flow phase occurs at a den-
sity of 0.22, when the speed also starts to drop due to more interactions between the
vehicles, but no congestion yet occurs. Synchronized flow at the maximum permitted
speed of 70 km/h occurs between densities of vehicle/cell.

Figure 2: The flow-density diagram is obtained from the simulations that are carried out in
the upgraded LAl extended model for the maximum velocity of 70 km/h.

2000 | el -
EREE: 3 %, i
- FLOW * e, :
@ * ()
= o |2 e WIDE MOVING g
= 1500 [ o O ‘e -
= y = ~.  JAMFORMATION :
o . U .0. -
;(% .. UDJ .‘.%' -
@® ~N o 5
T 1000 | . = LI, -
g o. O 5.. B
o~ e [I'd s
= T :
= L O (™ R
o N prd %,
i 5000 z .
* w .5.." )
O L L L I L L L | L ) L 1 " L L 1 ) " L ...?—_
0.0 0.2 04 06 0.8 1.0

Density [vehicle/cell]

In Figure 3, the speed-density relation of the improved LAI extended model is
presented. It shows that at the synchronized flow region, the average speed drops by
16 km/h from maximum velocity. At the same time, their speed is still stabilized, and
vehicles maintain a similar distance between them for the entire road section.
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Figure 3: The speed-density diagram is obtained from the simulations that are carried out in
the upgraded LAl extended model for the maximum velocity of 70 km/h.
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Once the density exceeds 0.27 vehicle/cell, a break-even point is reached with an
increase in density of only 0.01. The phase of synchronized flow changes into the
phase of congestion (Figure 4c). At a density of 0.28 vehicle/cell, the speed of vehicles
is no longer uniform over the entire road section, as congestion starts to appear. Be-
cause vehicles maintain a safety distance at a density of 0.28 vehicle/cell, their average
speed drops significantly again (Figure 3).

On the other hand, the highest traffic flow in the upgraded LAI extended model at
the maximum velocity of 115 km/h is at the density of 0.21 vehicle/cell. The findings
are logical because higher speed demands a higher space gap between vehicles. There-
fore, at higher speeds, they have enough space at lower densities. The upgraded LAI
extended model reaches the highest traffic flow at higher densities than the original
LAI extended model of Guzman et al. (2018). We believe it is due to flexible accelera-
tion capabilities that enable vehicles to accelerate at smaller space gaps, although they
don’t reach the highest acceleration potential.

At different densities, different types of traffic conditions, free flow, synchronized
traffic, and wide-moving jams occur as shown in Figure 4. Horizontal rows of dots
represent the positions of the vehicles at certain time moving towards the right, while
columns of dots represent time instances when the specific cell was occupied by a car.
The red and the blue dots represent two specific cars (see also Figure 1).
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Figure 4: The spatio-temporal diagram of different traffic phases, free (4a), synchronized
(4b) and jammed (4c and 4d) for the maximum velocity of 70 km/h.
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Vehicles with high speeds when there is no congestion on the road are shown in
Figure 4a. Vehicles can take the highest possible speed. When the road is congested,
the vehicle’s speed drops to zero. Wide-moving jams are shown in the Figure 4c and
Figure 4d. The synchronized traffic flow occurs when the speeds drop a little, but the
traffic flow is still capable of moving fluidly without jam formation (Figure 4b). Sig-
nificantly, at the density of 0.27 vehicle/cell, the traffic flow is still in the synchronized
phase, but already at 0.28 vehicle/cell, it turns into a jammed phase. Obviously, at the
density of 0.27 vehicle/cell, the traffic flow is in the unstable phase because just a slight
disorder changes the feature of the flow as is illustrated at the bottom of Figure 4b.

3.2 Impact of the maximum velocity on the CO, emissions and traffic flow

The three-dimensional diagram of CO, emissions (in g/km) under different density
values (between 0 and 0.9 vehicle/cell) of vehicles and different maximum velocities
(between 30 and 110 km/h) is shown in the Figure 5. We calculate the amount of emis-
sions per kilometer driven. Results show that the emission values increase with higher
densities. At densities of 0.7 and higher, the emission values are the same for all the
maximum velocity values. Namely, the speed does not exceed even the lower maximum
velocity threshold (30 km/h). Regardless of the maximum velocity, the velocities re-
main the same at high densities. At the density values between 0.2 and 0.4, the emission
values are more than two times higher for the maximum velocity of 110 km/h than for
the maximum velocity of 30 km/h (Figure 6). The reason for this phenomenon is the
appearance of congestions, which at these densities occur only at higher speeds.

Figure 5: CO, emissions as the function of maximum velocity and density.
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The graphs in the Figure 6 show different values of emissions at all studied maxi-
mum velocity values at the densities of 0.1, 0.2, and 0.3 vehicle/cell, respectively.

