

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)
ARS MATHEMATICA CONTEMPORANEA 22 (2022) #P2.02 / 207–216
https://doi.org/10.26493/1855-3974.2593.1b7

(Also available at http://amc-journal.eu)

Two-distance transitive normal Cayley graphs*

Jun-Jie Huang **(b)**, Yan-Quan Feng † **(b)**, Jin-Xin Zhou **(b)**

School of mathematics and statistics, Beijing Jiaotong University, Beijing 100044, P. R. China

Received 3 April 2021, accepted 10 July 2021, published online 14 April 2022

Abstract

In this paper, we construct an infinite family of normal Cayley graphs, which are 2-distance-transitive but neither distance-transitive nor 2-arc-transitive. This answers a question proposed by Chen, Jin and Li in 2019.

Keywords: Cayley graph, 2-distance-transitive graph, simple group.

Math. Subj. Class. (2020): 05C25, 05E18, 20B25

1 Introduction

In this paper, all graphs are finite, simple, and undirected. For a graph Γ , let $V(\Gamma), E(\Gamma), A(\Gamma)$ or $\operatorname{Aut}(\Gamma)$ denote its vertex set, edge set, arc set and its full automorphism group, respectively. The graph Γ is called G-vertex-transitive, G-edge-transitive or G-arc-transitive, with $G \leq \operatorname{Aut}(\Gamma)$, if G is transitive on $V(\Gamma), E(\Gamma)$ or $A(\Gamma)$ respectively, and G-semi-symmetric, if Γ is G-edge-transitive but not G-vertex-transitive. It is easy to see that a G-semi-symmetric graph Γ must be bipartite such that G has two orbits, namely the two parts of Γ , and the stabilizer G_u for any $u \in V(\Gamma)$ is transitive on the neighbourhood of u in Γ . An s-arc of Γ is a sequence v_0, v_1, \ldots, v_s of s+1 vertices of Γ such that v_{i-1}, v_i are adjacent for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. If Γ has at least one s-arc and $G \leq \operatorname{Aut}(\Gamma)$ is transitive on the set of s-arcs of Γ , then Γ is called (G, s)-arc-transitive, and Γ is said to be s-arc-transitive if it is $(\operatorname{Aut}(\Gamma), s)$ -arc-transitive.

For two vertices u and v in $V(\Gamma)$, the distance d(u, v) between u and v in Γ is the smallest length of paths between u and v, and the diameter $\operatorname{diam}(\Gamma)$ of Γ is the maximum distance occurring over all pairs of vertices. For $i = 1, 2, \ldots, \operatorname{diam}(\Gamma)$, denote by $\Gamma_i(u)$

^{*}The work was supported by the National Natural Science Foundation of China (11731002, 12011540376, 12011530455, 12071023, 12161141005) and the 111 Project of China (B16002).

[†]Corresponding author.

E-mail addresses: 20118006@bjtu.edu.cn (Jun-Jie Huang), yqfeng@bjtu.edu.cn (Yan-Quan Feng), jxzhou@bjtu.edu.cn (Jin-Xin Zhou)

the set of vertices at distance i with vertex u in Γ . A graph Γ is called distance transitive if, for any vertices u, v, x, y with d(u, v) = d(x, y), there exists $g \in \operatorname{Aut}(\Gamma)$ such that $(u, v)^g = (x, y)$. The graph Γ is called (G, t)-distance-transitive with $G \leq \operatorname{Aut}(\Gamma)$ if, for each $1 \leq i \leq t$, the group G is transitive on the ordered pairs of form (u, v) with d(u, v) = i, and Γ is said to be t-distance-transitive if it is $(\operatorname{Aut}(\Gamma), t)$ -distance-transitive.

Distance-transitive graphs were first defined by Biggs and Smith in [2], and they showed that there are only 12 trivalant distance-transitive graphs. Later, distance-transitive graphs of valencies 3, 4, 5, 6 and 7 were classified in [2, 10, 14, 25], and a complete classification of distance-transitive graphs with symmetric or alternating groups of automorphisms was given by Liebeck, Praeger and Saxl [18]. The 2-distance-transitive but not 2-arc-transitive graphs of valency at most 6 were classified in [4, 16], and the 2-distance-primitive graphs (a vertex stabilizer of automorphism group is primitive on both the first step and the second step neighbourhoods of the vertex) with prime valency were classified in [15]. By definition, a 2-arc-transitive graph is 2-distance-transitive, but a 2-distance-transitive graph may not be 2-arc-transitive; an example is the Kneser graph $KG_{6,2}$, see [16]. Furthermore, Corr, Jin and Schneider [5] investigated properties of a connected (G,2)-distance-transitive but not (G,2)-arc-transitive graph of girth 4, and they applied the properties to classify such graphs with prime valency. For more information about 2-distance-transitive graphs, we refer to [6, 7].

For a finite group G and a subset $S\subseteq G\setminus\{1\}$ with $S=S^{-1}:=\{s^{-1}\mid s\in S\}$, the Cayley graph $\operatorname{Cay}(G,S)$ of the group G with respect to S is the graph with vertex set G and with two vertices g and h adjacent if $hg^{-1}\in S$. For $g\in G$, let R(g) be the permutation of G defined by $x\mapsto xg$ for all $x\in G$. Then $R(G):=\{R(g)\mid g\in G\}$ is a regular group of automorphisms of $\operatorname{Cay}(G,S)$. It is known that a graph Γ is a Cayley graph of G if and only if Γ has a regular group of automorphisms on the vertex set which is isomorphic to G; see [1, Lemma 16.3] and [24]. A Cayley graph $\Gamma = \operatorname{Cay}(G,S)$ is called normal if R(G) is a normal subgroup of $\operatorname{Aut}(\Gamma)$. The study of normal Cayley graphs was initiated by Xu [27] and has been investigated under various additional conditions; see [8, 22].

