
ZENANDTHEARTOF 
MODULAR ENGINEERING 

INFORMATICA 1 /90 

Keywords: modularengineering, modularization, 
softvvare 

Brian R Kirk MSc MBSC, 
Robinson Associates, United Kingdom 

Presented at the 1 ̂ ' lnt'1 Modula-2 Conference, October 12-13,1989 Bled-Yugoslavia 
INTRODUCTION THE PRODUCT 
As tirne passes computing components became an 
integral part of more and larger systems. The 
diagram shovvs our dilemrna 

I bcope 

v,^ * Com Comprehe^sion 

Extension 

The scope of what is requested seems only to be 
limited by what can be imagined. Somehovv as 
designers we must gain comprehension of ali the 
implications of the whole system in ali its states. 
And most taxing of ali we must provide accurate 
Solutions that support extensions to match the 
reguirements as they evolve. 

This paper offers an approach to coping with the 
dilemrna, the title encapsulates the concepts. 

Zen looking inside in a search for 
understanding 

Art a fine skill 
Modular separate parts designed to be 

cohesive 
Engineering designing and building practical 

machines 

A real product is used as an example of how 
modules and machines made from modules can 
provide reuse and extension of existing softw/are, 
even when there are difficult constraints on the 
implementation. 

The .objective of the paper is to pass on the 
experience learned vvhilst engineering a jarge real 
time softv\/are system. In particuiar the approaches 
used to divide and conquer the compiexity and 
inherent concurrency may be of interest to imple-
mentors of high integrity systems. In aH cases the 
pragmatic approach to the finding of practical 
Solutions is described. Thelanguage Modula-2 
has been used as the programming notation. It is 
now hard to conceive or believe that such a large 
system could have been created so effectively with 
any other available language. Particularly in a form 
that can be understood and extended with ease. 

Often it is necessary to update an existing product 
and give it a new image. In our čase the 
requirement was to take a paper-tape based multi-
axis machine tool and to match it to the current 
marketplace. The extensions included CAD, 
graphics, a file system, a printer, remote controlled 
operation - and aH this with either English, French, 
German, Italian and Russian interaction vvith the 
user - see Figure 1. 

The form of any design is a product of its designers 
interpretation of its requirements and constraints. In 
this čase the constraints were formidable ... 

1 the need to support ali existing functionality 
2 the impossibility of ali but minor modification to 

existing softvvare (some sources vjere lostl) 
3 the need for a reai-time response on the 

display, CNC, remote link and language 
transiation 

4 the need to interact in ad-hoc ways vvith 3 
existing computers 

5 only having a RAM memory of one third the size 
of the whole program 

6 the need to make aH the new softvvare resilient 
to power failure for continuous operation 

7 the Clienfs prior choice of DOS and GEM for 
filing, graphics and multi-tasking 

The completed softv\/are is large, it contains: 

3 programs vvith 15 overlays 
150 modules 
2000 messages each In 5 languages 
2 Mbytes of executable code 
30 Mbytes of source code 

It was developed by a team of 6 peopie over a 
period of 2 years. Had we realised initiailv the full 
scope of the requirements and the implications of 
the constraints we might never have started. Only 
the rigorous use of modular engineering concepts 
and carefully coordinated implementation in Mod
ula-2 by a team of professional softvvare engineers 
made the vvhole project feasible. 



MODULAR ENGINEERING 

Engineers anaiyse prbbiems using concepts and 
tiien synthesize tiieir solution by organising some 
physical form, in this čase the softvvare part of the 
system. The diagram shovvs the main criteria 

Abstraction 

*• Mechanism 

Oualitv 

The abstractions we use to analyse and model the 
problem have evolved over the past 40 years of 
computing, these include 

Names 

Macros 

Procedures 

Control Structures 

Classes 

for instructions, data and 
locations 
to encapsulate and reuse the 
text of sequences of instruc
tions or data 
to encapsulate and reuse 
sequences of instructions at 
runtime 
to encapsulate the fIow of 
control 
to encapsulate evolutionary 
definitions in a reusable and 
extensible way 

Modules 

Extensible 
Modules 

Delegating Objects 

to encapsulate vvhole compo-
nents, hiding Information and/ 
or ovvnership 
to encapsulate objects vvhich 
have statically related defini
tions 
to encapsulate objects vvhich 
are dynamically related and 
extensible. An object vvhich 
cannot provide a reguested 
method delegates it to another 
object vvhich can. 

