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Abstract

Tutte’s 3-flow conjecture claims that every bridgeless graph with no 3-edge-cut admits
a nowhere-zero 3-flow. In this paper we verify the validity of Tutte’s 3-flow conjecture on
Cayley graphs of certain classes of finite groups. In particular, we show that every Cayley
graph of valency at least 4 on a generalized dicyclic group has a nowhere-zero 3-flow. We
also show that if G is a solvable group with a cyclic Sylow 2-subgroup and the connection
sequence S with |S| ≥ 4 contains a central generator element, then the corresponding
Cayley graph Cay(G,S) admits a nowhere-zero 3-flow.

Keywords: Nowhere-zero flow, Cayley graph, Tutte’s 3-flow conjecture, connection sequence, solv-
able group, nilpotent group.
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1 Introduction
Let D be an orientation of a graph Γ and let k be a positive integer. A k-flow on a graph Γ
is a pair (D, f) where f is an integer valued function

f : E(Γ)→ Z

such that |f(e)| < k for every e ∈ E(Γ), and for every v ∈ V (Γ),∑
e∈E(v)+

f(e) =
∑

e∈E(v)−

f(e),
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where E(v)+ and E(v)− are the all edges with tails at v and heads at v, respectively. A
nowhere-zero k-flow (abbreviated a k-NZF) is a pair (D, f) such that for every e ∈ E(Γ),
f(e) 6= 0.

The following conjecture is due to Tutte and is known as Tutte’s 3-flow conjecture:

Conjecture 1.1 (Tutte’s 3-flow conjecture [8, 9]). Every bridgeless graph with no 3-edge-
cut has a 3-NZF.

Although Tutte’s 3-flow conjecture has been studied by many authors, it is still widely
open.

Let G be a finite group with identity 1 and S = (s1, s2, . . . , sn) be a sequence of
elements of G \ {1} such that the mapping si → s−1i permutes the entries of S. We call
S a connection sequence (note that all entries of S are distinct unless stated otherwise).
A Cayley graph, denoted by Cay(G,S), is a graph whose vertex set is G with adjacency
defined by

g ∼ h if and only if g−1h ∈ S,

for every g, h ∈ G. We see at once that if S generates G, then Cay(G,S) is connected.
Alspach et al. [1] conjectured that every Cayley graph of valency at least 3 has a

nowhere-zero 4-flow. They also showed their conjecture to be true for solvable groups.
Their result was significantly strengthened and extended by Nedela and Škoviera to a much
wider class of groups [5].

By combining the fact that a k-valent Cayley graph is k-edge-connected graph with the
fact that every 4-edge-connected graph has a 4-NZF [2], we deduce that every Cayley graph
of valency at least 4 has a 4-NZF. Thus the question about the existence of a nowhere-zero
4-flow is interesting only for cubic Cayley graphs. Since 4-regular graphs admit a nowhere-
zero 2-flow, the important question about flows on Cayley graphs of valency greater than
3 is whether every Cayley graph of valency at least 5 has a nowhere-zero 3-flow. In other
words, it is interesting to verify whether Tutte’s 3-flow conjecture holds on such Cayley
graphs.

In [6], it has been proved that every abelian Cayley graph of valency k, where k ≥ 4,
admits a 3-NZF. Nánásiová and Škoviera [4] improved the above result to Cayley graphs
on a groupG whose Sylow 2-subgroup is the direct factor ofG, and as a consequence, they
showed that every Cayley graph of valency at least 4 on a nilpotent group has a 3-NZF.
Recently, Yang and Li [11] showed the same fact for a Cayley graph on a dihedral group,
and L. Li and X. Li [3] verified Tutte’s 3-flow conjecture for Cayley graphs on generalized
dihedral groups and generalized quaternion groups.

In this paper, we investigate Tutte’s 3-flow conjecture for Cayley graphs on a solvable
group with a suitable normal subgroup (Theorems 3.1 and 3.2 and Remark 3.5) and as a
consequence of these theorems, we show that every Cayley graph of valency at least 4 on
a generalized dicyclic group satisfies Tutte’s 3-flow conjecture. By using Theorem 3.6 we
can obtain the results of [3] and [11] by a different method.

In [4], the authors showed that a Cayley graph of valency at least 4 with the connection
sequence containing a central involution admits a 3-NZF. In Theorem 3.6, we extend this
result to the case when Sylow 2-subgroups of G are cyclic and the connection sequence of
G contains a central generator element. As a consequence of this theorem, we show that if
a Cayley graph of valency at least 4 on a solvable groupG, with a cyclic Sylow 2-subgroup,
admits a 3-NZF, then every Cayley graph of valency at least 4 on the direct product of G
and a nilpotent group admits a 3-NZF.
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2 Notation and preliminaries
The terminology and notation used in this paper are standard both in group theory and
graph theory, see for instance [7, 10].

