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A B S T R A C T	   A R T I C L E   I N F O	

Due	 to	 the	 complexity	 and	 variety	 of	 practical	 manufacturing	 conditions,	
computer‐aided	process	planning	 (CAPP)	systems	have	become	 increasingly	
important	 in	 the	modern	 production	 system.	 In	 CAPP,	 the	 process	 planning	
(PP)	 problem	 involves	 two	 tasks:	 operation	 determining	 and	 operation	 se‐
quencing.	 To	 optimize	 the	process	 plans	 generated	 from	 complex	parts,	 the	
traditional	particle	swarm	optimization	(PSO)	algorithm	is	modified.	Efficient	
encoding	 and	 decoding	 population	 initialization	 methods	 have	 been	 devel‐
oped	to	adapt	the	PP	problem	for	the	PSO	approach.	In	addition,	to	avoid	the	
proposed	 approach	 becoming	 trapped	 in	 local	 convergences	 and	 achieving	
local	 optimal	 solutions,	 parameters	 are	 set	 to	 control	 the	 iterations.	 Several	
extended	operators	for	the	different	parts	of	the	particles	have	been	incorpo‐
rated	into	the	traditional	PSO.	Simulation	experiments	have	been	run	to	eval‐
uate	and	verify	 the	effectiveness	of	 the	modified	PSO	approach.	The	simula‐
tion	results	indicate	that	the	PP	problem	can	be	more	effectively	solved	by	the	
proposed	PSO	approach	than	other	approaches.	
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1. Introduction 

In	 the	modern	 computer‐integrated	manufacturing	 system	 (CIMS),	 the	 CAPP	 system	 plays	 an	
important	 role	 [1].	 Generally,	 process	 planning	 involves	 two	 activities:	 operation	 determining	
and	operation	sequencing.	In	CAPP	systems,	these	two	activities	must	be	executed	simultaneous‐
ly	to	achieve	a	good	solution.	Thus	far,	some	effort	has	been	made	to	address	this	problem,	for	
instance,	by	designing	a	more	 feasible	mathematical	model	or	developing	a	more	efficient	 ap‐
proach.	The	application	of	some	artificial	 intelligence	approaches	 in	 the	PP	problem	has	espe‐
cially	promoted	the	development	of	CAPP	technology.	These	approaches	can	be	categorized	as	
the	 genetic	 algorithm	 (GA)	 [1,	 2],	 simulated	 annealing	 (SA)	 [2,	 3],	 tabu	 search	 (TS)	 [4,	 5],	 ant	
colony	optimization	(ACO)	[6‐8],	particle	swarm	optimization	(PSO)	[9‐13],	honey	bees	mating	
optimization	[14],	and	hybrid	approaches	[2,	15].	
In	1995,	Kennedy	and	Eberhart	proposed	the	PSO	algorithm	[16].	The	PSO	is	a	new	swarm	op‐

timization	approach	that	can	optimize	engineering	problems	in	aspects	such	as	turning	process	
modelling	[17],	assembly	sequence	planning	[18],	and	process	parameter	optimization	(TSP)	[19].	
The	search	for	applications	of	PSO	in	the	PP	problem	was	first	introduced	by	Guo	et	al.	[9].	The	

process	plan	particle	 encoded/decoded	 strategy	 and	 some	modified	operators	were	designed.	
Kafashi	et	al.	[10]	optimized	the	setup	planning	using	cost	indices	based	on	constraints	such	as	
the	 TAD	 (tool	 approach	 direction),	 the	 tolerance	 relation	 between	 features,	 and	 the	 feature	
precedence	 relations.	Wang	 et	 al.	 [11]	 proposed	 an	 innovative	 process	 plan	 representation	 in	
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which	operation	selection	and	operation	sequencing	were	introduced	simultaneously	in	a	parti‐
cle.	Two	local	search	operators	are	incorporated	into	the	traditional	PSO	to	achieve	the	optimal	
solution.	Li	et	al.	[12]	modified	the	traditional	PSO	for	the	process	planning	problem.	Miljković	et	
al.	[13]	adopted	the	AND/OR	network	representation	to	describe	the	flexibility	of	the	machine,	
tool,	TAD,	process	and	sequence	and	a	performed	multi‐objective	optimization	procedure	for	the	
minimization	of	the	production	time	and	production	cost	using	a	modified	PSO	algorithm	on	this	
representation.	
Zhang	et	al.	[1]	proposed	a	GA	for	a	novel	CAPP	model.	Li	et	al.	[2]	incorporated	an	SA	into	a	

GA	to	improve	its	searching	efficiency.	Ma	et	al.	[3]	modeled	the	PP	problem	as	a	combinational	
optimization	problem	with	constraints.	An	entire	solution	space	 is	 constructed	 in	 reference	 to	
precedence	constraints	among	operations.	An	SA	algorithm	is	then	proposed	to	address	the	PP	
problem.	Li	et	al.	[4]	applied	a	TS‐based	approach	to	address	the	PP	problem.	In	this	approach,	a	
mapping	 relationship	 is	 established	 between	 process	 constraints	 among	 features	 and	 prece‐
dence	 constraints	 among	operations.	 Lian	et	 al.	 [5]	proposed	a	multi‐dimensional	 tabu	 search	
(MDTS)	 approach	 to	 address	 the	 PP	 problem.	 Some	 local	 search	 strategies	 for	 different	 parts	
have	been	integrated	into	this	TS	approach.	Liu	et	al.	[6]	constructed	a	mathematical	model	for	
the	 PP	 problem	 by	 considering	 the	 process	 constraints	 and	 optimization	 objectives.	 The	 ACO	
approach	has	been	developed	 to	 optimize	 the	PP	problem	based	on	 this	mathematical	model.	
Wang	et	al.	[7]	represented	the	PP	problem	by	an	improved	directed/undirected	graph.	A	two‐
stage	 approach	 based	 on	 ACO	 was	 developed	 to	 optimize	 the	 process	 plans	 on	 the	 di‐
rected/undirected	graph.	Wen	et	al.	[14]	proposed	a	new	method	based	on	the	honey	bees	mat‐
ing	optimization	(HBMO)	approach	to	optimize	the	PP	problem.	The	solution	encoding,	crosso‐
ver	operator,	and	local	search	strategies	were	developed	according	to	the	characteristics	of	the	
PP	problem.	Huang	et	al.	[15]	designed	a	hybrid	algorithm	combining	a	graph	and	the	GA	to	op‐
timize	process	plans.	The	precedence	constraints	are	mapped	to	an	operation	precedence	graph	
on	which	an	improved	GA	was	applied	to	solve	the	PP	problem.	

