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Abstract

The thesis deals with various aspects of the Casimir effect in smectic liquid crystals.
The Casimir interaction in planar smectic-A systems is studied, considering both
types of smectic ordering — positional and orientational — including the coupling
between them. This provides a complete picture of the phenomenon in smectic-A
systems with homogeneous equilibrium order. The behavior of the Casimir interac-
tion in vicinity of the smectic-A to smectic-C phase transition is considered. The
presence of this transition results in some special features of the interaction. A spe-
cial attention is devoted to confined systems with non-trivial equilibrium order. The
Casimir interaction in a homeotropic smectic cell with surface enhanced positional
order is studied; an exponential decay of the Casimir force is predicted, contrary
to the long-range interaction in homogeneous smectic systems. In a homeotropic
nematic cell with surface induced presmectic order a faster decay of the Casimir
force than in normal nematics is discovered. In addition, a few systems where
inhomogeneity of equilibrium ordering does not affect the Casimir interaction are
presented.

Keywords: Casimir effect, smectic liquid crystals, fluctuations, confinement, phase
transition

PACS: 61.30.Dk, 61.30.Hn, 64.70.Md, 68.60.Dv






Povzetek

Delo je posveceno razlicnim vidikom Casimirjevega pojava v smekti¢nih tekocih
kristalih. Obravnavamo Casimirjevo interakcijo v planarnih smekti¢nih A sistemih.
Pri tem zajamemo oba vidika smekti¢ne ureditve - pozicijskega in orientacijskega -
ter sklopitev med njima. S tem podamo popoln opis Casimirjevega pojava v sme-
kticnih A sistemih s homogeno ravnovesno ureditvijo. Nadalje raziséemo obnasa-
nje Casimirjeve sile v blizini prehoda iz smekticne A v smekticno C fazo. Blizina
tega faznega prehoda se odraza v nekaterih posebnih lastnostih sile. Posebno po-
zornost v disertaciji posvetimo ograjenim sistemom z netrivialno ravnovesno uredi-
tvijo. Obravnavamo homeotropno smekti¢no celico s pove¢anim povrsinskim pozici-
jskim redom. Ugotovimo, da je Casimirjeva sila v takem sistemu kratkega dosega, v
nasprotju s homogenimi smekticnimi sistemi, kjer je sila dolgega dosega. Izracunali
smo Casimirjevo silo v nematski homeotropni celici s povrsinsko vsiljenim pred-
smekticnim redom. V tem primeru sila upada precej hitreje kot v obi¢ajnem ne-
matiku. Predstavili smo tudi nekaj sistemov, kjer nehomogena ravnovesna struktura
ne vpliva na Casimirjevo interakcijo.

Kljuéne besede: Casimirjev pojav, smekticni tekoci kristali, fluktuacije, ograditev,
fazni prehod

PACS: 61.30.Dk, 61.30.Hn, 64.70.Md, 68.60.Dv
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Introduction

The history of the Casimir effect dates back into 1948 when the Dutch physicist
H. B. G. Casimir predicted that even two uncharged parallel conducting plates
should experience mutual attraction [1]. This attraction, seemingly stemming “from
nowhere” | originates from a modified spectrum of zero-point fluctuations (and hence
a modified energy density) of electromagnetic field in confined volume as compared to
free space. The pioneering work of Casimir has inspired a large number of theoretical
and also experimental studies of the Casimir force [2]. The interest in the subject is
on the one hand purely fundamental as the Casimir interaction represents one of a
few macroscopic manifestations of quantum phenomena and zero-point fluctuations.
On the other hand, with recent prosperity of nanotechnology a lengthscale has been
reached where the Casimir force can by no means be considered a marginal effect.

The rationale behind the Casimir interaction can be most easily demonstrated
with the following calculation [3]. Let us consider two perfectly conducting plates
parallel to z-y plane and separated by a distance h (Fig. 1.1). Even if the plates are
uncharged and at zero temperature (7" = 0 K) the electromagnetic (EM) field exists
in terms of zero-point fluctuations with energy £ = 1/2)" hw,, where h is the
reduced Planck constant and w, are frequencies of fluctuation modes. In confined
space the modes of EM field adjust to the boundary conditions dictated by the
conducting plates and can be written as:

E(q,n) = Eyexp(igp) sin <%> , (1.1)

where ¢ = (¢y,¢,) is a wave-vector in z-y plane and n the number of standing
wave modes in z direction (there are actually two different types of EM modes
present in such a wave-guide, but for the sake of simplicity we omit this detail).
The corresponding frequency is

n2m?
w(q,n)ZC\/q%+Q§+ T (1.2)

where c is the speed of light. Now in the confined space the wave-number n is limited

to integer values (n = 0,1,2,...) whereas in an open space the wave-spectrum is

7
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Figure 1.1 Casimir force between uncharged parallel conducting plates. The
difference between the discrete spectrum of electromagnetic modes in the con-
fined volume and continuous spectrum in the open space leads to an attractive
interaction between the plates.

continuous and n can be any real number. The interaction energy can thus be
defined as the difference between the energy of fluctuations in confined space and
the energy of fluctuations in free space

B = 53 [wlam) - Jim w(g,n)]

= 7—;; [;w(q,n) —/Ooow(q,n) dn] : (1.3)

Both terms in Eq. (1.3) are divergent but their difference is finite and can be calcu-
lated by various mathematical methods. We shall here just quote the result

hem?S

Eh) = =28

(1.4)

where S is the area of the plates. This leads to an attractive force between the

plates given by
OE(h) her?S
_ - _ ) 1.
Oh 240h* (15)

At a finite temperature (T > 0) the force should be calculated using the free energy

F(T=0)=

F instead of the energy E as a proper thermodynamic potential. For high tempera-
tures or large thicknesses (kgT'h > hc), where the thermal fluctuations of the field
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overwhelm the quantum fluctuations, the Casimir force reads

_ OF(h)  ksTS
Fe=—e—gpr == 3 (1.6)

where kg is Boltzmann constant and (y is the Riemann zeta function with the value
Cr(3) = 1.202.... It is worth mentioning that the electromagnetic Casimir force is
a special case of the van der Waals force between two dielectric slabs interacting
across another dielectric medium, first calculated by Lifshitz in 1955 [4].

As it can be inferred from the above derivation, the Casimir interaction is not
specific only to the EM field. It is present in every confined system where the fluc-
tuation spectrum of any physical field is modified due to some boundary conditions.
In other words, it is omnipresent but not easily observed due to its usually small
magnitude. We shall here give a brief overview of the various fields of physics where
the Casimir force has been studied [2].

First of all, the original Casimir calculation, Eq. (1.5), has been refined and
extended in various ways. As already mentioned, the contribution due to thermal
fluctuations of electromagnetic field should be considered at finite temperatures,
leading to the expression (1.6) in the limit of high temperatures [5-12]. Further-
more the corrections concerning finite conductivity and roughness of the plates have
been evaluated [13-22]. The generalization to magnetically permeable plates has
been performed, which can even change the sign of the force [23-27]. The Casimir
interaction has been calculated for rectangular cavities and for spherical, cylindrical,
toroidal and wedge geometries [28-34]. There seems to be no a-priori way to predict
what the stress on specific geometrical object will be. For example, the Casimir
force on the conducting spherical shell tends to expand it, contrary to the attrac-
tion obtained between two plates. Moreover, the interaction between the walls of a
rectangular cavity can be either attractive or repulsive depending on the relation-
ship between the lengths of the sides. The dynamical Casimir effect, describing the
force and radiation from moving plates, has also received much attention [35-39).
In quantum field theory the Casimir effect has found application in the bag model
of hadrons in quantum chromodynamics (QCD) [40-42] and in Kaluza-Klein field
theories [40, 42-46]. Casimir-type effects naturally arise in cavity quantum electro-
dynamics (QED) [25] and even in electrical engineering of microchips [47-49]. In
gravitational theory, cosmology and astrophysics the Casimir effect arises in space-
times with nontrivial topology and is related to problems of particle creation by
black holes, gravitational collapse and inflation process [42, 50-55]. As a mechani-
cal analog, the acoustic Casimir force has to be mentioned. Larraza et al. managed
to measure the force between two closely spaced plates due to the modification of
the spectrum of acoustic noise [56-58]. The Casimir idea found application even in
maritime physics, where an attractive force between two ships in a rough sea has
been attributed to the modification of the wave spectrum in the region between the
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ships [59]. A fluctuation-induced interaction is also present between inclusions in
biological membranes. Here the thermal fluctuations of a membrane are hindered by
the presence of the inclusions which leads to the interaction [60-62]. Many studies
have been devoted to the thermal Casimir interaction in correlated fluids [63] — such
as critical liquids and binary mixtures of liquids [64-69], super-fluids [70-73], liquid
crystals and electrolytes [74-76]. The various studies of the Casimir effect in liquid
crystals, the main topic of this thesis, are presented in detail later.

Here we should mention a universal property of the Casimir force in planar ge-
ometry which does not depend on details of the studied system: fluctuations with
long-range correlations induce long-range interaction while short-correlated fluctua-
tions result in a short-range force decaying with some characteristic length. Typical
examples of long-range correlations include critical systems close to the phase tran-
sition and systems with a massless Goldstone fluctuation modes due to the broken
continuous symmetry of ordering. On the other hand, the sign of the Casimir force
depends on the geometry and topology of the system as well as on the specific
boundary conditions.