An element g of G is called an involution if g has order 2. Let Z(G) be the center of a
group G. We say that an element x of G is central if x ∈ Z(G). The group generated by a
sequence S is denoted by 〈S〉 and the element x ∈ G is named a generator element of G
in S if 〈S \ {x}〉 6= 〈S〉. For integers m,n ≥ 2, a cycle of length n and a path of length
m− 1 are denoted by Cn and Pm, respectively. For an integer m ≥ 3 and for n ∈ Zm, the
Cayley graph Cay(Zm, {−1, 1,−n, n}) will be denoted by C(m,n). Let N be a subgroup
of G and x belongs to a left transversal set of N in G. The image of Cay(N,S) under left
translation by x is denoted by xCay(N,S). The Cartesian product H1�H2 of graphsH1

and H2 is a graph such that V (H1) × V (H2) is its vertex set and any two vertices (u, u′)
and (v, v′) are adjacent inH1�H2 if and only if either u = v and u′v′ ∈ E(H2) or u′ = v′

and uv ∈ E(H1). Set L = Pn�K2, where V (Pn) = {1, 2, . . . , n} and V (K2) = {1, 2}.
The Möbius ladder MLn is a graph obtained by adding the edges (12)(n1) and (11)(n2)
to L. Also, by adding the edges (11)(n1) and (12)(n2) to L, we obtain a graph is called the
circular ladder CLn. In fact CLn

∼= Cn�K2. Any graph isomorphic to either CLn or
MLn for some n will be referred to as a closed ladder. It is easy to check that the circular
ladder is bipartite if and only if n is even while the Möbius ladder is bipartite if and only if
n is odd.

Lemma 2.1 ([4, Theorems 3.3 and 4.3]). Let Cay(G,S) be a Cayley graph of valency k,
where k ≥ 4. If S contains a central involution, then Cay(G,S) has a 3-NZF. In particular,
if G is nilpotent, then Cay(G,S) has a 3-NZF.

Lemma 2.2 ([4, Proposition 4.1]). LetG be a group, H be a normal subgroup ofG and let
S be a connection sequence with no intersection withH . If Cay(G/H,S/H) has a 3-NZF,
then so does Cay(G,S).

Note that in Lemma 2.2, according to the paragraph before Proposition 4.1 in [4],
for distinct elements s, t ∈ S, we regard sH and tH as distinct elements of S/H . So,
Cay(G/H,S/H) may have parallel edges even when Cay(G,S) is simple and |S/H| =
|S|.

Lemma 2.3 ([6, Theorem 1.1]). Every abelian Cayley graph of valency k, where k ≥ 4,
admits a 3-NZF.

Lemma 2.4 ([6, Proposition 2.5]). Letm,n ≥ 3 be integers. Then the graphCn�Cm�K2

admits a 3-NZF.

Lemma 2.5 ([6, Proposition 2.6]). Let m,n ≥ 3 be two integers such that m > n ≥ 1 and
m ≥ 3. Then the graph C(m,n)�K2 admits a 3-NZF.

Lemma 2.6 ([6, Corollary 2.2]). A regular bipartite graph of valency at least 2 admits a
3-NZF.

Lemma 2.7 ([10, page 308]). A cubic graph has a 3-NZF if and only if it is bipartite.

Lemma 2.8. Let G be a group and N be a subgroup of G of index 2. Then Cay(G,S \
(S ∩N)) is bipartite.
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Proof. Since the index of N in G is 2, there exists d ∈ G \N such that G = N ∪ dN . So,
we can consider the vertices of Cay(G,S) as two partitions N and dN . Since for every
m,n ∈ N ,m and n are adjacent, and dm and dn are adjacent if and only ifm−1n ∈ S∩N ,
we obtain that Cay(G,S \ S ∩N) is a bipartite graph with partite sets N and dN .

Lemma 2.9 ([10, page 308]). A graph has a 2-NZF if and only if it is an even graph.

Remark 2.10. According to the above lemma, for discussion about a nowhere-zero 3-flow
in a Cayley graph with a connection sequence S, it is enough to investigate the case when
|S| is odd.

Remark 2.11. Let G be a group and N be a subgroup of G. Let T = {x1, . . . , xt}, where
t ∈ N, be a left transversal set of N in G. If S is a connection sequence of N such that
Cay(N,S) is connected, then

{xi Cay(N,S) : 1 ≤ i ≤ t}

is the set of connected components of Cay(G,S). For every xi where i ∈ {1, . . . , t},
Cay(N,S) and xi Cay(N,S) are isomorphic, because for every m,n ∈ N ,

xim ∼ xin (in xi Cay(N,S ∩N)) if and only if

(xim)−1(xin) ∈ S ∩N if and only if m−1n ∈ S ∩N
if and only if m ∼ n (in Cay(N,S ∩N)).

Thus if Cay(N,S) has a 3-NZF, then Cay(G,S) has a 3-NZF. Hence for finding a 3-NZF
in Cay(G,S), we reduce to find a 3-NZF in Cay(N,S).

