
ELEKTROTEHNIŠKI VESTNIK 80(5): 240–244, 2013
ORIGINAL SCIENTIFIC PAPER

On the Use of Status Messages in Checking Sequences
for the Distributed Test Architecture

Monika Kapus-Kolar
Jožef Stefan Institute, Department of Communication Systems, Jamova 39, SI-1111 Ljubljana, Slovenia
E-mail: monika.kapus-kolar@ijs.si

Abstract. In the testing of reactive systems, a checking sequence (CS) is a sequence of inputs for which
a proper response from the system under test means that the system would respond properly also to every
other input sequence. In the paper, we suggest how to construct cheap CSs for multi-port systems under the
assumption that there is a tester placed at each port, that the testers can communicate exclusively through the
system, that there is no global clock and that any tester can at any time ask the system to issue at every port
a status report. We consider those CSs in which all the problems of controllability, observability and state
recognition specific to the distributed test architecture are solved simply with status requests. For such a CS,
our method to some extent minimizes also the number of the employed requests.

Keywords: formal methods, testing, distributed test architecture, checking sequence, status message

O uporabi stanjskih sporočil v preverjalnih zaporedjih za
porazdeljeno testno arhitekturo

V testiranju odzivnih sistemov je preverjalno zaporedje
(PZ) zaporedje vhodnih sporočil, za katerega pravilen odziv
testiranega sistema pomeni, da bi se sistem pravilno odzval
tudi na vsako drugo zaporedje vhodnih sporočil. V članku
svetujemo, kako konstruirati cenena PZ za večvratne sisteme
ob predpostavki, da imajo vrata vsaka svojega preizkuševalca,
da ti lahko komunirajo samo preko sistema, da ni skupne ure
in da vsak preiskuševalec lahko kadarkoli zahteva, da sistem
na vseh vratih objavi svoje trenutno stanje. Obravnavamo tista
PZ, ki vse za privzeto porazdeljeno testno arhitekturo značilne
probleme kontrolabilnosti, observabilnosti in ugotavljanja
stanja rešujejo preprosto z zahtevami po objavi stanja. Za
taka PZ naša metoda zmanjšuje tudi število teh zahtev.

1 INTRODUCTION

In the testing of reactive systems, e.g. hardware com-
ponents or distributed service providers, a checking
sequence (CS) is a sequence of inputs for which a proper
response from the system under test means that the
system would respond properly also to every other input
sequence. CSs are the most desirable kind of test suites,
for their application does not require that the system is
repeatedly reliably reset into its initial state.

In the paper, we discuss CS construction under the
assumption that the system, call it N , and its speci-
fication, call it M , are multi-port deterministic finite
state machines, that M is strongly connected, that N

Received 23 August 2013
Accepted 9 October 2013

has at most as many states as M , that there is a tester
placed at each port, that the testers can communicate
exclusively through N , that there is no global clock and
that any tester can at any time ask the system to issue at
every port a status report (SRP), i.e., an indication of its
current state. With the exception of the last one, these
are the usual assumptions in the automated construction
of test suites for distributed systems and the last one is
also increasingly popular [1], [2].

The assumed distributed test architecture brings spe-
cific problems of controllability, observability and state
recognition. If, however, one decides to solve every
such problem simply with status requests (SRQs), CS
construction becomes very easy [1]. In the following,
we, hence, focus on this particular class of CSs, showing
how for such a CS, one can efficiently minimize, at least
to some extent, the cost (e.g. the length) and, optionally,
also and primarily the number of the employed SRQs.

2 THE SYSTEM AND ITS SPECIFICATION

We assume that M and N both operate on the same
set of ports and can in every state execute every input
defined on the ports. Upon executing an input x in a
state s, they execute a set y of outputs, at most one per
port, and enter a state s′, thereby executing a transition
(s, s′, x/y). Their choice of y and s′ depends only on
x and s. If x is an SRQ, s′ = s and y for every
port comprises an SRP. If x is an ordinary input, every
member of y is an ordinary output, i.e., not an SRP.
Moreover, if x is not an SRQ, it is possible that the
choice of y and s′ which N makes differs from the
specified, i.e., from the choice which M makes.