Although	 there	have	been	 some	 significant	 improvements	 in	 solving	 the	PP	problem,	 there	
still	 remains	 the	potential	 for	 further	 improvement	[20].	Up	 to	now,	some	heuristics	or	evolu‐
tionary	 approaches	 have	 been	 applied	 to	 optimize	 the	 PP	 problem,	 but	 the	major	 difficulty	 is	
that	the	search	space	is	too	large	for	parts	with	complex	features	to	find	optimal	solutions	effi‐
ciently.	To	address	this	problem,	a	traditional	PSO	approach	is	modified	to	solve	the	PP	problem	
in	this	paper.	The	main	work	includes	the	following	two	aspects:		

 The	representation	of	a	process	plan	mapped	to	a	particle	is	modified	to	facilitate	the	dis‐
crete	 PP	 problem.	 A	 new	 particle	 encoding/decoding	 strategy	 is	 adapted	 to	 make	 the	
search	more	efficient.	

 A	diverse	searching	mechanism	has	been	adopted	to	improve	the	performance	of	the	PSO	
approach.	To	avoid	local	convergence,	some	modifications	to	the	traditional	PSO	approach	
have	been	adopted	to	better	explore	the	solution	space.	Several	operators	for	the	different	
parts	of	the	particles	have	been	incorporated	into	the	traditional	PSO.	

Section	2	describes	the	process	planning	model.	Section	3	introduces	the	particle	swarm	op‐
timization	approach.	Section	4	introduces	an	application	of	the	modified	PSO	approach	to	the	PP	
problem.	Section	5	presents	the	simulation	results	of	the	proposed	PSO	algorithm.	Finally,	some	
conclusions	and	outlook	are	given	in	Section	6.	

2. Problem modelling 

2.1 Problem description 

In	the	PP	problem,	two	tasks	have	to	be	performed,	namely,	operation	determining	and	opera‐
tion	sequencing.	For	operation	determining,	the	method	of	mapping	from	features	to	operations	
is	widely	used	in	the	PP	problem.	The	attributes	of	each	feature	determines	the	corresponding	
machining	methods,	which	can	be	expressed	by	the	alternative	operations.	The	combination	of	
machines,	cutting	tools,	and	tool	approach	directions	(TAD)	comprise	all	of	the	different	opera‐
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tion	types	(OPTs)	 for	a	 feature	of	a	part,	which	will	be	selected	to	determine	the	 final	process	
plans	[1,	11].	

For	an	operation,	there	are	a	set	of	OPTs	under	which	the	operation	can	be	executed.	Accord‐
ingly,	an	integrated	process	plan	can	be	represented	as	follows.	
	

ܲܲ ൌ ሼܱ ଵܲ, ܱ ଶܲ, … , ܱ ௜ܲ, … , ܱ ௡ܲሽ	 (1)
	

ܱ ௜ܲ ൌ ሼܱܲ ௜ܶଵ, ܱܲ ௜ܶଶ, … , ܱܲ ௜ܶ௝, … , ܱܲ ௜ܶ௠ሽ	 (2)
	

ܱܲ ௜ܶ௝ ൌ ሼܯ௜௝, ௜ܶ௝, 	௜௝ሽܦܣܶ (3)

ܱ ௜ܲ	is	the	i‐th	operation,	and	ܱܲ ௜ܶ௝	is	the	j‐th	alternative	selection	of	the	operation	OPi.	ܯ௜௝,	

௜ܶ௝	and	ܶܦܣ௜௝	are	the	ID	of	the	selected	machine,	tool	and	TAD	for	operation	ܱܲ ௜ܶ௝,	respectively.	
An	example	part	in	Fig.	1	is	used	to	demonstrate	the	representation	of	a	process	plan	[7].	The	

candidate	operations	are	listed	in	Table	1.	
In	addition	to	operation	determining,	operation	sequencing	is	another	task	in	the	PP	problem.	

The	 operations	 should	 be	 sequenced	 under	 the	 conditions	 of	 satisfying	 the	 precedence	 con‐
straints	among	operations	[4,	6,	12,	15].	The	constraints	of	Part	1	are	shown	in	Table	2.	

According	 to	 the	 precedence	 constraints	 in	Table	 2,	 an	 available	 process	 plan	 for	 Part	 1	 is	
shown	in	Table	3.		
	

	
Fig.	1	An	example	part	–	Part	1	

	

Table	1	Candidate	operations	for	Part	1	

Feathers	 Operations	 Operation	types	 Machines	 Tools	 TADs	 Description	

F1	 Milling	(OP1)	
OPT11,	OPT12 M2	 T1	

+X,
+Z	

M1:	Drilling	press
M2:	Vertical	milling	
								machine	
T1:	Milling	cutter	
T2:	Drill1	
T3:	Tapping	tool	
T4:	Drill2	
T5:	Reamer1	
T6:	Slot	cutter	
T7:	Chamfer	cutter	
T8:	Drill3	
T9:	Reamer2	

F2	
Drilling	(OP2)	 OPT21,	OPT22

M1,	M2	
T2	

−Z	
Tapping	(OP3)	 OPT31,	OPT32 T3	

F3	
Drilling	(OP4)	 OPT41,	OPT42

M1,	M2	
T4	

−X	
Reaming	(OP5)	 OPT51,	OPT52 T5	

F4	 Milling	(OP6)	 OPT61	 M2	 T6	 +Z	

F5	 Milling	(OP7)	 OPT71,	OPT72 M2	 T7	 +Y,	−Z	

F6	 Drilling	(OP8)	 OPT81,	OPT82 M1,	M2	 T8	 +X	

	 Reaming	(OP9)	 OPT91,	OPT92 	 T9	 	 	
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Table	2	Constraints	for	Part	1	[7]	
Operations	 Precedence	constraint	description Constraint	types	

OP1	
OP1	is	prior	to	OP2	and	OP3.	 Hard	

OP1	is	prior	to	OP4	and	OP5.	 Soft	

OP2	 OP2	is	prior	to	OP3.	 Hard	

OP4	 OP4	is	prior	to	OP5.	 Hard	

OP4,	OP5	 OP4	and	OP5	are	prior	to	OP6.	 Hard	

OP6	 OP6	is	prior	to	OP2	and	OP3.	 Hard	

OP8	 OP8	is	prior	to	OP9.	 Hard	

OP8,	OP9	 OP8	and	OP9	are	prior	to	OP7.	 Hard	

	
Table	3	Available	process	plan	for	Part	1	

Operation	 Machine Tool TAD	
OP1	 M2 T1 +X	
OP8	 M1 T8 +X	
OP9	 M1 T9 +X	
OP4	 M1 T4 −X	
OP5	 M1 T5 −X	
OP6	 M2 T6 +Z	
OP7	 M2 T7 −Z	
OP2	 M1 T2 −Z	
OP3	 M1 T3 −Z	

2.2 Mathematical model 

The	criterion	of	minimizing	production	costs	(CP)	is	usually	used	to	evaluate	the	process	plan.	
The	 CP	 includes	 the	machine	 cost	 (CM),	 cutting	 tool	 cost	 (CT),	machine‐changing	 cost	 (CMC),	
cutting	tool	changing	cost	(CTC),	and	set‐up	cost	(CSC)	[2,	3,	6,	8,	11,	14,	15].	

