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Abstract

Albertson [4] has defined the irregularity of a simple undirected graph G as irr(G) =∑
uv∈E(G) |dG(u)− dG(v)| , where dG(u) denotes the degree of a vertex u ∈ V (G). Re-

cently, in [1] a new measure of irregularity of a graph, so-called the total irregularity, was
defined as irrt(G) = 1

2

∑
u,v∈V (G) |dG(u)− dG(v)| . Here, we compare the irregularity

and the total irregularity of graphs. For a connected graph G with n vertices, we show that
irrt(G) ≤ n2irr(G)/4. Moreover, if G is a tree, then irrt(G) ≤ (n− 2)irr(G).
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1 Introduction
Let G be a simple undirected graph of order n = |V (G)| and size m = |E(G)|. For
v ∈ V (G), the degree of v, denoted by dG(v), is the number of edges incident to v. Albert-
son [4] defines the imbalance of an edge e = uv ∈ E(G) as imbG(uv) = |dG(u)− dG(v)|
and the irregularity of G as

irr(G) =
∑

uv∈E(G)

imbG(uv). (1.1)

Obviously, a connected graph G has irregularity zero if and only if G is regular. In [4]
Albertson presented upper bounds on irregularity for bipartite graphs, triangle-free graphs
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and arbitrary graphs, as well as a sharp upper bound for trees. Some results about the
irregularity of bipartite graphs are given in [4, 14]. Related to the work of Albertson is
the work of Hansen and Mélot [13], who characterized the graphs with n vertices and m
edges with maximal irregularity. Various upper bounds on the irregularity of a graph were
given in [19], where Kr+1-free graphs, trees and unicyclic graphs with fixed number of
vertices of degree one were considered. In [16], relations between the irregularity and
the matching number of trees and unicyclic graphs were investigated. More results on
irregularity, imbalance and related measures, one can find in [3, 5, 6, 17, 18].

Recently, in [1] a new measure of irregularity of a simple undirected graph, so-called
the total irregularity, was defined as

irrt(G) =
1

2

∑
u,v∈V (G)

|dG(u)− dG(v)| . (1.2)

Other approaches, that characterize how irregular a graph is, have been proposed [2, 3, 7,
8, 9, 10, 15]. In this paper, we focus on the relation between the irregularity (1.1) and the
total irregularity (1.2) of a graph.

In the sequel we introduce the notation used in the rest of the paper. For u, v ∈ V (G),
we denote by dG(u, v) the length of a shortest path in G between u and v. In this short
paper the notation of the sets, that will be defined next, is always regarding the graph G
we consider. By Va,b, we denote a set of vertices of a graph with degrees in [a, b], and by
V≥a (resp. V≤a), we denote a set of vertices of a graph with degrees at least a (resp. with
degrees at most a). Similarly, by V x

≥a (resp. V x
≤a), we denote a set of neighboring vertices

of a vertex x with degrees at least a (resp. with degrees at most a). The corresponding
cardinalities of the above mentioned sets, we denote by small v (e.g., v≤a = |V≤a| or
vx≤a = |V x

≤a|).
A subgraph T = v1v2 · · · vl of a graph G, where vl is a leaf in G, is called a tread if

dG(v1) = dG(v2) = · · · = dG(vl−1) = 2, and v1 is adjacent to a vertex with degree at
least three. Let T1 = v1v2 · · · vs and T2 = u1u2 · · ·ul be two threads of a graph G with
leaves vs and ul, respectively, and let v0 be the other neighbour of v1. By G′ = G(T2 ◦T1)
we denote a graph that is obtained from G after a concatenation of T2 to T1, i.e., after
deleting the edge v0v1 and adding an edge between ul and v1.

2 General graphs
Obviously, irr(G) ≤ irrt(G). And, it is not hard to show that equality holds precisely
when all non-adjacent vertices have same degree. Such a class of graphs are the complete
k-partite graphs. More examples of graphs with equal irregularity and total irregularity can
be found in [11]. Now, we give an upper bound on irrt(G) in term of irr(G).

Theorem 2.1. Let G be a connected graph on n-vertices. Then

irrt(G) ≤ n2

4
irr(G).

Moreover, the bound is sharp for infinitely many graphs.