ON THE USE OF STATUS MESSAGES IN CHECKING SEQUENCES FOR THE DISTRIBUTED TEST ARCHITECTURE 241

a / (u , w)
1 2

3

a / (u ,)
a / (u ,)

b / (v ,)b / (v , w)

b / (v , w)

B / (1 , 1)
A / (1 , 1)

B / (2 , 2)
A / (2 , 2)

A / (3 , 3) B / (3 , 3)

Figure 1. Example two-port M .

It is assumed that the only other way in which N
can be an incorrect implementation of M is that its
initial state is not the specified one. A CS is, hence, any
input sequence checking the initial state of N and the
implementation of every specified ordinary transition. It
is assumed that via the latter, M can from every state
reach every other state. For M , let init(M) denote its
initial state, otr(M) the set of its ordinary transitions
and str(M) the set of its status transitions.

For a given input x, let ζ(x) denote the cost of
application to N , presumably a real number greater than
0. Besides, let ζ ′(x) = 1 if x is an SRQ and maximum
avoidance of SRQs is desirable and ζ ′(x) = 0 otherwise,
with cost(x) denoting the pair (ζ ′(x), ζ(x)) in R2. A
(q1, q2) in R2 is considered less than or equal to a
(q′1, q

′
2) in R2 if (q1 < q′1) ∨ ((q1 = q′1) ∧ (q2 ≤ q′2)).

The sum of two members (q1, q2) and (q′1, q
′
2) of R2 is

(q1 + q′1, q2 + q′2). For every (q1, q2) in R2, −(q1, q2)
denotes (−q1,−q2).

Example 1. Suppose that there is a port α accepting an
ordinary input a and an SRQ A and a port β accepting
an ordinary input b and an SRQ B, with ζ(a) = ζ(A) =
ζ(b) = ζ(B) = 1 and ζ ′(A) = ζ ′(B) = 1. M can then
be the one depicted in Fig. 1, with the state set {1, 2, 3},
1 the initial state and the output set in every transition
label encoded as a (yα, yβ) with yα the output at α, if
any, and yβ the output at β, if any. For every state s and
input x, let ts,x denote the corresponding transition.

For a given transition sequence (TS) τ = (s1, s2, x1/
y1) . . . (sk, sk+1, xk/yk), let init(τ) denote its initial
state s1, fin(τ) its final state sk+1, is(τ) its input
sequence x1 . . . xk, ios(τ) its input/output sequence
(IOS) x1/y1 . . . xk/yk, cost(τ) its cost Σ1≤i≤kcost(xi),
port(τ) the port of x1 and ports(τ) the set of all the
ports involved in ios(τ). Let ϵ denote a zero-length TS.
Let sts(M) denote the set of all those TSs τ = t1 . . . tk
of M which are synchronizable, i.e., for every 1 ≤ i < k
satisfy port(ti+1) ∈ ports(ti).

3 CANDIDATE CHECKING SEQUENCES

Like [1], we define that a checking TS (CTS), i.e., a TS
whose input sequence is a CS, is a TS of M satisfying
the following:

1) It is synchronizable.
2) There exists such a permutation t1 . . . t|otr(M)| of

the transitions in otr(M) that for every 1 ≤ i ≤
|otr(M)|, there is a segment t′iτitit

′′
i with t′i and

t′′i two status transitions and τi a TS whose every
member belongs to the set {t1, . . . , ti−1}.

3) It starts in init(M) and the input of its first
transition is an SRQ.

To see that for such a TS τ , is(τ) is indeed a CS
appropriate for the assumed distributed test architecture,
observe the following:

1) The first constraint solves the problem of control-
lability, i.e., secures that during the application of
is(τ) to N , every tester always knows the right
time for enabling (so that it can be executed when
N completes its current transition) the next input
at its port.

2) The second constraint by induction secures imple-
mentation checking for the consecutive transitions
in t1 . . . t|otr(M)|, as for every 1 ≤ i ≤ |otr(M)|,
proper implementation of the transitions t1 . . . ti−1

implies that whenever ios(t′iτi) (actually its pro-
jections onto individual ports) is observed on N ,
the resulting state of N is exactly the initial state
of ti, so that if ios(tit′′i) is subsequently observed,
one knows that ti is also properly implemented.