Languages provide a means to express solutions to 
problems in terms of these abstractions, for 
example, Assembler, Algol, Simula, Modula-2, 
Oberon and Delegate. The trend in abstraction is 
tovvards an object oriented approach because this 
minimises the distance betvveen the problem and its 
programmed solution: "the solution is a simulation 
of the problem". In practrce we have found Modula-
2 an adeguate language for expressing both 
modules and delegating objects, vvhich are mes-
sage driven tasks consisting of modules. 

The mechanisms are simply ways of achieving 
something. For example in Figure 1, modules M5 
and M6 provide an interface betvveen various tasks 
in the two processors. In our first implementation 
M5 replaced the old graphics card driver and sent 
eguivalent messages to M6. This made it possible 
to reuse the vast majority of the original softvvare 

LOCAL USER 

t i 
REMOTE USER 

t i 
DISPLAV KEVBOARD 

REMOTE 
VVORKSTATION PRINTER 

^ FROM/TO 
*OTHER 

OBJECTS 

I ORIGINAL PRODUCT WITH"BUTTONS AND LIGHTS" — 

, FIGURE 1: NEW PRODUCT WITH GRAPHICS AND CAD. 

M10: Message Types 

SPY 

M1: DOS + BIOS 
Trademarks Acknowledged 



with minimal changes. Of course M6 completeiy hid 
the protocol and a rather nasty dual port RAM 
interface from aH the new softvvare. This technigue 
was much too slow in practice and was later 
repiaced by a set of records and update flags at 
agreed fixed positions in the shared memory. By 
using modules on each side to encapsulate the 
mechanisms it became possible to change the 
me<S;hanisrri separately from the rest of the systi3rn. 
We found that a good test for the quallty 6f a 
module's interface was to consider how much it 
vvould need to change if the mechanism it 
encapsulated but not necessarily the functionality, 
has to change. 

The quality of the implementation is the third main 
factor. Engineers differ from computer scientists in 
that they are faced vvith many practical constraints 
and exceptions yet their solution must be effective 
in actual use. For example the machine tool can cut 
diamonds and diamonds are valuable. The clients 
are not impressed by iarge diamonds that unfortu-
nately have the wrong shape due to software errors. 
About 15% of the modules we vvrote were test 
harness modules vvhich either exercised the 
modules under test or acted as dummy modules 
for uncompleted parts of the system. Sometimes 
vje vvrote modules to provide rough prototypes of 
parts of the system that vvere poorly specified or 
particularly difficult to achieve. By isolating these 
areas adeguate solutions v\/ere found quickly and 
the risk to the vvhole system minimised. 

Sometimes the structure or quality of existing 
softvvare was too risky to incorporate into the 
product. In these cases vve 'reverse engineered' 
the softvvare. This involved analysing the code to 
discover what the intended repuirements vvere, we 
then made the requirements seif-consistent. The 
softvvare was then redesigned in line vvith the 
system model, mechanisms and modules. This 
concept provides clean maintainable softvvare 
rather than horribly bodged incongruous coding - it 
aiso takes less effort. 

The system vvas constructed as a 'pile of machines' 
implemented vvith programs, processes and 
modules. Always striving to verify that the partially 
complete system had 100% correct functionality 
within itself. This policy of stepvvlse construction 
of the system provided visibility of progress, a 
practical means to assess quality and confidence 
for our Clients. 

CRITERIA FOR MODULARISATION 

The main reason that vve partition systems into 
subsystems and modules is to encapsulate our 
comprehension and thus extend our capabilities. 
This is achieved by using abstraction to separate 
out distinct parts of the problem. These abstrac-
tions are then implemented by building logfcal 
machines on top of physical ones to mechanise 
the abstraction in a form, and at a cost, vvhich is 
appropriate to the user. In the past the criteria for 
modularisation were influenced by the 'everything is 
a hierarchy' view of programming, latterly the use of 
'Information hiding' as a criterion has been much 

more useful. What is really needed is a set of 
criteria that maximise the separation of... 