There are many interesting examples of arc-transitive graphs and 2-arc-transitive graphs constructed as normal Cayley graphs. However, the status for 2-distance-transitive graphs is different. Recently, 2-distance-transitive circulants were classified in [3], where the following question was proposed:

Question 1.1 ([3, Question 1.2]). Is there a normal Cayley graph which is 2-distance-transitive, but neither distance-transitive nor 2-arc-transitive?

In this paper, we answer the above question by constructing an infinite family of such graphs, which are Cayley graphs of the extraspecial p-groups of exponent p of order p^3 .

Theorem 1.2. For an odd prime p, let $G = \langle a, b, c \mid a^p = b^p = c^p = 1, [a, b] = c, [c, a] = [c, b] = 1 \rangle$ and $S = \{a^i, b^i \mid 1 \le i \le p-1\}$. Then Cay(G, S) is a 2-distance-transitive normal Cayley graph that is neither distance-transitive nor 2-arc-transitive.

A clique of a graph Γ is a maximal complete subgraph, and the clique graph Σ of Γ is defined to have the set of all cliques of Γ as its vertex set with two cliques adjacent in Σ if the two cliques have at least one common vertex. Applying Theorem 1.2, we can obtain the following corollary.

Corollary 1.3. Under the notation given in Theorem 1.2, let $Cos(G, \langle a \rangle, \langle b \rangle)$ be the graph with vertex set $\{\langle a \rangle g \mid g \in G\} \cup \{\langle b \rangle h \mid h \in G\}$ and with edges all these coset pairs

 $\{\langle a \rangle g, \langle b \rangle h\}$ having non-empty intersection in G. Then $Cos(G, \langle a \rangle, \langle b \rangle)$ is the clique graph of Cay(G, S), and Cay(G, S) is the line graph of $Cos(G, \langle a \rangle, \langle b \rangle)$. Furthermore, $Cos(G, \langle a \rangle, \langle b \rangle)$ is 3-arc-transitive.

The graph $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ was first constructed in [19] as a regular cover of $\mathsf{K}_{p,p}$, where it is said that $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ is 2-arc-transitive in [19, Theorem 1.1], but not 3-arc-transitive generally for all odd primes p in a remark after [19, Example 4.1]. However, this is not true and Corollary 1.3 implies that $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ is always 3-arc-transitive for each odd prime p. In fact, $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ is 3-arc-regular, that is, $\operatorname{Aut}(\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle))$ is regular on the set of 3-arcs of $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$. Some more information about the structure and symmetry properties of $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ are given in Lemma 3.2.

2 Preliminaries

In this section we list some preliminary results used in this paper. The first one is the well-known orbit-stabilizer theorem (see [9, Theorem 1.4A]).

Proposition 2.1. Let G be a group with a transitive action on a set Ω and let $\alpha \in \Omega$. Then $|G| = |\Omega| |G_{\alpha}|$.

The well-known Burnside $p^a q^b$ theorem was given in [12, Theorem 3.3].

Proposition 2.2. Let p and q be primes and let a and b be positive integers. Then a group of order p^aq^b is soluble.

The next proposition is an important property of a non-abelian simple group acting transitively on a set with cardinality a prime-power, whose proof depends on the finite simple group classification, and we refer to [13, Corollary 2] or [26, Proposition 2.4].

Proposition 2.3. Let T be a nonabelian simple group acting transitively on a set Ω with cardinality a p-power for a prime p. If p does not divide the order of a point-stabilizer of T, then T acts 2-transitively on Ω .

Let $\Gamma=\operatorname{Cay}(G,S)$ be a Cayley graph of a group G with respect to S. Then R(G) is a regular subgroup of $\operatorname{Aut}(\Gamma)$, and $\operatorname{Aut}(G,S):=\{\alpha\in\operatorname{Aut}(G)\mid S^\alpha=S\}$ is also a subgroup of $\operatorname{Aut}(\Gamma)$, which fixes 1. Furthermore, R(G) is normalized by $\operatorname{Aut}(G,S)$, and hence we have a semiproduct $R(G)\rtimes\operatorname{Aut}(G,S)$, where $R(g)^\alpha=R(g^\alpha)$ for any $g\in G$ and $\alpha\in\operatorname{Aut}(G,S)$. Godsil [11] proved that the semiproduct $R(G)\rtimes\operatorname{Aut}(G,S)$ is in fact the normalizer of R(G) in $\operatorname{Aut}(\Gamma)$. By Xu [27], we have the following proposition.

Proposition 2.4. Let $\Gamma = \operatorname{Cay}(G, S)$ be a Cayley graph of a finite group G with respect to S, and let $A = \operatorname{Aut}(\Gamma)$. Then the following hold:

- (1) $N_{\mathsf{A}}(R(G)) = R(G) \rtimes \operatorname{Aut}(G, S);$
- (2) Γ is a normal Cayley graph if and only if $A_1 = Aut(G, S)$, where A_1 is the stabilizer of 1 in A.

Let Γ be a G-vertex-transitive graph, and let N be a normal subgroup of G. The *normal quotient graph* Γ_N of Γ induced by N is defined to be the graph with vertex set the orbits of N and with two orbits B, C adjacent if some vertex in B is adjacent to some vertex in C in Γ . Furthermore, Γ is called a *normal* N-cover of Γ_N if Γ and Γ_N have the same valency.

