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Abstract

We are seeking a sufficient condition that forces a transversal in a generalized Latin
square. A generalized Latin square of order n is equivalent to a proper edge-coloring of
K., ». A transversal corresponds to a multicolored perfect matching. Akbari and Alipour
defined [(n) as the least integer such that every properly edge-colored K, ,,, which contains
at least /(n) different colors, admits a multicolored perfect matching. They conjectured that
I(n) < n?/2if n is large enough. In this note we prove that [(n) is bounded from above
by 0.75n% if n > 1. We point out a connection to anti-Ramsey problems. We propose a
conjecture related to a well-known result by Woolbright and Fu, that every proper edge-
coloring of K5,, admits a multicolored 1-factor.
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1 Multicolored matchings and generalized Latin squares

A subgraph H of an edge-colored host graph G is multicolored if the edges of H have dif-
ferent colors. The study of multicolored (also called rainbow, heterochromatic) subgraphs
dates back to the 1960’s. However, the special case of finding multicolored perfect match-
ings in complete bipartite graphs was first studied much earlier by Euler in the language of
Latin squares. Since then this branch of combinatorics, especially the mentioned special
case, has been flourishing. Several excellent surveys were dedicated to the subject, see
(8,9, 10, 13].

In this paper we mainly focus on the case when the host graph is a complete bipartite
graph K, ,,, and the multicolored subgraph in view is a perfect matching (1-factor). There
is a natural constraint on the coloring: it has to be proper.

These conditions can be reformulated in the language of Latin squares. A Latin square
of order n is an n x n matrix, which has n different symbols as entries, and each symbol
appears exactly once in each row and in each column. A generalized Latin square of order
n is an n X n matrix, in which each symbol appears at most once in each row and in each
column. A diagonal of a generalized Latin square of order n is a set of entries, which
contains exactly one representative from each row and column. If the symbols are all
different in a diagonal, then we call it a transversal.

Generalized Latin squares correspond to properly edge-colored complete bipartite graphs,
while transversals correspond to multicolored 1-factors (perfect matchings). The so called
partial transversals correspond to multicolored matchings. This intimate relation allows
us to use the concept of symbols and colors interchangeably.

It is known that there exist Latin squares without a transversal. One might think that
using more symbols should help finding a transversal. Therefore, it is natural to seek the
sufficient number of symbols. We recall the following

Definition 1.1 (Akbari and Alipour [1]). Let{(n) be the least number of symbols satisfying
I(n) > n that forces a transversal in any generalized Latin square of order n that contains
at least [(n) symbols.

In the terminology of matchings, they asked the threshold for the number I(n) of colors
such that any proper [-coloring of K, ,, contains a multicolored perfect matching if [ >
I(n). Notice that the function /(n) is not obviously monotone increasing.

Akbari and Alipour determined I(n) for small n: [(1) = 1,1(2) = 1(3) = 3,1(4) = 6.
They also proved that [(n) > n+ 3 forn = 2% — 2 (2 < a € N). They posed the following

Conjecture 1.2 (Akbari and Alipour [1]). The difference l(n)—n is not bounded if n — oo,
while [(n) < n?/2ifn > 2.

Our main contribution is the following
Theorem 1.3. I(n) < 0.75n2 ifn > 1.

Although we conjecture that /(n) = o(n?), we must mention that if we relax the settings
by allowing symbols to appear more than once in the columns, then for all n, there exist
n x n transversal-free matrices, which contain n?/2 + O(n) symbols [2].

The paper is built up as follows. In Section 2 we show the connection of the problem to
a classical Erd6s—Spencer result. We prove an upper bound on /(n) using a refined variant
of the Lovasz local lemma. We present the proof of Theorem 1.3, which is mainly built on
Konig’s theorem. Finally in Section 3, we propose the study of a function similar to [(n),
and investigate the relation to certain anti-Ramsey problems.
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2 Two approaches to bound the number of symbols
2.1 Lovasz local lemma

It is a classical application of the Lovasz local lemma (LLL) that there exists a transversal
in an n X n matrix if no color appears more than é%en times. In fact, Erd6s and Spencer [7]
weakened the conditions of LLL by introducing the so called lopsided dependency graph
G of the events, on which the following holds for every event F; and every subfamily F of
events {E; : j & N¢li]}:

P(E; | NjerE;) < P(Ey),

where N¢|i] denotes the closed neighborhood of vertex ¢ in graph G. Under this assump-
tion, it is enough to show the existence of an assignment ¢ — (u; > 0) which fulfills

Hi
P(E;) < 2.1
2sengl Ljes 1

to obtain P(N; E;) > 0.

