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Abstract. In this paper, we present a new efficient algorithm for reconstruction of nonintersecting
3D curves from a sufficiently dense sample. We use the Euclidean minimal spanning trees to identify
line segments reconstructing curve shapes. To deal with more than one curve in a sample and to
eliminate noisy data, we introduce chains of connected line segments. With the incremental growth
based on heuristics, the chains contain finally curve shapes. The method is robust and fast for both

2D and 3D curves.
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Rekonstrukcija prostorskih krivulj s pomocjo evklidskih

minimalnih vpetih dreves

Povzetek. V c¢lanku predstavljamo nov ucinkovit al-
goritem za rekonstrukcijo prostorskih krivulj iz dovolj
gostega vzorca. S pomocjo evklidskih minimalnih vpetih
dreves pois¢emo tiste daljice, ki rekonstruirajo krivuljo.
Za delo z ve¢ krivuljami v vzorcu in odstranitev tock Suma
uporabljamo strukturo, ki jo imenujmo verige povezanih
daljic. 7 inkrementalno rastjo, ki temelji na hevristiki,
dobimo v verigah iskano rekonstrukcijo krivulj. Pred-
stavljena metoda je robustna in hitra tako pri rekonstruk-
ciji ravninskih kot tudi prostorskih krivulj.

Kljucne besede: oblak tock, rekonstrukcija krivulj,
evklidska minimalna vpeta drevesa

1 Introduction

Suppose that a cloud of points obtained by sampling
of a collection of arbitrary 3D curves is given. The
number of curves is not known. A curve sample in
general does not contain the same number of points
and the distribution of points in a sample may vary.
If the sampling is dense enough, it is an easy task
for the human to find these curves and perceive their
shapes. For a computer, however, the task is much
harder. From the cloud of points, the computer must
find those points that belong to the same curve and
then to sort them in a correct order, compatible with
the original trace of the curve. In this case, the curve
is reconstructed.
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There are many known methods for curve recon-
struction in the plane [1, 3, 4, 8-10, 12-14, 18]. Most
of these methods are based on the Delaunay trian-
gulation, therefore, they do not work or run much
slower if a 3D curve has to be reconstructed. Excep-
tions are methods presented in [1] and [8]. In [1], the
curve reconstruction is given by a travelling salesman
route while the reconstruction in [8] is based on the
nearest neighbour graph [17]. Therefore, we search
for a solution of reconstruction of 3D curves in the
graph theory. In contrast to [1, 8], we focused on the
minimal spanning trees, which were used in the early
seventies for pattern recognition and cluster analysis
[19, 11]. The advantage of minimal spanning trees is
in their independence on the space dimension where
the sample is given, and in relatively simple algo-
rithms for their computation. In [2], methods [1, 3,
4, 8-10, 13] are classified as algorithms with guaran-
teed performance, i.e., algorithms that provably re-
construct curves under certain assumptions. In [13],
the formal proof can be found that the Euclidean
minimal spanning trees correctly reconstruct diffe-
rentiable arcs from sufficiently dense samples. The
correct reconstruction, also called polygonal recon-
struction, G(S, I') of a sample S with respect to a
collection of the nonintersecting curves I' is defined
as a graph G with the vertex set S having exactly
those edges that connect sample points adjacent in
I [3, 8, 14]. In this paper, we use the definition for
a dense sample given by Figueiredo and Gomes [13]:
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a sample is sufficiently dense if there is a real posi-
tive number ¢ such that no two consecutive sample
points are more than e apart and closed discs of the
radius ¢, centered at the sample points, form a tubu-
lar neighbourhood of the single curve C.