3 Main results
In this section we show the validity of Tutte’s 3-flow conjecture for a solvable group with
a suitable normal subgroup. As examples, we show the same result for Cayley graphs on
generalized dicyclic groups, generalized dihedral groups and quaternion groups. We also
prove that every Cayley graph Cay(G,S) on a solvable group G with a cyclic Sylow 2-
subgroup such that the connection sequence S contains a central generator element, admits
a 3-NZF.

Theorem 3.1. Let G be a solvable group, N be a subgroup of G of index 2 and let S be a
connection sequence of G such that |S| ≥ 5 is odd and S ∩ Z(N) 6= ∅. If

(1) Cay(N,S ∩N) admits a 3-NZF and

(2) for every d ∈ S \N , d−1(S ∩N)d = S ∩N ,

then Cay(G,S) has a 3-NZF.

Proof. Without loss of generality, we can assume that there exists an element d ∈ S \ N ,
because otherwise S ⊂ N and by Condition (1), we could conclude that Cay(G,S) has a
3-NZF. Thus, there is d ∈ S \N . Note that |S| is odd.

We continue the proof in the following two cases:

Case 1. If |S ∩ N | is odd, then since |S \ (S ∩ N)| = |S| \ |S ∩ N | is even, Lemma 2.9
shows that Cay(G,S \ (S ∩N)) admits a 3-NZF. Also by Condition (1), Cay(N,S ∩N)
admits a 3-NZF, and so does Cay(G,S) = Cay(G,S \ (S ∩N)) ∪ Cay(G,S ∩N).
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Case 2. If |S ∩N | is even, then the proof will be divided into two subcases:

Subcase 1. Assume that |S\(S∩N)| ≥ 2. By Lemma 2.8, Cay(G,S\(S∩N)) is bipartite.
So Lemma 2.6 shows that Cay(G,S \ (S ∩ N)) admits a 3-NZF. Since Cay(G,S ∩ N)
admits a 3-NZF, we deduce that Cay(G,S) has a 3-NZF.

Subcase 2. Assume that |S \ (S ∩ N)| = 1. Thus {S \ (S ∩ N)} = {d}, so O(d) = 2
and it is not hard to check that G is the semidirect product of N and 〈d〉. We want to
show that Cay(N,S ∩ N)�Cay(〈d〉, {d}) ∼= Cay(G,S). For this purpose, we define
φ : Cay(N,S ∩ N)�Cay(〈d〉, {d}) → Cay(G,S) such that φ(m,x) = mx for every
m ∈ N and x ∈ 〈d〉. Since G is the semidirect product of N and 〈d〉, it is obvious that φ is
a bijective function. Now we will show that φ is homomorphism. For every m,n ∈ N and
x, y ∈ 〈d〉, we have:

(m,x) ∼ (n, y) (in Cay(N,S ∩N)�Cay(〈d〉, {d}))
if and only if m = n, x ∼ y or n ∼ m, x = y.

We should check the following cases:

(1) If m = n, x = 1 and y = d, then (φ(m,x))−1φ(n, y) = m−1nd = d ∈ S. Thus
φ(m,x) ∼ φ(n, y) in Cay(G,S).

(2) If m = n, x = d and y = 1, then (φ(m,x))−1φ(n, y) = d−1m−1n = d ∈ S. Thus
φ(m,x) ∼ φ(n, y) in Cay(G,S).

(3) If m ∼ n and x = y = 1, then m−1n ∈ S ∩ N . Thus (φ(m,x))−1φ(n, y) =
(mx)−1(ny) = m−1n ∈ N ∩ S. So φ(m,x) ∼ φ(n, y) in Cay(G,S).

(4) If m ∼ n and x = y = d, then m−1n ∈ S ∩ N . Thus (φ(m,x))−1φ(n, y) =
d−1(m−1n)d ∈ d−1(S ∩N)d = N ∩ S ⊂ S. So φ(m,x) ∼ φ(n, y) in Cay(G,S).

Now, let t1 ∼ t2 in Cay(G,S). Since G is the semidirect product of N and 〈d〉, there
exist m,n ∈ N and x, y ∈ 〈d〉 such that t1 = mx and t2 = ny. We continue the proof in
the following cases:

(i) If x = 1 and y = d, thenm−1nd = t−11 t2 ∈ S\(S∩N) = {d}. Therefore,m−1n =
1 and so m = n. From this, we have φ−1(t1) = (m,x) ∼ (n, y) = φ−1(t2).

(ii) If x = d and y = 1, the above reason shows that φ−1(t1) = (m,x) ∼ (n, y) =
φ−1(t2).

(iii) If x = y = 1, then m−1n = t−11 t2 ∈ S ∩N . Therefore m ∼ n in Cay(N,S ∩N)
and hence φ−1(t1) = (m,x) ∼ (n, y) = φ−1(t2).