Applying the ideas of Scott and Sokal [11]; Bissacot, Fernandez, Procacci and Scop-
pola [4] observed that LLL remains valid if the summation in Inequality (2.1) is restricted
to those sets .S which are independent in G.

Let c(a;;) denote the number of occurrences of the symbol a;; in an n X n array A
(n > 1). Let ¢;x(A) and c,;(A) measure the average occurrence in row ¢ and column j as

cix(A) = (Z c(ait)> —n and ¢;(A) = (Z c(atj)> —n.

t t

It can be viewed as some kind of weight-function on the rows and columns, where the
weight is zero only if all entries admit uniquely occurring colors.

We follow the proof of the improvement on the Erdds-Spencer result in [4]. We show
that P(N,E,) > 0 holds for the set of events {F,} that a random diagonal contains a
particular pair v of monochromatic entries. Here | N [v]| in the lopsided dependency graph
G depends only on the number of monochromatic pairs (v, v) of entries, which shares (at
least) one row or column with an entry from both v and v". Thus if v consists of a;; and
akt, then [Ng[v]] < ¢i(A) + cij(A) + cri(A) + e (A). Also if w,w’ € Ng[v] covers
the same row from {i, k} or column from {7, [} then w and w’ are adjacent in G.

If we set p,, := p Vo, then it is enough to provide a p such that

1 Ho H
P(E,) = < =
n(n —1) ZSQNG[U], S indep. HjeS Hj ZSQNg[v], S indep. plS!

Consequently, it is enough to set 4 in such a way that

"
ngvg [v], S indep. M

>
S|

1% 1
L+ e (A + g (A + (D) (1 + e D) — nln—1)

holds.
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Itis easy to see that (1 + Up)(1+ V) < (1+ EEYp)? forall U,V € R, hence

14 S 1
(I+2u)* = n(n-1)

implies the required condition, where

Cie(A) + i (A) + e (A) + ca(A)
y .

Cy 1=

_ 1

Thus if we set p := 5=, we obtain the following

Proposition 2.1. There always exists a transversal in a generalized Latin square unless

4 3
(3) (cir(A) + g (A) + che(A) + ca(A)) > nln — 1) 22)

holds for a pair of monochromatic entries a;; and ay,;.

Corollary 2.2. I(n) < (1 — 25)n? + 25n ~ 0.895n2 if n > 1.

Proof. Observe that n? —c;,.(A) or n? —c,;(A) bounds from above the number of colors in
Aforalli,j € [1,n]. Consequently, if the number of colors is at least (1 — 2= )n? 4+ 2tn,
then

(g)g cin(A) < i(rﬂ —1n) and (3)3 cuj(A) < i(nQ —n)

for every row ¢ and column j, which in turn provides the existence of a transversal accord-
ing to Proposition 2.1. O

Remark 2.3. Note that while the proof of Erds and Spencer points out the existence of
one frequently occurring symbol, the proof above reveals that in fact many symbols must
occur frequently to avoid a transversal.

2.2 Using Konig’s theorem

We start with a lemma on the structure of partial transversals, which is essentially the
consequence of the greedy algorithm. The following easy observation is due to Stein [12].

Result 2.4. Consider r rows in a generalized Latin square A of order n. If ”TH > r, then
there exists a partial transversal of order r in A covering the r rows in view.

We need the following consequence:

Lemma 2.5. Consider p rows and q columns in an n X n generalized Latin square. If
q < p < (n+1)/2, then either

Case (a) q < p/2 and there exists a partial transversal of size p covering the p rows and
q columns, or

Case (b) q > p/2 and there exists a partial transversal of size |p/2| + q covering the p
rows and q columns.
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Proof. Both parts follow from the fact that we can build a partial transversal by choosing
first min{q, [p/2]} different symbols in the array formed by the intersection of the p rows
and q columns, and then we can extend this greedily by entries in the uncovered rows and
columns of the array (essentially using Result 2.4). 0

We proceed by recalling a variant of Konig’s theorem, see Brualdi, Ryser [5].

Lemma 2.6. There exists an all-1 diagonal in a 0/1 square matrix of order n if and only
if there does not exist an all-0 submatrix of size © X y, where x +y > n + 1.

Now we prove another upper bound on I(n).

Theorem 2.7. If a generalized Latin square of order n contains at least 0.75n? symbols,
then it has a transversal.

Proof. First notice that the statement holds for n = 1,2. We proceed by induction. Con-
sider a generalized Latin square A of order n, which contains at least 0.75n2 symbols. A
symbol is a singleton if it appears exactly once in A. We refer to the other symbols as
repetitions. A submatrix is called a singleton-, resp. repetition-submatrix if every entry of
the matrix is a singleton, resp. repetition.