Proposition 2.5. Let Γ be a connected G-vertex-transitive graph and let N be a normal subgroup of G. Suppose that either Γ is an N-cover of Γ_N , or Γ is G-arc-transitive of prime valency and N has at least three orbits on vertices. Then the following statements hold:

- (1) N is semiregular on $V\Gamma$ and is the kernel of G acting $V(\Gamma_N)$, so $G/N \leq \operatorname{Aut}(\Gamma_N)$;
- (2) Γ is (G, s)-arc-transitive if and only if Γ_N is (G/N, s)-arc-transitive;
- (3) $G_{\alpha} \cong (G/N)_{\delta}$ for any $\alpha \in V\Gamma$ and $\delta \in V(\Gamma_N)$.

Proposition 2.5 was given in many papers by replacing the condition that Γ is a normal N-cover of Γ_N by one of the following assumptions: (1) N has at least 3-orbits and G is 2-arc-transitive (see [21, Theorem 4.1]); (2) N has at least 3-orbits, G is arc-transitive and Γ has a prime valency (see [20, Theorem 2.5]); (3) N has at least 3-orbits and G is locally primitive (see [17, Lemma 2.5]). The first step for these proofs is to show that for any two vertices $B, C \in V(\Gamma_N)$, the induced subgraph [B] of B in Γ has no edge and if B and C are adjacent in Γ_N then the induced subgraph $[B \cup C]$ in Γ is a matching, which is equivalent to that Γ is a normal N-cover of Γ_N . Then Proposition 2.5(1) - (3) follows from these proofs.

3 Proof Theorem 1.2

For a positive integer n and a prime p, we use \mathbb{Z}_n and \mathbb{Z}_p^r to denote the cyclic group of order n and the elementary abelian group of order p^r , respectively. In this section, we always assume that p is an odd prime, and denote by \mathbb{Z}_p^* the multiplicative group of \mathbb{Z}_p consisting of all non-zero numbers in \mathbb{Z}_p . Note that $\mathbb{Z}_p^* \cong \mathbb{Z}_{p-1}$. Furthermore, we also set the following assumptions in this section:

$$\begin{split} G &= \langle a,b,c \mid a^p = b^p = c^p = 1, [a,b] = c, [c,a] = [c,b] = 1 \rangle, \\ S &= \{a^i,b^i \mid 1 \leq i \leq p-1\}, \\ \Gamma &= \mathrm{Cay}(G,S), \ \ \mathsf{A} = \mathrm{Aut}(\Gamma), \ \ N = N_\mathsf{A}(R(G)) = R(G) \rtimes \mathrm{Aut}(G,S), \ \ \mathrm{and} \ \mathbb{Z}_p^* = \langle t \rangle. \end{split}$$

By Proposition 2.4, $N_{\mathsf{A}}(R(G)) = R(G) \rtimes \operatorname{Aut}(G,S)$, and $R(g)^{\delta} = R(g^{\delta})$ for any $R(g) \in R(G)$ and $\delta \in \operatorname{Aut}(G,S)$. Since $G = \langle S \rangle$, Γ is a connected Cayley graph of valency 2(p-1). Let

$$\begin{array}{lll} \alpha\colon a\longmapsto a^t, & b\longmapsto b, & c\longmapsto c^t;\\ \beta\colon a\longmapsto a, & b\longmapsto b^t, & c\longmapsto c^t;\\ \gamma\colon a\longmapsto b, & b\longmapsto a, & c\longmapsto c^{-1}. \end{array}$$

It is easy to check that a^t,b,c^t satisfy the same relations as a,b,c in G, that is, $[a^t,b]=c^t, [c^t,a^t]=[c^t,b]=1$. By the von Dyck's Theorem (see [23, 2.2.1]), α induces an epimorphism from G to $\langle a^t,b,c^t\rangle$, which must be an automorphism of G because $\langle a^t,b,c^t\rangle=G$. Similarly, β and γ are also automorphisms of G.

Lemma 3.1. Aut $(G, S) = \langle \alpha, \beta, \gamma \rangle \cong (\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}) \rtimes \mathbb{Z}_2$, and Γ is N-arc-transitive. Furthermore, N has no normal subgroup of order p^2 .

Proof. Since $\mathbb{Z}_p^* = \langle t \rangle$, it is easy to check that $\alpha^{p-1} = \beta^{p-1} = \gamma^2 = 1$, $\alpha\beta = \beta\alpha$ and $\alpha^{\gamma} = \beta$. Thus $\langle \alpha, \beta, \gamma \rangle \cong (\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}) \rtimes \mathbb{Z}_2$. Clearly, $\alpha, \beta, \gamma \in \operatorname{Aut}(G, S)$. To prove $\operatorname{Aut}(G, S) = \langle \alpha, \beta, \gamma \rangle \cong (\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}) \rtimes \mathbb{Z}_2$, it suffices to show that $|\operatorname{Aut}(G, S)| \leq 2(p-1)^2$.