The experimental studies of the Casimir force are vastly outnumbered by the
theoretical work. The main reason lies in difficulty of experiments as the Casimir
force is usually weak and often screened by other effects. The first documented suc-
cessful attempts of measuring the electromagnetic Casimir force belong to Sparnaay
in 1958 [77]. However, due to the poor accuracy of the measurements only quali-
tative agreement with theoretical predictions was confirmed. A firm experimental
measurement of the Casimir force was reported in 1997 by Lamoreaux [78, 79|,
almost half a century after the theoretical prediction. Lamoreaux used an elec-
tromechanical system based on a torsion pendulum and measured the force between
a gold-coated plate and sphere. The agreement with the theory was claimed to be
within 5%. Subsequent experiments which relied on the atomic force microscopy
(AFM) techniques [80-84] also produced results that were in excellent quantitative
agreement with the theory. In recent years a number of new experiments ensued.
The force between two crossed cylinders [85], plan-parallel plates [86] and in stan-
dard sphere-plane AFM setup was measured [87-91]. In dynamical experiments the
influence of the Casimir force on the behavior of micromechanical oscillators was
observed [92-95]. The precision of experiments has been greatly improved over the
last years and now allows for delicate tests of the theoretical predictions. Further-
more, the Casimir force measurements provide one of the most sensitive tests of the
hypothetical new forces predicted by modern theories of fundamental interactions
including corrections to Newtonian gravitational law at small distances [95-101].

Although the Casimir force is weak at macroscopic distances, it is important for
modern technologies which involve ever smaller length scales where the Casimir force
becomes dominant. It is presently unclear whether the Casimir force will present
an obstacle or a useful feature in micro- and nano-engineering. For example, the
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first microelectromechanical device which shows actuation by the Casimir force was
designed by researchers at Bell Labs in 2001 [92]. On the other hand, the Casimir
force restricts the yield and performance of nanoscale devices as the movable parts
often stick together due to the strong attraction [102-104].

Apart from measurements of the electromagnetic Casimir force, the experiments
on other systems have also been performed. The influence of the Casimir force has
been observed in the wetting behavior of liquid helium on a metallic surface [70, 71].
The thickness of the helium film formed on the metal depends on the strength of the
interaction between the surfaces of the film. When the system is cooled down to the
fluid /super-fluid phase transition the fluctuations become critical and the magnitude
of the Casimir force strongly increases which is reflected in thinning of the wetting
film. Similar experiments were performed with binary liquid mixtures [67, 105-107]
where a sharp increase of the wetting film thickness was observed near the critical
(demixing) point due to the enhanced Casimir interaction. Casimir interaction is
also expected to have an important role in physics of colloids where a long-range
attraction would eventually lead to the flocculation of dispersed particles [69]. Such a
flocculation of colloidal particles has actually been observed in binary liquid mixtures
but the precise interpretation of experimental results is still unclear [108-110].

1.1 Casimir force in liquid crystals

Having briefly described the Casimir interaction in various fields of physics, ranging
from biophysics to cosmology, we proceed with a thorough overview of the studies
of the Casimir force in liquid-crystal systems. Liquid-crystalline phases are interme-
diate states of matter between a liquid and a crystal phase [111]. They are formed
by anisotropic molecules, usually elongated or disc-shaped. There exist a variety
of distinct liquid-crystalline phases which are characterized by orientational and in
some cases also by partial orientational order of constituent molecules. It has been
established long ago in light-scattering experiments [112] that thermal fluctuations
of ordering have an important role in liquid-crystal systems. These fluctuations
are the source of the Casimir interaction when the system is confined by external
boundaries. The richness of different phases, phase transitions, order parameters
and couplings between them makes the liquid-crystalline systems especially attrac-
tive for studying the phenomenology of the Casimir interaction.

1.1.1 Nematic liquid crystals

Nematic phase is the simplest liquid-crystalline phase (Fig. 1.2). Molecules in a
nematic phase are liquid-like in a sense that there is no long-range positional order
and the translational motion of the molecules is random. However, there exists a
long-range orientational order. Molecules tend to orient with their long axes parallel
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Figure 1.2 Nematic liquid crystal phase. The average orientation of molecules
is described by a headless unit vector n called the director. The directions n

and —n are physically equivalent. The angle 6 gives the tilt of a molecule with
respect to the director. The polar angle ¢ is used to describe biaxial ordering.

to each other. This orientational order is described by director n, which is a unit
vector giving the average local direction of orientation of molecules. The degree
of orientational order is measured by the order parameter S = (3/2cos?6 — 1/2),
where 6 is the angle between the director n and long axes of the molecule, while the
brackets denote the thermodynamic average. Nematic ordering is usually uniaxial,
except in some special systems. The biaxial ordering is described by the biaxial
director ny, perpendicular to n, and the degree of biaxiality P = (sin?(#) cos(2¢)),
where ¢ is the polar angle of molecular orientation. In equilibrium, with no external
forces acting on the system, the director tends to be uniform over the whole sample.
The energy cost of a director-field deformation is given by the Frank elastic free-
energy [113]

F= %/ [K1(V-n)’ + Ky(n-V xn)* + K3(n x V xn)’|dV . (1.7)

Here K, K5 and K3 are splay, twist and bend elastic constants. A more complete
description of nematic systems is given by the tensor order parameter Q which
incorporates all aspects of nematic ordering — director (n), degree of ordering (.5),
and biaxiality (ny, P). The Q tensor is a traceless symmetric tensor based on some
macroscopic quantity which is zero in the isotropic phase and non-zero in the nematic
phase. The magnetic susceptibility tensor y is usually used for this purpose and the
order parameter tensor is defined as Q = C'(x — %I Tryx), where C' is a normalization
constant and | a unit tensor. The free energy density of a nematic system close to
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the nematic-isotropic phase transition is then described by a Landau-type expansion

f= %A(T — T TrQ? — %B TrQ® + iC(TrQQ)2 + %LVQEVQ : (1.8)

where A, B, C and L are material constants and 7™ is supercooling limit of isotropic
phase.

The first study of the Casimir force in a nematic system was performed by Ajdari
et al. in 1991 [114, 115]. They calculated the force in a nematic homeotropic cell
(Fig. 1.3), consisting of two infinite parallel plates separated by the distance h which
enforce homeotropic orientation of the director [n(z = 0) = n(z = h) = (0,0,1)].
These imposed boundary conditions hinder the thermal fluctuations of the nematic

z = h I |

z = 0 EE——— |

Figure 1.3 Homeotropic nematic cell with the director structure n = n,. The
arrows indicate the enforced orientation of the director at the plates.

director in the cell, thus modifying the spectrum of fluctuations which leads to the
Casimir interaction. The Casimir force in this configuration is equal to

_ kgTS Ky Ks
Feas = P Cr(3) <K1 + %) (1.9)

We note here that this force is equal to the thermal EM Casimir force between two
metallic plates [Eq. (1.6)], apart from factor including the ratio of elastic constants.
This demonstrates the universality of the Casimir interaction which does not depend
on specific details of the studied system but on the type of fluctuation modes and
on imposed boundary conditions. We also note that director fluctuations in nematic
liquid crystals are an example of massless Goldstone fluctuation modes, which try to
recover broken continuous symmetry of a high temperature — in this case isotropic
— phase. The work of Ajdari was extended by Ziherl et al. [116] who evaluated the
contributions of fluctuations of biaxiality and degree of nematic order to the Casimir
force. These contributions are equal to

(1.10)

ETS 1 = exp (—2hk/n;) (1 h.  h? )
2 )

. S Ty g
e Tl

where 7; are the corresponding correlation lengths of fluctuations. In the limit
of large thicknesses (h/n; > 1) this force decays as exp(—2h/n;)/h. This is a
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demonstration of another universal feature of the Casimir force — massive short-range
correlated fluctuations result in a short-range Casimir force, decaying exponentially
with some characteristic length equal to the correlation length of fluctuation modes
in question. It was established that these short-range contributions are important
only close to the nematic-isotropic phase transition where the correlation lengths of
the massive modes are strongly increased. Otherwise the long-range contribution of
the director fluctuations [Eq. (1.9)] dominates the Casimir force in nematics. These
basic results [Egs. (1.9,1.10)] were also generalized for finite anchoring strengths,
where the ordering at the plates is not fixed but can deviate from a preferred value
[116, 117]. It was established that finite surface coupling reduces the magnitude
of the Casimir force and can even modify its thickness dependence and sign. It
is interesting to note that in the case of no surface coupling between the plates
and liquid crystal the Casimir force is exactly the same as in the case of infinitely
strong anchoring. These two limiting cases correspond to the so-called Neumann and
Dirichlet boundary conditions, respectively. The structure of the eigen-modes in the
two cases is different, but the energy spectra are identical which leads to identical
Casimir forces. Even more interesting is the case of mixed (Dirichlet-Neumann)
boundary conditions where the force changes the sign and becomes repulsive [114,
117].