The	machine	cost	is		

ܯܥ ൌ ሼܿ݉ଵ, ܿ݉ଶ,… , ܿ݉௜, … , ܿ݉ேಾሽ	 (4)

where	ܰெ	is	the	number	of	machines.	
The	cutting	tool	cost	is		

ܶܥ ൌ ሼܿݐଵ, ,ଶݐܿ … , ,௜ݐܿ … , 	ே೅ሽݐܿ (5)

where	்ܰ	is	the	number	of	cutting	tools.	
As	shown	in	Eq.	2	and	Eq.	3,	an	operation	is	selected	from	several	alternative	OPTs.	The	ma‐

chine	cost	for	an	operation	varies	according	to	the	alternative	OPTs,	so	the	machine	cost	ܯܥ௜௝	for	
an	OPT	ܱܲ ௜ܶ௝	can	be	given	as	

௜௝ܯܥ ൌ ܿ݉ெ೔ೕ
	 (6)

where	ܯ௝	is	explained	in	Eq.	3.	
The	cutting	tool	cost	ܶܥ௜௝	for	an	OPT	ܱܲ ௜ܶ௝	can	be	given	as		

ܥ ௜ܶ௝ ൌ 	೔ೕ்ݐܿ (7)

where	 ௜ܶ௝	is	explained	in	Eq.	3.	
The	machine	changing	cost	ܥܯܥ௜௝௜ᇲ௝ᇲ 	between	OPT	ܱܲ ௜ܶ௝	and	OPT	ܱܲܶ௜ᇲ௝ᇲ	can	be	given	as		

௜௝௜ᇲ௝ᇲܥܯܥ ൌ Φ൫ܯ௜௝,ܯ௜ᇲ௝ᇲ൯ ൈ 	௖௠ܥ (8)
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where	ܥ௖௠	is	the	cost	of	machine	changing,	which	is	considered	to	be	the	same	for	each	machine	
change.	Φሺܺ, ܻሻ	can	be	calculated	as	follows:	

Φሺܺ, ܻሻ ൌ ቄ1 ܺ ് ܻ
0 ܺ ൌ ܻ

	 (9)

The	cutting	tool	changing	cost	ܥܶܥ௜௝௜ᇱ௝ᇱ	between	OPT	ܱܲ ௜ܶ௝	and	OPT	ܱܲܶ௜ᇲ௝ᇲ	can	be	given	as	

௜௝௜ᇱ௝ᇱܥܶܥ ൌ Ω ቀΦ൫ܯ௜௝,ܯ௜ᇱ௝ᇱ൯, Φ൫ ௜ܶ௝, ௜ܶᇱ௝ᇱ൯ቁ ൈ 	௖௧ܥ (10)

where	ܥ௖௧	is	the	cutting	tool	changing	cost,	which	is	considered	to	be	the	same	for	each	cutting	
tool	change.	Ωሺܺ, ܻሻ	can	be	calculated	as	follows.	

Ωሺܺ, ܻሻ ൌ ቄ0 ܺ ൌ ܻ ൌ 0
1 ݁ݏ݅ݓݎ݄݁ݐ݋

 (11)

The	set‐up	cost	ܥ ௜ܵ௝௜ᇱ௝ᇱbetween	OPT	ܱܲ ௜ܶ௝	and	OPT	ܱܲܶ௜ᇲ௝ᇲ	can	be	given	as		

ܥ ௜ܵ௝௜ᇱ௝ᇱ ൌ Ω ቀΦ൫ܯ௜௝,ܯ௜ᇱ௝ᇱ൯, Φ൫ܶܦܣ௜௝, ௜ᇱ௝ᇱ൯ቁܦܣܶ ൈ ௖௦ (12)ܥ

where	ܶܦܣ௜௝	is	explained	in	Eq.	3,	and	ܥ௖௦	is	the	cost	for	a	set‐up,	which	is	considered	to	be	the	
same	for	each	set‐up.	

The	definitions	of	machine	changing,	tool	changing,	and	set‐up	changing	have	been	explained	
in	reference	[2].	Based	on	the	above	analysis,	the	mathematical	model	of	the	PP	problem	is	for‐
mulated	as	follows	[6]:	
	

Objectives:	

(i)	A	combination	of	CM,	CT,	CMC,	CTC,	and	CS	will	be	considered	as	CP,	and	minimizing	CP	is	the	
objective	of	PP.	

Min		ܲܥ ൌ෍෍ݑ௜௝.൫ఠభ.஼ெ೔ೕାఠమ.஼்೔ೕ൯ ൅

௠

௝ୀଵ

௡

௜ୀଵ

෍෍෍෍ ′௜௝௜′௝ߥ

௠

௝ ′ୀଵ
௝′ஷ௝′

௡

௜ ′ୀଵ
௜ ′ஷ௜

௠

௝ୀଵ

௡

௜ୀଵ

. ൫߱ଷ. ′௜௝௜′௝ܥܯܥ ൅ ߱ସ. ܥ ௜ܵ௝௜′௝′ ൅ ߱ହ. ௜௝௜′௝′൯ܥܶܥ ൅ ௦௖ (13)ܥ

Subject	to:	

(ii)	n	operations	have	to	be	selected	while	machining	a	part.	

෍෍ݑ௜௝

௠

௝ୀଵ

௡

௜ୀଵ

ൌ ݊ (14)

(iii)	For	an	operation,	one	and	only	one	OPT	can	be	selected	from	its	m	alternative	OPTs.	

෍ݑ௜௝

௠

௝ୀଵ

ൌ 1 ሺ݅ ൌ 1, 2, … , ݊ሻ (15)

(iv)	For	a	process	plan	consisting	of	n	operations,	the	numbers	of	operation	changes	is	n	–	1,	and	
the	changes	of	combinations	of	machines,	cutting	tools,	and	set‐ups	are	accompanied	by	opera‐
tion	changes.	