Proof. Let T be a spanning tree of G. Then, any two vertices a, b of G are connected by an
unique path Pab = x1x2 · · ·xs in T , where x1 = a and xs = b. By the triangle inequality,
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we have that

irrt(G) =
1

2

∑
a,b∈V (G)

|dG(a)− dG(b)| (2.1)

≤ 1

2

∑
a,b∈V (G)

|dG(x1)− dG(x2)|+ |dG(x2)− dG(x3)|+ · · ·

For an edge uv ∈ E(T ), let nu = {x |x ∈ V (T ) and dT (x, u) < dT (x, v)}. Similarly,
let nv = {x |x ∈ V (T ) and dT (x, u) > dT (x, v)}. Each summand |dG(u) − dG(v)| in
the last sum of (2.1) occurs in the sum exactly nuv = nunv times. Also, each summand
|dG(v)− dG(u)| occurs nuv times. Thus,

irrt(G) ≤
∑

uv∈E(T )

|dG(u)− dG(v)|nuv.

As nuv ≤ (n/2)(n/2) = n2/4, and
∑

uv∈E(T ) |dG(u) − dG(v)| ≤
∑

uv∈E(G) |dG(u) −
dG(v)|, we obtain the desired inequality.

Now, we show that the bound n2/4 is sharp. Let a, b be two distinct integers, say
a < b. Consider a graph Ga whose all vertices are of degree a, with exception of one
vertex u which is of degree a − 1. Similarly, consider a graph Gb whose all vertices are
of degree b, with exception of one vertex u which is of degree b − 1. Let G∗ be the graph
obtained from Ga and Gb by connecting u and v. Let na = |V (Ga)| and nb = |V (Gb)|.
Observe that irr(G∗) = b− a and irrt(G

∗) = (b− a)nanb. Choosing na = nb = n/2, we
obtain

irrt(G
∗)

irr(G∗)
= nanb =

n2

4
.

In order to show that such graphs Ga and Gb exist, one may use the theorem of Erdős-
Gallai [12] which states that a sequence d1 ≥ d2 ≥ · · · ≥ dn of non-negative integers with
even sum is graphic (i.e., there exist a graph with such a degree sequence) if and only if

r∑
i=1

di ≤ r(r − 1) +

n∑
i=r+1

min(r, di), (2.2)

for all 1 ≤ r ≤ n.
So, fix a, b, and na = nb to be odd numbers with na � max{a, b}. We will show

the existence of the graph Ga. In a similar way, one can show the existence of the graph
Gb. As (na − 1)a+ (a− 1) is even, the parity condition of the theorem of Erdős-Gallai is
satisfied. So, we need to show only (2.2). For this we consider three cases regarding r and
a:

• r ≤ a − 1. Then, (2.2) can be written as ra ≤ r(r − 1) + (na − r)r. It obviously
holds since a� na − r.

• r = a. In this case, (2.2) can be written as ra ≤ r(r − 1) + (na − r)r − 1, which
holds for a similar reason as the previous case.

• r ≥ a+ 1. Similarly, (2.2) can be written as ra ≤ r(r − 1) + (na − r)a− 1, and it
holds as ra� r(r − 1).



48 Ars Math. Contemp. 9 (2015) 45–50

3 Trees
In this section, we give an upper bound on irrt(G) in term of irr(G), when G is a tree. To
show the bound, we will use the following lemma.

Lemma 3.1. Let G be a tree, x a vertex of degree d ≥ 3 incident with threads T1 and T2,
and let G′ = G(T2 ◦ T1). Then,

(a) irrt(G)− irrt(G
′) = 2v2,d−1;

(b) irr(G)− irr(G′) = 2(d− vx≥d − 1).

Proof. Let T1 = a1a2 · · · as and T2 = b1b2 · · · bl. We consider the identities separately.

(a) Notice that all other vertices except x and bl have the same degree in G and G′.
Hence, it holds that

irrt(G)− irrt(G
′) =

∑
u 6=bl

(|dG(x)− dG(u)| − |dG′(x)− dG′(u)|)

+
∑
u 6=x

(|dG(u)− dG(bl)| − |dG′(u)− dG′(bl)|)

+|dG(x)− dG(bl)| − |dG′(x)− dG′(bl)|.

Since dG′(x) = dG(x)− 1 = d− 1 and dG′(bl) = dG(bl) + 1 = 2, further we have

irrt(G)− irrt(G
′) =

∑
u6=bl

(|d− dG(u)| − |d− 1− dG(u)|)

+
∑
u6=x

(|dG(u)− 1| − |dG(u)− 2|) + 2. (3.1)

If u ∈ V≤d−1, then |d − dG(u)| − |d − 1 − dG(u)| = 1, otherwise |d − dG(u)| −
|d − 1 − dG(u)| = −1. Hence, the first sum in (3.1) is equal to v≤d−1 − 1 − v≥d.
Similarly, if u ∈ V≥2, then |dG(u)− 1| − |dG(u)− 2| = 1, otherwise |dG(u)− 1| −
|dG(u)− 2| = −1. Thus, the second sum in (3.1) is equal to v≥2− 1− v1. Applying
these observations, we have

irrt(G)− irrt(G
′) = v≤d−1 − 1− v≥d + v≥2 − 1− v1 + 2

= v≤d−1 − v1 + v≥2 − v≥d

= 2v2,d−1.