Further studies addressed different aspects of the Casimir force in nematic liquid
crystals. Li and Kardar evaluated corrections to the Casimir force due to the rough-
ness of the plates [118, 119]. Ziherl et al. studied the force in a pre-nematic wetting
system with inhomogeneous equilibrium order [120]. They found that the Casimir
force in such a system is repulsive and short-range. Much attention has been paid
to the so-called frustrated systems such as the hybrid and Fréedericksz cell [121].
The hybrid cell is similar to the homeotropic cell (Fig. 1.3) except that now one

I < I |
EEEEEE
h<hCIIIIIIIH,
AR
: EEEEEEY
a) b)

Figure 1.4 Frustrated systems: a) hybrid cell; b) Fréedericksz cell — the
magnetic field tends to rotate the director parallel to the plates. The arrows
indicate the preferred orientation of director at the plates. In thin enough cells
the equilibrium director structure is uniform. When increasing the thickness,
the structural transition to a deformed director structure takes place at h = h,.
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of the plates imposes a planar orientation of the director (Fig. 1.4a). In thick cells
this mismatch between the plate-induced order results in a deformed equilibrium
director field. However, in thin cells it is energetically more favorable to maintain
homogeneous director configuration thus violating one (the weaker) of the boundary
conditions. Such a system is said to be frustrated as it can not adjust to all imposed
external conditions. Due to this frustration the order is destabilized and the fluc-
tuations of the director are enhanced which leads to additional contributions to the
Casimir force. When the anchoring strengths at the plates of a hybrid cell are very
different, the Casimir force exhibits typical crossovers from attraction to repulsion
when varying the thickness of the cell. When the critical thickness of the structural
transition to the inhomogeneous director profile is approached, the Casimir force
diverges logarithmically. The geometry of a hybrid cell is often characteristic for
thin nematic films on a solid substrate [122]. In a Fréedericksz cell the frustration is
caused by an external magnetic field which tends to orient the director parallel to the
plates while the plates induce a homeotropic director orientation (Fig. 1.4b). In thin
cells or in weak magnetic fields the director structure is homogeneous and dictated
by the boundary conditions. The destabilizing effect of magnetic field enhances the
director fluctuations which again results in additional terms to the ordinary director
Casimir force. At large enough fields or cell thicknesses the classical Fréedericksz
transition to the deformed director structure takes place. The Casimir force again
exhibits logarithmic divergence at this transition. Similar studies of frustrated sys-
tems were performed for chiral nematics where the frustration arises from inability
of a system to synchronize the intrinsic chiral helix with the confining boundaries
[123]. Bartolo et al. considered the Casimir force between small spherical impurities
in nematic solvent and obtained 1/h" dependence of the force [124]. The Casimir
force in confined nematic polymers was discussed in Ref. [125]. It was predicted
that at large distances the Casimir force should exhibit a faster algebraical decay
(1/h®) than in ordinary nematics (1/h®). In a recent work Karimi et al. studied the
Casimir force in a nematic cell with patterned plates, covered by stripes of different
anchoring conditions [126]. Finally, the existence of a long-range Casimir torque
between plates with anisotropic anchoring energies was predicted [127].

1.1.2 Smectic liquid crystals

Smectic liquid crystals possess, in addition to orientational order, a one-dimensional
positional order. Molecules are arranged in parallel layers. The diffusion of molecules
within the layers is liquid-like, but the diffusion between the layers is hindered. This
leads to modulation of density in direction perpendicular to the layers (denoted as

o(2) = po {1 4 Re (qf exp (@207;—0”‘))} | (1.11)

z-direction here)
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where dj is the thickness of smectic layers and W = ¢ exp(i¢) is the complex order
parameter whose modulus v describes the amplitude of density wave and the phase
¢ is related to the position of the layers. However, it should be stressed that po-
sitional order in smectics is not very pronounced, as the variations of the density
are small, and there are no sharp boundaries between the layers. This positional
order is said to be quasi-long-range, because according to the Landau-Peierls theo-
rem no true long-range order can exist in one dimension as the thermal fluctuations
destabilize it. However, the break-down of positional order in smectics would occur
at macroscopic scales which is irrelevant for all current experimental setups. There
exist various smectic phases. In this thesis, we focus on the smectic-A phase, where
the molecules are oriented perpendicular to the layers, and the smectic-C phase,
where the molecules are tilted with respect to the layer normal (Fig. 1.5).

nT n
00\\0 Il/l//l
ININOD 270002/
VINNON  Vpriii/
WVINND 2200072/

Figure 1.5 Smectic liquid crystals. Molecules are arranged in layers (the

a)

figure is schematic): a) smectic-A phase; b) smectic-C phase. In the smectic-A
phase the molecules are on average oriented along the layer normal, while in
the smectic-C phase the molecules are tilted with respect to the layer normal.

In the simplest model the deformations of smectic structure are described by layer
displacement wu(r) whereas the degree of smectic order is assumed to be constant
and the director is assumed to rigidly follow the layers. The elastic free-energy is

then given by

F= %/ [B(Vju)? + K(Viu)*]dV, (1.12)

where the first term describes the compression or dilation of layers and the second
term gives the energy of layer bending (Fig. 1.6). The indices ||,L denote the direc-
tion parallel and perpendicular to the layer normal, respectively. A more complete
model which incorporates all aspects of smectic ordering will be presented in the
following section.
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Figure 1.6 a) Compression of smectic layers; b) Bending of smectic layers.

The first study of the Casimir force in smectic systems was published by Mikheev
in 1989 [128]. He considered the force in a homeotropic smectic cell induced by
fluctuations of smectic layers, taking as a starting point the Eq. (1.12). In this
geometry the layers are oriented parallel to the plates and the boundary condition
require that the layers at the plates are fixed and do not fluctuate. This hindering
of the fluctuations leads to the Casimir force between the plates given by

kTS B

oo Cr(2)/ = . (1.13)

fCas: K

We see that the Casimir force in smectics decays with even smaller power (h~?)
compared to the nematic decay (h~3). This is a result of a different energy dispersion
of fluctuations in smectics. Additional length dimension in smectic Casimir force is
provided by the characteristic length A = /K /B which is usually about of a size of
a layer thickness. Mikheev actually considered even a more general case of smectic
films. The geometry of these systems is the same as that of a homeotropic cell,
however, the fluctuations of the surfaces are rather than forbidden only suppressed
by the surface tension. In this case, the Casimir force still retains h=2 dependence
and is given by

kgTS | B _.
as — T TA 1o —L
Fo 1672V K 2

where Li, is a dilogarithm function defined by Lis(z) = > 7 a™"n~

(v1 = VKB)(v: — VKB)
(71 +VEB)(y2+VEB) |’

(1.14)

2 while v, and 7,

are surface tensions at the upper and lower surface of the film, respectively. In free-
standing smectic films v, = 79, but generally the surface tensions can be different.
Finite surface tensions reduce the magnitude of the Casimir force compared to the
case of hard boundaries. In case of dissimilar boundary conditions (weak/strong
anchoring) the force changes sign and is repulsive. The results of Mikheev were later
reproduced and extended by Ajdari et al. for bookshelf geometry, where smectic
layers are oriented perpendicular to the confining plates, and for columnar liquid
crystals [114, 115]. A somewhat different system was addressed in Ref. [129] where
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the Casimir force due to the fluctuations of ¥ in a presmectic liquid was studied.
Contrary to the long-range smectic Casimir force, the presmectic interaction is short-
range, exhibiting typical behavior characteristic for “massive” fluctuation modes
[Eq. (1.10)].

Oliveira and Lyra studied the Casimir force in smectic films within discrete
model of smectic elasticity [130]. The obtained results were very similar to that
of continuous model used in Refs. [114, 115, 128]. They found that in the case of
a very special value of surface tension v = v, = VKB the force decays as h™*,
which is much faster as the usual h=2 behavior. This work was extended by the
inclusion of external magnetic field [131, 132]. The ordering effect of magnetic field
results in a faster (h™3) decay of the Casimir force at large thicknesses. In the case
of asymmetric boundary conditions the impact of the magnetic field changes the
sign of the force from the usual repulsion at small thicknesses to the attraction at
large thicknesses of the film. The crossover thickness (from repulsion to attraction)
decreases with inverse square of the magnetic field (h. o< 1/H?). Furthermore the
Casimir force in a free-standing film near the Sm-A — nematic phase transition was
studied [133]. Strong increase of the force close to the transition was predicted as a
result of a strong nonuniformity of equilibrium smectic and nematic order profiles.
This increase would make the Casimir force the dominant long-range interaction in
such a system. The discrete formalism was also applied to hexatic smectics, where
the Casimir force due to the fluctuations of the bond ordering was examined [134].

1.1.3 Search for experimental evidence

There has been no unambiguous confirmation of the Casimir force in liquid-crystalline
systems so far. The reason probably lies in the fact that there are many other forces
present in confined liquid crystals, such as mean-field force originating from non-
uniform equilibrium ordering and dielectric van der Waals force, which often domi-
nate and thus mask the Casimir force. The potential experiments for detecting the
Casimir force can be generally divided into two types. Firstly, the forces in liquid
crystal systems can be measured directly using the surface force apparatus (SFA)
or atomic force microscope (AFM) [135, 136]. Secondly, the impact of the Casimir
force could be observed indirectly in different phenomena concerning liquid crystal
films.

The possibilities of detecting the Casimir force in nematic liquid crystals were
thoroughly discussed in Ref. [137]. It was found that the sensitivity of the AFM and
SFA suffices for detection of the Casimir force only in very thin samples, up to about
40 nm thickness. Furthermore, the behavior of the Casimir force in nematics strongly
depends on specific boundary conditions, which should be therefore well-controlled
in order to allow for the identification of the Casimir interaction. Moreover, in
plane-sphere or cylinder-cylinder geometry employed in AFM and SFA experimental
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setups the deformation of the equilibrium director field is difficult to avoid. This
leads to the mean-field elastic force which is usually much stronger than the Casimir
force. Although the magnitude of the Casimir force could be somewhat enhanced
by using a suitable material with large ratio of elastic constants (K3/K; or K3/ K>),
it seems that the direct measurement of the force in nematic systems is a formidable
task. As for indirect observations, it was argued that the Casimir force should drive
the spinodal-dewetting of thin nematic films on a silicon substrate [122, 138, 139].
However, the explanation of this phenomena is not completely clear yet [140]. The
Casimir force also naturally arises in colloidal systems but with particles of micron-
size the leading interaction in this systems comes from elastic deformation of director
field. If the size of the particles were reduced to a few tens of nanometers then the
elastic deformation would vanish and the Casimir force would dominate [117].

Due to the longer range of the Casimir force in smectics, the AFM and SFA
setups are precise enough to detect the Casimir force in samples of up to about
1 pm thickness, which is much more than in nematics. Furthermore, the smectic
layers are much “stiffer” than the nematic director. Therefore, a smectic system
adjusts to the curved surfaces of AFM and SFA setups by formation of an array of
edge dislocation loops, whereas the smectic layers do not bend considerably [141].
This facilitates the interpretation of the results as there is no additional mean-field
force due to the elastic deformations of layers present. The force measurements in
smectics have indeed been performed [136, 141-146] and the force profile was found
to be comprised of quasiperiodic parabolas due to the compression (or dilation) of
layers. These parabolas are often superposed on an attractive background whose
origin is not fully understood yet. However, it seems that the Casimir force is about
an order of magnitude too small to be responsible for this [141].