Clearly, $\langle \alpha, \beta, \gamma \rangle$ is transitive on S, and hence Γ is N-arc-transitive. Since $G = \langle S \rangle$, $\operatorname{Aut}(G,S)$ is faithful on S. By Proposition 2.1, $|\operatorname{Aut}(G,S)| = |S| |\operatorname{Aut}(G,S)_a|$, where $\operatorname{Aut}(G,S)_a$ is the stabilizer of a in $\operatorname{Aut}(G,S)$. Note that $\operatorname{Aut}(G,S)_a$ fixes a^i for each $1 \leq i \leq p-1$. Again by Proposition 2.1, $|\operatorname{Aut}(G,S)_a| \leq (p-1) |\operatorname{Aut}(G,S)_{a,b}|$, where $\operatorname{Aut}(G,S)_{a,b}$ is the subgroup of $\operatorname{Aut}(G,S)$ fixing a and b. Since $G = \langle a,b \rangle$, we obtain $\operatorname{Aut}(G,S)_{a,b} = 1$, and then $|\operatorname{Aut}(G,S)| \leq 2(p-1)^2$, as required.

Let $H \leq N$ be a subgroup of order p^2 . Since R(G) is the unique normal Sylow p-subgroup of $N = R(G) \rtimes \operatorname{Aut}(G,S)$, we have $H \leq R(G)$, and since |R(G):H| = p, we have $H \leq R(G)$. Note that the center $C := Z(R(G)) = \langle R(c) \rangle$ and $C \cap H \neq 1$. Thus, $C \cap H = C$ as |C| = p, implying $C \leq H$. Since H/C is a subgroup of order p, and $R(G)/C = \langle R(a)C \rangle \rtimes \langle R(b)C \rangle \cong \mathbb{Z}_p^2$, we have $H/C = \langle R(b)C \rangle$ or $\langle R(a)R(b)^iC \rangle$ for some $0 \leq i \leq p-1$. It follows that $H = \langle R(b) \rangle \rtimes C$ or $\langle R(ab^i) \rangle \rtimes C$ for some $0 \leq i \leq p-1$.

Suppose $H \subseteq N$. Since C is characteristic in R(G) and $R(G) \subseteq N$, we have $C \subseteq N$. Recall that $R(a)^{\gamma} = R(a^{\gamma}) = R(b)$. Then $(\langle R(a) \rangle \times C)^{\gamma} = \langle R(b) \rangle \times C$. This implies that both $\langle R(a) \rangle \times C$ and $\langle R(b) \rangle \times C$ are not normal in N. Thus, $H = \langle R(ab^i) \rangle \times C$ for some $1 \le i \le p-1$. Since $H \subseteq N$, we have $H^{\beta} = H$, that is, $\langle R(ab^{ti}) \rangle \times C = H^{\beta} = H = \langle R(ab^i) \rangle \times C$. It follows that $\langle R(ab^{ti}) \rangle = \langle R(ab^i) \rangle$ and then $R(ab^{ti}) = R(ab^i)$, which further implies $b^{ti} = b^i$. This gives rise to $p \mid i(t-1)$, and since (i,p) = 1, we have t=1, contradicting that $\mathbb{Z}_p^* = \langle t \rangle \cong \mathbb{Z}_{p-1}$. Thus, N has no normal subgroup of order p^2 . \square

For a positive integer n, n_p denotes the largest p-power diving n. By Lemma 3.1, $\Gamma = \text{Cay}(G, S)$ is N-arc-transitive.

Lemma 3.2. The clique graph Σ of Γ is a connected p-valent bipartite graph of order $2p^2$, A has a faithful natural action on Σ , and Σ is R(G)-semisymmetric and N-arc-transitive. Furthermore, $|\mathsf{A}|_p = p^3$.

Proof. Recall that $G=\langle a,b,c\mid a^p=b^p=c^p=1, [a,b]=c, [c,a]=[c,b]=1\rangle$ and $S=\{a^i,b^i\mid 1\leq i\leq p-1\}$. Then $\Gamma=\operatorname{Cay}(G,S)$ has exactly two cliques passing through 1, that is, the induced subgraphs of $\langle a\rangle$ and $\langle b\rangle$ in Γ . Since $R(G)\leq\operatorname{Aut}(\Gamma)$ is transitive on vertex set, each clique of Γ is an induced subgraph of the coset $\langle a\rangle x$ or $\langle b\rangle x$ for some $x\in G$. Thus, we may view the vertex set of Σ as $\{\langle a\rangle x, \langle b\rangle x\mid x\in G\}$ with two cosets adjacent in Σ if they have non-empty intersection. It is easy to see that $\langle a\rangle x\cap \langle b\rangle y\neq\emptyset$ if and only if $|\langle a\rangle x\cap \langle b\rangle y|=1$, and any two distinct cosets, either in $\{\langle a\rangle x\mid x\in G\}$ or in $\{\langle b\rangle x\mid x\in G\}$, have empty intersection. Furthermore, $\langle a\rangle$ has non-empty intersection with exactly p cosets, that is, $\langle b\rangle a^i$ for $0\leq i\leq p-1$. Thus, Σ is a p-valent bipartite graph of order $2p^2$. The connectedness of Σ follows from that of Γ .

Clearly, A has a natural action on Σ . Let K be the kernel of A on Σ . Then K fixes each coset of $\langle a \rangle x$ and $\langle b \rangle x$ for all $x \in G$. Since $\langle a \rangle x \cap \langle b \rangle x = \{x\}$, K fixes x and hence K = 1. Thus, A is faithful on Σ and we may let $A \leq \operatorname{Aut}(\Sigma)$.