(b) Let e1 = xa1, e2 = xb1, e3 = bl−1bl and E1 = {e1, e2, e3}. Denote by E2 the set
of edges incident to x that are different from e1 and e2. Notice that every edge not in
E1 ∪ E2 contributes zero to the difference irr(G)− irr(G′). So, we can infer

irr(G)− irr(G′) =
∑

uv∈E2

(imbG(uv)− imbG′(uv))

+
∑

uv∈E1

(imbG(uv)− imbG′(uv)).
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Notice that the first sum is equal to−vx≥d+(vx≤d−1−2) (we have−2 as the edges e1
and e2 are excluded in this sum). In G′, the edge e1 = xa1 does not exist anymore,
but there is a new edge e′1 = bla1. Observe that after the concatenation T2 ◦ T1 all
other edges preserve their end-vertices. First, we consider the contribution of e1 and
e′1 in irr(G)− irr(G′). There are two possibilities regarding the length of T1:

• s = 1: Then, imbG(e1) = d− 1 and imbG′(e′1) = 1;
• s ≥ 2: In this case, imbG(e1) = d− 2 and imbG′(e′1) = 0.

In both of them, we obtain imbG(e1)− imbG′(e′1) = d− 2.

Next, we consider the contributions of e2 and e3 together. Again, consider two pos-
sibilities regarding the length of T2:

• l = 1: Then, e2 = e3 and imbG(e2) = d− 1 and imbG′(e2) = d− 3;
• l ≥ 2: In this case, e2 6= e3, and imbG(e2) = d − 2, imbG′(e2) = d − 3,

imbG(e3) = 1 and imbG′(e3) = 0.

In both cases, we obtain that
∑

e∈{e2,e3}(imbG(e) − imbG′(e)) = 2. So finally, we
have that

irr(G)− irr(G′) = −vx≥d + (vx≤d−1 − 2) + d− 2 + 2

= −vx≥d + vx≤d−1 − 2 + d

= 2(d− vx≥d − 1).

Theorem 3.1. Let G be a tree with n vertices. Then

irrt(G) ≤ (n− 2)irr(G).

Moroever, equality holds if and only if G is a path.

Proof. Let n1(G) be the number of vertices of G with degree one. We will prove the second
inequality by induction on n1(G). If n1(G) = 0, then G ' P1, irr(G) = irrt(G) = 0,
and the equality in the theorem holds. Since G is a tree, n1(G) 6= 1. If n1(G) = 2, then
G ' Pn. In this case irr(G) = 2 and irrt(G) = 2(n− 2), hence we obtain equality.

Now, assume n1(G) > 2. Then, it is easy to see that G has a vertex x of degree d ≥ 3,
incident with at least two threads T1 and T2. Let G′ = G(T2 ◦ T1). Since n1(G

′) =
n1(G)− 1, we can assume that inequality holds for G′, i.e.,

irrt(G
′) ≤ (n− 2)irr(G′). (3.2)

By Lemma 3.1, we have

irr(G′) = irr(G)− 2(d− vx≥d − 1) and irrt(G
′) = irrt(G)− 2v2,d−1. (3.3)

Plugging (3.3) in (3.2), we obtain

(n− 2)irr(G) ≥ irrt(G)− 2v2,d−1 + 2(n− 2)(d− vx≥d − 1). (3.4)

As d(x) = d ≥ 3 and x is incident with two threads, we infer vx≥d + 2 ≤ d, and so
2(d− vx≥d − 1) ≥ 2. Observe also that v2,d−1 ≤ n− 3. Hence 2(n− 2)(d− vx≥d − 1) >
2(n− 3) ≥ 2v2,d−1. This together with (3.4) gives (n− 2)irr(G) > irrt(G).
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[10] D. Cvetković and P. Rowlinson, On connected graphs with maximal index, Publications de
l’Institut Mathematique (Beograd) 44 (1988) 29–34.
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[12] P. Erdős and T. Gallai, Graphs with prescribed degrees of vertices, (in Hungarian) Mat. Lapok.
11 (1960) 264–274.
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