෍෍෍෍ߥ௜௝௜′௝′

௠

௝ ′ୀଵ
௝′ஷ௝′

௡

௜ ′ୀଵ
௜ ′ஷ௜

௠

௝ୀଵ

௡

௜ୀଵ

ൌ ݊ െ 1 (16)

(v)	For	each	OPT,	only	one	adjacent	operation	is	lined	up	before	it.	

෍෍ߥ௜௝௜′௝′

௠

௝ୀଵ

௡

௜ୀଵ

൑ 1 (17)
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(vi)	For	each	OPT,	only	one	adjacent	operation	is	lined	up	after	it.	

෍෍ߥ௜௝௜′௝′

௠

௝′ୀଵ

௡

௜′ୀଵ

൑ 1 (18)

(vii)	ݑ௜௝	is	an	integer	enumeration	variable.	

௜௝ݑ ൌ ൜
	1			if	OPT௜௝ is selected for operation ܱ ௜ܲ

0												 otherwise
 (19)

(viii)	ߥ௜௝௜′௝′	is	an	integer	enumeration	variable.	

′௜௝௜′௝ߥ ൌ ൜
	1			if	OPT௜′௝′is selected after OPT௜௝ is executed
0															 otherwise

 (20)

Eq.	13	means	 that	 the	objective	 function	of	 the	PP	 is	 to	minimize	 the	 total	production	cost.	
The	constraints	are	in	Eq.	14	to	Eq.	20.	Constraints	in	Eq.	14	and	Eq.	15	ensure	that	all	the	opera‐
tions	are	 carried	out.	The	 constraint	 in	Eq.	 16	 ensures	 that	n	−	1	 changing	 costs	of	machines,	
cutting	tools,	and	set‐ups	are	added	into	the	PC	among	n	operations.	Constraints	in	Eq.	17	and	
Eq.	18	ensure	that	every	operation	except	the	first	and	the	last	have	only	one	adjacent	operation	
on	each	side.	

3. Introduction of the particle swarm optimization approach 

PSO	 is	 a	 swarm	 optimization	 approach	 [16].	 Every	 particle	 in	 the	 population	 represents
an	N‐dimensional	 solution	 that	 constructs	 a	 search	 space	 for	 every	 particle.	 The	 particles	 fly	
freely	to	search	for	the	optimal	position	at	a	given	velocity.	Hence,	for	the	particle	i,	the	vectors	

௜ܺ
௧	 and	 ௜ܸ

௧	 at	 the	 t‐th	 iteration	 can	 be	 denoted	 as	 ௜ܺ
௧ ൌ ൛ ௜ܺଵ

௧ , ௜ܺଶ
௧ , … , ௜ܺ௞

௧ , … , ௜ܺே
௧ ൟ	 and	 ௜ܸ

௧ ൌ
൛ ௜ܸଵ

௧ , ௜ܸଶ
௧ , … , ௜ܸ௞

௧ , … , ௜ܸே
௧ ൟ,	respectively.	With	the	emergence	of	the	optimal	position	at	iteration	t	+	

1,	the	vectors	 ௜ܺ
௧	and	 ௜ܸ

௧	can	be	updated	as	follows:	

௜ܸ௞
௧ାଵ ൌ ݓ ∗ ௜ܸ௞

௧ ൅ ܿଵ ∗ ܴܽ݊݀ሺ ሻ ∗ ൫ ௜ܲ௞
௧ െ ௜ܺ௞

௧ ൯ ൅ ܿଶ ∗ ܴܽ݊݀ሺ ሻ ∗ ൫ ௚ܲ௞
௧ െ ௜ܺ௞

௧ ൯ (21)
	

௜ܺ௞
௧ାଵ ൌ ௜ܺ௞

௧ ൅ ௜ܸ௞
௧ାଵ (22)

In	Eq.	21	and	Eq.	22,	 ௜ܸ௞
௧ାଵ

	is	the	velocity	on	dimension	k,	and	 ௜ܺ௞
௧ାଵ	is	the	position	on	dimension	

k.	 ௜ܲ௞
௧ 	is	the	local	optimal	position	on	dimension	k,	and	 ௚ܲ௞

௧ 	is	the	global	optimal	position	on	di‐
mension	k.	The	weight	w	is	used	to	control	the	iteration.	The	constants	c1	and	c2	control	the	bal‐
ance	between	a	local	optimal	position	and	the	global	optimal	position.	Rand	()	is	limited	in	[0,	1].	
The	traditional	PSO	approach	is	carried	out	in	four	steps:	

Step	1:	Population	initialization.	
Step	2:	Update	the	vectors	 ௜ܺ

௧	and	 ௜ܸ
௧	according	to	Eq.	21	and	Eq.	22.	

Step	3:	Update	 ௜ܲ௞
௧ 	and	 ௚ܲ௞

௧ 	according	to	the	performance	of	the	population	
Step	4:	Loop	to	Step	2	until	a	termination	condition	is	met.	

4. The proposed PSO approach 

4.1 Solution representation 

It	is	necessary	to	modify	the	traditional	PSO	for	the	PP	problem	to	include,	for	example,	particle	
representation	 and	 the	 particle	 movement	 strategy.	 In	 applying	 the	 PSO	 approach	 to	 the	 PP	
problem,	 three	 tasks	 have	 to	 be	 performed,	 namely,	 particle	 encoding,	 particle	 validation	 and	
particle	decoding.	The	first	task	is	to	encode	a	process	plan	to	an	appropriate	particle.	Because	
operation	determining	and	operation	sequencing	have	to	be	performed	simultaneously	 in	pro‐
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cess	planning,	the	particle	structure	should	be	considered	to	comprise	the	information	of	deter‐
mining	and	sequencing	operations.	The	details	of	a	particle	are	listed	in	Table	4.	

According	to	the	definition	of	a	particle,	we	modified	a	particle	i	of	a	2	×	n	matrix	to	represent	
a	process	plan	at	iteration	t	[11],	i.e.	

௜ܺ
௧ ൌ ቈ

௜ଵଵݔ
௧ , ௜ଵଶݔ

௧ , … , ௜ଵ௡ݔ
௧

௜ଶଵݔ
௧ , ௜ଶଶݔ

௧ , … , ௜ଶ௡ݔ
௧ ቉ (23)

The	first	row	ݔ௜ଵ௡
௧ 	is	the	Operation	Determining	(OD)	part	and	represents	the	operation	selec‐

tion	for	each	feature.	The	second	row	ݔ௜ଶ௡
௧ 	is	the	Operation	Sequencing	(OS)	part	and	represents	

the	priority	among	operations.	ݔ௜ଶ௡
௧ 	is	initialized	randomly	in	the	range	of	0	and	1	according	to	

the	priority	among	operations,	and	ݔ௜ଵ௡
௧ 	can	be	calculated	by	Eq.	24.	