It is clear that the Euclidean minimal spanning
trees cannot give the correct reconstruction of a col-
lection of nonintersecting curves without additional
heuristics since the polygonal reconstructions of indi-
vidual curves are connected to each other with edges,
which Figueiredo terms bridges (see Fig. 1b). Only
if all the bridges are eliminated, the correct recon-
struction of sample S is given. To do that, we in-
troduce a structure we term a chain of connected
line segments. This is a list of line segments giving
the correct reconstruction of one curve sorted in the
right order. With special criteria for adding a line
segment to the chain, we achieve that all the bridges
form their own chains, which have to be eliminated
at the end of the reconstruction process. The chains
of the connected line segments are not only used to
give us the correct reconstruction of single lines, but
also to reduce the noise significantly. The paper is or-
ganised in seven sections. In Section 2, we introduce
the Euclidean spanning trees as a possible solution
of the curve reconstruction and problems connected
with it. A chain of connected line segments with its
incremental growth and corresponding heuristics is
presented in Section 3. In Section 4, we consider the
handling of closed curves and noise reduction. The
procedure for speeding up the reconstruction process
is described in Section 5. The experimental results
are shown in Section 6 and the last section presents
a conclusion.

2 Euclidean minimal spanning trees

The computation of the correct reconstruction of
curves, i.e. G(S, I'), is possible only if a sufficiently
dense sample determined by the Figueiredo-Gomes
criterion is given [13]. In this case, the sample is
called an e-sample. The correct reconstruction G(S,
') is not only a graph having the same topology as
the curve, but its vertices are the points lying in
the plane or space and the edges are line segments
connecting the points into the polygonal approxima-
tion of the curve. Therefore, G(S, I') is also a geo-
metric graph. If we introduce line segment lengths
in G(S, ') as weights of its edges, the graph G(S,
I') becomes a weighted geometric graph. The min-
imal spanning tree (MST) for a weighted graph is
a spanning tree for which the sum of edge weights
is minimal. The geometric version of the minimal
spanning tree is called the Fuclidean minimal span-
ning tree (EMST). In the early seventies, EMST was

used for solving of the particle track problem, where
the shape of a single curve in a noisy sample had
to be found, and for a cluster analysis [19, 11]. Fi-
nally in [13, 1], we can find the formal proof that
the Euclidian minimal spanning trees can correctly
reconstruct differential arcs from a sufficiently dense
sample. Although Figueiredo considers only plane
curves, his proof can easily be extended to 3D curves.
This is not surprising since Zahn pointed out already
that the Euclidean minimal spanning tree could be
used in higher dimensional spaces or, in fact, in gene-
ral metric spaces [19]. Besides, the minimal spanning
trees are interesting because they are well understood
and easily computed. In this paper, we use the sim-
plest but by far not an optimal algorithm for com-
putation of the minimal spanning tree - the Kruskal
algorithm [7, 16]. If G(S, I') is a geometric graph,
the Kruskal algorithm [7] returns the edges of the
Euclidean minimal spanning tree. The first step to
obtain EMST for a sample S is to generate the geo-
metric graph G(V, E), where V are the points of the
sample S and E are line segments connecting those
points. Next, the algorithm for computing the min-
imal spanning tree has to be started to obtain the
line segments reconstructing the curve shape. If S
is a dense sample of an open single curve C; EMST
returns all the edges forming correct reconstruction,
but generally, we have to find their correct order. If
S is a sample of several nonintersecting curves, how-
ever, the problem is much harder. With EMST, we
get a set of the line segments that reconstruct the
shape of curves. Then, we have to classify which line
segments belong to which curve and finally the cor-
rect order of lines has to be determined. The sample
of nonintersecting curves and the corresponding set
of the line segments obtained by EMST can be seen
in Fig. 1.

In Fig. 1b, the line segments 1-5, which are a part
of EMST, are marked, but they are not a part of the
original curves. Figueiredo calls those line segments
bridges and they have to be removed in order to get
the correct reconstruction. He proposes the same
method Zahn already mentioned in [18]. Those line
segments are removed according to the combination
of their lengths and the degree of their edge points,
where the degree of a point is given by a number
of line segments meeting at that point. This works
well if only the sample of one curve with noisy data
is given or if the lengths of the line segments, rep-
resenting the correct reconstruction, are nearly the
same. In Fig. 1b, the problem of the bridge removal
is much harder. The bridges 3 and 5, for example,
cannot be removed according to the Zahn criterion
because they are shorter than the line segments re-
constructing the ellipse and their endpoints do not
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Figure 1. Implementation of EMST in the curve reconstruction: a) Sample of nonintersecting curves, b) Set of the

line segments obtained by EMST with marked “bridges”

have degrees of 3 and 1. To solve similar problems
and to efficiently classify the line segments to appro-
priate curves, we propose a structure we have named
a chain of connected line segments.