(iv) If x = y = d, then d−1m−1nd = t−11 t2 ∈ d(S ∩ N)d−1 = S ∩ N . Therefore
m−1n ∈ d(S ∩N)d−1 = S ∩N and hence, φ−1(t1) = (m,x) ∼ (n, y) = φ−1(t2).

These show that Cay(N,S∩N)�Cay(〈d〉, {d}) ∼= Cay(G,S). Now, suppose that the
theorem is false, and let G be the smallest group satisfying the hypothesis and Cay(G,S)
does not admit a 3-NZF. Note that |S| ≥ 5. We examine the following possibilities:

Subcase 2.1. If there is y ∈ S ∩ Z(N) of order n > 2 such that d−1yd 6∈ {y, y−1},
then since Z(N) is normal in G, the assumption guarantees the existence of an element
z ∈ S ∩ Z(N) such that d−1yd = z. Since O(d) = 2, we see that d−1zd = y.
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Thus 〈y, y−1, z, z−1〉 E 〈y, y−1, z, z−1, d〉. If G 6= 〈y, y−1, z, z−1, d〉, then by our as-
sumption on G, Cay(〈y, y−1, z, z−1, d〉, {y, y−1, z, z−1, d}) admits a 3-NZF. Thus since
|S \ {y, y−1, z, z−1, d}| is even, we get that Cay(G,S) admits a 3-NZF. This is a contra-
diction. Therefore, we can assume that G = 〈y, y−1, z, z−1, d〉, N = 〈y, y−1, z, z−1〉,
S = {y, y−1, z, z−1, d} and S ∩ N = {y, y−1, z, z−1}. Let K be a minimal normal
subgroup of G such that K ≤ Z(N). If K ∩ S = ∅, then N/K E G/K with [G/K :
N/K] = 2 and Z(N/K) ∩ S/K 6= ∅. Note that |S/K| = 5 and |(S ∩ N)/K| = 4.
So Cay(N/K, (S ∩ N)/K) admits a 3-NZF. Also |G/K| < |G|. Thus our assumption
on G leads us to see that Cay(G/K,S/K) admits a 3-NZF, and so does Cay(G,S) by
Lemma 2.2. This is a contradiction. Thus K ∩ S 6= ∅. Without loss of generality, we can
suppose that y ∈ K, so d−1yd = z ∈ K. Therefore, K = N . This forcesN to be cyclic or
elementary abelian. Thus either N = 〈y〉 or N = 〈S ∩N〉 = 〈y〉 × 〈z〉 and hence, either
z = yi and

Cay(N,N ∩ S) = Cay(〈y〉, {y, y−1, yi, y−i}) ∼= C(n, i) or

Cay(N,N ∩ S) = Cay(〈y〉, {y, y−1})�Cay(〈z〉, {z, z−1}) ∼= Cn�Cn.

Note that Cay(G,S) = Cay(N,S ∩ N)�K2. Thus Cay(G,S) is isomorphic to either
C(n, i)�K2 or (Cn�Cn)�K2. So Lemmas 2.5 and 2.4 guarantee that Cay(G,S) ad-
mits a 3-NZF. This is a contradiction.

Subcase 2.2. If S ∩ Z(N) contains an involution y such that d−1yd 6= y, then there exists
an element z ∈ S ∩Z(N) such that d−1yd = z. Therefore, 〈y, z〉 is an elementary abelian
2-group of order 4. So Cay(〈y, z, d〉, {y, z, d}) is the circular ladder CL4 (see Figure 1)
which is bipartite and hence, it admits a 3-NZF. Also, Cay(G,S\{y, z, d}) admits a 3-NZF,
and so does Cay(G,S). This is a contradiction.

d dz dzy dy

1 z zy y

1

Figure 1: The circular ladder CL4.