3) The third constraint secures the checking of the
initial state of N .

4 REPRESENTING CANDIDATE CHECKING
SEQUENCES IN A DIGRAPH

The first step of our CS-construction procedure is to
construct a digraph G in which promising CTSs are
represented as specific walks. A digraph is a set of
vertices of which some are connected by directed edges.
Whenever introducing an edge, we will specify it as a
(v, v′, l, c) with v its initial vertex, v′ its final vertex,
l its label and c its cost. For our purposes, we define
that every edge label is a (possibly empty) sequence of
transitions of M and minuses, whereas every edge cost
is a member of R2. The cost of a digraph is the sum of
its edge costs.

For a given walk w = (v1, v2, l1, c1) . . . (vk, vk+1, lk,
ck), let init(w) denote its initial vertex v1, fin(w) its
final vertex vk+1, lab(w) its label l1 . . . lk and cost(w)
its cost Σ1≤i≤kci. If v1 = vk+1, w is a tour. If (k >
0)∧(∧1≤i<j≤k+1((vi = vj) = ((i, j) = (1, k+1)))), w
is a cycle. An edge set is acyclic if no subset of it forms
a cycle. An Euler tour of a digraph is a tour traversing
each of its edges exactly ones.

The construction of G starts by selecting, for every
transition t in otr(M), a minimum-cost transition t′ in
str(M) with tt′ ∈ sts(M). Call it next(t) and let
str′(M) denote the set {next(t)|t ∈ otr(M)}. One

242 KAPUS-KOLAR

v '
0

V
1

v
0

V
3

V
2

E
1

E
2

E
3

E
s t a r t

E
e n d

E
c o n

e
0

Figure 2. Schematic representation of the digraph G.

also selects, for every state s of M and transition t
in str′(M), a minimum-cost TS τ in sts(M) with
(init(τ) = s) ∧ (τt ∈ sts(M)), call it τs,t.

We now describe the vertices and edges of G. As
we see from its schematic representation in Fig. 2, its
vertices are those in the sets V1, V2 and V3 plus the
vertices v0 and v′0, whereas its edges are those in the
sets E1, E2, E3, Econ, Estart and Eend plus the edge
e0. The vertices in V1 are the initial vertices of the edges
in E1. The vertices in V2 are the initial vertices of the
edges in E2⊎E3. The vertices in V3 are the final vertices
of the edges in E3.
E1 = {(v1init(t),port(t), v

2
init(t′),port(t′), t, cost(t))

|(t ∈ str′(M))∧(t′ ∈ otr(M))∧(tt′ ∈ sts(M))}
E2 = {(v2init(t),port(t), v

2
init(t′),port(t′), t, cost(t))

|(t ∈ otr(M))∧(t′ ∈ otr(M))∧(tt′ ∈ sts(M))}
E3 = {(v2init(t),port(t), v

3
fin(t′),port(t′), tt

′, cost(tt′))
|(t ∈ otr(M)) ∧ (t′ = next(t))}

Econ = {(v3init(t),port(t), v
1
init(t),port(t),−t,−cost(t))

|t ∈ str′(M)}⊎
{(v3s,p, v1init(t),port(t), τs,t, cost(τs,t))
|(t ∈ str′(M)) ∧ (v3s,p ∈ V3)∧
((s, p) ̸= (init(t), port(t)))}

Estart = {(v0, v1init(M),p, ϵ, (0, 0))|v
1
init(M),p ∈ V1}

Eend = {(v3s,p, v′0, ϵ, (0, 0))|v3s,p ∈ V3}
e0 = (v′0, v0, ϵ, (0, 0))

Example 2. For the M of Example 1, we choose
next(t1,a) = next(t2,b) = next(t3,a) = t2,A
next(t2,a) = t3,A
next(t1,b) = next(t3,b) = t1,A
τ1,t2,A = t1,a
τ1,t3,A = t1,at2,a
τ2,t1,A = t2,at3,At3,b
τ2,t3,A = t2,a
τ3,t1,A = t3,b
τ3,t2,A = t3,a

The transition t3,A in τ2,t1,A secures its synchronizabil-
ity. The resulting G is given in Fig. 3.