3 The chain of connected line segments

The chain of connected line segments is a sequence
of equally oriented vectors v;, where the end point of
the vector v; is at the same time the starting point of
the vector v;11 (see Fig. 2). The direction of the vec-
tor v; is defined by the sequence of vertices defining
the line segment i, accepted by the algorithm for com-
puting EMST. The requirement for the same orienta-
tion in the chain assures that the points belonging to
the same polygonal reconstruction are sorted in the
right order. In the reconstruction of the sample of
several nonintersecting curves, each chain represents
one of the curves.

o points of the degree 1
o points of the degree 2
¢ e points of the degree 3

Figure 2. Degree of vertices of EMST with chains of
connected line segments

The chain of connected line segments is built
incrementally by adding new lines to the existing

chains, since there are usually more than one chain
in the reconstruction process. The line segments, ac-
cepted by the algorithm for computation of EMST,
have to be sorted in the increasing order according
to their lengths. This is done automatically by the
Kruskal algorithm [7], but they have to be sorted
first by other minimal spanning trees generation al-
gorithms. Since their number is relatively small (n
- 1, where n is the number of points in the sample)
regarding to the number of edges in E, the sorting
does not represent a significant time lost.

The chain orientation helps us to define a starting
vertex and an ending one of the chain. Only those
two vertices in the chain can have the degree 1 while
all the others have the degree 2 at least. Therefore,
a new line segment can be added to the chain only if
it has one common vertex at the beginning or at the
end of the chain and its degree is 1. In other case,
the line segment generates a new chain. When the
line segment is added to the chain, the degree of their
common point is increased by 1. The chains, whose
starting and ending vertex have the degree greater
than 1, are attached to another chain and usually
represent bridges or noisy data. This can be seen in
Fig. 2, where four different chains of connected line
segments can be seen. The degree of one from the
border vertices of the chains co, c3, and ¢4 is larger
than 1 and, therefore, the chains represent a noise.

We have already mentioned that many chains of
connected line segments can be generated in the re-
construction process, since they are built incremen-
tally by adding edges of EMST. Two of the existing
chains are combined into a single one if the line seg-
ment is added whose endpoints belong to both of
these chains where the orientation of the chain with
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shorter edges is preserved. The described procedure
can be seen in Figure 3.

procedure AddLineSegment (1){
i=0; // find the appropriate chain
while (i<number of chains and not Found){
if the line segment 1 can be
added to i-th chain then{
Found = true;
if any of two chains can be merged then
merge chains;

else
i++; // find a new chain

if not Found then
generate a new chain containing 1;

Figure 3. Algorithm for adding a line segment to a current
chain structure

In the algorithm in Fig. 3, the condition the line
segment [ can be added to i-th chain can be found.
This condition guaranties that all the bridges and
noisy line segments generate new chains. The sim-
plest condition, proposed already by Zahn [19], for a
line segment to generate a new chain is the degree
of its endpoints. If the degree of at least one of the
endpoints is greater than 1, the line segment has to
be added to a new chain. Although this criterion
works fine in most cases, the algorithm for calcula-
tion of EMST can accept a bridge that connects two
curves/chains of the connected line segments in their
edge vertices. In this case, the line segment is ac-
cepted due to this simple criterion since the degrees
of endpoints of such line segment are equal to 1 (Fig.
4).

Figure 4. Bridge connecting two chains in their edge ver-
tices

We have observed that such line segments are
usually much longer than the line segments already
accepted to the chain. Therefore, a logical criterion
for rejection of a particular candidate besides the
degree of its endpoints would be its length. If the line
segment is too long according to the line segments
joined into the chain, it is not accepted. But as it