Representation of Objects 

Relationships both 
Static and Dynamic 

Mechanisms 

At the same tirne vve wish to optimise 

ease of comprehension 
ease of development by teams 
flexibility for extension possibilities 

Perhaps the fundamental criterion is that each 
separate part, be it active, object or component 
module, should be testable. If It is not certain that 
something can be tested before it is built then there 
is little point in building it because there is no 
possib!!!ty for oualftv assessment or control. 

Looking back on our projects vve can nov/ see the 
actual criteria that have been most effective, they 
include encapsulatlon of reuse, adaption, concur-
rency, consistency and mechanisms. 

REUSE 

It is a fact of life that reuse of what already exists is 
often essential. Usually the reason is short-term 
economic optimisation (this is rarely justified in 
practice!) but sometimes it is just not possible to 
relmplement old parts of a new system because 
there is not enough time or the knovvledge is no 
longer available. In any ease if a product is stili 
'alive' it certainly will need to be extended to match 
its behaviour and performance to the evoiving 
needs of its users. This needs to be done vvith 
minimal modification of existing parts but the aim is 
to inherit the functionality and system model from 
the existing system. Unfortunately the mistakes 
and constraints are aIso inherited, the main 
disadvantages of standardization. 

There are some ciassic examples of reuse in Figure 
1. The vvhole of the old inachine software is reused 
except for two modules that provide a nevv interface 
to the softvvare extensions, eg module M5. More 
typical ones are M1 and M2 vvhich provide 'cleaned 
up' interfaces to DOS and GEM. Indeed GEM 
provides both graphics and multiprogramming 
scheduling machines built on-top-of DOS. The 
GEM constraints of supporting only 4 programs (not 
tasks) and of round-robin scheduling ŵ ere inherited 
by the system and distorted its form, reducing 
productivity. 

ADAPTION 

When creating Iarge systems it alv\/ays pays to 
make the softvvare part as portable as possible. 
Conventionally this is done by providing 'device 
driver' modules vvhich abstract away particular 



physical characteristics at the lovvest level and 
offer a clean logical softvvare interface instead. 
The Client modules then use the clean interface so 
making It portable and aiso improving the flexibility 
for hardvvare machine choice. Typically these 
modules are hidden in 'the BIOS' but any new 
devices can have their drivers written In Modula-2. 

Modules M3 and M4 are good examples in practice. 
M3 extends the normal DOS keyboard driver to 
support the storing of a keyboard history and aIso 
the alternative keyboard layout and coding needed 
to support Russian. Module 4 had to be rewritten to 
match a non-standard graphics display controller. 

CONCURRENCV 

The seguential instruction by instruction execution 
of programs by CPUs has unfortunately led 
generations of programmers to presume that 
concurrency does not exist. They inherently try to 
coerce the concurrency of the problem into a single 
stream of CPU instructions. The liberation from this 
mental straight-jacket is inherent in data flow 
diagrams vvhich show the flow of information 
betvveen processing activities. Their use has 
broken the curse of the flovvchart vvhich deems its 
ušes to think only in terms of sequential control flow. 
Figure 1 takes the concept of a DFD further, it 
shows the flow of information betvveen naturally 
concurrent objects in the system, be they logical or 
physlcal objects. By initially analysing the problem 
in terms of the concun^ent objects it contains we get 
some very clear benefits ... 

1 the implementation can be a simulation of the 
problem 

2 the objects can be allocated to or shared 
betvveen the processes/processors depending 
on their individual performance needs of 
throughput and response time 

3 once the shared modules and interfaces 
betvveen objects are defined and designed the 
implementation of the objects can be developed 
separately by members of a team 

4 synchronlsation and communication betvveen 
objects can be optimised separately to suit the 
needs of the objects, see modules 5 and 6, 8 
and 9 later 

5 the system can be constructed incrementally by 
providing dummy objects as 'stubs' 

Creating a concurrent-object-information-flow-dia-
gram as the 'top' level of the analysis and design 
process gives a clear overvievv of the vvhole system. 
It Is the equivalent of the hardvvare engineers 
'system block diagram' and the architects initial 
building design sketches, nothing really nevv. 