There have been many speculations whether the Casimir force in smectics could
be observed indirectly. It was proposed that the Casimir force should drive the
wetting of isotropic and nematic films by the smectic phase at the free surface of
the film close to the corresponding phase transitions [128]. In the case of wetting
smectic film formed at the free surface of the isotropic film the Casimir force on the
wetting smectic layers is expected to be attractive and the wetting should therefore
be incomplete (only a finite number of smectic layers is developed before the whole
film undergoes the transition to smectic phase). When the wetting smectic film is
formed at the free surface of the nematic film the Casimir force on smectic layers is
expected to be repulsive due to the very dissimilar boundaries. The wetting should
therefore be complete, with thickness of smectic film continuously increasing and
eventually diverging at the phase transition. This kind of behavior was indeed ob-
served experimentally in some systems [147-149], however no analysis confirming
the dominant role of the Casimir force has been performed. Similar interactions
are expected to be present in free-standing smectic films above the bulk smectic
— nematic phase transition temperature, where the layer-thinning transitions take
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place [150]. The influence of the Casimir force could also be detected by measuring
the contact angle between a free-standing smectic-A film and its meniscus, as this
angle provides direct information about the interaction between the free surfaces of
the film [151]. The interactions in free-standing films can further be probed in ex-
periments that measure the intensity of light scattered by the capillary waves on the
free surfaces of the film [152]. But as stressed above, no unambiguous confirmation
of the Casimir force in liquid crystal systems, neither nematic nor smectic, has been
obtained yet.

1.1.4 Aim and outline of thesis

The preceding studies of the Casimir force in smectic liquid crystals were concerned
with interaction induced by fluctuations of smectic layers [114, 115, 128, 130-133].
It is the aim of this thesis to study the Casimir force considering all aspects of
smectic ordering — positional and orientational. This gives, to our knowledge the
first, complete picture of the Casimir phenomenon in smectic systems. Our main
focus is on the force in smectic-A phase. We further address the behavior of the
Casimir force close to the smectic-A to smectic-C phase transition in plain and also
in chiral smectics. The presence of the phase transition is expected to result in some
special features of the Casimir force, which might facilitate its experimental iden-
tification. In the end we consider the problem of the Casimir force in two systems
with inhomogeneous equilibrium order. We first address a smectic system with in-
homogeneous positional order which results in spatial dependence of smectic elastic
constants. Second, we study the effect of a presmectic order on the director fluc-
tuations in a nematic phase. In confined systems, some boundary-induced smectic
order is always present. Therefore it is a relevant question how this order influences
the long-range Casimir interaction in nematics. The systems with inhomogeneous
equilibrium structure represent a special challenge in the theory of the Casimir in-
teraction and the thesis gives a contribution to the yet limited knowledge in this
field. Our studies are limited to the plan-parallel geometry. This is a geometry
realized in smectic films. Furthermore, the results obtained in planar systems can
be generalized (with some restrictions) to the most commonly encountered curved
geometries by using Derjaugin approximation [153]. Some of the results presented
in the thesis have been published in two papers in Physical Review E [154, 155].

The outline of the thesis is as follows. In Chapter 2 we present the theoretical
models used in this thesis and describe the procedure for calculating the Casimir
force. In Chapter 3 we consider the Casimir force in confined smectic-A systems.
In Chapter 4 we address the force in the vicinity of smectic-A to smectic-C phase
transition. In Chapter 5 we study the force in two systems with inhomogeneous
equilibrium order. At the end we summarize the obtained results and outline some
of the open questions in the field.
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Theoretical model

2.1 Free energy of smectic-A phase

Positional order in smectics is described by a complex order parameter ¥ = 1) exp(i¢).
The modulus v gives the magnitude of positional ordering and is related to the mag-
nitude of the density wave as described by Eq. (1.11). The argument ¢ is related
to deformations of smectic layers, ¢ = qou = (27/dy)u, where u is the layer dis-
placement and dy the period of smectic layers. The orientational order of molecules
is described by the director n. The free energy of a smectic system is then given
by a phenomenological Landau — de Gennes type expansion [111, 156, 157]. This
expansion includes three parts. The first part f; describes the free energy density
of positional ordering:

1
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The first two terms in f; describe the smectic-A — nematic phase transition, and
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a = a(T —Tya) with Ty4 being the temperature of the phase transition and b > 0.
The rest gives the various contributions to elastic free energy weighted by the elastic
constants C|, di, dy and d3. The subscripts || and L denote directions parallel and
perpendicular to the layer normal, respectively. We shall seldom employ the elastic
contributions in full generality as the lowest order elastic terms are usually sufficient
to describe smectic systems. The second part fy to the total smectic free energy
comes from the energy cost of deformations of orientational order and is given by
the usual nematic Frank elastic energy:

v = %Kl(v -n)” + %Kﬂn (Vxn)P + %K3[n X (V xn)]?. (2.2)

Here K, Ky and K3 are splay, twist and bend elastic constants, respectively. The
third contribution fry describes the coupling between the orientational and the
positional order. In the case of the smectic-A phase it is given by
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In the case of the smectic-C phase a fourth order term should be included so that

I - 2 1o ; !
fLN = aCJ‘ (vi + Zqoénl)\ll’ + ZCJ' (vi + Z(JO(SHL)‘I’ ) (24)

with C(j) < 0 and C(f) > 0, but we refer to this case in a more specific system later
on. The complete free energy can now be written as

F:/(fL‘i‘fN‘i‘fLN)dV‘ (2.5)
It is useful to expand the free energy density in terms of 1) and ¢. We obtain
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If no elastic deformations are present in the system, then the equilibrium value of
bulk smectic order is given by ¥y = \/—a/b, the phase ¢ is constant [¢ # ¢(r)] and
the director is perpendicular to the layers (dn = 0). Above the phase transition
temperature Ty 4 in nematic phase there is no bulk smectic order and g = 0.

2.2 Chiral smectics close to smectic-A* to
smectic-C* phase transition

In this thesis, we also address the behavior of the Casimir force close to the smectic-A
to smectic-C phase transition. We actually also consider the more complex chi-
ral smectic phases, smectic-A* (Sm-A*) and smectic-C* (Sm-C*), as this brings no
conceptual difficulties to our calculations and the results can be straightforwardly
applied to the non-chiral phases.

Chiral molecules, which lack the mirror symmetry and therefore distinguish left-
and right-handed types, form chiral liquid crystal phases [158-160]. The chiral
Sm-A* phase exhibits the same structure as its non-chiral counterpart, but its phys-
ical properties are different. On the other hand, the chirality modifies the structure
of Sm-C* phase. The molecules in Sm-C* are still tilted with respect to the layer
normal as in a non-chiral Sm-C phase. However the direction of the tilt changes grad-
ually from layer to layer such that the director forms a helical structure (Fig. 2.1).
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Figure 2.1 Helical structure of chiral Sm-C* phase (the period of the he-
lix on the figure is exaggeratedly short). The direction of the molecular tilt
changes gradually from layer to layer. The arrows indicate the orientation of
spontaneous polarization.

The period of the helix (~ 1 pm) is incommensurate with the layer thickness and
much larger compared to it. Furthermore, the Sm-C* phase can posses spontaneous
polarization and is hence ferroelectric. This was discovered experimentally by Meyer
et al. in 1975 [161] and later explained by Meyer on pure symmetry grounds [162].
The spontaneous polarization is oriented perpendicular both to the layer normal
and to the director.

The ordering in Sm-A* and Sm-C* phases can be described by two two-component
order parameters. The primary order parameter, & = (&;,&,), represents the pro-
jection of the director onto the z-y plane. The secondary order parameter is the
spontaneous polarization P = (P,, P,;). However, the interaction between the dipole
moments of molecules is too weak to drive the Sm-A* — Sm-C* phase transition. In
Sm-C* phase, the polarization P appears only due to the coupling with the tilt &
and for this reason smectics belong to the class of so-called improper ferroelectrics.

The Sm-A* — Sm-C* phase transition can be conveniently described by a phe-
nomenological Landau-type model. In this model, the free energy density reads
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Here f,4 stands for the equilibrium free energy density of Sm-A* phase. The temper-
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Figure 2.2 Order parameters of the Sm-A* — Sm-C* phase transition: a) tilt
of molecules £ ; b) spontaneous polarization P. Molecular orientation can be
also described by the azimuthal angle # and the polar angle ¢. Spontaneous
polarization P is oriented perpendicular to the tilt £ and the layer normal z.

ature dependence is hidden in coefficient a = «(T —Tj), where T is the temperature
of phase transition in an achiral system. The coefficient b must be positive to stabi-

lize the total free-energy. The Lifshitz term A < x% — y%;) is responsible for the

helical twist of the director. The three elastic terms give the energy of deformation

of director field and are analogous to the Frank elastic energy in nematics. The
coefficient 1/2¢ in front of P? term is independent of temperature, as the polariza-
tion does not drive the phase transition. The piezoelectric term C (P, &, — P, &,)
describes the coupling between the tilt and polarization. The flexoelectric term

I <Px %5; + %%) on the other hand describes the appearance of the polarization
due to the inhomogeneity of the director structure. It should be mentioned that the
Lifshitz and piezoelectric term have a chiral origin while the flexoelectric effect can

also be present in achiral smectics.