has turned out, it is very hard to say when the line
segment is too long. If, for example, we compare the
length of the candidate to an average length of line
segments joined into the chain and their standard
deviation, the criterion is too hard and the curve is
split in two or more parts. If, on the other hand, we
employ the multiple of that average as the criterion,
all the bridges may not be removed if the multiplier
is not chosen correctly. What makes the problem
even harder is the fact that the right multiplier value
depends on the number of the line segments in the
chain and varies from case to case. Hence, we rather
observe a change in the angle between two neighbour
line segments instead. In our case, I' is a collection
of isolated points - noise and smooth curves that are
pairwise disjoint, where the single curve ~ given by
the vector function c(u), u € [0, 1], is smooth if ¢’ (u)
is continuous and nonzero in [0, 1]. Therefore, the
sudden change in the angle between two neighbour
line segments cannot occur [1]. Consequently, such a
change indicates the bridge that has to be removed
(Fig. 4). To perceive the change in the succes-
sive angles between neighbour line segments, we use
the next recurrence equation for the sample variance:

1 . )
822—1—1 = <1 - ;) 3?+(Z+1)(M¢+1—‘LL¢)2,’L =12,..,n—1
(1)

where s? = 0, u; and p;41 are two successive values
of the sample mean, calculated by the following
recurrence equation:

Vi41 — Ms

i =1,2,.,n—1 (2
Z+1 ? ? » = 7n ()

Mit1 = ps +
where p1 = a; and v;(v; = ;) is an angle between
the vectors r; (r; = pi—1 — pi) and riy1 (rip; =
Pi+1 — Pi), see Fig. 5.

Figure 5. Angles between neighbouring line segments in
a chain of connected line segments

As it can be seen in Fig. 5, the angles between
neighbouring line segments denoted by «; change
slowly. Hence, the small change of the variance calcu-
lated by Eq. 1 occurs. It is not so if the line segment
[ were added to the chain. The angle g differs much
from the other angles in the chain, which causes a
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large change of the variance (more than 500%), there-
fore, the line segment [ has to be rejected to prevent
that. After the line segment is accepted in an existing
chain, we have to adjust the orientation of a vector
defined by the order of its endpoints. The verification
of suitability of line segments and orientation adjus-
ting of the appropriate vector can be done by a single
function, shown in Fig. 6.

bool AddLineToChain(i, 1){

i: an index of the chain to which the line
1 may be added

1: a line segment defined by the endpoints

(p,a)

if valid common edge between the line 1 and
the start or the end of the chain i then{

calculate the angle o between the line 1
and the border line segment;
if o changes the dispersion of
the chain too much then
return false;
if common edge is q then
reorient the vector defined by (p,q);

add the line 1 to the beginning or

the end of the chain;

increase the number of accepted line
segments in the chain;

update the length of all line segments;
return true;

return false;

}

Figure 6. Algorithm for testing suitability of a line seg-
ment

After all edges of EMST have been examined, the
set of chains of connected line segments is obtained.
This set of chains represents the basis for the re-
moval of bridges and handling of connected curves,
described in the next section.

4 Reconstruction from noisy data and
reconstruction of closed curves

With the introduction of the chain of connected
line segments, the problem of noisy data becomes
the problem of identifying noisy chains. By the
identifying of noisy chains we suppose that a number
of noisy points is much smaller than the number of
curve sample points. Because we use the EMST,
the noisy points are also connected by the line
segments, which form the chains of connected line
segments by themselves. Beside these chains we have
to remove, there are also chains, which are formed
by bridges. Both types of chains are much shorter
than the chains reconstructing the shape of curves.
Therefore, the criterion for the removal of noisy
chains is based on their length, where the length is

defined in the number of line segments forming it.
As we have searched for a procedure to separate the
noisy chains, from the chains that most probably
reconstruct the curves shape, we observed, that in
general the majority of the chains is much shorter
than the few ones we are looking for. To separate
them, we calculate the average length of the chains,
denoted by E(N), and the standard deviation of
these lengths, denoted by on. E(N) is calculated by
the equation:

1 m
BN) = 3N (3)

where m is a number of the chains of connected
line segments and N; is a number of line segments
forming the chain . oy is determined by:

m

> (N — E(N))2. (4)

i=1

1

oN = | ——
m—1

The chain 4 is removed if the following condition is
true:

Ni <mlH{E(N)+O'N3 Nmax_zo'N}a (5)

where N4, is the maximal length of the generated
chains. If the curve samples have approximately the
same number of sample points, the condition N,,q, —
20N works just fine, but if this is not the case, the
relatively much shorter chains are wrongfully rejected
as a noise. To prevent that, we have expanded the
condition with E(N) 4+ on as seen in Eg. 5. The
result of the noise reduction procedure on the point
sample shown in Fig. la can be seen in Fig. 7.