Subcase 2.3. Suppose that for every y ∈ Z(N) ∩ S, d−1yd ∈ {y, y−1}. Applying
the above argument shows that there exists an element y ∈ Z(N) ∩ S such that 〈y〉 is
a minimal normal subgroup of G. If the order of y is 2, then y is a central involution
and hence, Cay(G,S) admits a 3-NZF. This is a contradiction. Thus the order of y is
an odd prime number. Now if N ∩ S contains an element z such that O(z) ≥ 3 and
d−1zd ∈ {z, z−1}, then applying the same argument as that of used in Subcase 2.1 leads us
to get a contradiction. Now suppose that there exists an element z ∈ (S∩N)\{y, y−1} such
that O(z) ≥ 3 and d−1zd 6∈ {z, z−1}. So our assumption on G allows us to assume that
S = {y, y−1, z, z−1, d−1zd, d−1z−1d, d}. Let K be a normal subgroup of G containing y
such that K ≤ N and it is maximal with the property K ∩ (S \ {y, y−1}) = ∅. If M/K
is a minimal normal subgroup of G/K such that M/K ≤ N/K, then our assumption on
K shows that M ∩ (S \ {y, y−1}) 6= ∅. Without loss of generality, we can assume that
z ∈ M . Since M is normal in G, we deduce that d−1zd ∈ M and hence, S − {d} ⊆ M .
Thus M = N . Set S1 = {z, z−1, d−1zd, d−1z−1d, d}. Moreover M/K = N/K is
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abelian and normal in G/K of index 2 such that S1/K \ (S1/K ∩M/K) = {dK} and
dK(S1/K ∩M/K)dK = (S1/K ∩M/K). By our assumption on G, Cay(G/K,S1/K)
admits a 3-NZF. But S1∩K = ∅, so Lemma 2.2 shows that Cay(G,S1) admits a 3-NZF. In
addition, since |S \S1| = 2, Cay(G,S \S1) admits a 3-NZF and hence, Cay(G,S) admits
a 3-NZF. This is a contradiction. Finally, let N ∩ S contain an element z of order 2. Since
|S ∩ N | is even, our assumption on G allows us to assume that there exists an involution
w ∈ (S ∩ N) \ {z} such that G = 〈y, y−1, z, w, d〉. Since z, w are distinct involutions,
we have that either 〈z, w〉 is an elementary abelian 2-group of order 4 or a dihedral group.
We can see at once that Cay(〈w, z, d〉, {w, z, d}) is a circular ladder CLk, for some even
number k, which is bipartite. Therefore, Cay(〈w, z, d〉, {w, z, d}) admits a 3-NZF, and so
does Cay(G,S). This is a contradiction.

This shows that Cay(G,S) admits a 3-NZF, as desired.

Theorem 3.2. Let G be a group, N be an abelian subgroup of G of index 2 and let S be
a connection sequence of G such that |S| ≥ 4. If there exists d ∈ S \ (S ∩ N) such that
d−1(S ∩N)d = S ∩N , then Cay(G,S) admits a 3-NZF.

Proof. First, assume that |S∩N | ≥ 4. By Lemma 2.3, Cay(N,S∩N) has a 3-NZF. Since
|G/N | = 2, we can assume that G/N = 〈dN〉, and hence for every y ∈ S \ (S ∩ N),
yN ∈ 〈dN〉. Thus there exists t ∈ N such that y = td and

for every s ∈ S ∩N and y ∈ S \ (S ∩N), y−1sy ∈ S ∩N. (3.1)

So the Conditions (1) and (2) of Theorem 3.1 are fulfilled and hence Cay(G,S) admits a
3-NZF. Now, we assume that |S ∩ N | ≤ 3. The proof falls naturally into several parts. If
|S∩N | = 0, then by Lemma 2.8, Cay(G,S) is bipartite, and hence Lemma 2.6 shows that
Cay(G,S) admits a 3-NZF. Moreover, if |S ∩ N | = 2, then Lemma 2.9 forces Cay(N,
S ∩N) to admit a 3-NZF. Also by (3.1), for every s ∈ S ∩N , y−1sy = d−1sd ∈ S ∩N .
So Theorem 3.1 completes the proof. Therefore, |S ∩ N | ∈ {1, 3}. We consider these
possibilities in the following cases:

Case 1. Assume that |S ∩ N | = 1. So S ∩ N = {x}. Clearly, O(x) = 2 and d−1xd =
x−1 = x. Also, for every y ∈ S \ (S ∩N), we have yN ∈ 〈dN〉 and hence, y = md for
some m ∈ N . Therefore, we can see y−1xy = x. Thus x ∈ Z(〈S〉) is of order 2. Hence
by Lemma 2.1, we have Cay(〈S〉, S) admits a 3-NZF, and so does Cay(G,S).

Case 2. Assume that |S ∩N | = 3. We continue the proof in two subcases:

Subcase 1. Let S ∩ N = {x, y, y−1}, where O(x) = 2 and O(y) ≥ 3. Since d−1xd ∈
S ∩ N and O(d−1xd) = 2, the same argument as that of used in Case 1 completes the
proof.

Subcase 2. Let S ∩N = {x, y, z}, where O(x) = O(y) = O(z) = 2. First, assume that
none of the elements in S ∩N generates by the other ones. Since x, y, z are of order 2 and
N is abelian, we have

〈N ∩ S〉 = {xiyjzl | 1 ≤ i, j, k ≤ 2} = 〈x〉 × 〈y〉 × 〈z〉 ≤ N.

It is easy to check that Cay(〈N ∩S〉, S ∩N) is bipartite (similar to Figure 1) and hence by
Lemma 2.6, Cay(N,S ∩ N) admits a 3-NZF. The rest of the proof runs as the case when
|S ∩N | ≥ 4.
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Otherwise, without loss of generality, assume that S ∩ N = {x, y, xy}. Set S1 =
{d, d−1}. Note that |S| is odd. Thus |S \ ((S ∩ N) ∪ S1)| = 0 or 2k where k ∈ N. Set
S2 = S \ ((S ∩N) ∪ S1) and H = 〈(S ∩N) ∪ S1〉. In fact,

Cay(G,S2) ∪ Cay(G, (S ∩N) ∪ S1) = Cay(G,S)

and Cay(G,S2) admits a 3-NZF. So it is sufficient to find a 3-NZF in Cay(G, (S∩N)∪S1).
We know that d−1xd ∈ S ∩ N . If d−1xd = x, then since N is abelian, we have

x ∈ Z(H) and its order is 2, so the proof is complete by Lemma 2.1. Now, assume that
d−1xd = y. Since N 6= dN ∈ G/N and |G/N | = 2, we have O(dN) = 2, and hence
d2 ∈ N . It follows that x = d2xd−2 = dyd−1. Therefore,

d−1xyd = d−1xdd−1yd = yx = xy.