For a given walk w in G whose first edge is not of
a negative cost, let ts(w) denote the TS obtained from
lab(w) by deleting every segment t−t with t a transition
of M . We define that a walk w of G represents a CTS,
namely ts(w), if it is an ew′e′e0 with e an edge in

Estart, w′ a walk whose edge set is an acyclic subset
of E2 and e′ an edge in Eend. In the following, such a
walk is called a checking walk (CW).

To see that for every CW w, ts(w) is indeed a CTS,
observe the following:

1) ts(w) is synchronizable and starts with a status
transition starting in init(M).

2) As those edges in w that are in E2 form an
acyclic subset of it, there exists such a permutation
t1 . . . t|otr(M)| of the transitions in otr(M) that
for every 1 ≤ i ≤ |otr(M)|, w has a segment
eiwie

′
i with ei and edge in E1 with lab(ei) a status

transition, e′i an edge in E3 with lab(e′i) a tit
′
i with

t′i a status transition and wi such a walk consisting
of members of E2 that every transition in ts(wi)
belongs to the set {t1, . . . , ti−1}.

Example 3. In the G of Example 2, one of the CWs, a
w, is
(v0, v

1
1,α, ϵ, (0, 0))w1,a

(v32,α, v
1
2,α,−t2,A, (−1,−1))w2,a

(v33,α, v
1
3,α,−t3,A, (−1,−1))w3,b

(v31,α, v
1
1,α,−t1,A, (−1,−1))w1,b

(v31,α, v
1
1,α,−t1,A, (−1,−1))w2,b

(v32,α, v
1
2,α,−t2,A, (−1,−1))w3,a

(v32,α, v
′
0, ϵ, (0, 0))(v

′
0, v0, ϵ, (0, 0))

with
w1,a = (v11,α, v

2
1,α, t1,A, (1, 1))(v

2
1,α, v

3
2,α, t1,at2,A, (1, 2))

w2,a = (v12,α, v
2
2,α, t2,A, (1, 1))(v

2
2,α, v

3
3,α, t2,at3,A, (1, 2))

w3,b = (v13,α, v
2
3,β , t3,A, (1, 1))(v

2
3,β , v

3
1,α, t3,bt1,A, (1, 2))

w1,b = (v11,α, v
2
1,β , t1,A, (1, 1))(v

2
1,β , v

3
1,α, t1,bt1,A, (1, 2))

w2,b = (v11,α, v
2
1,α, t1,A, (1, 1))(v

2
1,α, v

2
2,β , t1,a, (0, 1))

(v22,β , v
3
2,α, t2,bt2,A, (1, 2))

w3,a = (v12,α, v
2
2,α, t2,A, (1, 1))(v

2
2,α, v

2
3,α, t2,a, (0, 1))

(v23,α, v
3
2,α, t3,at2,A, (1, 2))

ts(w1,a) = t1,At1,at2,A
ts(w2,a) = t2,At2,at3,A
ts(w3,b) = t3,At3,bt1,A
ts(w1,b) = t1,At1,bt1,A
ts(w2,b) = t1,At1,at2,bt2,A
ts(w3,a) = t2,At2,at3,at2,A
lab(w) = ts(w1,a)−t2,Ats(w2,a)−t3,Ats(w3,b)−t1,A

ts(w1,b)− t1,Ats(w2,b)− t2,Ats(w3,a)
= t1,At1,at2,A − t2,At2,At2,at3,A − t3,A
t3,At3,bt1,A − t1,At1,At1,bt1,A − t1,A
t1,At1,at2,bt2,A − t2,At2,At2,at3,at2,A

ts(w) = t1,At1,at2,At2,at3,At3,bt1,At1,bt1,At1,at2,b
t2,At2,at3,at2,A

For each individual transition ts,x in otr(M), ws,x is
that segment of w that secures the checking of its
implementation. Thanks to the negative-cost edges in w,
the corresponding segments ts(ws,x) of ts(w) partially
overlap. To see that ts(w) is a CTS, observe that it is
synchronizable, that it starts with t1,A and that

ts(w1,a) = t1,Aτ1,at1,at2,A with τ1,a = ϵ
ts(w2,a) = t2,Aτ2,at2,at3,A with τ2,a = ϵ