The problem of determination whether the
polynomial reconstruction has to be closed or not is
present in all methods, where both open and closed
curves have to be reconstructed at the same time.
Reconstructing the curve shape by EMST makes
this dilemma even harder since the closing edge
cannot be a part of the obtained reconstruction. In
literature, we can find several heuristics to determine
when the curve has to be closed [13, 19]. We use the
similar criterion Zahn did [19], but it is simpler and
more accurate with regard to chains of connected
line segments. Because of the orientation of the
chain of connected line segments, we exactly define
the starting and the ending vertices of the chain.
Similarly as Zahn proposed [19], we connect them if
the distance between them is not too long, but their
degrees have to be equal to 1 at the same time. The
edge vertices are connected if the following condition
applies:
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d < E(L)+ oy, (6)

where d is the distance between edge vertices, E(L)
is the average length of line segments in the chain
calculated by Eq. 2 and o, is the standard deviation
calculated by:

oL = Si, (7)

where s? is the current dispersion of the lengths of
the line segments included in the chain calculated by
Eq. 1. The result of the described procedure can be
seen in Fig. 7.

Figure 7. Elimination of noisy data and handling of closed
curves

Similarly as the EMST, the above described pro-
cedures for the removing of noisy line segments and
handling of the closed curves can also be used in
higher dimensional spaces without any additional
computational time requirements. Apart from this
fact, the time requirements of the algorithm must
be reduced before it is fit to reconstruct curves from
large samples. This procedure is described in the
next section.

5 Computing time reduction

Nevertheless, which algorithm for generating mini-
mal spanning tree we use, the computational time
needed for the MST generation depends on the num-
ber of edges in the starting graph. In our case, we
start only with a set of points, therefore, the edges
have to be generated. In order not to miss one,
we connect all points with each other, what makes
n(n — 1)/2 edges where n is the number of points in
the sample. Only the small number of those edges
is needed to generate the minimum spanning tree,
therefore, decreasing the number of those edges in the
initial graph reduces the computational time of the
reconstruction. If the long edges are eliminated, the

result of reconstruction is still valid since the edges
reconstructing curves are shorter than others. To es-
timate which edge can be eliminated, we use a recur-
rence formula for the mean edge length calculation
(Eq. 2). To get the first approximation of the edge
length average, all the edges meeting at an arbitrary
point in the sample are taken. After that, only those
edges are accepted as the candidates, whose length
is shorter than the average length. Since the equa-
tion for the mean value calculation is recurrent, the
mean reduces with each accepted edge and even more
edges are eliminated. In our tests, more than 90% of
initial edges in the noisy examples were eliminated.
The reduction of the computation time is immense
and because only long edges are eliminated, the re-
sult of the curve reconstruction remains unchanged.
In the next section, we will present experimental re-
sults of reconstruction of 3D curves together with the
computational time analysis.