Thus xy ∈ Z(H) and O(xy) = 2. Lemma 2.1 shows that Cay(H, (S ∩N)∪ S1) admits a
3-NZF, and so does Cay(G, (S ∩N)∪S1), as desired. The same reasoning can be applied
to the case d−1xd = xy.

In the following we show that Theorem 3.2 guarantees the existence of a 3-NZF in a
Cayley graph on a generalized dicyclic group.

Example 3.3. Let H be an abelian group, having a specific element y ∈ H of order 2. A
group G is called a generalized dicyclic group, Dic(H, y), if it is generated by H and an
additional element x. Moreover, we have [G : H] = 2, x2 = y and x−1ax = a−1 for
every a ∈ H . It is easy to see that every Cayley graph of valency at least 4 on Dic(H, y)
has a 3-NZF by applying Theorem 3.2.

Note that in [3, 11], as the main theorems, it is showed that the graphs mentioned in
Example 3.4 admit nowhere-zero 3-flows.

Example 3.4.

(1) Let H be an abelian group. The generalized dihedral group DH is a group of order
2|H| generated by H and an element p where p 6∈ H , p2 = 1 and p−1hp = h−1

for all h ∈ H . We see at once that every Cayley graph of valency at least 4 on DH

satisfies the conditions of Theorem 3.2, and hence it admits a 3-NZF. In particular,
G = 〈x, a | an = x2 = 1, x−1ax = a−1〉 is a special case of DH , where H = 〈a〉,
p = x and it is called a dihedral group and denoted by D2n.

(2) Let G = 〈z, a | an = z2, an = 1, z−1az = a−1〉 which is called a generalized
quaternion group, denoted by Q4n. Note that G is a special case of a generalized
dicyclic group where 〈a〉 and z play the roles of H and x, respectively. Thus every
Cayley graph of valency at least 4 on Q4n admits a 3-NZF.

Remark 3.5. LetG be a group,N be a normal subgroup ofG of an odd index at least 3 and
S be a connection sequence ofG such that |S| ≥ 4. Assume that T = {x1, . . . , x2k+1} is a
left transversal set of N in G and Cay(N,S∩N)) has a 3-NZF. Note that by Remark 2.11,

Cay(G,S) =

( 2k+1⋃
i=1

xi Cay(N,S ∩N)

)
∪ Cay(G,S \ (S ∩N)).
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By the assumption, for every i ∈ {1, . . . , 2k + 1}, xi Cay(N,S ∩ N) admits a 3-NZF.
For finding a 3-NZF in Cay(G,S), it is enough to find a 3-NZF in Cay(G,S \ (S ∩N)).
If |S \ (S ∩ N)| is odd, then there exists y ∈ S \ (S ∩ N) such that O(y) = 2 and
hence yN ∈ G/N and O(yN) = 2. So we have 2 | |G/N |. This is impossible. Thus
|S \ (S ∩ N)| is even and hence Cay(G,S \ (S ∩ N)) admits a 3-NZF by Lemma 2.9.
Therefore if Cay(N,S ∩N) has a 3-NZF, then so does Cay(G,S).

Theorem 3.6. Let G be a solvable group with a cyclic Sylow 2-subgroup and let S be a
connection sequence of G with |S| ≥ 4. If there exists an element x ∈ Z(G) ∩ S such that
x is a generator element of G in S, then Cay(G,S) admits a 3-NZF.