Note that R(G) is not transitive on $\{\langle a \rangle x, \langle b \rangle x \mid x \in G\}$, but transitive on $\{\langle a \rangle x \mid x \in G\}$ and $\{\langle b \rangle x \mid x \in G\}$. Furthermore, $R(\langle a \rangle)$ fixes $\langle a \rangle$ and is transitive on $\{\langle b \rangle a^i \mid 0 \le i \le p-1\}$, the neighbourhood of $\langle a \rangle$ in Σ , and similarly, $R(\langle b \rangle)$ fixes $\langle b \rangle$

and is transitive on the neighbourhood $\{\langle a \rangle b^i \mid 0 \leq i \leq p-1\}$ of $\langle b \rangle$ in Σ . It follows that Σ is R(G)-semisymmetric. Recall that $N = R(G) \rtimes \operatorname{Aut}(G,S)$ and $\operatorname{Aut}(G,S) = \langle \alpha,\beta,\gamma \rangle$. Since $a^{\gamma} = b$ and $b^{\gamma} = a$, γ interchanges $\{\langle a \rangle x \mid x \in G\}$ and $\{\langle b \rangle x \mid x \in G\}$. This yields that Σ is $R(G) \rtimes \langle \gamma \rangle$ -arc-transitive and hence N-arc-transitive.

Since Σ is a connected graph with prime valency p, we have $p^2 \nmid |\operatorname{Aut}(\Sigma)_u|$ for any $u \in V(\Sigma)$, and in particular, $p^2 \nmid |\mathsf{A}_u|$. Note that $p \mid |\mathsf{A}_u|$. By Proposition 2.1, $|\mathsf{A}| = |\Sigma| |\mathsf{A}_u| = 2p^2 |\mathsf{A}_u|$. This implies that $|\mathsf{A}|_p = p^3$.

Lemma 3.3. $A = \operatorname{Aut}(\Gamma) = R(G) \rtimes \operatorname{Aut}(G, S)$.

Proof. By Lemma 3.2, $|A|_p = p^3$, and since $|V(\Gamma)| = p^3$ and A is vertex-transitive on $V(\Gamma)$, the vertex stabilizer A_1 is a p'-group, that is, $p \nmid |A_1|$. To prove the lemma, by Proposition 2.4 we only need to show that $R(G) \subseteq A$, and since R(G) is a Sylow p-subgroup of A, it suffices to show that A has a normal Sylow p-subgroup.

Let M be a minimal normal subgroup of A. Then $M=T_1\times T_2\cdots\times T_d$, where $T_i\cong T$ for each $1\leq i\leq d$ with a simple group T. Since $|V(\varGamma)|=p^3$, each orbit of M has length a p-power and hence each orbit of T_i has length a p-power. It follows that $p\mid |T|$. Assume that $|T|_p=p^\ell$. Then $|M|_p=p^{d\ell}$ and $d\ell=1,2$ or 3 as $|A|_p=p^3$.

We process the proof by considering the two cases: M is insoluble or soluble.

Case 1: M is insoluble.

In this case, T is a non-abelian simple group. We prove that this case cannot happen by deriving contradictions. Recall that $d\ell = 1, 2$ or 3.

Assume that $d\ell=1$. Then $|M|_p=p$. By Lemma 3.2, $M \le A \le \operatorname{Aut}(\Sigma)$, and since $|V(\Sigma)|=2p^2$, M has at least three orbits. Since Σ has valency p, Proposition 2.5 implies that M is semiregular on $V(\Sigma)$ and hence $|M| \mid 2p^2$. By Proposition 2.2, M is soluble, a contradiction.

Assume that $d\ell=2$. Since R(G) is a Sylow p-subgroup of A and $M \subseteq A$, $R(G) \cap M$ is a Sylow p-subgroup of M and hence $|R(G) \cap M| = |M|_p = p^2$. Since $R(G) \subseteq N$ and $M \subseteq A$, $M \cap R(G)$ is a normal subgroup of order p^2 in N, contradicting to Lemma 3.1.

Assume that $d\ell=3$. Then $(d,\ell)=(1,3)$ or (3,1). Since $|M|_p=p^3=|\mathsf{A}|_p$, we deduce $R(G)\leq M$ and hence M is transitive on Γ .

For $(d, \ell) = (1, 3)$, M is a non-abelian simple group. Since $M_1 \leq A_1$ is a p'-group, Proposition 2.3 implies that M is 2-transitive on Γ , forcing that Γ is the complete graph of order p^3 , a contradiction.

For $(d,\ell)=(3,1)$, we have $M=T_1\times T_2\times T_3$. Then $|M|_p=p^3$, and since $M \le A$, we derive $R(G) \le M$. By Lemma 3.2 $M \le \operatorname{Aut}(\varSigma)$, and \varSigma is R(G)-semisymmetric. Since M has no subgroup of index 2, M fixes the two parts of \varSigma setwise, and hence \varSigma is M-semisymmetric. Noting that γ interchanges the two parts of \varSigma , we have that \varSigma is $M\langle\gamma\rangle$ -arc-transitive. Since γ is an involution, under conjugacy it fixes T_i for some $1 \le i \le 3$, say T_1 . Then $T_1 \le \langle M, \gamma \rangle$ and by Proposition 2.5, T_1 is semiregular on \varSigma . This gives rise to $|T_1| |2p^2$, contrary to the simplicity of T_1 .

Case 2: M is soluble.

Since $p \mid |M|$, we have $M = \mathbb{Z}_p^d$ with $1 \leq d \leq 3$. If d = 3 then A has a normal Sylow p-subgroup, as required. If d = 2 then $M \leq R(G) \leq N$ and N has a normal subgroup of order p^2 , contrary to Lemma 3.1. Thus, we may let d = 1, and since $M \leq R(G)$ and R(G) has a unique normal subgroup of order p that is the center of R(G), we derive that $M = \langle R(c) \rangle$.