Figure 6: CO, emissions as the function of maximum velocity at the densities of 0.1, 0.2 and
0.3 vehicle/cell, respectively.
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At the density of 0.1, there are no congestions at any maximum velocity value and
no influence of congestions. The CO, emissions reach the lowest value at the veloc-
ity of 60 km/h which corresponds to the lowest emission rate of fuel consumption
of some microscale traffic emission models for urban networks (Quaassdorff et al.,
2022).

At the density of 0.2 and the maximum velocity of 80 km/h (as evident in the Fig-
ure 6), the value of emissions is like the value at the lower maximum velocity values.
At the maximum velocity of 90 km/h, the emission value rapidly grows. Therefore,
we conclude that at that point, congestions start to occur. At the density of 0.3, the
process starts to occur already at lower maximum velocities.

The change of the type of a traffic flow affects the emissions the most, which is seen
in the Figure 7. At the density value of 0.2 and maximum velocity values between 80
km/h and 100 km/h, CO, emissions more than double, but the traffic flow still grows
with the growing maximum velocity at the same parameter values.

At the density value of 0.1, traffic flow grows proportionately with the maximum
velocity (Figure 7), but the emissions stay almost constant (Figure 5). It proves that
traffic remains at the free flow phase at all studied maximum velocity values. At the
density value of 0.3, emissions start to grow rapidly already at the maximum velocity
of 50 km/h, and they continue to grow (Figure 6), although traffic flow grows only
till the maximum velocity of 50 km/h and then remains similar at higher velocities
(Figure 7). It means that at the same density values, more aggressive driving at higher
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Figure 7: Traffic flow as the function of maximum velocity at the densities of 0.1, 0.2 and 0.3
vehicle/cell, respectively.
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maximum velocity contributes to higher emission values but not higher traffic flow
values (also does not contribute to lower traffic flow values). We can conclude that
with the change of traffic flow type from free flow to synchronized flow CO, emissions
start to grow rapidly although the traffic volume stays similar. With the decrease in
the traffic flow, CO, emissions grow even faster (Figure 5). Namely, more interactions
between vehicles contribute to more acceleration and braking and, consequently,
higher emissions at similar traffic flow.

3.3 The impact of the maximum acceleration rate on the CO? emissions

In the second analysis, we examine the impact of the highest acceleration on the emis-
sions. The three-dimensional diagram of CO, emissions (in g/km) under different
density values (between 0 and 0.9) of vehicles and different maximum acceleration
rates (between 2 and 4 m/s?) is shown in Figure 8. The maximum velocity was con-
stant at 70 km/h. Results show that the higher the density, the larger the difference
between the emissions at different maximum acceleration rates.

Figure 9 shows different values of emissions at different maximum acceleration
rates and densities of 0.1, 0.2, and 0.5, respectively. At the density of 0.1, there are few
interactions between vehicles, so they rarely accelerate except when accelerating to
the maximum velocity, which they later maintain.
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Figure 8: CO, emissions as the function of maximum acceleration rate and density.

Density (vehicle/cell) 0.8
0.6

04

et

T

=l

Maximum acceleration rate (m."sz) 20

Aggressive drivers, which tend to accelerate with 4m/s?, would contribute to around
6 % more CO, emissions than moderate drivers with a maximum acceleration rate of
2 m/s% At the density of 0.2, the percentage grows to 15 %, and at 0.5 to around 33 %.
At the density of 0.9, the difference is more than 60 %.

Figure 9: The difference in CO, emissions between driving with the highest and the lowest
maximum acceleration rate at the densities of 0.1, 0.2 and 0.5 vehicle/cell, respectively.
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These differences occur due to a higher frequency of higher acceleration and decel-
eration rates. It should be noted that aggressive drivers with a higher maximum ac-
celeration rate can accelerate with a lower acceleration rate if they do not have enough
space to accelerate with a maximum acceleration rate. On the other hand, they always
brake with the same rate of deceleration, which represents the negative value of their
maximum rate of acceleration. Both lead to more aggressive driving and consequently
large emission values at higher densities when there are more interactions between
vehicles.

4 CONCLUSION

As part of the research, simulations of the traffic flow were made to analyze the
characteristics of the traffic flow and the influence of different density values on the
traffic flow. The influences of the maximum velocity and the maximum acceleration
rate by different densities on CO, were later discovered. The traffic flow simulations
were carried out by the upgraded CA extended LAI model. Traffic CO, emissions
were later calculated using the PBL microscopic emission model. In the research, we
studied the traffic flow with the aim of understanding its characteristics and finding
out how to reduce negative environmental impacts on a 1,500 m long single-lane
road section, focusing this time on CO, emissions. We believe that understanding
the internal dynamics of traffic makes it easier and more correct to make decisions
about traffic measures.