Figure 1 provides many examples. The soft shapes 
enclose the logical objects in the system and the 
arrows the information flovvs. The objects are in fact 
allocated processor time in a varlety of ways 

In the original product each has its own 
processor 

in the extended product they share 3 tasks on 
another processor. The objects share the tasks 
but were originally vvritten and tested separ-
ately, during optimisation they vvere coalesced 
to save memory overheads 

time critical objects such as timers are activated 
physically by CPU interrupt events 

To provide the quasi-concurrency that the objects 
require the modules M1, M2 and M10 are used. M1 
provides a clean interface to DOS and M2 multi-
plexes DOS to create 3 separate program environ-
ments. M10 provides datatype definitions for 
messages sent betvveen the programs. Note that 
this module requires special version control treat-
ment because it is shared by separate programs, if 
it is changed then aH programs that use it need to be 
remade. it is noteworthy that no 'real time' 
operating system was used, objects being either 
co-operatively scheduled or event diiven by real 
time events depending on their needs. 

CONS!STENCY 

The possibillty for automating consistency checking 
is perhaps the greatest benefit of using non-
permlssive languages, 'C and Assembler are 
permissive! Pascal Introduced strong data type 
checking, Modula-2 has introduced the possibility 
of explicit control of visibility of module contents 
combined with an environment vvhich automates 
inter-moduie consistency checking at both compile 
time and run-time. Even greater support is needed 
vvhen modules are shared betvveen separately 
compiled programs because a change made to 
satsfy one program may have nasty knock on 
effects vvhich are inconsistent for the other 
programs. We tackied this problem by extending 
the PVCS Version Control system using batch 
command files to automate the consistent updating 
cf modules shared betvveen programs. 

There are some examples of modules vvhich 
enhance consistency in Figure 1. Module M10 
contains a set of datatypes vvhich define the format 
of messages passed betvveen objects in the system. 
Variant records are used to overlay data of differing 
types over the same memory area. The generic 
data format Is consistent vvith existing GEM 
messages so that nevv message formats become 
extensions to the exisling ones. Module M6 
contains a set of datatypes vvhich define records 
in a shared dual port memory. It aIso hides access 
procedures vvhich provide a synchronised read/vvrite 
protocoi vvith the Command Panel Processor, 
guaranteeing consistent atomic access to each 
vvhole record of fieids. Incldentaiiy static compile 
time checking was helpful but we aIso found 
that dynamlc runtime type checking of both 
subrange values and enumeratlon values was 
essential. The reason for this is that the other 
processor and its interface module M5 vvere 
programmed in assembler code, of course vvithout 
compile or runtime type checking. By having the 



benefit of runtime checking in tiie extended softvvare 
it was possible to quickly detect and locate errors in 
tlie existing system. 

By using these techniques it is possible to 
guarantee consistency at a system level even 
betvveen modules shared by programs on the 
same processor or with 'foreign' modules on other 
processors. Much of the existing softvvare vvas 
written in 'C; by putting a veneer of Modula-2 over 
it it became possible to maintain strong type 
checking. 

OVVNERSHIP AND MECHANISMS 

Perhaps the most povverfui criteria is that of 
ovvnership. Here the concept is that the module 
ov̂ n̂s a mechanism such as how a filing system is 
structured or hov/ a protocol vvorks. The interface, 
or extemal visibility, of the mechanism is minimised. 
Its clients are only informed of its Information and 
services on a 'need to knovv' basls. When trying to 
partition a system, an object or program for 
modules, the main criteria are not only to encapsu-
late the ovvnership of mechanisms and/or Informa
tion but aiso to guarantee that its behaviour and 
performance can be verified. If modules are vvell 
designed in this way then the mechanisms can 
evolve to meet the requirements vvith minimal 
changes to the client modules. The underlying 
architecture of objects, programs and module 
relationships should be resilient to particular 
choices of mechanisms chosen for an implementa-
tion. 

