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Abstract

Albertson [4] has defined the irregularity of a simple undirected graph G as irr(G) =
> wen(q) lda(u) — da(v)], where dg(u) denotes the degree of a vertex u € V(G). Re-
cently, in [1] a new measure of irregularity of a graph, so-called the fotal irregularity, was
defined as irr¢(G) = %ZU,UEV(G) |de(u) — dg(v)|. Here, we compare the irregularity
and the total irregularity of graphs. For a connected graph G with n vertices, we show that
irry(G) < n2irr(G) /4. Moreover, if G is a tree, then irr,(G) < (n — 2)irr(G).

Keywords: The irregularity of graph, the total irregularity of graph.
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1 Introduction

Let G be a simple undirected graph of order n = |V(G)| and size m = |E(G)|. For
v € V(Q), the degree of v, denoted by dg(v), is the number of edges incident to v. Albert-
son [4] defines the imbalance of an edge e = uv € E(G) as imbg (uv) = |dg(u) — dg(v)|
and the irregularity of G as

irr(G)= > imbg(uv). (1.1)

weEE(G)

Obviously, a connected graph G has irregularity zero if and only if G is regular. In [4]
Albertson presented upper bounds on irregularity for bipartite graphs, triangle-free graphs
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and arbitrary graphs, as well as a sharp upper bound for trees. Some results about the
irregularity of bipartite graphs are given in [4, 14]. Related to the work of Albertson is
the work of Hansen and Mélot [13], who characterized the graphs with n vertices and m
edges with maximal irregularity. Various upper bounds on the irregularity of a graph were
given in [19], where K, ;-free graphs, trees and unicyclic graphs with fixed number of
vertices of degree one were considered. In [16], relations between the irregularity and
the matching number of trees and unicyclic graphs were investigated. More results on
irregularity, imbalance and related measures, one can find in [3, 5, 6, 17, 18].

Recently, in [1] a new measure of irregularity of a simple undirected graph, so-called
the total irregularity, was defined as

(@) =5 Y ldal) - da(w)]. (12)

u, eV (G)

Other approaches, that characterize how irregular a graph is, have been proposed [2, 3, 7,
8,9, 10, 15]. In this paper, we focus on the relation between the irregularity (1.1) and the
total irregularity (1.2) of a graph.

In the sequel we introduce the notation used in the rest of the paper. For u,v € V(G),
we denote by dg(u,v) the length of a shortest path in G between « and v. In this short
paper the notation of the sets, that will be defined next, is always regarding the graph G
we consider. By V, ;, we denote a set of vertices of a graph with degrees in [a, b], and by
V>, (resp. V<,), we denote a set of vertices of a graph with degrees at least a (resp. with
degrees at most ). Similarly, by V<, (resp. VZ,), we denote a set of neighboring vertices
of a vertex = with degrees at least a (resp. with degrees at most a). The corresponding
cardinalities of the above mentioned sets, we denote by small v (e.g., v<, = |V<ql or
vE, = VZ,).

A subgraph T' = vyvy - - - v; of a graph G, where v; is a leaf in G, is called a tread if
dg(v1) = dg(va) = -+ = dg(v;—1) = 2, and vy is adjacent to a vertex with degree at
least three. Let 77 = vyvg - - - vg and T = wqus - - - uy be two threads of a graph G with
leaves v, and wu;, respectively, and let v be the other neighbour of v1. By G' = G(T50Ty)
we denote a graph that is obtained from G after a concatenation of T3 to 11, i.e., after
deleting the edge vov; and adding an edge between u; and v .

2 General graphs
Obviously, irr(G) < irr¢(G). And, it is not hard to show that equality holds precisely

when all non—adjace?lt vertices have same degree. Such a class of graphs are the complete
k-partite graphs. More examples of graphs with equal irregularity and total irregularity can

be found in [11]. Now, we give an upper bound on irr;(G) in term of irr(G).

Theorem 2.1. Let GG be a connected graph on n-vertices. Then

2
irr (G) < %irr(G).

Moreover, the bound is sharp for infinitely many graphs.