௜ܺଵ௡
௧ ൌ ሺܽଶ ∗ ݉_ݔ݅ ൅ ܽ ∗ ܿ_ݔ݅ ൅ ሻ/ܽଷ (24)ݐ_ݔ݅

In	Eq.	24,	ix_m,	ix_c,	and	ix_t	are	generated	randomly	from	the	candidate	machine	set,	cutting	
tool	set,	and	TAD	set	for	executing	the	operation.	a	can	be	given	by	the	equation	

ܽ ൌ ,்ܰ,ሺܰெݔܽܯ ௌܰሻ ൅ 1 (25)

where	NS	is	the	number	of	TADs.	
To	illustrate	the	particle	encoding,	the	process	plan	in	Table	3	is	taken	as	an	example	and	the	

corresponding	encoding	of	ݔ௜ଵ௡
௧ 	is	shown	in	Fig.	2.	For	instance,	the	values	of	ix_m,	ix_c,	and	ix_t	

are	set	to	1	if	the	OPTs	of	M2,	T1	and	+X,	respectively,	are	selected	to	process	operation	OP1.	If	
the	OPTs	of	M2,	T1	and	+Z	are	selected	to	process	operation	OP1,	the	values	of	ix_m,	ix_c,	and	ix_t	
will	be	1,	1,	and	3,	respectively.	

For	the	process	plan	in	Table	3,	a	feasible	particle	is	listed	in	Table	5.	In	Table	5,	the	first	row	
means	the	operations.	The	second	row	represents	the	calculated	value	of	its	assigned	OPT,	and	
the	third	row	represents	 the	priority	among	the	operations.	The	second	task	 is	 to	validate	 the	
particles	to	accord	with	the	precedence	constraints.	A	particle	represents	a	process	plan.	Never‐
theless,	process	plans	generated	by	particles	 flying	 freely	 in	 solution	 space	are	usually	 invalid	
against	the	precedence	constraints.	To	validate	each	particle,	an	n	×	n	constraint	matrix	P	is	pro‐
posed	to	incorporate	the	precedence	constraints	among	the	operations	into	the	particles.	

Table	4	Detail	of	a	particle	

Data	type	 Variable	 Description	
Integer	 ix_o	 Id	of	an	operation,	which	corresponds	to	the	index	of	the	operation	set.	
Integer	 ix_m	 Id	of	a	machine,	which	corresponds	to	the	index	of	the	machine	set.	
Integer	 ix_c	 Id	of	a	cutting	tool,	which	corresponds	to	the	index	of	the	cutting	tool	set.	
Integer	 ix_t	 Id	of	a	TAD,	which	corresponds	to	the	index	of	the	TAD	set.	

	
	

	
Fig.	2	Encoding	of	ݔ௜ଵ௡

௧
	for	the	process	plan	in	Table	3	
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Table	5	A	feasible	particle	for	the	process	plan	in	Table	3	

Operation	 OP1	 OP2	 OP3	 OP4	 OP5	 OP6	 OP7	 OP8	 OP9	

௜ଵ௡ݔ
௧ 	 0.111	 0.126	 0.136	 0.144	 0.154	 0.164	 0.176	 0.181	 0.191	

௜ଶ௡ݔ
௧ 	 1	 0.50	 0.40	 0.85	 0.75	 0.70	 0.60	 0.95	 0.90	

	
The	second	task	is	to	validate	the	particles	to	accord	with	the	precedence	constraints.	A	parti‐

cle	represents	a	process	plan.	Nevertheless,	process	plans	generated	by	particles	flying	freely	in	
solution	space	are	usually	invalid	against	the	precedence	constraints.	To	validate	each	particle,	
an	n	×	n	constraint	matrix	P	 is	proposed	to	 incorporate	the	precedence	constraints	among	the	
operations	into	the	particles.	

ܲ ൌ ൫݌௜௝൯݊ ൈ ݊ (26)
	

௜ܲ௝ ൌ ൜
	1		ܱ ௜ܲ is prior to ܱ ௝ܲ or ݅ ൌ ݆
0		 otherwise

	 (27)

	
The	precedence	constraint	matrix	for	the	precedence	constraints	in	Table	2	is	shown	as	follows:	

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1	 0 0 0 0 0 0 0 0
1	 1 0 0 0 1 0 0 0
1		1		1		0		0		1		0		0		0
1		0		0		1		0		0		0		0		0
1		0		0		1		1		0		0		0		0
0		0		0		1		1		1		0		0		0
0	 0 0 0 0 0 1 1 1
0	 0 0 0 0 0 0 1 0
0	 0 0 0 0 0 0 1 ے1

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (28)

	
The	third	task	is	to	decode	a	particle	into	a	solution.	According	to	the	input	of	encoded	posi‐

tion	matrix,	a	particle	can	be	decoded	to	obtain	a	process	plan.	The	particle	decoding	 includes	
the	following	two	steps.		

First,	determine	the	machine,	cutting	tool	and	TAD	according	to	the	value	ݔ௜ଵ௡
௧ .	The	decoding	

approach	for	ݔ௜ଵ௡
௧ 	is		

௜௡ݕ ൌ ௜ଵ௡ݔ
௧ ∗ ܽଷ (29)

	

௜௡݉_ݔ݅ ൌ (30) ۂ௜௡/ܽଶݕہ
	

௜௡ܿ_ݔ݅ ൌ ௜௡ݕሺہ െ ௜௡݉_ݔ݅ ∗ ܽଶሻ/ܽ(31) ۂ
	

௜௡ݐ_ݔ݅ ൌ ௜௡ݕ െ ௜௡݉_ݔ݅ ∗ ܽଶ െ ௜௡ܿ_ݔ݅ ∗ ܽ (32)

where	ݕ௜௡	is	an	integer.	
Second,	sequence	these	determined	operations	according	to	the	precedence	value	ݔ௜ଶ௡

௧ .	If	the	
sequence	of	operations	violates	the	precedence	constraints,	the	operations	should	be	sequenced	
again	according	to	the	precedence	value	ݔ௜ଶ௡

௧ 	with	the	help	of	the	precedence	matrix	Pm.	