6 Experimental results

The described algorithm for the curve reconstruction
was implemented and the results are good either if a
collection of 2D or 3D smooth curves has to be recon-
structed. Since the most of the existing methods are
based on Voronoi diagrams, for example [3, 9, 10],
they are more efficient in the reconstruction of 2D
curves. We compared our results with the ones of [3,
8, 9]. The reconstruction of a collection of smooth
2D curves was in our case similar to other methods
mentioned above. But, if a set of both open and
closed curves has to be reconstructed, results of our
algorithm is more accurate. We must add here that
the results of reconstruction in [9] depend on the se-
lection of the value of parameter p and are almost
identical to ours if p is selected correctly. Similarly,
we get the identical results as Dey and Kumar [8] by
reconstructing an implicit curve helix, but our com-
putation of MST in 3D is simpler than the one of the
nearest neighbour graph [17] and it is independent of
the space dimension. Besides, the method from [§]
is also less accurate if the collection of curves has to
be reconstructed. In comparison to [1], based on the
travelling salesmen problem (TSP), the reconstruc-
tion result of a single smooth curve was similar. In
the reconstruction of a single closed curve with sharp
corners, however, the method from [1] was superior
although, currently, it is not capable to reconstruct
the collection of curves. Additionally to [1], we also
studied various TSP heuristics given in [6]. Although
those heuristics give fast T'SP tours that can be used
to reconstruct curves, a comparison to our algorithm
in their original form is not possible since they can
be used only to reconstruct a single closed curve and
they connect all points in the given sample, including
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the noise, into a single shortest tour. We also con-
sidered tests presented in [2] according to which the
reconstruction results using TSP heuristics are not
as good as those achieved with [1]. Our results of
a single smooth curve are also equal to those of [13,
19], but the heuristics in [19] are too weak to elimi-
nate all bridges if more than one curve has to be re-
constructed, therefore, some curves can be wrongly
reconstructed as a single curve. In examples with
the noise, the error in reconstruction with [13, 19] is
even larger. Although we add heuristics to the algo-
rithm that originally provably reconstruct the single
smooth arc in order to distinguish between particular
curves in the sample and to eliminate the noise, the
reconstruction results in our experiments remained
still close to the results of algorithms with guaranteed
performance. In the worst case, if some of our heuris-
tics fail, a curve can be broken in two or more parts
and shorter parts can be then eliminated as a noise,
but the parts that remain due to [13] provably recon-
struct the shape of a curve as long as it is smooth.
The described procedure was tested mostly on the

Figure 8. Reconstruction of some curves: a) Noisy sample
of isoparametric curves on a hemisphere, b) Noise reduc-
tion around a hemisphere, ¢) Sample points of two helixes
and a helispiral with noise, d) Noise reduction around the
helixes and helispiral

combination of 2D and 3D B-spline curves and some
geometric primitives such as a circle and an ellipse
(Fig. 7). For testing reconstruction of 3D curves,
we used isoparametric curves of B-spline surfaces of

a degree not higher than 3. None of control points
was doubled or tripled to guaranty a smooth surface.
Additionally, we tested the reconstruction algorithm
on some smooth frequently used solids such as cylin-
ders, spheres, and ellipsoids (Fig. 8a). We also tried
to reconstruct some implicit curves such as helixes
and helispirals [15] (Fig. 8c). In all cases, we added
a uniformly distributed random 3D noise in the curve
neighborhood to test its effect on the reconstruction.
As it can be seen, we eliminated all the noisy points
in Fig. 8d, whereas we cut off the majority of them
in Fig. 8c. The reconstruction result is good even
if a noisy point touches a curve sample. Indeed, in
this case, sample points close to the noisy point were
removed as a noise, but the majority of curve sam-
ple points was correctly assigned to a curve recon-
struction (Fig. 8b). Thus, we can conclude that the
random noise has only a local effect on the curve re-
construction.

Additionally to artificially generated examples,
we tested our algorithm on a cloud of points obtained
by shoe last digitization. Similarly to the previous
tests, we added a random noise (Fig. 9a). In the
cloud of 3D points, we tried to remove noisy points
and to identify the cross-section curves. The results
were satisfiable but not as good as by other tests. Be-
cause the cloud of digitized points usually does not
form an e-sample due to the geometry of digitised
objects and the used digitisation technique, the re-
construction is more sensitive to a random noise than
other examples. Although again all noisy points were
eliminated, some good points were lost as well (see
Fig. 9b).

The algorithm for curve reconstruction was tested
on the AMD Athlon 64 3000+ personal computer
with 1GB of RAM. The computation time needed
for the reconstruction of the examples shown in Figs.
7 and 8 can be found in Table 1.