Let p be the number of rows consisting only of repetitions and ¢ be the number of
columns consisting only of repetitions. We refer to these as full rows and columns, and
assume that ¢ < p. Notice that p < n/2, since the number of symbols is at least 0.75n2.
Our aim is to choose a partial transversal that covers all full rows and columns, and then
we complete this to a transversal by adding only singletons. First we apply Lemma 2.5 to
get a partial transversal that covers the full rows and columns. Next, we omit the rows and
columns that are covered by the chosen partial transversal. We obtain a generalized Latin
square A’ of order n — p in Case (a) or of order n — |p/2| — g in Case (b). Now we are
done by Lemma 2.6, if there are not too large repetition-submatrices in A’.

Suppose to the contrary that such a repetition-submatrix of size x X y exists in one of
the cases, where x + y is larger than the order of A’. Note first that in either case, A’ does
not contain full rows and columns. Therefore, we can choose a singleton o1 in A’ such that
at least x repetitions appear in its row. Similarly, we can choose a singleton o9 in A’ such
that at least y repetitions appear in its column.

Claim 2.8. There exists a singleton o such that the row of o or the column of o contains
more than n/2 repetitions in the original Latin square A.

Proof. In Case (a) of Lemma 2.5: ¢ < p/2. The number of repetitions in the row of oy
is at least ¢ + x and number of repetitions in the column of o5 is at least p + y. Thus the
statement holds since p+ g+ x+y >p+ g+ (n—p) > n.

In Case (b) of Lemma 2.5: ¢ > p/2. The number of repetitions in the row of oy is
at least ¢ + x and number of repetitions in the column of o5 is at least p 4+ y. Thus the
statement holds since p+ g+ x+y >p+q+ (n— |p/2] —¢) > n. O

In view of Claim 2.8, if we omit the row and column of the singleton o, we obtain a
generalized Latin square B of order n — 1, which admits more than 0.75n2 — (2n — 1) +
n/2 > 0.75(n — 1)? symbols. By the induction hypothesis, there exists a transversal in B,
hence it can be completed to a transversal of A by adding o. O
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3 Discussion

At the time of submission, we learned that Best, Hendrey, Wanless, Wilson and Wood [3]
achieved results similar to ours. As the best upper bound, they proved I(n) < (2 — v/2)n?.

Nevertheless, not only the conjecture of Akbari and Alipour remained open, but it is
plausible that it can be strengthened in the order of magnitude as well. In fact, the bound
%nQ is intimately related to the number of singletons, which took a crucial part in both
our proof and the proof in [3]. If the number of colors does not exceed %nQ, then there
might be no singletons at all. However, our first probabilistic proof implies also that either
there exists a transversal in a generalized Latin square of order n with Cn? colors (C' >
0.45), or the number of singletons is large. This fact points out that the constant 1/2 in

Conjecture 1.2 is highly unlikely to be sharp. More precisely, we show the following

Proposition 3.1. If the number of singletons is less than (2C + 0.25 (%)3 —1+0(1))n?
in a generalized Latin square of order n with Cn? symbols, then there exists a transversal.

Proof. Suppose first that in every row and column, the sum c¢;,(A) and c*j(A) are be-

low 0.25 (%)3 (n? — n). This in turn implies the existence of a transversal by Proposi-
tion 2.1. On the other hand, if for example ¢;,(A) exceeds that bound, then consider only
the symbols not appearing in row ¢, and let us denote by n; the number of symbols which
occur exactly k times overall, with none of those occurrences being in row i. Clearly
Sone =Cn?> —nand >, kng = (n(n — 1) — ¢ix(4)) < (1 -0.25 (%)3)(712 —n).
Consequently, for the number of singletons not appearing in the ith row,

3
ny > Zan - Zk‘nk > (2C +0.25 <i> — 14 0(1))n?,

k k

which makes this case impossible. O

A special case, that appears as a bottleneck in some arguments concerns generalised
Latin squares, where each repeated symbol has maximum multiplicity. We show that also
in this special case, one can find a transversal.

Lemma 3.2. If A is a generalised Latin square of order n, where each symbol has multi-
plicity 1 or n (and both multiplicities occur), then A has a transversal.