In Sm-A* phase, the equilibrium value of [£| and |P| is 0. Below the phase
transition temperature 7., in Sm-C* phase, the amplitude of the director tilt varies
as |&| = /a(T. —T) /b. The amplitude of the polarization is proportional to the
magnitude of tilt |P| = ¢ (ug. + C) |&|. The temperature of Sm-A* — Sm-C* phase
transition 7. is equal to T, = Ty+[eC? + (K3 — ep?) ¢?] /a and is always higher than
the phase transition temperature 7T in achiral systems. This is due to the coupling
between the tilt and polarization and due to the helical structure of Sm-C* phase
which has to be unwinded at the transition. The equilibrium pitch of helix is given
by q. = (A +epC) /(K3 — ep?). The classical Landau model presented here does
not completely cover the experimentally observed material properties of ferroelectric
smectics and has therefore been subject to various improvements and corrections.
However all these corrections contribute higher order terms in free energy expansion
and are hence not crucial for our analysis of fluctuations which will be limited to
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harmonic terms only.

In liquid crystals, the thermal fluctuations of ordering around the equilibrium
structure are overdamped. The relaxation times of fast (i.e. high energy) polariza-
tion fluctuations (77! ~ 100 MHz) are much shorter than typical relaxation times
of director fluctuations (77! ~ 10 Hz — 1 MHz). This fact justifies the use of
adiabatic approximation which is based on assumption that polarization always in-
stantaneously equilibrates with the director movement. This enables us to eliminate

the polarization P from the free energy. Considering the equilibrium conditions
0f /0P, = 0 and 0f /0P, = 0 we obtain for polarization values

P, = 5,[‘&_50&;7
dz
dg

The free energy in the adiabatic approximation then reads
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with renormalized coefficients a(T) = a(T) —eC2, A = A+euC and Ky = Ky —ep?.

The free energy expansion can be further simplified by transforming the order pa-
rameter into rotating system which follows the helical structure of the Sm-C* phase.
The order parameter £ in the rotating frame is given by & = (§,,£,) where &, is the
component parallel to the equilibrium director tilt and &, component perpendicular
to the equilibrium tilt. The transformation equations read: &, = &, cos ¢.z—& | sin g.z
and &, = &, sinq.z + &, cos g.z. The equilibrium values of transformed order param-
eters in Sm-C* phase are §, = || = Ja(T. —T) /b and &, = 0, while in Sm-A*
phase both order parameters are equal to 0. The free energy in rotating frame is
now given by
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with assumption K; = Ky = K. The coefficient (a— Kj ¢2)/2 is of form a(T —1T})/2
and is positive in Sm-A* phase and negative in Sm-C* phase.
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2.3 Confined systems

The presence of confining boundaries, and thereby boundary conditions imposed
onto fluctuating fields, is the basis of the Casimir interaction. In this thesis we study
the Casimir force in two confined systems with plan-parallel geometry: homeotropic
cell and free-standing film (Fig. 2.3). The influence of boundaries on both types of
smectic ordering — positional and orientational — has to be taken into account.

z=h _i
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Figure 2.3 Confined systems: a) Homeotropic cell. Smectic material is con-
fined by parallel plates. Smectic layers are aligned parallel to the plates, while
the director structure is homeotropic. The arrows indicate the preferential
orientation of the director at the plates; b) Free-standing smectic-A film; ¢)
Free-standing smectic-C film. In free-standing films the smectic material is
spread over a hole in a metal or a glass plate. The layers align parallel with
the free boundaries in contact with air; The setting of coordinate system which
is used in the calculations is presented.

The homeotropic cell consists of Sm-A material trapped between two parallel
flat plates separated by the distance h. Smectic layers are aligned parallel to the
plates. We assume that smectic layers rigidly adjust to the plates. In terms of layer
displacement u this gives the boundary condition u(z=0)=u(z=h)=0. Furthermore
the boundaries affect (usually increase) the degree of positional order 1. We model
this by assuming that the plates induce a fixed magnitude of positional order g,
which gives the boundary conditions 1(z = 0) = ¢)(z = h) = 1. Finally, the plates
favor homeotropic (i.e. perpendicular to the plates) ordering of the director. This
director anchoring is described by phenomenological Rapini-Papoular model [163]
with the anchoring free energy given by

Fy[n] = %W/sin2(|n—n5|)d5, (2.12)
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where W is the anchoring energy per surface unit and ng the preferred director
orientation at the boundary. The anchoring energy W depends on chemical and
mechanical preparation of the plates and can be in general different for each plate
in homeotropic cell. In the case of infinitely strong director anchoring, W — oo,
the director orientation at the boundary is fixed. It is common to express anchoring
strengts in terms of extrapolation length L = K /W with K being some appropriate
elastic constant of the liquid crystal material.

A free-standing film is formed by spreading the smectic material over a hole
in a metal or a glass plate. The layers align parallel with free boundaries. Films
consisting of only a few (at least two) up to thousands layers can be produced and
stabilized, while monolayers are unstable. Free-standing films are very convenient
for studying properties of liquid crystals as a defect-free structure can be obtained
relatively easy, which is not the case in liquid-crystal cells. As the film is confined by
air and not by hard plates the fluctuations of the boundary layers are not completely
suppressed. However, these surface fluctuations increase the area of the free surface
and thus the surface tension free energy given by

Folu] = %7 / (Vo2 dS, (2.13)

where v is the surface tension between the smectic and air. The boundary con-
ditions for ¢y and n can be modeled in same manner as in the homeotropic cell.
The preferential orientation of director at a free-surface ng depends on the specific
smectic phase (Sm-A or Sm-C). In the simplest model we take ng to be equal to
the equilibrium bulk orientation of the director. This assumes the existence of some
“internal anchoring” where the bulk interior dictates the behavior of the boundary
layer. In this case the equilibrium director structure of the film is homogeneous be-
cause the boundary conditions match the bulk order. However, as the fluctuations
of surface layers are suppressed by the surface tension and thus less pronounced than
in interior of the film, the boundary layers are often more ordered than the interior
ones [164]. Close to the Sm-A — Sm-C phase transition (above T¢) the boundary
layers can exhibit Sm-C ordering while the bulk interior is still in Sm-A phase. This
kind of system can be modeled by taking appropriate value of ng which corresponds
to this surface-induced ordering.

2.4 Calculation of Casimir force

The procedure used for calculating the Casimir force is similar for all systems studied
in this thesis. We here outline the main steps of the calculation while specific details
are presented along with each system.

Let us begin with a definition of the thermodynamic force. In plan-parallel
geometry the force is given as a derivative of the free energy F' with respect to the
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distance between the planar boundaries h

oF
F=- (—) . (2.14)
oh V,S,T

Here the total volume and surface area as well as the temperature of the system
should be constant. This means that we should always consider a system where
confined liquid crystal material is connected to some reservoir of bulk material in
order to retain constant volume as the liquid crystal is squeezed in or out of the
confined area. The bulk reservoir is realized naturally in the case of free-standing
smectic films where a large amount of smectic material gathers at the lateral edges
and can flow into or out of the film. For a homeotropic cell the reservoir is provided
by immersing the plates into the liquid crystal material. This is indeed the case
in the atomic force microscope, with distinction that it is a sphere and not a plate
which is immersed into liquid crystal. For the purpose of calculation the presence
of a reservoir means that the free energy of a confined system should be measured
from the reference free energy of a bulk system.

As it can be inferred from the definition of the force, the main task in the
calculation is evaluation of the free energy of a system. Ideally one would start
with a Hamiltonian of the system, evaluate the partition function and obtain the
total free energy at once. This is however rarely possible and the procedure is then
divided into two steps. First the equilibrium structure of a system is determined by
minimizing the mean-field free energy described by phenomenological Landau-type
models. Then fluctuations around the equilibrium are considered. The total free
energy now consists of the mean-field and fluctuations free energy: F' = F,,¢ + Ffpye.
If the mean-field free energy F},; depends on the separation between boundaries
(this usually happens in systems with inhomogeneous equilibrium order) it gives
rise to the mean-field force F,,;. The fluctuations on the other hand induce the
Casimir force F¢,s which is of main concern to us.

The calculation of the fluctuations free energy in this thesis is performed in
the following way. Omnce the mean-field configuration has been determined the
order parameter(s) can be written as a sum of equilibrium and fluctuating part:
V = Upmy + 0v. Here v stands for any of the smectic order parameters. The Hamil-
tonian of fluctuations H[dv] is obtained by expanding the free energy given by
Landau-type models around the equilibrium. We retain only harmonic fluctuation
terms in the Hamiltonian and neglect higher order terms. The harmonic approxi-
mation is justified as long as the fluctuations are small. However, in the vicinity of
phase transitions the fluctuations of ordering can be strongly enhanced and higher
order terms could become important. In this case the harmonic model may only
give qualitative description of the force and one should be aware of this limitation.

Once the Hamiltonian is known the partition function of fluctuations is obtained
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by evaluating a path integral

Z fiue = exp (=B Ffuc) = / exp (—BH[ov(r)]) Dov(r) = Z exp (—BH[ov(r)]) ,

be. all conf.