Fundamental diagrams of traffic flow simulations show that at the maximum ve-
locity of 70 km/h the traffic flow reaches its maximum value of 2122 vehicles/hour at
the density of 0.25 vehicles/cell. At 0.28, a sudden drop in the traffic flow process oc-
curs. Before reaching it, the traffic flow starts changing from the free-flow phase to the
congestion phase. Up to a density of 0.22, the traffic flow is in the free-flow phase, with
the average speed close to the maximum velocity. Between density values 0of 0.22 < p <
0.28 the traffic flow is in the synchronized phase, when the average speed drops by 16
km/h from maximum velocity. At the same time, their speed stabilizes, and vehicles
maintain a similar distance between them for the entire road section. The breaking
point occurs when the density > 0.27 with an increase in density of only 0.01. It leads
to a change in the traffic flow into a wide-moving jam formation. At that point, the
vehicles” speed dropped significantly to maintain safe vehicle distances.

As the traffic density increases from the value of 0.25 vehicle/cell onwards, the traf-
fic flow decreases. Therefore, as the traffic density increases, the traffic flow and speed
are further reduced, which increase congestion and CO, emissions. It contributes to
other negative environmental impacts, such as louder noise, which lasts longer, and
higher occupancy of space on roads. It is also worth mentioning the negative eco-
nomic consequences, as people spend more time in vehicles, causing fatigue and thus
making traffic accidents more likely to occur.
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Therefore, it would be useful to reduce the traffic density to achieve the most op-
timal flow or at least prevent further traffic congestion during rush hours. It would
increase its efficiency and at the same time reduce negative impacts on the environ-
ment. We are aware that transport is a complex system and that significant changes
in a short time are difficult to achieve. However, we can already contribute to the
prevention of congestion in the short term by possibly avoiding driving during traffic
congestion, by occasionally working from home, using public transport, traveling be-
fore or after scheduled traffic peaks, and using online applications to choose the most
favorable route to avoid traffic jams. Significant changes require long-term planning.
More efficient public transport would probably contribute to reducing congestion.
Technological solutions are also worth mentioning.

In this research, we determined how CO, emissions were affected by the maximum
velocity. We concluded that this has the most significant impact between vehicle den-
sity values of 0.2<p<0.4 when the amount of CO, emissions is more than twice as high
at the maximum velocity of 110 km/h than at 30 km/h. At the mentioned densities,
phase changes in the traffic flow only occur at higher maximum velocity values when
the traffic flow changes from free to synchronized. Namely, at a higher maximum ve-
locity, vehicles drive faster when they can, so there are more frequent interactions (ac-
celeration, braking) between vehicles, and the amount of emissions starts to increase
rapidly, although the traffic volume remains similar (Figure 6). At the density of 0.1,
the traffic is free-flowing at all speeds studied, so there are no significant differences
in the amount of emissions. However, at the same density, the flow at the lowest maxi-
mum velocity is approximately five times lower than the highest maximum velocity.
Therefore, the economic impact of the traffic must also be taken into account. At
higher densities, when the traffic flow is in the phase of wide-moving jam formation,
simultaneously with the increase in the amount of emissions, the flow decreases at the
same time, namely for all speed limits studied. In the long term, the solution would
be advanced technology, with the help of which vehicles are connected and tend to
drive in platoons. Another measure is again a technological one, namely to change the
maximum velocity depending on the traffic density at a specific section.

The influence of emissions due to driving aggressiveness was also discovered
namely, at the constant velocity value of 70 km/h and different acceleration. Results
show that the higher the density, the larger the difference between the emissions at
different maximum acceleration rates. At the density of 0.1, there are few interactions
between vehicles, so they rarely accelerate except when accelerating to the maximum
velocity. Aggressive drivers, which tend to accelerate with 4m/s?, would contribute to
around 6 % more CO, emissions than calm drivers with a maximum acceleration rate
of 2 m/s?. At the density of 0.2, the difference grows to 15 %, and at 0.5 to around 33
%. At the density of 0.9, the difference is more than 60 %. Therefore, the most envi-
ronmentally adequate driving is the calm driving with as few impulsive accelerations
as possible. So, we suggest encouraging a mild driving style. From the point of view
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of the economic impact of traffic, it is not appropriate to drive much slower than the
maximum velocity of the particular road section, as this significantly reduces the flow
of traffic, especially at lower densities. Transport measures such as the introduction of
new bus links, car parks outside city centers, closures of city centers, the introduction
of yellow bus lanes, and bicycle rental systems encourage a reduction in the number
of vehicles in cities. It contributes to less congestion, increased flow, and lower emis-
sions. Of course, each of these measures would have to be measured to be able to
evaluate its effectiveness.
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