Proof. LetT be a spanning tree of G. Then, any two vertices a, b of G are connected by an
unique path Py, = 129 --- x5 in T, where 1 = a and x4, = b. By the triangle inequality,
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we have that

1
iy (@) = 2 Z |dG da (b)) @.1)
ev(G@
1
< 3 Y lda(w1) — do(wo)| + |da(w2) — da(as)| + - -
a,beV(Q)

For an edge uwv € E(T), let n, = {z |z € V(T) and dp(z,u) < dp(z,v)}. Similarly,
let n, = {z|z € V(T) and dp(z,u) > dp(z,v)}. Each summand |dg(u) — dg(v)] in
the last sum of (2.1) occurs in the sum exactly n,, = n,n, times. Also, each summand
|da(v) — de(u)| occurs ny, times. Thus,

i (G) <Y lda(u) = da (V)[R

uvEE(T)

As nyy < (n/2)(n/2) = n?/4, and ZuveE(T) l[dg(u) — dg(v)] < ZweE(G) |da(u) —
dg(v)], we obtain the desired inequality.

Now, we show that the bound n?/4 is sharp. Let a,b be two distinct integers, say
a < b. Consider a graph G, whose all vertices are of degree a, with exception of one
vertex u which is of degree a — 1. Similarly, consider a graph G}, whose all vertices are
of degree b, with exception of one vertex u which is of degree b — 1. Let G* be the graph
obtained from G, and G} by connecting u and v. Let n, = |V(G,)| and ny, = [V (Gp)|.
Observe that irr(G*) = b — a and irr; (G*) = (b — a)ngnp. Choosing n, = npy = n/2, we
obtain

irry (G*) n?

irr(G*) = el =

In order to show that such graphs G, and G}, exist, one may use the theorem of Erdds-
Gallai [12] which states that a sequence d; > dy > - - - > d,, of non-negative integers with
even sum is graphic (i.e., there exist a graph with such a degree sequence) if and only if

n

S di<r(r—1)+ Y min(r,dy), (2.2)
i=1

1=r+1

foralll <r <n.

So, fix a,b, and n, = n; to be odd numbers with n, > max{a,b}. We will show
the existence of the graph G,. In a similar way, one can show the existence of the graph
Gy. As (ng — 1)a+ (a — 1) is even, the parity condition of the theorem of Erd6s-Gallai is
satisfied. So, we need to show only (2.2). For this we consider three cases regarding r and
a:

e 7 < a — 1. Then, (2.2) can be written as ra < r(r — 1) 4+ (n, — r)r. It obviously
holds since a <K ng — 7.

e 7 = a. In this case, (2.2) can be written as ra < r(r — 1) + (n, — r)r — 1, which
holds for a similar reason as the previous case.

e r > a+ 1. Similarly, (2.2) can be written as ra < 7(r — 1) + (n, — r)a — 1, and it
holds as ra < r(r — 1).

O
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3 Trees

In this section, we give an upper bound on irr,(G) in term of irr(G), when G is a tree. To
show the bound, we will use the following lemma.

Lemma 3.1. Let G be a tree, x a vertex of degree d > 3 incident with threads Ty and T,
and let G' = G(Ty o T). Then,

(a) irr,(G) — irr (G') = 209 g—1;
(b) irr(G) — irr(G') = 2(d — v, — 1).
Proof. LetT) = ajas---ag and T = b1by - - - b;. We consider the identities separately.

(a) Notice that all other vertices except x and b; have the same degree in G and G'.
Hence, it holds that

irry (G) — i (G) = Y (|da(x) — da(u)| = |dar (z) — dgr (u)])
uFb;
+ Y (lda(u) = dg(br)] = |der (u) — de (b))
uFT

+lda(z) — da(bi)| — |d(z) — dg (br)]-

Since dgr(z) = dg(z) — 1 =d—1and dg (b)) = dg (b)) + 1 = 2, further we have

irr (G) — iy (G) = Y (|d—da(u)| - |d— 1 — da(u)])
u#bl
+> (lde(u) = 1] = da(u) = 2)) +2.  (3.D)
uFxT

