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ABSTRACT

This paper describes a new method for estimating particle volume distributions using isotropic, uniform,
random (IUR) sections. An attractive feature of the method is that it makes no assumptions about the shape
of the particles. Since IUR sections do not uniquely determine the volume distribution for particles of
general shape, the method takes a probabilistic approach. It uses the principle of maximum entropy to
determine the most likely distribution given the available information. This information is extracted from the
sections using geometric probability. The algorithm was tested on simulated ellipsoids, with excellent results.
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INTRODUCTION

The problem of estimating volume distributions
using IUR sections is known to be indeterminate.
This fact was demonstrated by Cruz-Orive (1976).
Cruz-Orive's proof consisted of constructing two sets
of ellipsoids with different volume distributions but
identical IUR sections. Although this result precludes
exact determination, methods have been developed to
approximate volume distributions using IUR sections.
Some of these methods solve the problem of
indeterminacy by making additional assumptions
about the shape of the particles. Two examples are
the methods developed by Wicksell (19253, b) and
King (1982). More recently, Gay (1996) developed a
method that makes no assumptions about particle
shape. The method is called the allocation method,
and it solves the problem of indeterminacy by finding
a volume distribution that is consistent with the laws
of geometric probability and aso optima with
respect to certain regularisation criteria.

In this paper, we present a new method for
estimating volume distributions using IUR sections.
Like the allocation method, the new method is based
on geometric probability and is applicable to particles
of general shape. The essential new feature of the
method is the use of the principle of maximum
entropy to determine the most likely distribution
consistent with the laws of geometric probability.

METHOD

In what follows, the symbol V represents particle
volume, A represents section area, d represents the
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average distance between points of a section, A
represents the average triangular area defined by
three points of a section, B represents the perimeter
of a section and s represents a surface parameter
described by Jensen and Gundersen (1985, 1987) and
later developed by Gay (1997). The five section
properties are collectively represented by a vector s.

The first step of the method estimates a
distribution p(V, s). This distribution is the proportion
of sections which have section properties s and which
came from particles with volume V.

For the sake of simplicity, the algorithm allows
only discrete values for volume. For example, the
results shown in Fig. 1 used 70 volumes ranging from
1 unit to 139 units in increments of two. In general,
there are N, volumesindexed by i = 1, ..., N,.

The algorithm aso alows only discrete values of s.
The alowed values are the properties of the observed
sections. Thereare Ng sectionsindexed by j =1, ..., Ns.

In this discrete approximation, the distribution
p(V, s) is replaced by p; — the proportion of sections
which have section properties 5 and which came
from particles with volume V;. Thisis a proportion of
the total area (not number) of sections.

The py's satisfy a number of conditions. Firstly,
the p;'s are related to the volume distribution f; by

equation (1).
f, = z P;
J

The pj’s are related to the distribution of sections
g; by equation (2). The value of g; is the area of

(D



section j divided by the total area of the sections.
g;= z P; 2

The py's also satisfy the geometric probability
equations (3) to (5). The symbol z represents any
function of volume. We used ten polynomia
functions of the form z(V) =V"form=0, 1, ..., 9.

zpij Z(Vi)(Vi'ZAjdj):o (©)

Zpij z(\V}) (Vi2_4mj2Aj):O (4)
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These equations were derived by Gay based on
Jensen’s first volume equation (1991), Jensen and
Gundersen's second volume equation (1985) and
Jensen and Gundersen’s surface area equation (1987,
1989). In outline, the proof consists of rearranging
Jensen and Gundersen’s equations as they apply to
particles with a single volume, multiplying this
expression by a suitable function z(V), and then
integrating with respect to volume. Details of the
proofs are found in Gay (1994). The above equations
are discrete approximations to Gay’ s equations.

Our method is to find p;'s to maximise the
entropy function shown in (6) subject to the
constraints (2) to (5). The method is based on an
explanation of maximum entropy given by Jaynes
(1968).
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= > Pylog(p;) (6)
h)

Once the p;;’ s have been determined, equation (1)
is used to calculate the volume distribution f;.

RESULTS

To test the algorithm, three sets of computer-
generated particles were created. The particles were
ellipsoids with the cumulative volume distributions
shown in Fig. 1 to Fig. 3. The horizontal axis label
‘size’ refersto the equivalent spherical diameter.

Sectioning of these particles was simulated and
our method applied to estimate the volume
distributions. The estimates are also shown in the
figures. In all three tests, the estimated volume
distribution is a good approximation to the true
distribution. The level of accuracy is acceptable for
many practical purposes.

The method smooths corners in al three cases.
This might be a weakness of our method.
Alternatively, it could be that the sections do not
contain enough information to accurately detect
corners, either because there are not enough sections,
or because the problem is indeterminate.

The example in Fig. 2 shows that our method has
difficulty distinguishing two nearby peaks. Again, it
might not be possible to remove this problem.
However, the method does perform well when the
peaks are well separated, as Fig. 3 shows.
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Fig. 1. Correction for first set of ellipsoids.
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Fig. 2. Correction for second set of ellipsoids. There are two peaks close together.
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Fig. 3. Correction for third set of ellipsoids. There are two well separated peaks.

DISCUSSION

The data used to test the method were obtained as
follows. A computer program generated ellipsoids of
various shapes and sizes. Exactly one IUR section
was simulated for each ellipsoid. For each section,
the volume of the associated particle was recorded.
The true distributions were obtained by calculating the
area-weighted distributions of the recorded volumes.

The computer-generated particles represent
particles that have been intercepted by an IUR
section. Consequently, large particles are over-
represented in the sample. It is therefore not valid to
obtain the true distribution by calculating the volume-
weighted distribution of the recorded volumes.
However, the area-weighted distribution of the
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recorded volumes is a valid reconstruction of the true
distribution.

The estimated distributions were obtained by
discarding the recorded volumes and then executing
the algorithm described above.

The authors have developed a similar method for
estimating distributions of composition. The method
has been extended for particles containing more than
two phases. The authors believe that the method can
be further extended to estimate distributions of many
geometric properties simultaneously.

These features are being incorporated into the
commercia software package JK Stereo. The authors
are interested in persons wishing to use the algorithms
or collaborate on further development of the methods.



CONCLUSION

Volume distributions can be accurately estimated
using IUR sections. Geometric probability provides
information about the volume distribution and
maximum entropy provides a technique for processing
this information. In the examples tested so far, the
distribution estimated using the method is close to the
true distribution. This indicates that very little
information has been lost in the sectioning process.

A preliminary report of some of the data was presented
a the X" Internationa Congress for Stereology,
Melbourne, Australia, 1-4 November 1999.
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