(2.15)
where 3 = 1/kgT. The path integral is a functional integral which is evaluated by
going over all possible configurations of dv(r) that satisfy the boundary conditions,
assigning each configuration a statistical weight exp(—FH). This is analogous to
Feynman formulation of quantum mechanics [165], where the propagator of a quan-
tum system is obtained by path integration exploring all possible paths from a state
x1 at time ¢ to a state xp at time ¢y (Fig. 2.4), assigning each path a phase factor

exp(¢S/h), with S being the action of a system

(xota|xity) = Z exp(iS/h) . (2.16)

all paths
The analogy between statistical physics of one-dimensional systems and quantum
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Figure 2.4 Analogy between path integral formulation of quantum mechanics
and statistical physics of one-dimensional systems. The time ¢ corresponds to
the one-dimensional spatial coordinate 7 and the quantum state x corresponds
to the fluctuating field v. Instead of the quantum phase factor exp(iS/h) the
Boltzmann factor exp(—SH) is used in statistical physics. The system explores
all possible paths between the initial and the final state.

mechanics will be readily employed as many results of path integration in quantum
systems can be easily transformed and used for evaluation of partition functions
[166-168]. The partition function Zj,,. can be transformed into a partition function
of a one-dimensional system considering the fact that both studied systems, the
homeotropic cell and the free-standing film, are extensive in horizontal directions
(z-y). We can therefore assume that lateral edges do not influence the liquid crystal



30 Theoretical model

structure. This allows for application of periodic boundary conditions and Fourier
transformation of fluctuating fields

ov(r) =Y vy(z)exp (iq- p) , (2.17)

q

where p = (z,y) and q = (¢, ¢,) satisfy periodic boundary conditions. The fluc-
tuating field v,(z) now depends only on the coordinate z, which makes the analogy
with one-dimensional systems possible. If fluctuation modes with different wave
vectors q are not coupled, the partition function can be factorized as

Zyne =1 2= 1 [ exv(~38,0u()) D) (218)
q q
The generalization to several, possibly coupled fluctuating fields is straightforward

Zie =[] Za =] / exp (—BH, [V (2), v (2), ...]) DV (2) DvP(2) ... .

(2.19)
The free-energy of fluctuations is given as a sum (or integral) of contributions of
individual Fourier modes

S
Fie = —kpT» InZq = —kBTW / InZy dq . (2.20)
q

Within the continuum model, where the sum or integral over q is unbounded,
the free energy of fluctuations Fy;,. diverges. This is one of the main problems in
calculation of the Casimir force. Many methods have been developed in the theory
of Casimir effect to regularize the diverging total free energy and extract the finite
interaction part. These methods include dimensional regularization, introduction of
a suitable cut-off of wave vectors, Zeta regularization, methods based on Green’s
function and others [40, 42, 63]. At first it seems that introducing the lower limit
of allowed wavelengths of fluctuations, i.e., a cut-off of large q’s, would solve the
problem naturally. However, it turned out that the final result can depend on the
type of the cut-off procedure which complicates the situation considerably. In this
thesis we use a method which is perhaps the most intuitive from physical point of
view. As already discussed while defining the thermodynamic force [Eq. (2.14)] the
free energy should actually be measured with respect to reference bulk configura-
tion. If the free energy of fluctuations of a reference bulk system can be directly
(i.e. analytically) subtracted from the total free energy of fluctuations in confined
system the divergence is removed in most cases. One should simultaneously also
dispose of constant terms in fluctuations free energy which do not depend on sep-
aration between the boundaries of confined system. These terms do not contribute
to the force and usually represent the surface tension between the liquid crystal
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material and boundaries. Once the finite interaction part has been extracted from
the total free energy of fluctuations the Casimir force is obtained straightforwardly
by differentiation.
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3

Casimir force in smectic-A phase

3.1 Homeotropic smectic-A cell

Our work starts with the study of the Casimir force in the homeotropic smectic-A
cell, which was introduced in the previous chapter (Fig. 2.3). The homeotropic
smectic cell consists of two plan-parallel plates which align smectic layers and fa-
vor homeotropic director orientation. Our calculation starts from the free energy
expansion (2.5). Before considering fluctuations, the equilibrium configuration has
to be determined. We first assume that the equilibrium degree of smectic order
¥ is uniform over the whole cell and equal to bulk value ¢y = \/—a/b as follows
from Eq. (2.6). This assumption holds reasonably well when the system is deep in
smectic-A phase far from the nematic — smectic-A phase transition. Close to this
transition where the bulk value 1)y is small, one should expect inhomogeneous equi-
librium profile of ¥ due to the surface enhanced order and also due to the coupling
with layer compression which can result in melting of smectic order. These effects are
neglected in present model but will be discussed later on. We further assume that
the homeotropic cell incorporates an integer number of unstressed smectic layers
(U f(r) = 0]. As the plates favor homeotropic orientation of molecules the equilib-
rium director configuration is given by n,,; = n, = (0,0, 1). Due to normalization
condition |n| = 1 there can be only two director fluctuation modes present, which
describe transversal components of director n, and n,. The fluctuating director is
then given by n = (ng,ny, /1 —n2 —n2) = [0n, 1 — §(n +n2)], with on = (n,, n,).
The Hamiltonian of fluctuations is obtained by expanding free energy [Eq. (2.5)]
around equilibrium configuration (note that ¢ = gou)

H[0Y,u,on] = H[0Y] + H[u,dn] ,

H[o)] = /dV [—Q&DQ + %C||(V|5¢)2 + %CJ_(VJ_&'QD)2 ,

33
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1
Hlu,dn] = 5 /dV{B (V||u)2 + Ky, (Viu)2 + D (Viu+6n)+

on on, \ > on on, \ on,\ on, \
K (S D) 4k, (S 2 4k z Ty
* 1(63:+8y>+ 2(8y 6x)+ 3[(32)+(62) ’

where §1)(r) = 1—1)y are the fluctuations of degree of smectic order, u(r) fluctuations

(3.1)

of position of smectic layers and dn(r) = (n,, n,) the director fluctuations (Fig. 3.1).
In this expansion we neglected terms of higher than quadratic order in fluctuating

| W&n | .
I .,

Figure 3.1 Fluctuations in smectic-A homeotropic cell. The fluctuations of

degree of smectic order 41, position of smectic layers u and director fluctua-
tions dn are presented schematically.

fields and also discarded some higher order elastic terms, which are not essential
to describe the physical properties of smectics. We have introduced the elastic
constants

B=Cgvy, D=Crgs and Kp = digi] (3.2)

to cast the Hamiltonian in a compact form. Within the harmonic approximation,
the fluctuations of degree of smectic order are decoupled from layer and director fluc-
tuations which considerably simplifies the calculations. Let us now provide physical
meaning of individual terms in Hamiltonian (3.1). The first term in H[dv)] gives the
energy of deviation of smectic order magnitude from the preferred value (note that
a < 0). The remaining terms describe the elastic energy of the inhomogeneity of
smectic order. The first and the second term in H [u, dn] are related to the layer com-
pression and to the layer bending, respectively. The third term D (V  u + dn)* /2
describes the coupling between the director and layers. It simply states that if the
coupling constant D is positive the director tends to orient perpendicular to the
layers (dn = —V u). The last three terms in H[u,dn| originate from the Frank
director elastic energy.

In addition to bulk Hamiltonian, also the boundary conditions must be modeled.
As mentioned in the previous chapter, we assume that the position of the smectic
layers is fixed at the plates which gives u(z = 0) = u(z = h) = 0. Furthermore we
assume that the degree of smectic order at the plates is fixed to the equilibrium bulk
value ¥(z = 0) = (2 = h) = 1y which gives boundary conditions for fluctuating
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field 09(z = 0) = d¢(2 = h) = 0. This somewhat artificial condition should be
considered in the spirit of homogeneous equilibrium order profile which we employ
here and should suffice to give at least a qualitative picture of phenomenon. Finally,
the homeotropic director anchoring is modeled by Rapini-Papoular model. In the
harmonic approximation,

1
Hg[n] = 5W/ on|*ds', (3.3)
where the integration is performed over confining surfaces.

3.1.1 Fluctuations of degree of smectic order ¥

As the fluctuations of v are decoupled from director and layer fluctuations their
contribution to the Casimir force can be calculated separately. We first perform the
two-dimensional Fourier transformation §¢)(r) = >_, ¥,(2) exp (iq - p) and obtain

H[5y] = Ho[09] = %CIISZ/O dz

where £ is the correlation length of fluctuations defined by ¢ = /—C)/2a. As
fluctuation modes with different wave-vectors q are decoupled the partition function

OL 2 81/)01 ?

A+ |58 e

for each mode is
Yq(z=h)=0
zalovl = [ exp (~ BHql60]) Dibq(2) | (3.5)
¥q(2=0)=0

This partition function is analogous to the quantum propagator of a repelling har-
monic oscillator [168] and can thus be readily evaluated (see Appendix A.1)

~1/2
: / L e
Zg|oY] x [smh ( £2+ FH h)] . (3.6)

We have disposed of the constant factors that do not depend on separation h and
therefore do not contribute to the interaction. The free energy of fluctuations is
given by

Frie[0)] = —kBTZInZ (6] = kBZ;S/ln [sinh <,/§ +€~” h)]qdq.

(3.7)

From the total fluctuation free energy a finite interaction part has to be extracted.

In this case the procedure is fairly straightforward. The free energy can be factorized

using the relation sinh(z) = exp(x) x 1/2 x [1 — exp(—2x)]

kTS C,
47 C 1

Fpiue[0y] = :j In (exp (ph) x % x [1 —exp (—2ph)]) pdp.  (3.8)



36 Casimir force in smectic-A phase

where p? = €72 + %qQ. The first term in the factorization, In(exp(ph)) = ph, is
proportional to sample volume Sh and represents the bulk free energy. The second
term In(1/2) is independent of h and does not contribute to the interaction between
plates. The last term, which vanishes in the limit h — oo, represents the interaction

part of free energy

In(1—exp(—2ph))pdp . (3.9)

4 kgTS C o
P =2 220 |

47 CJ_

&'71

The Casimir force, which is obtained by differentiating F' }ch with respect to h and
evaluating the integral, reads

kgTS C| 1 = exp(—2hk/€) (1 h,  h?
fCas[(sw] = - A CJ_ ﬁ E 13 — 5 -+ Ek -+ ?k2 . (310)
k=1

In the limiting case of large thicknesses (h > &) the Casimir force decays as
exp(—2h/&)/h and is hence short-range. In the opposite limit of small thicknesses
(h < &) the force varies as 1/h3. Deep in the smectic-A phase the correlation length
¢ is of the order of smectic layer thickness. Close to the smectic-A — nematic phase

transition the correlation length increases as £ = \/C/2a(Tva — T).