If u € V<g_1, then |d — dg(u)] — |d — 1 — dg(u)| = 1, otherwise |d — dg(u)| —
|d — 1 — dg(u)] = —1. Hence, the first sum in (3.1) is equal to v<g—1 — 1 — v>4.
Similarly, if u € Vo, then |dg(u) — 1| — |dg(u) — 2| = 1, otherwise |dg(u) — 1| —
|dg(u) — 2| = —1. Thus, the second sum in (3.1) is equal to v>2 — 1 — v1. Applying
these observations, we have

irry(G) — it (G') = w<go1—1—vsgtuvsa—1—v; +2
= U<d-1 — V1 +VU>2 —U>d

= 2v34-1-

(b) Lete; = xaq, ea = aby, e3 = bj_1b; and E; = {e1, ea,e3}. Denote by E5 the set
of edges incident to z that are different from e; and e;. Notice that every edge not in
E; U E; contributes zero to the difference irr(G) — irr(G’). So, we can infer

irr(G) —irr(G') = Y (imbg(uv) — imbgr (uv))

uveFE>

+ Z (imbg (uv) — imbg (uv)).

uveE
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Notice that the first sum is equal to —vZ ; + (vZ;_; —2) (we have —2 as the edges e;
and e, are excluded in this sum). In &7, the eage e; = xaj does not exist anymore,
but there is a new edge ) = b;a;. Observe that after the concatenation 75 o T} all
other edges preserve their end-vertices. First, we consider the contribution of e; and
e} inirr(G) — irr(G”). There are two possibilities regarding the length of 77:

e s =1: Then, imbg(e;) = d — 1 and imbg (e}) = 1;

e s> 2: In this case, imbg(e1) = d — 2 and imbg (€)) = 0.
In both of them, we obtain imbg(e1) — imbgr (e}) = d — 2.
Next, we consider the contributions of ey and e3 together. Again, consider two pos-
sibilities regarding the length of 75:

e | =1: Then, e; = eg and imbg(e2) = d — 1 and imbg (e2) = 3;

e | > 2: In this case, e3 # e3, and imbg(es) = d — 2, imbgr(e2) = d — 3,
imbg(e3) = 1 and imbg (e3) = 0.

In both cases, we obtain that 3 .., .. (imbg(e) — imber(€)) = 2. So finally, we
have that
irr(G) —irr(G') = —vi 4+ (v, —2)+d—2+2
= —vig+vig—2+d
= 2(d - /Ugd - 1).

Theorem 3.1. Let G be a tree with n vertices. Then
irr;(G) < (n — 2)irr(G).
Moroever, equality holds if and only if G is a path.

Proof. Letny(G) be the number of vertices of G with degree one. We will prove the second
inequality by induction on n1(G). If n1(G) = 0, then G ~ Py, irr(G) = irry(G) = 0,
and the equality in the theorem holds. Since G is a tree, n1(G) # 1. If n1(G) = 2, then
G ~ P,. In this case irr(G) = 2 and irr+(G) = 2(n — 2), hence we obtain equality.

Now, assume n1(G) > 2. Then, it is easy to see that G has a vertex x of degree d > 3,
incident with at least two threads 77 and T5. Let G’ = G(T» o T1). Since nq(G') =
n1(G) — 1, we can assume that inequality holds for G, i.e.,

ity (G') < (n — 2)irr(GY). (3.2)
By Lemma 3.1, we have
irr(G') = irr(G) — 2(d —v%, — 1) and ity (G') = irry(G) — 2v24-1.  (3.3)
Plugging (3.3) in (3.2), we obtain
(n—2)irr(G) > iry(G) — 209,91 +2(n — 2)(d —v%,; - 1). 3.4

As d(z) = d > 3 and z is incident with two threads, we infer vZ; + 2 < d, and so
2(d —v%, — 1) > 2. Observe also that va 41 < n — 3. Hence 2(n — 2)(d —v%, — 1) >

2(n — 3) > 2vg 4—1. This together with (3.4) gives (n — 2)irr(G) > irr(G). O
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