௜ଶ௡ݔ
௧ ൌ ௜ଶ௡ݔ

௧ ൈ ௠ܲ (33)

Similarly,	for	particle	i,	a	velocity	matrix	at	iteration	t	can	be	represented	as		

௜ܸ
௧ ൌ ௜ଵݒൣ

௧ , ௜ଶݒ
௧ , … , ௜௞ݒ

௧ , … , ௜௡ݒ
௧ ൧ (34)

where	ݒ௜௡
௧ 	is	initialized	randomly	in	the	range	of	–1	to	1.	
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4.2 Population initialization 

The	particle	swarm	is	initialized	in	three	steps:	

(i)	 Set	the	population	size	Pmax	and	the	maximum	iteration	number	Nmax.	
(ii)	 Initialize	each	particle.	The	initial	position	and	velocity	of	each	of	the	particles	in	the	popu‐

lation	are	generated.	
(iii)	Decode	every	particle	to	the	process	plan	according	to	Eq.	29	to	Eq.	33,	and	then	calculate	

CP.	Get	the	local	optimal	position	 ௜ܲ
଴	and	the	global	optimal	position	 ௚ܲ଴.	

4.3 Iteration and control 

For	every	selected	particle,	the	position	and	velocity	can	be	updated	according	to	Eq.	21	and	Eq.	
22.	To	ensure	the	process	plan	validity,	decoding	every	newly	generated	particle	to	the	process	
plan	is	necessary.	If	the	new	process	plans	violate	the	precedence	constraints,	the	corresponding	
particles	will	be	normalized	by	using	the	constraint	matrix	P.	For	each	valid	particle,	 the	CP	of	
the	 corresponding	process	plan	will	 be	 calculated.	 If	 a	 lower	CP	 is	 achieved,	 the	 local	 optimal	
position	 ௟ܲ 	and	the	global	optimal	position	 ௚ܲ	will	be	updated.	

When	the	traditional	PSO	is	applied	in	the	PP	problem,	a	quick	local	convergence	at	an	early	
stage	of	the	PSO	usually	has	to	be	faced.	The	quick	local	convergence	will	make	further	explora‐
tion	difficult	 and	 can	generate	 an	undesirable	 solution.	To	 solve	 this	problem,	 some	modifica‐
tions	are	suggested	to	enhance	the	performance	of	the	traditional	PSO	algorithm	[9,	10,	13].	Four	
operators	are	incorporated	into	the	traditional	PSO	approach.	Because	the	position	of	a	particle	
is	expressed	as	a	2	×	n	matrix,	in	which	the	first	row	is	the	OD	part	and	the	second	row	is	the	OS	
part,	the	operators	for	the	different	rows	vary	independently.		
For	the	OD	part,	two	types	of	mutation	operator	are	designed	to	generate	a	new	solution.	

Mutation	operator	1	

One	particle	in	the	swarm	is	chosen	for	a	mutation	operation	with	a	predefined	probability	(pms).	
First,	for	the	OD	part	of	this	particle,	one	position	point	L	 is	randomly	selected.	Second,	decode	
the	particle	to	a	process	plan,	and	obtain	the	machine,	cutting	tool,	and	TAD	(M,	T,	TAD)	of	the	
Lth	operation	in	this	process	plan.	Third,	from	the	machine	set,	cutting	tool	set,	and	TAD	set	of	
the	Lth	 operation,	 an	 alternative	 selection	 of	machine,	 cutting	 tool,	 and	TAD	 is	 determined	 to	
replace	the	current	machine,	cutting	tool,	and	TAD.	

Mutation	operator	2	

One	particle	 is	chosen	for	a	mutation	operation	with	a	predefined	probability	(pss).	For	the	OD	
part	of	 this	particle,	 two	adjacent	position	points	L1	and	L2	are	randomly	selected.	Decode	 the	
particle	to	a	process	plan,	and	obtain	the	machines,	cutting	tools,	and	TADs	(Ms,	Ts,	TADs)	of	the	
L1‐th	and	L2‐th	operations	in	this	process	plan.	If	ܯ௅మ ൌ 	let	௅భ,ܯ ௅ܶభ ൌ ௅ܶమ	or	ܶܦܣ௅భ ൌ 	or	௅మ,ܦܣܶ
otherwise	the	position	points	L1,	L2	will	be	reselected.	
With	respect	to	the	OS	part,	two	operators	are	employed,	crossover	and	shift.	

Crossover	operator	

Two	particles,	A	and	B,	are	selected	to	execute	a	crossover	operation	with	a	predefined	probabil‐
ity	(pcq).	For	the	OS	part	of	those	two	particles,	one	position	point	L	is	randomly	determined.	The	
OS	part	is	divided	into	two	parts.	Subsequently,	the	value	of	the	front	part	of	OSA	is	taken	out	and	
inserted	before	the	cutting	point	of	OSB,	and	the	value	of	the	left	part	of	OSB	is	taken	out	and	in‐
serted	before	the	cutting	point	of	OSA.	

Shift	operator	

One	particle	is	chosen	for	a	shift	operation	with	a	predefined	probability	(psq).	For	the	OS	part	of	
this	particle,	 two	position	points	L1,	L2	 are	 randomly	 selected,	 and	 their	 values	ݔ௜ଵ௅భ

௧ ,	 ௜ଵ௅మݔ
௧ 	 ex‐

changed.	
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4.4 Termination 

If	the	max	number	of	iterations	Nmax	is	reached,	the	iteration	will	be	terminated.	Decode	the	ob‐
tained	particle	position	 ௚ܲ௧	to	achieve	the	final	process	plan.	
The	flowchart	is	described	in	Fig.	3.	
	

	

Fig.	3	Flowchart	of	the	modified	PSO	approach	

5. Experiments and results 

Two	characteristic	parts	are	used	for	the	simulation	experiments.	The	first	part	is	shown	in	Fig.	
4	[1]	(Part	2),	and	the	second	part	 is	shown	in	Fig.	5	[2]	(Part	3).	The	detailed	 information	on	
Part	2	and	Part	3	is	introduced	in	the	research	of	Li	et	al.	[4].	All	of	the	simulation	experiments	
will	be	performed	on	a	PC	with	2.8	GHz	and	the	Windows	7	operating	system.	
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Fig.	4	An	example	part	–	Part	2	

	

	

Fig.	5	An	example	part	–	Part	3	

	

5.1 Simulation experiments 

While	applying	PSO	to	solve	 the	process	planning	problem,	 the	key	parameters	have	to	be	de‐
termined	to	facilitate	the	performance	of	the	modified	PSO.	Accordingly,	many	preliminary	simu‐
lation	experiments	have	to	be	carried	out	to	determine	those	parameters.	The	process	planning	
problem	for	Part	2	 is	used	to	 illustrate	how	the	key	parameters	are	determined.	 It	 is	assumed	
that	߱ଵ	to	߱ହ	in	Eq.	13	are	set	as	1.	