Now it is easy to see that the quotient graph $\Gamma_M = \operatorname{Cay}(G/M, S/M)$ with $S/M = \{a^iM, b^iM \mid 1 \leq i \leq p-1\}$. Note that $G/M = \langle aM \rangle \times \langle bM \rangle \cong \mathbb{Z}_p^2$. Then Γ_M is a connected Cayley graph of order p^2 with valency 2(p-1), so Γ is a normal M-cover of Γ_M . By Proposition 2.5, we may let $A/M \leq \operatorname{Aut}(\Gamma_M)$ and Γ_M is A/M-arc-transitive.

Let H/M be a minimal normal subgroup of A/M. Then $H \subseteq A$ and $H/M = L_1/M \times \cdots \times L_r/M$, where $L_i \subseteq H$ and L_i/M $(1 \le i \le r)$ are isomorphic simple groups. Since $|\Gamma_M| = p^2$, we infer $p \mid |H/M|$ and similarly, $p \mid |L_i/M|$. Let $|L_i/M|_p = p^s$. Then $|H/M|_p = p^{rs}$, and since $|A/M|_p = p^2$, we obtain that sr = 1 or 2.

We finish the proof by considering the two subcases: H/M is insoluble or soluble.

Subcase 2.1: H/M is insoluble.

In this subcase, L_i/M are isomorphic non-abelian simple groups. We prove this subcase cannot happen by deriving contradictions. Recall that sr=1 or 2.

Let sr=1. Then $|H/M|_p=p$, and therefore $|H|_p=p^2$. Since $H \subseteq A$, $H \cap R(G)$ is a Sylow p-subgroup of H, implying $|H \cap R(G)|=p^2$, and then $R(G) \subseteq N$ yields that $H \cap R(G)$ is a normal subgroup of order p^2 in N, contrary to Lemma 3.1.

Let rs=2. Then $|H/M|_p=p^2$ and $|H|_p=p^3$. This yields $R(G)\leq H$ and H is transitive on Γ , so H/M is transitive on $V(\Gamma_M)$. Note that (r,s)=(1,2) or (2,1).

For (r,s)=(1,2), H/M is a nonabelian simple group. By Proposition 2.5, $(H/M)_u$ for $u \in V(\Gamma_M)$ is a p'-group because $H_1 \leq A_1$ is a p'-group, and by Proposition 2.3, H/M is 2-transitive on $V(\Gamma_M)$, forcing that Γ_M is a complete group of order p^2 , a contradiction.

For (r,s)=(2,1), $H/M\cong L_1/M\times L_2/M$, where L_1/M and L_2/M are isomorphic nonabelain simple groups and $|L_i/M|_p=p$. It follows that $|H|_p=p^3$ and $|L_i|_p=p^2$ for $1\leq i\leq 2$. Since $H\unlhd A$, we derive $R(G)\leq H$. Note that H has no subgroup of index 2. Since \varSigma is bipartite, it is H-semisymmetric. Let Δ_1 and Δ_2 be the two parts of \varSigma . Then $|\Delta_1|=|\Delta_2|=p^2$, and H is transitive on both Δ_1 and Δ_2 .

Suppose $(L_1)_u=1$ for some $u\in V(\varSigma)=\Delta_1\cup\Delta_2$. By Proposition 2.1, $|L_1|=|u^{L_1}|$, and since $L_1\unlhd H$ and $|\Delta_1|=|\Delta_2|=p^2$, we derive $|L_1|=p$ or p^2 , contrary to the insolubleness of L_1 . Thus $(L_1)_u\ne 1$. Since \varSigma has prime valency p,H_u is primitive on the neighbourhood $\varSigma(u)$ of u in \varSigma , and since $(L_1)_u\unlhd H_u$, $(L_1)_u$ is transitive on $\varSigma(u)$, which implies that $|(L_1)_u|_p=p$. Since $|L_1|_p=p^2$, each orbit of L_1 on L_1 or L_2 has length L_2 .

Let $x\in\Delta_1$ and $y\in\Delta_2$ be adjacent in Σ , and let Δ_{11} and Δ_{21} be the orbits of L_1 containing x and y, respectively. Then $|\Delta_{11}|=|\Delta_{21}|=p$. Since $(L_1)_x$ is transitive on $\Sigma(x)$, x is adjacent to each vertex in Δ_{21} , and therefore, each vertex in Δ_{11} is adjacent to each vertex in Δ_{21} , that is, the induced subgroup $[\Delta_{11}\cup\Delta_{21}]$ is the complete bipartite graph $\mathsf{K}_{p,p}$. It follows that $\Sigma\cong p\mathsf{K}_{p,p}$, contrary to the connectedness of Σ .

Subcase 2.2: H/M is soluble.

In this case, $|H|=p^2$ or p^3 . Recall that $H \subseteq A$. If $|H|=p^2$ then $H \subseteq R(G)$ and N has normal subgroup of order p^2 , contradicts Lemma 3.1. Thus, $|H|=p^3$ and A has a normal Sylow p-subgroup, as required. This completes the proof.

Now we are ready to finish the proof.

Proof of Theorem 1.2. By Lemmas 3.1 and 3.3, Γ is a arc-transitive normal Cayley graph. In particular, Γ is 1-distance transitive. Since $S = \{a^i, b^i \mid 1 \le i \le p-1\}$, Γ has girth 3, so it is not 2-arc-transitive.