ON THE USE OF STATUS MESSAGES IN CHECKING SEQUENCES FOR THE DISTRIBUTED TEST ARCHITECTURE 243

t 1 , b
t 1 , b

t 3 , b

t 3 , b
t 2 , b

t 1 , a

t 2 , bt 1 , a

t 2 , a

t 3 , a

v 1
1 , a v 1

2 , a

v 2
1 , av 2

3 , b

v 2
2 , av 2

3 , a

t 1 , A t 2 , At 3 , A

t 3 , A
t 1 , A

t 2 , A

t 3 , b t 1 , A

t 1 , b t 1 , A

t 1 , a t 2 , A

t 2 , b t 2 , A t 2 , a t 3 , A

t 3 , a t 2 , A

- t 1 , A
- t 2 , A - t 3 , At 1 , a

t 3 , b

t 2 , a

t 3 , a

t 2 , a t 3 , A t 3 , bt 1 , a t 2 , a

v 0

v 2
2 , bv 2

1 , b

v 1
3 , a

v ' 0

v 3
1 , a v 3

3 , av 3
2 , a

Figure 3. G for the example M , with the edges in E3 ⊎ {e0} bold and the edges in Econ ⊎ Estart ⊎ Eend dashed.

ts(w3,b) = t3,Aτ3,bt3,bt1,A with τ3,b = ϵ
ts(w1,b) = t1,Aτ1,bt1,bt1,A with τ1,b = ϵ
ts(w2,b) = t1,Aτ2,bt2,bt2,A with τ2,b = t1,a
ts(w3,a) = t2,Aτ3,at3,at2,A with τ3,a = t2,a

5 FINDING A CHEAP CANDIDATE
CHECKING SEQUENCE

A digraph is edge-induced if its vertices are exactly the
starts and the ends of its edges. A digraph is symmetric if
for every vertex, the number of the incoming edges is the
same as the number of the outgoing edges. A digraph is
strongly connected if from every vertex, there is a walk
to every other vertex. A component of a digraph is a
strongly connected sub-digraph which is not a part of
any larger strongly connected sub-digraph.

Following an idea of [3], for finding a cheap (though
not necessarily minimum-cost) CW we suggest the fol-
lowing procedure:

1) Construct one of the cheapest symmetric edge-
induced digraphs (SEIDs) consisting of e0, the
edges in E3 and any number of instances of the
remaining edges of G. This is the most demanding
step of the procedure, but can be accomplished in
polynomial time [4].

2) Enhance the digraph into a strongly connected
SEID G′, using the following procedure for merg-
ing two components G1 and G2 of its current
version:

a) In G, select such a minimum-cost cycle
e1w1e

′
1e

′′
1e2w2e

′
2e

′′
2 with e1 and e2 two edges

in E1, w1 and w2 two sub-walks whose every
edge is in E2, e′1 and e′2 two edges in E3 and
e′′1 and e′′2 two edges in Econ that every edge

in e1w1e
′
1 has an instance in G1 and every

edge in e2w2e
′
2 has an instance in G2.

b) For every vertex in the cycle, add to G′ a
new instance.

3) Construct the CW as any Euler tour of G′. As
G′ is symmetric, simply initialize the current CW
approximation to a zero-length walk starting and
ending in v0 and then repeatedly append to it one
of the yet uncovered outgoing edges of its final
vertex.

After the first step of the procedure, G′ has the
following properties:

1) It is symmetric, every edge is an instance of an
edge of G and for every edge in E3, there is at
least one instance.

2) Exactly one edge is an instance of e0. Hence,
exactly one edge is an instance of an edge in
Estart and exactly one edge is an instance of an
edge in Eend, for otherwise the digraph would not
be symmetric.

3) There is no cycle consisting exclusively of in-
stances of edges in E2, because for every such
cycle, removal of its edges from G′ would contra-
dictorily result in an even cheaper SEID consisting
of e0, the edges in E3 and any number of instances
of the remaining edges of G.