Proof. We associate an edge-colored complete bipartite graph G4 to A such that vertices
on one side correspond to rows the other side to columns and the colors of the edges to the
symbols. Our goal is to find a multicolored matching.
Notice that the Latin property implies that a symbol with multiplicity n corresponds to
a perfect matching. Let us remove all edges corresponding to symbols with multiplicity n.
If there are r such colors, then the remaining bipartite graph is (n — r)-regular. As an easy
corollary of Hall’s theorem, any regular bipartite graph contains a perfect matching. In our
case there are only singleton colors on the edges, so the perfect matching is multicolored.
O

It seems likely that if the number of colors is large, then we not only obtain one transver-
sal, but also a set of disjoint transversals. This motivates the study of the following function.
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Definition 3.3. Let [*(n) be the least integer satisfying [*(n) > n such that for any proper
edge-coloring of K, ,, by at least [*(n) colors, the colored graph can be decomposed into
the disjoint union of n multicolored perfect matchings.

Conjecture 3.4. [*(n) < n?/2 ifn is large enough.
We remark that the difference of [(n) and {*(n) is at least linear in n if I(n) # n.
Proposition 3.5. [*(n) —I(n) >n — 1.

Proof. Suppose first that there exists a transversal-free generalised Latin square of order n,
ie.,l(n) >n.

For n < 2 the claim is straightforward. Suppose n > 3. By definition, there exists
a transversal-free generalized Latin square A of order n with I(n) — 1 symbols. Since
I(n) < 0.75n2, we can find a set S of n — 1 different repetitions, where n — 1 < 0.25n2.
We assign new symbols to the entries of .S to create a new generalized Latin square A’ of
the same order. Since S cannot cover n disjoint transversals, and there were no transversals
disjoint to .S, matrix A’ cannot be decomposed to n transversals, but contains [(n) +n — 2
symbols. Now consider the case when [(n) = n, which implies that n must be odd. Take
the cyclic Latin square of order n— 1 (which has no transversal, since n—1 is even) and add
one row and column of singletons. The resulting matrix has n—1+2n—1 = 3n—2 symbols
in it. However, it cannot be decomposed into transversals because such a decomposition
would need to include a transversal of the embedded cyclic group table. O

Remark 3.6. Observe that the above result implies {*(n) > 2n — 1 for all n. Notice that
there are some orders n, for which I[(n) = n, e.g. n € {1, 3,7}, see also [3].

The question we studied concerning [(n) clearly has an anti-Ramsey flavor. The anti-
Ramsey number AR(n,G) for a graph family G, introduced by Erd6s, Simonovits and
Sés [6], is the maximum number of colors in an edge coloring of K, that has no multi-
colored (rainbow) copy of any graph in G. To emphasize this connection, we propose the
following problem.

Problem 3.7. What is the least number of colors ¢(n,2), which guarantees a rainbow 2-
factor subgraph on at least n — 1 vertices in a properly edge-colored complete graph K,
colored by at least ¢(n, 2) colors?

Perhaps the size n — 1 of the 2-factor subgraph seems artificial in some sense at first, or
at least it could be generalized to any given function f(n). We recall that for the function
t(n, 1) corresponding to 1-factors, Woolbright and Fu provided the following related result.
In Problem 3.7, we have to allow two values n — 1 and n to avoid parity issues.

Proposition 3.8 ([14]). Every properly colored Ko, has a multicolored 1-factor if the
number of colors is at least 2n — 1 and n > 2. That is, t(n,1) =n — 1.

In another formulation, the necessary number of colors for a proper edge-coloring is
already sufficient to guarantee a multicolored perfect matching. It might happen that it also
forces a much larger structure as required in Problem 3.7. We propose the following

Conjecture 3.9. Any proper edge-coloring of Ko, by at least 2n — 1 colors contains a
multicolored 2-factor on 2n — 1 or 2n vertices.
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If the above conjecture fails, then possibly there are proper edge-colorings of K, with-
out multicolored 2-factors of size n or n — 1. In that case, we can use a connection between
t(n,2) and I(n) to show a lower bound.

Proposition 3.10. [(n) > t(n,2) + 1.

Proof. Consider an edge-coloring C' of the complete graph K, on vertex set V' without
multicolored 2-factors of size n or n — 1. We associate to C' a coloring of the complete
bipartite graph K, ,, on partite classes U and W as follows: let us assign the color of
vv; € E(Ky) (4,7 € [1,n]) to the edge u;w; € E(K,,) if i # j, and color the set
of independent edges u;w; (i € [1,n]) by a separate color. Suppose that we found a
multicolored 1-factor M in the complete bipartite graph. We omit at most one edge of M
if we delete the edges u;w; and M’ remains. Consider the edges viv; in K, for which
ugw; is contained in the multicolored M’ of edges. This edge set is multicolored too, and
each vertex has degree 2. O
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