The	key	parameters	may	be	analysed	from	two	aspects,	namely,	the	swarm	characteristic	pa‐
rameters	of	PSO	(Pmax,	Nmax,	w,	c1,	c2)	and	the	problem	data	(pms,	pss,	pcq,	psq).	The	swarm	size	Pmax	
and	iteration	number	Nmax	will	be	increased	with	the	increased	complexity	of	the	part.	For	Part	
2,	after	many	trials,	Pmax	and	Nmax	are	fixed	at	2000	and	300,	respectively.		

The	constants	c1	and	c2	are	used	to	balance	the	velocity	tendency	to	the	local	optimal	position	
௟ܲ 	and	the	global	optimal	position	 ௚ܲ.	If	c1	and	c2	are	too	large,	the	search	space	of	the	particles	
will	be	expanded,	which	may	even	lead	to	no	convergence	of	the	PSO.	If	c1	and	c2	are	too	small,	
slow	convergence	may	cause	the	computation	time	to	be	very	long.	In	the	case	of	problems	with	
Pmax	=	2000,	Nmax	=	300,	w	=	0.75,	pms	=	0.6,	pss	=	0.6,	pcq	=	0.2,	psq	=	0.2,	50	trials	were	separately	
conducted	by	varying	the	values	of	c1	=	c2	∈	{1,	1.5,	2}.	The	average	results	are	summarized	 in	
Fig.	6.	
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Fig.	6	CP	of	the	proposed	PSO	with	different	constants	c1and	c2	

	
From	Fig.	6,	when	c1	and	c2	are	both	set	to	be	1,	the	PSO	algorithm	shows	fast	convergence	

and	good	computational	efficiency.	
The	inertia	weight	w	is	set	to	coordinate	the	local	exploration	and	the	global	exploration.	If	w	

is	too	large,	there	may	be	a	quick	local	convergence	at	an	early	stage	of	the	PSO.	If	w	is	too	small,	
the	computation	time	for	each	iteration	will	be	long,	and	the	optimization	rate	will	become	very	
slow.	In	the	case	of	problems	with	Pmax	=	2000,	Nmax	=	300,	c1	=	c2	=	1,	pms	=	0.6,	pss	=	0.6,	pcq	=	0.2,	
psq	=	0.2,	50	trials	were	separately	conducted	by	varying	the	values	of	w	∈	{0.75,	1,	1.25}.	The	
average	results	are	summarized	in	Fig.	7.	

	

	
Fig.	7	CP	of	the	proposed	PSO	with	different	inertia	weights	w	

	
From	Fig.	7,	the	optimal	efficiency	and	stability	are	achieved	under	the	condition	of	w	=	1.	The	

problem	data	 (pms,	pss,	pcq,	psq)	 are	determined	 to	help	 the	approach	escape	 from	 local	 conver‐
gences.	Fifty	trials	are	conducted	in8	group	combinations	of	the	four	parameters	pms,	pss,	pcq,	psq	
to	illustrate	the	selection	of	these	parameters.	The	average	CPs	for	the	50	trials	are	listed	in	Ta‐
ble	6.	It	is	shown	that	the	combination	of	pms	=	0.6,	pss	=	0.6,	pcq	=	0.2	and	psq	=	0.2	can	yield	the	
best	performance.	 In	 conclusion,	 the	performance	of	 the	modified	PSO	 for	Part	2	 is	 good,	 and	
Pmax	=	2000,	Nmax	=300,	w	=	1,	c1	=	c2	=	1,	pms	=	0.6,	pss	=	0.6,	pcq	=	0.2,	psq	=	0.2.	The	best	simulation	
result	and	average	simulation	result	are	shown	in	Table	7	and	Table	8,	respectively.	

Table	6	Determination	of	four	probabilities	of	the	modified	PSO	
	 (Mutation1:	pms,	Mutation2:	pss,	Crossover:	pcq,	Shift:	psq)	

	
(0.6,	0.4,	
0.2,	0.4)	

(0.4,	0.6,	
0.4,	0.2)	

(0.6,	0.6,
0.4,	0.4)	

(0.6, 0.6,
0.2,	0.2)	

(0.4, 0.4,
0.2,	0.2)	

(0.4, 0.4,
0.4,	0.4)	

(0.4,	0.6,	
0.2,	0.4)	

(0.6, 0.4,
0.4,	0.2)	

Mean	 1198.5	 1198.8	 1308.4 1131.8 1136.6 1541.3 1206.1	 1186.7
Maximum	 1263	 1318	 1713 1163 1188 1998 1318	 1263
Minimum	 1143	 1143	 1148 1128 1128 1158 1143	 1143
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Table	7	Best	simulation	result	for	Part	2	
Operation	 Machine	 Tool TAD Result	

6	 2	 2 −Z CM	=	490
CT	=	98	
CTC	=	60	
CS	=	480	
CP=	1128	

1	 2	 1 −Z
7	 2	 1 −Z
9	 2	 1 −Z
12	 2	 1 −Z
5	 2	 5 −Z
3	 2	 5 +Y
4	 2	 5 +Y
8	 2	 5 +X
10	 2	 5 −Y
11	 2	 5 −Y
13	 2	 5 −Y
14	 2	 1 −Y
2	 2	 8 −Y

	
Table	8	Average	simulation	result	of	50	trials	for	Part	2	

Type	 Mean	 Maximum Minimum Standard	deviation
CM	 490	 490 490 0	
CT	 98.2	 103 98 0.98	
CMC	 0	 0 0 0	
CTC	 60.9	 75 60 3.56	
CS	 480	 480 480 0	
CP	 1128.9	 1143.0 1128 3.56	

	
The	 above	 method	 of	 determining	 the	 key	 parameters	 is	 based	 on	 Part	 2.	 The	method	 of	

choosing	parameters	for	Part	3	is	same	as	for	Part	2.	In	the	case	of	problems	with	Pmax	=	2000,	
Nmax	=	500,	w	=	1.25,	c1	=	c2	=	1,	pms	=	0.6,	pss	=	0.6,	pcq	=	0.3,	psq	=	0.3,	50	trials	were	separately	con‐
ducted.	The	best	process	plans	are	listed	in	Table	9,	and	the	average	results	are	listed	in	Table	10.	