In any subsequent merging of two components, all
the properties of G′ are preserved, because no edge is
removed, every new edge is an instance of an edge in
E1 ⊎ E2 ⊎ E3 ⊎ Econ, the new edges form a cycle and
the set of those edges in E2 of which G′ comprises
an instance is preserved. Hence, the final version of G′

also possesses the properties, which indeed makes the
subsequently constructed tour w a CW. As an additional

244 KAPUS-KOLAR

improvement of the corresponding CTS ts(w), replace
its first element with one of the cheapest transitions t in
str(M) with init(t) = init(M).

6 DISCUSSION

In the usual approach to the construction of a CS without
controllability problems [5], the first step is to secure
the checking of a sufficient set of locally distinguishing
sequences (LDSs) and a sufficient set of transfer IOSs
(TIOSs). Without this step, the LDSs and the TIOSs,
employed in the subsequently constructed transition
implementation tests (TITs), cannot be trusted. In the
considered special setting, a sufficient set of reliable
LDSs and TIOSs is available by definition, as every SRQ
is a (length one) reliable LDS and the label of every
transition in sts(M) is a (length one) reliable TIOSs.

As another complication in the usual approach, the
conceived TITs sometimes fail to completely check the
implementation of the transition labels, so that additional
tests are necessary [6]. In the considered special setting,
we have not encountered the problem, in spite of relying
on a straightforward generalization of the usual approach
for the single-port case [7].

For the generalization, we had to find a way to
adequately represent in the auxiliary digraph G only the
synchronizable TSs of M . Interestingly, we discovered
that the topology of the central (i.e. E2) part of G cannot
be simply that of the relevant part of the canonical
representation χmin(M) [8] of sts(M), for then the
dependency relation between the TITs employed in the
constructed TS can have cycles even if the employed
part of E2 is acyclic. We prevented this by also securing
init(e) = init(e′) for every two edges e and e′ in
E2 ⊎ E3 whose labels start with the same transition in
otr(M). The hint seems useful also for the multi-port
case without the status-reporting capability, for which a
method with thorough global optimization of the CS has
yet to be developed.

REFERENCES

[1] R.M. Hierons, “Using status messages in the distributed test
architecture,” Inf. Soft. Tech., vol. 51, no. 7, pp. 1123-1130, 2009.

[2] H. Dan, R.M. Hierons, “Controllability problems in MSC-based
testing,” Computer Journal, vol. 55, no. 11, pp. 1270-1287, 2012.

[3] R.M. Hierons, H. Ural, “Optimizing the length of checking
sequences,” IEEE Trans. Comput., vol. 55, no. 5, pp. 618-629,
2006.

[4] A.V. Aho, A.T. Dahbura, D. Lee, M.U. Uyar, “An optimization
technique for protocol conformance test generation based on
UIO sequences and Rural Chinese Postman Tours,” IEEE Trans.
Comm., vol. 39, no. 11, pp. 1604-1615, 1991.

[5] R.M. Hierons, H. Ural, “Checking sequences for distributed test
architectures,” Dist. Comput., vol. 21, no. 3, pp. 223-238, 2008.

[6] J. Chen, R.M. Hierons, H. Ural, “Overcoming observability
problems in distributed test architectures,” Inf. Proc. Let., vol.
98, no. 5, pp. 177-182, 2006.

[7] H. Ural, X. Wu, F. Zhang, “On minimizing the lengths of
checking sequences,” IEEE Trans. Comput., vol. 46, no. 1, pp.
93-99, 1997.

[8] R.M. Hierons, “Canonical finite state machines for distributed
systems,” Theor. Comput. Sci., vol. 411, no. 2, pp. 566-580, 2010.

Monika Kapus-Kolar received her B.Sc. degree in electrical engi-
neering from the University of Maribor, Slovenia, and her M.Sc. and
Ph.D. degrees in computer science from the University of Ljubljana,
Slovenia. Since 1981 she has been with the Jožef Stefan Institute,
Ljubljana, where she is currently a researcher at the Department of
Communication Systems. Her current research interests include formal
specification techniques and methods for the development of real-time,
concurrent and reactive systems.