Proof. Suppose that G is the smallest counterexample satisfies the above conditions, but
Cay(G,S) does not admit a 3-NZF. Without loss of generality, we can assume that |S| = 5
and x ∈ Z(G) ∩ S. Thus O(x) ≥ 3 by Lemma 2.1. If there exists u ∈ Z(G) such that
〈u〉∩S = ∅, then |S/〈u〉| = |S|, x〈u〉 ∈ Z(G/〈u〉)∩S/〈u〉 and |G/〈u〉| < |G|. If x〈u〉 is a
generator element of G/〈u〉 in S/〈u〉, then by our assumption, Cay(G/〈u〉, S/〈u〉) admits
a 3-NZF. Lemma 2.2 forces Cay(G,S) to admit a 3-NZF, a contradiction. Thus x〈u〉 is not
a generator element. Therefore, there exist an element t ∈ 〈S \ {x, x−1}〉 and i ∈ N such
that xui = t and hence t ∈ Z(G). If there exists t1 ∈ 〈t〉 ∩ S, then as stated above, we can
see that O(t1) ≥ 3. Thus Z(G) ∩ S = {x, x−1, t1, t−11 }. Therefore |G/Z(G)| ∈ {1, 2}
and hence, G/Z(G) is cyclic. So G is an abelian group. This forces Cay(G,S) to admit
a 3-NZF, a contradiction. Thus 〈t〉 ∩ S = ∅. Moreover, we can see at once that x〈t〉
is a generator element of G/〈t〉 in S/〈t〉, |S/〈t〉| = |S| and |G/〈t〉| < |G|. Therefore,
our assumption forces Cay(G/〈t〉, S/〈t〉) to admit a 3-NZF, and so does Cay(G,S) by
Lemma 2.2. This is a contradiction. So for every u ∈ Z(G), we have 〈u〉 ∩ S 6= ∅. We
continue the proof in two cases:

Case 1. Suppose that |Z(G)| is even. So there exists w ∈ Z(G) of order 2. By our
assumption, 〈w〉 ∩ S 6= ∅, and hence S contains a central involution. Lemma 2.1 shows
that Cay(〈S〉, S) admits a 3-NZF, and so does Cay(G,S). This is a contradiction.

Case 2. Let |Z(G)| be odd. Since |S| = 5, S contains an involution y. We continue the
proof in three subcases:

Subcase 1. Suppose that |S ∩ Z(G)| is odd, so Z(G) contains an involution. This is a
contradiction, because |Z(G)| is odd.

Subcase 2. Suppose that |Z(G)∩S| = 2. So we haveZ(G)∩S = {x, x−1}, whereO(x) is
an odd prime number p. Therefore, 〈x〉 is a cyclic subgroup of order p. By the assumption,
x 6∈ 〈S \ {x, x−1}〉 and hence, we deduce that G = 〈x〉 ×M , where M = 〈S \ {x, x−1}〉
is a maximal subgroup ofG. LetN be a minimal normal subgroup ofG such thatN ≤M .
So N is an elementary abelian q-group, where q is a prime number. If N ∩ S = ∅, then
x〈N〉 ∈ Z(G/N) ∩ S/N is a generator element of G/N in S/N , |G/N | < |G| and
|S/N | = 5. Thus by our assumption on G, Cay(G/N,S/N) admits a 3-NZF, and so does
Cay(G,S). This contradicts our assumption. If N ∩ S 6= ∅, then the proof falls naturally
into several parts:

(a) If y ∈ N ∩ S such that O(y) = 2, then 2 | |N |. Since N is elementary abelian,
we get that N is an elementary abelian 2-group. Thus |N | = 2 by the assumption.
Therefore y ∈ N ≤ Z(G), and hence |Z(G)| is even. This is a contradiction.
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(b) If N ∩ S = {z, z−1}, where O(z) ≥ 3, then S \ {x, x−1} = {z, z−1, y}. Since
N is an elementary abelian q-group where q is a prime number, we get O(z) =
q 6= 2. So y 6∈ N . If yz = zy, then G is an abelian group and hence, Lemma 2.3
forces Cay(G,S) to admit a 3-NZF, a contradiction. If yz 6= zy and O(yz) = 2,
then we have yzy = z−1. Thus L = 〈x, x−1, z, z−1〉 C G = 〈x, x−1, z, z−1, y〉.
Therefore, [G : L] = 2 and L CG. We thus get that Cay(G,S) admits a 3-NZF by
Theorem 3.1. This is a contradiction. Now, suppose that yz 6= zy and O(yz) ≥ 3.
Since O(z) = q, z ∈ N and |M/N | = |〈yN〉| = 2, we have |M | = 2qt, where
t ∈ N. If O(yz) = qn, where n ≤ t, then yz ∈ N . So y ∈ N , a contradiction.
Suppose that O(yz) = 2qn where n ≤ t. Since gcd(2, qn) = 1, there exist k, s ∈ Z
such that 2s + kqn = 1. So, O((yz)2s) = qn and O((yz)kq

n

) = 2. Thus we have
(yz)2s ∈ N . Since z ∈ N and N is abelian, we can see that (yz)2sy = y(yz)2s.
Therefore (yz)2s ∈ Z(M) ≤ Z(G). Thus 〈(yz)2s〉 is a normal subgroup of G and
〈(yz)2s〉 ≤ N . So z ∈ N = 〈(yz)2s〉 ≤ Z(M) ≤ Z(G) and hence yz = zy. This is
a contradiction with the above statements.

Subcase 3. Suppose that |S ∩Z(G)| = 4. Since |S| = 5, we can see |S| \ |S ∩Z(G)| = 1.
It follows that [〈S〉 : 〈S ∩ Z(G)〉] = 2. So 〈S〉/(〈S ∩ Z(G)〉) is a cyclic group. On the
other hand, 〈S ∩ Z(G)〉 ≤ Z(〈S〉). Therefore 〈S〉 is abelian, and hence Lemma 2.3 yields
that Cay(〈S〉, S) admits a 3-NZF, and so does Cay(G,S), a contradiction.