The result obtained here is equivalent to the force induced by biaxiality and
degree-of-order fluctuations in nematics [Eq. (1.10)] and is actually universal for all
massive fluctuation modes independent of specific details of the system (assuming
the same type of boundary conditions and homogeneity of the system).

3.1.2 Fluctuations of director and smectic layers

Fluctuations of director and smectic layers are coupled and must be considered
simultaneously. After Fourier transforming the fluctuating fields the Hamiltonian
reads

h
Hlu,én] = %SZ/O dz
q

+D (|n1q|2 + |n2q|2) +igD (ugniy — ufniq) + Kiq? [nig|” (3.11)

)|

We applied the transformation of dng = (n,q, Nyq) iNto (114, Naq) Where component

Ouq

B
0z

2
+ Dq2 |u01|2 + KLq4 |u01|2

2
8n1q

0z

8n2q

0z

+ Kaq® |nag|* + K (

n1q represents director fluctuations parallel to q = (¢, ¢,) and component nyq fluc-
tuations perpendicular to q. Only n;4 modes are coupled to the layer fluctuations,
while nyq modes represent “pure” director fluctuations. The Fourier transformed
surface contribution to the Hamiltonian reads:

1
Hg[n] = iKgSL_l Z (}nfq}Q + ‘nqu + ‘ngq‘Z + }n;qF) . (3.12)
q
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Here L = K3/W is the extrapolation length, ni,, = nisq(z = 0) and ni,, =
n12q(z = h).

The fluctuation modes with different wave vectors q are decoupled and the
Hamiltonian can be written as

H = Z Hg[niq, uql + HSq[”i] + Hg[nag) + ng[nécq]. (3.13)

q

In order to obtain the free energy of fluctuations, the following partial partition
functions have to be evaluated

Zq[nlqvuq] = \/dnl_q/dni—q eXp(_ﬁqu[nitq])

nlq(z:h):n_l"q uq(z=h)=0
X / / exp(—AHg[uq, n1q]) Dug(2)Pnig(z) ,

1a(z=0)=n, Juq(2=0)=0

(3.14)

nzq(z:h):n;q

Zalmaa) = | dn [ dni, exp(~BHsdlnt,) [ exp(— B Hqlnz]) Drzg(2)

naq(2=0)=nyy
(3.15)
Because of the finite anchoring strength, the director fluctuations at the boundaries
are not suppressed completely. This fact is reflected in partition function where
integration over all possible values of the director fluctuations at the surfaces is per-
formed, assigning each surface configuration a statistical weight factor corresponding
to energy penalty of deviation from easy axis orientation.
The partition function Zg[n1q, uq| is analogous to the quantum propagator of two
coupled harmonic oscillators [168, 169] and can be evaluated (see Appendix A.2) to
give

Zg[niq, Uq) o< [sinh(4h) sinh (k)]
x [S2AF + 0245 + L] (0157 A7 + Q0% A5 + L7V

—-1/2

(3.16)

The partition function Zg[neg| can be evaluated using the analogy with the propa-
gator of a single repelling quantum harmonic oscillator [168]:

2102 —1/2
2 Gnh(Qsh) + cosh(Qsh)| (3.17)

Zg[naq] m

This result is analogous to the partition function obtained in the previous section
[Eq. (3.6)] with a modification due to different boundary conditions. We introduced
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the following notation:

11 Ky
Qo= —=1q 1+ (0" + )¢ + =NN"
1.2 \/ﬁA{ (p )a i, e
% 2 1/2 (3.18)
F \/{1 — (W= - ?LAWQ‘*} + 4A2q2} ,
3
K.
Qg = /A2 + ?qu , (3.19)
2
2 _ \2)g2 — BEr 2724
o % +% 1+ (02 = W)q? — 2 A2q } | 520
[1 + (p2 — A2)¢% — %A2A2q4} + 4g2)\2
S?=1-C%, (3.21)
h(Q2h) £1
A, = 250 22
1.2 sinh (€2 2h) (3.22)

and the correlation lengths A = (K3/D)"?, A = (K3/B)Y? and p = (K,/D)"?. The
free energy of fluctuations can now be written as

Fiuelu, on] = —kBTZ <ln Zg[ng, uq) +In Zq[n2q]> = Fpiue[m, u] + Friue[na] -
q

(3.23)

Having calculated the total free-energy of fluctuations, we now identify the inter-

action part. In Zg[niq, uq) the bulk contributions are contained in sinh(£2;h) terms

and can be identified by the same factorization as in the previous section. The

remaining two factors in Zy[niq, uq] do not contain bulk terms while thickness in-

dependent surface contributions automatically vanishes after differentiation of the
free energy and need not be extracted. The factorization of Zg[naq] leads to

L2+ Q3
293[/_1

exp(Q3h) X (

sinh(3h) 4 cosh(Q3h) =

R4+ L? 1 (2 — L

Now the bulk contribution (the first term), the surface contribution (the second

(3.24)

term) and the last interaction term can be easily identified.
The Casimir force consists of four terms

Feas(u, 0] = Flng; L] + Fi[ng, u] + Falng, u] + Fsng, u; L], (3.25)
where LTS [ Dad
F[nQ; L] = - B2 / (Qa+L—1)2 KA ) (326)
™ 0 m eXp(ngh) —1
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kBTS 0 qu dq
- 3.27
fl[/nd’u] o \/0 eXp(291h> -1 ) ( )
kTS [ Qyq dg
- 3.28
0282 Q202
ksTS OO cos1 + cos2
Faln,us L] = — b / qdq I+ hfglh) 1+ _h(ﬂzh)
- Jo 215247 + Q,C2A; + L1
- QZSZ QZCZ -
_kBTS /oo qdq 17coslh(Q1h) + 17coszh(92h) (3 29)
- Jo W S2A] + Q. C2AS + L1 :

The first term F[no; L] represents the contribution of “pure” director fluctuation
modes. It is a generalization of Egs. (1.10 and 3.10) for finite strength of surface
interaction. It is also the universal result for all massive fluctuation modes for given
boundary conditions and has been already analyzed in Refs. [116, 170] in the context
of nematics. Here we summarize these results. The effect of finite anchoring strength
can be most easily represented by reduction factor

Flng; L]

R—_JUnH
Flng; L = 0]

(3.30)

where F[ng; L = 0] is the familiar result for infinite anchoring strength

FCas[nQSL = O] =

_kBTSKgiiexp(—Qhk/A) (1 h — h?
2 AT A2

2
" S Sk+—k) . (3.31
S = + ok k) (3.31)

k=1

The term F[ny; L] can not be evaluated analytically and therefore numerical integra-
tion is necessary. Let us first note that for an infinitely weak anchoring (L — oo) the
force is identical as in the strong anchoring limit (L = 0) and the reduction factor is
equal to 1. The dependence of R on the scaled cell thickness h/A for several values
of the anchoring strengths is shown in Fig. 3.2. Finite anchoring strength reduces
the amplitude of the force. If L/A < 1, which corresponds to effectively strong
anchoring, the reduction factor first decreases from 1 to a minimum and then satu-
rates at a constant value at large thicknesses h/A. This saturation means that the
functional dependence of the force at large h/A is the same as in the case of strong
anchoring, i.e. exp(—2h/A)/h. If L/A > 1, which corresponds to effectively weak
anchoring, the reduction factor decreases monotonically to the saturation value. The
saturation value of reduction factor can be evaluated analytically and is equal to
R =1—4L/A for strong anchoring (L/A < 1) and R =1 —4A/L for weak anchor-
ing case (L/A > 1). In the special case of L/A = 1, where the anchoring regime is
neither strong nor weak, the force decays much faster, as exp(—2h/A)/h3, at large
h/A [116].
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0.01 I ‘ ‘ ‘
0.01 0.1 1 10 100
h/A
Figure 3.2 Reduction factor R versus the cell thickness h/A for different
anchoring parameters: a) L/A =0.1; b) L/A =0.5;c) L/A=1;d) L/A = 2;
e)L/A = 10; adopted from Refs. [116, 170].

In analogy with eigen-modes of two coupled harmonic oscillators the terms
Fi[ni, u] and Fynq, u] represent the contributions of in-phase fluctuations (Fig. 3.3a),
where the director follows deformations of layers, and out-of-phase fluctuation modes
of the director and layers (Fig. 3.3b). The in-phase fluctuations are massless

Figure 3.3 Schematic representation of fluctuation modes: a)in-phase fluctu-
ations of director and layers; b)out-of-phase fluctuations of director and layers.
The dotted lines indicate the local normal to the layers.

[©21(¢ = 0) = 0] therefore the resulting force Fi[ni, u| is long-range. In the limit of
large thicknesses F[ny, u| gives the familiar 1/h? smectic Casimir force [Eq. (1.13)].
The out-of-phase fluctuations are massive. Therefore their contribution Fa[ni,u] is
short range and is qualitatively similar to the pure director fluctuations contribution
[Eq. (3.31)]. The last term F3[ny, u; L] is a correction to the Fi[ny, u] and Fan, ul
terms due to the finite director anchoring strengths W at the plates. This correc-
tion is short-range and is equal to 0 in the limit of very strong anchoring (W — oo,
L=0).
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To summarize, the Casimir force induced by coupled fluctuations of smectic
layers and director consists of two director-like short range contributions and of a
long range layer-like contribution. The correction due to the finite director anchoring
is also short-range which is expected, as this anchoring does not modify the boundary
conditions for smectic layers.