Recall that $G = \langle a, b, c \mid a^p = b^p = c^p = 1, [a, b] = c, [c, a] = [c, b] = 1 \rangle$. Clearly,

$$\Gamma_1(1) = S = \{a^i, b^i \mid 1 \le i \le p - 1\},$$

$$\Gamma_2(1) = \{b^j a^i, a^j b^i \mid 1 \le i, j \le p - 1\}.$$

Note that $\operatorname{Aut}(G,S)=\langle\alpha,\beta,\gamma\mid\alpha^{p-1}=\beta^{p-1}=\gamma^2=1,\alpha^\beta=\alpha,\alpha^\gamma=\beta\rangle$, where $a^\alpha=a^t,b^\alpha=b,c^\alpha=c^t,a^\beta=a,b^\beta=b^t,c^\beta=c^t,a^\gamma=b,b^\gamma=a$ and $c^\gamma=c^{-1}$. Then $(ba)^{\alpha^i\beta^j}=b^{t^i}a^{t^j}$, and since $\mathbb{Z}_p^*=\langle t\rangle$, we obtain that $\langle\alpha,\beta\rangle$ is transitive on the set $\{b^ja^i\mid 1\leq i,j\leq p-1\}$. Similarly, $\langle\alpha,\beta\rangle$ is transitive on $\{a^jb^i\mid 1\leq i,j\leq p-1\}$. Furthermore, γ interchanges the two sets $\{b^ja^i\mid 1\leq i,j\leq p-1\}$ and $\{a^jb^i\mid 1\leq i,j\leq p-1\}$. It follows that $\operatorname{Aut}(G,S)$ is transitive on $\Gamma_2(1)$ and hence Γ is 2-distance transitive.

Noting that ab=bac, we have that $b^{-1}ab=ac\in \Gamma_3(1)$ and $aba=ba^2c\in \Gamma_3(1)$. Also it is easy to see that $(ac)^{\operatorname{Aut}(G,S)}=(ac)^{\langle\alpha,\beta,\gamma\rangle}=\{a^ic^j,b^ic^j\mid 1\leq i,j\leq p-1\}$. Now it is easy to see that $ba^2c\not\in (ac)^{\operatorname{Aut}(G,S)}$, and since $\mathsf{A}_1=\operatorname{Aut}(G,S)$ by Proposition 2.4, Γ is not distance-transitive.

Proof of Corollary 1.3. Recall that Σ is the clique graph of Γ . By the first paragraph in the proof of Lemma 3.2 and the definition of $\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$ in Corollary 1.3, we have $\Sigma=\operatorname{Cos}(G,\langle a\rangle,\langle b\rangle)$. Again by Lemma 3.2, Σ is R(G)-semisymmetric, and since $|E(\Sigma)|=(2p^2\cdot p)/2=p^3=|R(G)|,\,R(G)$ is regular on the edge set $E(\Sigma)$ of Σ . Thus, the line graph of Σ is a Cayley graph on G.

For a given edge $\{\langle a \rangle x, \langle b \rangle y\} \in E(\Sigma)$, we have $|\langle a \rangle x \cap \langle b \rangle y| = 1$, and then we may identify this edge with the unique element in $\langle a \rangle x \cap \langle b \rangle y$. Note that Σ has valency 2(p-1). Then the edge $1 = \langle a \rangle \cap \langle b \rangle$ in Σ is exactly incident to all edges in $S = \{a^i, b^i \mid 1 \leq i \leq p-1\}$, because $\{a^i\} = \langle a \rangle \cap \langle b \rangle a^i$ and $\{b^i\} = \langle b \rangle \cap \langle a \rangle b^i$. It follows that $\Gamma = \operatorname{Cay}(G, S)$ is exactly the line graph of Σ .

If $\alpha \in \operatorname{Aut}(\Sigma)$ fixes each edge in Σ then α fixes all vertices of Σ , that is, $\operatorname{Aut}(\Sigma)$ acts faithfully on Γ . Thus, we may view $\operatorname{Aut}(\Sigma)$ as a subgroup of $\operatorname{Aut}(\Gamma)$. By Lemmas 3.2 and 3.3, we have $\operatorname{Aut}(\Gamma) = \operatorname{Aut}(\Sigma) = R(G) \rtimes \operatorname{Aut}(G,S)$.

Recall that $\operatorname{Aut}(G,S)=\langle\alpha,\beta,\gamma\rangle$ and Σ is arc-transitive. Since $a^\beta=a,\,b^\beta=b^t$ and $c^\beta=c^t$, where $\mathbb{Z}_p^*=\langle t\rangle,\langle\beta\rangle$ fixes the arc $(\langle a\rangle,\langle b\rangle)$ in Σ and is transitive on the vertex set $\{\langle a\rangle b^i\mid 1\leq i\leq p-1\}$, where $\{\langle a\rangle\}\cup\{\langle a\rangle b^i\mid 1\leq i\leq p-1\}$ is the neighbourhood of $\langle b\rangle$ in Σ . Thus, Σ is 2-arc-transitive. Since $a^\alpha=a^t,\,b^\alpha=b$ and $c^\alpha=c^t,\,\langle\alpha\rangle$ fixes the 2-arc $(\langle a\rangle,\langle b\rangle,\langle a\rangle b)$ and is transitive on the vertex set $\{\langle b\rangle a^ib\mid 1\leq i\leq p-1\}$, where $\{\langle b\rangle\}\cup\{\langle b\rangle a^ib\mid 1\leq i\leq p-1\}$ is the neighbourhood of $\langle a\rangle b$ in Σ . It follows that Σ is 3-arc-transitive. It is easy to see that the number of 3-arcs in Σ equals to $|A|=2p^3(p-1)^2,\,A$ is regular on the set of 3-arcs of Σ .