Corollary 3.7. Let G be a solvable group such that the Sylow 2-subgroups of G are cyclic
and every Cayley graph of valency at least 4 on G admits a 3-NZF. If H is a nilpotent
group, then every Cayley graph of valency at least 4 on G×H admits a 3-NZF.

Proof. Suppose that H is the smallest nilpotent group such that Cay(G ×H,S) does not
admit a 3-NZF. Note that by the assumption on G, we have H 6= 1. If there exists 1 6= t ∈
Z(H) such that 〈t〉 ∩ S = ∅, then since 〈t〉 C G × H , our assumption on H shows that
Cay((G×H)/〈t〉, S/〈t〉) admits a 3-NZF. So Lemma 2.2 forces Cay(G×H,S) to admit
a 3-NZF. This is a contradiction. Thus for every t ∈ Z(H), 〈t〉∩S 6= ∅. If |H| is even, then
S contains a central involution and hence, Lemma 2.1 shows that Cay(G×H,S) admits a
3-NZF, a contradiction. Thus |H| is odd. Let the order of t ∈ Z(H)∩S be odd. If |H ∩S|
is odd, then 2 | |H|. This is a contradiction. If |H ∩ S| = 2, then H ∩ S = {x, x−1} and
hence, Z(H) ∩ S = {x, x−1} and O(x) is a prime number. Since G is solvable, we can
assume that K is a normal subgroup of G ×H such that K ≤ G and K is maximal with
the property that S ∩K = ∅. If G = K, then (G ×H)/G is nilpotent and |S/G| = |S|,
and hence, Cay((G×H)/G, S/G) admits a 3-NZF, and so does Cay(G×H,S). This is
a contradiction. Thus G 6= K and for a minimal normal subgroup M/K of (G × H)/K
such thatM/K ≤ G/K, we haveM ∩S 6= ∅. So one of the following possibilities occurs:

(I) Suppose that M ∩ S contains an involution z. Then 2 | |M/K|. Since M/K is
elementary abelian and the Sylow 2-subgroups of G are cyclic, we have M/K =
〈zK〉 and hence 〈zK〉 ≤ Z((G × H)/K). Therefore, Lemma 2.1 shows that
Cay((G×H)/K, S/K) admits a 3-NZF, and so does Cay(G×H,S) by Lemma 2.2,
a contradiction.

(II) If M ∩S does not contain any involution, then |M ∩S| is an even number. Since |S|
is odd, we get that S \ (M ∩ S) contains an involution z. But |H| is odd, so z ∈ G.
Let S1 = (M ∩ S) ∪ {z, x, x−1}. We have 〈S1〉 = 〈M ∩ S, z〉 × 〈x〉 and |S1| ≥ 5
is an odd number. Thus Theorem 3.6 shows that Cay(〈S1〉, S1) admits a 3-NZF, so
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does Cay(G × H,S1). Since |S \ S1| is even, Cay(G × H,S) admits a 3-NZF, a
contradiction.

If |H ∩ S| ≥ 4, then there exists an element x ∈ S such that O(x) = 2. Since |H| is odd,
we have x 6∈ H ∩S and the Sylow 2-subgroups of G×H are the Sylow 2-subgroups of G
and hence, x ∈ G. Therefore x ∈ CG×H(H ∩ S), the centralizer of H ∩ S in G×H , and
hence x ∈ Z(〈H ∩ S〉 × 〈x〉). So Lemma 2.1 forces Cay(〈H ∩ S〉 × 〈x〉, (H ∩ S)∪ {x})
to admit a 3-NZF, so does Cay(G×H, (H ∩S)∪{x}). But |S \ ((H ∩S)∪{x})| is even,
So Cay(G×H,S) admits a 3-NZF, a contradiction.

Corollary 3.8. If L is a nilpotent group, then for every generalized dihedral group DH ,
the Cayley graph of valency at least 4 on DH × L admits a 3-NZF.

Proof. Let DH be the smallest generalized dihedral group such that the Cayley graph of
valency at least 4 on DH × L does not admit a 3-NZF. If |H| is odd, then the Sylow 2-
subgroups ofDH are cyclic, and hence Corollary 3.7 shows that Cay(DH×L, S) admits a
3-NZF, a contradiction. If |H| is even, thenH contains a central involution t. If t ∈ S, then
Lemma 2.1 shows that the Cayley graph of valency at least 4 on DH × L admits a 3-NZF,
a contradiction. If t 6∈ S, then by our assumption, Cay((DH × L)/〈t〉, S/〈t〉) admits a 3-
NZF. It follows that Cay(DH × L, S) admits a 3-NZF by Lemma 2.2. This is impossible.
These contradictions show that every Cayley graph of valency at least 4 on DH ×L admits
a 3-NZF.
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