Nearly every module shovvn in Figure 1 ovvns a 
separated mechanism. Module M7 ovvns the 
mechanism for converting to message values into 
a text string In either Engllsh, French, German, 
Italian or Russian. Inltially the string vvas searched 
for In a ilnear way from fIoppy disk, just to get a 
prototype vvorking quickly. Of course the mechan
ism vvas not fast enough for an Interactive graphics 
based product. The implementation module vvas 
redesigned and revvritten 3 times, each tirne vvith a 
faster mechanism until the product performance 
goals vvere achieved. The definition module and 
client modules did not change at aH. 

Another pair of modules, M8 and M9, ovvn the inter-
processor protocol used to rellably convey com-
mands and Information betvveen the machine and a 
remote vvorkstation. The modules vvere vvritten and 
exhaustively tested in isolatlon from the system. 
The protocol vvas specified as a finite state machine 
and implemented using a ČASE statement and a 
variable of an enumerated type to represent the 
state. The list of meaningful names in the 
enumeration type made possible the creation of a 
readable program which could benefit from strong 
type checking. To improve the performance of the 
remote channel the mechanism for activating the 
protocol was changed from 'application polling' to 
'timer event' activation. Once agaln this vvas 
achieved vvithout aitering the client modules. 

BENEFITS OF THE EXPERIENCE 
1 Partitioning by concurrency of objects leads 

to a very clean system design 'the solution is a 
simulation of the problem'. 

2 The most useful criteria for modularisation are 
reuse, adaption, concurrency, consistency and 
ovvnership of mechanisms. 

3 It is important to separate out parts that are 
likely to change often, such as the user dialog 
text. 

4 Stepvvise refinement is relevant to improving 
mechanisms vvithout changing their functlonal-
ity. AIso product specifications evolve dyna-
mically and it is necessary to consciously adapt 
and refine the program architecture to suit the 
new facilities required. 

5 Modula-2 is an excellent language for engin-
eering large systems In a contolled way. It Is 
flexible enough to express both object orlented 
and structured programming concepts. It pro-
vides for both complle and runtime checking. 

6 Speciallsed languages like SmallTalk vvould 
have been inappropriate for the solution; 
languages like 'C are just too inherently lax 
and unreliable for such large projects. 

7 The problem of controlling the integrity separate 
programs vvhich share modules can easily be 
solved in the development environment. 

8 Designing the system as a " pile of interacting 
machines" provides for great productivity, 
flexibility and portabillty. 

ACKNOWLEDGEMENTS 
Prof N VVirth - for separating out the concepts 
B B McGibbon, S Doyle, J Teague - for help wilh system design 
D Gifford, T Harris, D Fox - for reliable programming 
C Dlegez, P Zanolari, IVI Wal<ely - for modifying the existing parts 
Dr B Schumacher, K Pferdekaemper, P Locati, M Bertoll - for 
project direction 
J VVoodhouse, S Doyle, G Luker - for typesetting. 

REFERENCES 
1 Dijkstra E W. May 1968' 

"The structure of the 'THE multiprogramming system" 
Comm of the ACM, ^^5. Voi11. 

2 VVirth N, April 1971 
"Program Development by Stepvvise Refinement" 
Comm of the ACM 

3 Pamas D L, Dec 1972 
"On the criteria to be used in Decomposing Systems Into 
Modules" 
Comm of the ACM 

4 MaruichI, Uchiki and Tomoro, 1987 
"Behavioural Simulation based on Knovvledge Objects" 
Dept Electrlcal Engineering, Keio University, 3-14-1 
Hiyoshl, Vokohama 223, Japan 

5 Stein L A, Llebermann H, Ungar D, 1989 
"A shared vlew of sharing: The Treaty of Orlando" 
Object Oriented Concepts ... ISBN 0-201-14410-7 
Addison Wesley 