ORCID iDs

Jun-Jie Huang https://orcid.org/0000-0002-9250-0672 Yan-Quan Feng https://orcid.org/0000-0003-3214-0609 Jin-Xin Zhou https://orcid.org/0000-0002-8353-896X

References

[1] N. Biggs, *Algebraic Graph Theory*, Camb. Math. Libr., Cambridge University Press, Cambridge, 1993, doi:10.1017/cbo9780511608704.

- [2] N. Biggs and D. Smith, On trivalent graphs, Bull. Lond. Math. Soc. 3 (1971), 155–158, doi: 10.1112/blms/3.2.155.
- [3] J. Chen, W. Jin and C. H. Li, On 2-distance-transitive circulants, *J. Algebr. Comb.* **49** (2019), 179–191, doi:10.1007/s10801-018-0825-3.
- [4] B. P. Corr, W. Jin and C. Schneider, Two-distance-transitive but not two-arc-transitive graphs, in press.
- [5] B. P. Corr, W. Jin and C. Schneider, Finite 2-distance transitive graphs, J. Graph Theory 86 (2017), 78–91, doi:10.1002/jgt.22112.
- [6] A. Devillers, M. Giudici, C. H. Li and C. E. Praeger, Locally *s*-distance transitive graphs, *J. Graph Theory* **69** (2012), 176–197, doi:10.1002/jgt.20574.
- [7] A. Devillers, M. Giudici, C. H. Li and C. E. Praeger, Locally *s*-distance transitive graphs and pairwise transitive designs, *J. Comb. Theory, Ser. A* **120** (2013), 1855–1870, doi:10.1016/j.jcta. 2013.07.003.
- [8] A. Devillers, W. Jin, C. H. Li and C. E. Praeger, On normal 2-geodesic transitive Cayley graphs, J. Algebr. Comb. 39 (2014), 903–918, doi:10.1007/s10801-013-0472-7.
- [9] J. D. Dixon and B. Mortimer, *Permutation Groups*, Springer-Verlag, Berlin, 1996, doi:10.1007/978-1-4612-0731-3.
- [10] A. Gardiner and C. E. Praeger, Distance-transitive graphs of valency five, *Proc. Edinb. Math. Soc.*, II. Ser. 30 (1987), 73–81, doi:10.1017/s0013091500017983.
- [11] C. D. Godsil, On the full automorphism group of a graph, *Combinatorica* 1 (1981), 243–256, doi:10.1007/bf02579330.
- [12] D. Gorenstein, *Finite Groups*, Chelsea Publishing Company, New York, 1980, https://books.google.si/books?id=bxRrwQEACAAJ.
- [13] R. M. Guralnick, Subgroups of prime power index in a simple group, *J. Algebra* **81** (1983), 304–311, doi:10.1016/0021-8693(83)90190-4.
- [14] A. A. Ivanov, A. V. Ivanov and I. A. Faradzhev, Distance-transitive graphs of valency 5, 6 and 7, Eur. J. Comb. 7 (1986), 303–319, doi:10.1016/0041-5553(84)90010-7.
- [15] W. Jin, Y. Huang and W. J. Liu, Two-distance-primitive graphs with prime valency, *Appl. Math. Comput.* 357 (2019), 310–316, doi:10.1016/j.amc.2019.03.052.
- [16] W. Jin and L. Tan, Finite two-distance-transitive graphs of valency 6, *Ars Math. Contemp.* **11** (2016), 49–58, doi:10.26493/1855-3974.781.d31.
- [17] C. H. Li and J. Pan, Finite 2-arc-transitive abelian Cayley graphs, Eur. J. Comb. 29 (2008), 148–158, doi:10.1016/j.ejc.2006.12.001.
- [18] M. W. Liebeck, C. E. Praeger and J. Saxl, Distance transitive graphs with symmetric or alternating automorphism group, *Bull. Aust. Math. Soc.* 35 (1987), 1–25, doi:10.1017/ s0004972700012995.
- [19] J. Pan, Z. Huang and Z. Liu, Arc-transitive regular cyclic covers of the complete bipartite graph $K_{p,p}$, J. Algebr. Comb. **42** (2015), 619–633, doi:10.1007/s10801-015-0594-1.
- [20] J. M. Pan and F. G. Yin, Symmetric graphs of order four times a prime power and valency seven, J. Algebra Appl. 17 (2018), 12, doi:10.1142/s0219498818500937, id/No 1850093.
- [21] C. E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. Lond. Math. Soc., II. Ser. 47 (1992), 227–239, doi: 10.1112/jlms/s2-47.2.227.
- [22] C. E. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Aust. Math. Soc. 60 (1999), 207–220, doi:10.1017/s0004972700036340.

- [23] D. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1995, doi:10. 1007/978-1-4419-8594-1.
- [24] G. Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426–438, doi:10.1007/ bf01304186.
- [25] D. H. Smith, Distance-transitive graphs of valency four, J. Lond. Math. Soc., II. Ser. 8 (1974), 377–384, doi:10.1112/jlms/s2-8.2.377.
- [26] Y. Wang, Y.-Q. Feng and J.-X. Zhou, Cayley digraphs of 2-genetic groups of odd prime-power order, J. Comb. Theory, Ser. A 143 (2016), 88–106, doi:10.1016/j.jcta.2016.05.001.
- [27] M. Xu, Automorphism groups and isomorphisms of Cayley digraphs, *Discrete Math.* **182** (1998), 309–319, doi:10.1016/s0012-365x(97)00152-0.