	
	

Table	9	Best	simulation	result	for	Part	3	
Operation	 Machine	 Tool TAD Result	

1	 2	 6 +Z CM	=	770
CT	=	235	
CMC	=	320	
CTC	=	200	
CS	=	1000	
CP	=	2525	

3	 2	 6 +X
5	 2	 6 +X
6	 2	 6 −Z
2	 2	 6 −Z
18	 2	 6 −Z
11	 2	 7 −Z
12	 2	 2 −Z
13	 2	 9 −Z
17	 2	 7 −X
7	 2	 7 −a
8	 2	 2 −a
9	 2	 9 −a
19	 2	 9 +Z
14	 4	 10 −Z
20	 4	 10 +Z
10	 4	 10 −a
4	 1	 2 −Z
15	 1	 1 −Z
16	 1	 5 −Z

	
Table	10	Average	simulation	result	of	50	trials	for	Part	3	

Type	 Mean	 Maximum Minimum Standard	deviation
CM	 770	 770 770 0	
CT	 240	 267 235 10.13	
CMC	 320	 320 320 0	
CTC	 197.2	 180 200 6.94	
CS	 1000	 1000 1000 0	
CP	 2527.2	 2535.0 2525.0 3.28	
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5.2 Extensive comparative experiments 

The	 following	 three	 conditions	 are	used	 to	 verify	 the	modified	PSO	approach	 for	 the	 example	
parts	[2,	4,	6]:	

(a) All	machines	and	cutting	tools	are	available,	and	߱ଵ	to	߱ହ	in	Eq.	13	are	set	as	1.	
(b) All	machines	and	cutting	tools	are	available,	and	߱ଵ	=	߱ହ	=	0,	߱ଵ	=	߱ଷ	=	߱ସ	=	1.	
(c) M2	and	T7	are	down,	߱ଶ	=	߱ହ	=	0,	߱ଵ	=	߱ଷ	=	߱ସ	=	1.	

For	Part	2,	50	trials	were	performed	under	conditions	(a)	and	(b).	A	penalty	cost	is	included	
in	 the	CP	 to	 facilitate	 the	 comparison	with	other	approaches,	which	 is	200	 for	Part	2	 [4,	7].	A	
comparison	with	 the	 results	obtained	using	 the	GA	and	SA	approaches	 [2],	TS	 [4],	 and	HBMO	
[14],	as	well	as	the	two‐stage	ACO	[7],	is	provided	in	Table	11.		

Under	condition	(a),	this	approach	is	same	as	SA,	TS,	HBMO,	and	two‐stage	ACO	and	is	better	
than	GA	using	the	minimum	machine	costs.	Using	the	maximum	machine	costs,	the	CP	(1328.0)	
is	the	same	as	that	of	HBMO,	and	it	is	better	than	the	other	four	approaches.	This	approach	has	
the	best	performance	in	the	mean	machine	cost	(1328).	It	is	obvious	that	the	same	CP	(1328.0)	is	
achieved	50	times	and	is	superior	to	all	of	the	other	approaches.	

Under	condition	(b),	the	performance	of	this	approach	is	the	same	as	those	of	HBMO	and	the	
two‐stage	ACO.	Using	the	minimum	machine	costs,	this	approach	is	better	than	GA,	and	it	is	the	
same	as	the	other	four	approaches.	Using	the	maximum	and	mean	machine	costs,	this	approach	
is	better	than	GA,	SA,	and	TS.	

For	Part	3,	50	trials	were	carried	out	under	conditions	(a),	(b),	and	(c).	A	comparison	of	the	
results	with	those	of	TS	[4],	PSO	[9],	and	HBMO	[14],	as	well	as	the	two‐stage	ACO	[7]	is	provid‐
ed	in	Table	12.	
	

Table	11	Results	compared	to	other	approaches	

Condition	 Proposed	approach	 GA	 SA	 TS	 HBMO	 Two‐stage	ACO	
(a)	 	 	 	 	 	 	
Mean	 1328	 1611.0	 1373.5	 1342.6	 1328	 1329	

Maximum	 1328	 1778	 1518	 1378	 1328	 1348	
Minimum	 1328	 1478	 1328	 1328	 1328	 1328	

(b)	 	 	 	 	 	 	
Mean	 1170	 1482	 1217	 1194	 1170	 1170	

Maximum	 1170	 1650	 1345	 1290	 1170	 1170	
Minimum	 1170	 1410	 1170	 1170	 1170	 1170	

	
Table	12	Results	compared	to	other	approaches	

Condition	
Proposed	
approach	

TS	 PSO	 HBMO	 Two‐stage	ACO	

(a)	 	 	 	 	 	
Mean	 2527.2	 2609.6	 2680.5	 2543.5	 2552.4	

Maximum	 2535	 2690	 ‐	 2557	 2557	
Minimum	 2525	 2527	 2535	 2525	 2525	

(b)	 	 	 	 	 	
Mean	 2093.0	 2208.0	 ‐	 2098.0	 2120.5	

Maximum	 2120	 2390	 ‐	 2120	 2380	
Minimum	 2090	 2120	 ‐	 2090	 2090	

(c)	 	 	 	 	 	
Mean	 2593.2	 2630.0	 ‐	 2592.4	 2600.8	

Maximum	 2600	 2740	 ‐	 2600	 2740	
Minimum	 2590	 2580	 ‐	 2590	 2590	
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Under condition (a), the minimum machine cost is the same as that of HBMO and the two-
stage ACO, and it is better than TS and PSO. Among the 50 trial results, CP (2525) occurs 23 
times, CP (2527) occurs 20 times, and CP (2535) occurs 7 times. Accordingly, this approach is 
superior to all of the other approaches on the mean machine cost. Under condition (b), the min-
imum machine cost (2090) is the same as that of HBMO and the two-stage ACO. CP (2090) oc-
curs 45 times, and CP (2120) occurs 5 times in 50 trials; the mean machine cost is the best 
among all of the approaches. Under condition (c), CP (2590) occurs 34 times, and CP (2600) oc-
curs 16 times in 50 trials. Generally, the performance of this approach is similar to that of HBMO 
under condition (c) and is superior to those of the two-stage ACO and TS. 

6. Conclusions 
A traditional PSO approach is modified to solve the PP problem. Efficient encoding and decoding, 
population initialization, and iteration and control methods have been designed. Meanwhile, to 
avoid local convergence, several new operators for the different parts of the particles have been 
designed and incorporated into the traditional PSO to improve the particles’ movements. Simu-
lation experiments show that the modified PSO algorithm can perform the process plan optimi-
zation competently and consistently and generate better solutions compared with other ap-
proaches. 

In the simulation experiment, a small change in the parameters induces computational result 
saltation. Hence, a deep discussion of selecting the modified PSO approach parameters will be 
conducted. Additionally, integrated process planning and scheduling that considers the better 
performance of manufacturing systems may be a direction for further study [21, 22]. 
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