Object No. of CPU
sample  time [s]
points

Coll. of plane curves (Fig. 7) 119 ~0

Two helixes and a helispiral 3308 1.016

Hemisphere 4101 1.599

Shoe last 9151 8.120

Table 1. Computation time for the reconstruction of

above presented examples

Although the presented algorithm generates
larger gaps in some of the cross-section curves of the
shoe last, it still can be useful to find the cross-section
planes in the cloud. This information can be used to
classify previously removed points of the cloud to the
appropriate plane and, then, to run our algorithm for
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Figure 9. Reconstruction of cross-section curves: a)
Cloud of 3D points obtained by shoe last digitisation,
b) Cross-section curves ound in the cloud

each cross-section plane separately. In spite of the
fact that the time required for such a reconstruction
would be much higher than the current reconstruc-
tion time, the use of such reconstruction would still
be reasonable if, in the cloud of 3D points, much
noise were present and the cross-section points were
non-uniformly sampled.

The time complexity of our algorithm is tightly
connected to the time complexity of the algorithm for
generating the minimal spanning tree. In our imple-
mentation, we used the simplest of these algorithms
- Kruskal algorithm whose computational complexity
is according to [7] O(n? log n), where n is the num-
ber of vertices. In the previous section, we already
mentioned that n(n—1)/2 edges are generated. Since
the most of the edges are eliminated due to the op-
timisation criterion described there, the time com-
plexity for the computation of the minimal spanning
here is the same as above but with much lower con-
stant. As a result, we get n - 1 edges that have to
be assigned to an appropriate chain of connected line
segments. Thus, we have to calculate something less
than n - 1 angles between each by the MST accepted
line segments and the chain to which the line segment
can be added. At this occasion, also the average value
of angle values between two neighbour line segments
in the chain and their deviation has to be calculated
by fast formulas (Eq. 1 and Eq. 2). The described
procedure takes O(n) time. At last, the noisy chains

have to be removed. For each chain of connected line
segments, their average length and standard devia-
tion have to be calculated, which again takes O(m)
time, where m is the number of chains, usually much
smaller than the number of edges in MST. Since in
the same step, we can also close the chain, this part of
the algorithm does not require any additional time.
Thus, the complexity of the algorithm for computing
MST was not essentially changed by our supplement
and the computational complexity of our algorithm
remains O(n? log n). The complexity of the whole
algorithm for curve reconstruction depends entirely
on the complexity of the algorithm for computation
of MST. From Table 1, it can be seen that our algo-
rithm is already fast, but it could easily be quickened
by implementing a faster algorithm for the MST cal-
culation given in [5].

7 Conclusion

In this paper, we presented a new method for curve
reconstruction based on the minimal spanning trees.
The ability of minimal spanning trees to describe the
shapes of smooth curves had been already observed
in the early seventies. With the heuristics originated
in that time, even the simple noisy points could be
eliminated. From our point of view however, the abi-
lity of MST to be used in general metric spaces is
their most impressive characteristic, since our goal
was to find a method, which would reconstruct both
2D and 3D curves equally well. MST by themselves
represents a good start for the curve reconstruction,
since most of the curve shape is already captured by
its edges. However, to sort those edges in a correct
order, additional heuristics have to be added. Simi-
larly, the MST cannot handle the reconstruction of
the collection of nonintersecting curves or the recon-
struction of closed curves.

To overcome those drawbacks, we introduced a
structure called the chain of connected line segments.
This is the chain of equally oriented successive con-
nected vectors. We showed that each chain corre-
sponds either to one of the curve in the sample or it
contains the noisy data, which have to be eliminated
from the reconstruction then. The noisy data are
removed regarding the number of the line segments
composing the chain. If a particular chain contains
a too small number of line segments, it is excluded,
which is an excellent tool for noise reduction. Addi-
tionally, we can easily handle the closed curves with
the chain of connected line segments. If the distance
between the chain endpoints is not too large, the
new line segment, which connects these two points, is
added and the curve is closed. With the introduction
of chains of connected line segments into the recon-



struction process, we did not significantly increase
the computational complexity of the algorithm for
calculation of MST. The computational complexity
of the entire reconstruction therefore still depends
on the computational complexity of the algorithm for
calculation of MST. Besides, the main advantage of
MST, i.e. their independence of the space dimen-
sion, remains preserved. Currently, there are still
some minor problems with the reconstruction of the
curves with the long straight and curved segments
that can be broken in separate chains, but we think
that this can be prevented by improving the heuris-
tics for acceptance of a new line segment into the
existing chain. This remains our work for the future.
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