To analyze the behavior of Fgus[u, dn| we compare it to the Casimir force ob-
tained by pure layer fluctuations u, assuming that director is fixed perpendicularly
with respect to layers (D — oo, V u = —on). In this limiting case the Hamiltonian
reads: Hy,, = 1/2 [ dV[B(0u/0z)* + K} (V3 u)?], where K] = K, + K;. With the
boundary conditions u(z = 0) = u(z = h) = 0 the familiar Casimir force is obtained:
Fi¥ = —kpTSC(2)/16wh*\/K| /B [115, 128]. This force can be conveniently used
as a reference because of its simple A~2 functional dependence. The comparison be-
tween the reference Casimir force Fgé’s and our result Fe,s[u, 0n], where the director
degrees of freedom are included, is shown in Fig. 3.4. We used the following material

fCas

lay
’,FCas

10 102 10°
h [nm]
Figure 3.4 Casimir force Fgqs[u, dn] in homeotropic smectic-A cell compared

to reference force féﬂlgs for different director anchoring strengths: a) W — oo,

b) W=10"3J/m? ¢) W =10"* J/m?, d) W = 107° J/m?.

constants: B =2x10° N/m? D =10° N/m? K, = Ky = K3 = K;, = 107" N. The
full Casimir force Feqs|u, dn] is significantly larger than the approximate force fgtlys
only up to the thickness of a few correlation lengths A (A = 10 nm) where the short
range contributions F[ny; L] and Fy[ny, u] are important. At larger thicknesses only
the long-range contribution of the ”in-phase” director-layer fluctuations Fj[nq, ul
needs to be considered. In the limit of A/A > 1 this contribution (Fi[ni,u]) ex-
actly matches fg’fs as can be seen from Fig. 3.4 and can also be shown analytically.
A finite strength of the director anchoring generally reduces the magnitude of the
Casimir force as was demonstrated in Fig. 3.2. The force is strongest when the

anchoring is either very weak or very strong. When the anchoring is somewhere
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inbetween these limits, in the sense that the extrapolation length L is comparable
to typical lengths of the system, then the magnitude is strongly reduced. This is
seen in the case of W = 1072 J/m? (L = 10 nm) in Fig. 3.4, while in other cases the
anchoring does not have an important effect.

The effect of different coupling strengths between the director and smectic layers
on the Casimir force is shown explicitly in Fig. 3.5. A reduction of the coupling

-,FCas
lay
fCas

10 102 10°

h [nm]
Figure 3.5 Effect of director-layer coupling constant D on the Casimir force:
a) D =10° N/m?, b) D = 10* N/m?, ¢) D = 10° N/m?. Strong anchoring of
the director (W — o0) is assumed.

constant D results in an increase of the magnitude of the force. This is firstly due to
the increased correlation length A and hence an increased range of the director-type
contributions and secondly also due to the coupling influence on the Fi[ny, u| term.
This kind of behavior could be observed upon cooling the system from smectic-A
to smectic-C phase. In the vicinity of the phase transition the coupling constant
changes as D o (T — T,.) within the Landau model. Therefore the magnitude of
the Casimir force is expected to increase while approaching the phase transition.
We address the behavior of the Casimir force close to this phase transition in the
next chapter as some other interesting phenomena occur there, which require more
detailed treatment.

Another illustrative comparison can be made by comparing the coupled director-
layer force Feqs[u, on] with its uncoupled counterpart F4'¢ which is obtained when
director and layer fluctuations are treated independently (to avoid confusion it
should be noted that the term uncoupled in this context does not imply that the
constant D equals 0). The uncoupled force is equal to F&¢ = Fo¥ + Fdr  where
the director contribution is just twice the contribution of pure director fluctuation
modes, Fd" = 2F[ny; L]. This approximation neglects the fact that deformation
of smectic layers also changes the equilibrium director orientation around which the
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director fluctuates. Nevertheless, the uncoupled force F¥¢ represents a first-order

approximation of the exact result Fgguslu,dn]. The comparison of the two forces
thus reveals the net effect of director-layer coupling and is shown in Fig. 3.6 for
different values of coupling constant D. It turns out that the coupling increases the
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Figure 3.6 Comparison between the “coupled” (Fegs[u,dn]) and “uncou-
pled” (Fg¢) Casimir force in homeotropic cell for infinitely strong director
anchoring (W — o0o) and various coupling constants D: a) D = 105 N/m?, b)
D =10* N/m?, ¢) D = 10° N/m?.

magnitude of the force but for no more than a few ten percents. The increase is
larger for weak coupling constants D (larger correlation length A) and vanishes in
the limit of D — oo according to our definition of F47¢. The profiles in Fig. 3.6 can
be explained as follows. In the limit of very large thicknesses (h > A) the terms
Filni,u] and Fi¥. | which are the only long-range contributions, are equal and the
ratio between the “coupled” and “uncoupled” force is 1. With decreasing distance
the Fi[ni,u] term gets larger than féﬁ’s and the ratio increases. At thicknesses
comparable to correlation length A the short-range contributions from the direc-
tor and “out-of-phase” fluctuations set in. These director-type contributions are in
both — coupled and uncoupled — systems very similar, which results in reducing the

difference and consequently the ratio between the two forces at small thicknesses.

3.2 Free-standing smectic-A film

The structure of a free-standing smectic-A film is identical to homeotropic cell. The
difference between them lies in fluctuations of surface layers which are allowed in
free-standing films but forbidden in a homeotropic cell. This results in modified
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surface Hamiltonian which now reads
1 1
Hg[n,u] = 5W/\(sny?ols —l—;y/(VLu)QdS. (3.32)

The bulk Hamiltonian H [u, 0n] remains unchanged. The same goes for H[§9], there-
fore the fluctuations of degree of smectic order v are not considered here. Fourier
transforming Eq. (3.32) we obtain

1
H ) = 5SS (gl + ool + [zl + )

q

1 1 ) ) , (3.33)
+§Kng’ Zq <’u;’ + |ud| ) :
q
Here x = K3/v is the extrapolation length, ug = uq(z = 0) and u = uq(z = h).
As only niq and uq modes are coupled it suffices to recalculate Zg[niq, uq] while
Z4|naq) remains the same as in a homeotropic cell. The modified partition function
now reads

Zg[niq, uq] = /dnlq/dnlq/du /du exp( ﬁHSq[nlq, q])

niq(z=h) _"1q uq(z=h)=ug
x / / exp(—BHyltiq, 1)) Dttg(2) Drng(2)
n1q(2=0)=n, uq(2=0)=ugq
(3.34)

The difference between this partition function and the partition function of the
homeotropic cell [Eq. (3.14)] is that here integration over all possible surface values
of uq has to be performed while in the former case the surface value of uq was
fixed to 0. This does not pose any conceptual difficulties and the partition function
can again be evaluated using the analogy with propagator of two coupled harmonic
oscillators

Za[1g, ttg) ¢ [sinh(Q 1) sinh (Qh)] % x [QlﬁgA*QA;A; xR0 S2AT
~1/2
+0C2A5) + L7 (A 2AT + 08202 45) +x L7

X [QIQQA—2A1+A; + L (UCPATPAT + 0,820 72AT) +

—-1/2

x (WS2AT + QC2AF) + X—lL—qu}
(3.35)

Applying the usual decomposition into surface, bulk and interaction terms we extract
the interaction part of the fluctuations free energy and thereby the Casimir force.
This can be written as

Feaslt, on] = Flng; L] + Fi[ny, u] + Fo[ny, u] + Fzny,u; L, x] - (3.36)
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The first three terms are identical as in homeotropic cell. The last term F3[nq, u; L, x|
which describes the effect of finite director and layer anchoring strengths becomes
more complicated

kpTS [ L AT A7
Loy = — 2,0 2 2 ;
Fa[n, u; L, X] e i;2/0q dCI{ 1§22 <1 + cosh(Q h) t1x cosh(Qgh)>

L s 020> 02>
x4 <1 + cosh(h) 1T cosh(€2sh) 1 + cosh(€4h)
Q352
1 + cosh(Qyh)

)+ LN
)] x [9192)\2ATA§ + X*1q2<9182AT + Q0247

-1
+ L‘1> + L—u—?(Qlc?Af + Q2S2A;F>] .
(3.37)

F3 is a sum of two contributions (i = 1,2) which differ only by sign alternation (%)
in some terms. As the boundary conditions now also affect the layer fluctuations,
the correction due to the finite surface anchoring F3[nq, u; L, x| is long-range.

The effect of the finite surface tension 7 on the Casimir force in free-standing
smectic films is shown in Fig. 3.7. We compare the force in a free-standing film to the
corresponding force in a homeotropic cell for a specific director anchoring strength
W = 107" J/m? (the director anchoring is not essential in this case, and choosing
some other value of W leads to very similar results). As it is seen from Fig. 3.7, the

fCas 1F
fCas(7 — OO)

0.

Figure 3.7 Casimir force Foys[u,dn] in free-standing film compared to the
force in homeotropic cell [Feqs(y — 00)] for the director anchoring strength
W = 107° J/m?2, coupling constant D = 10° N/m?, and different surface
tensions: a) v = 1072 J/m?, b) v =5 x 1072 J/m?, ¢) v = 10! J/m?. The

dashed lines represent fgé’s(y).

finite surface tension v reduces the magnitude of the Casimir force. This effect was
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already predicted by Mikheev [128] in a model considering only positional fluctua-
tions of smectic layers u. He obtained the following result for the force (dashed lines
in Fig. 3.7): Fe(v) = —kpTS/167h* /K7 /B Lis [(v — /K. B)/(v + /K, B)] .
where Li, is the dilogarithm function. Our result is in agreement with F.%% (+) in the
limit of large thicknesses h where the director-type contributions are not important.
At smaller thicknesses h the short-range contributions of director degrees of freedom
become important. These contributions are similar in a free-standing film and in a
homeotropic cell, therefore the difference between the compared forces is reduced.

It is again instructive to compare the “coupled” Casimir force [Eq. (3.36)] to
the “uncoupled” force where the director and layer fluctuations are treated indepen-
dently: Fuc = FX (v) 4+ 2F[ny; L]. As shown in Fig. 3.8 the net effect of coupling

is to increase the magnitude of the force, similar as in the homeotropic cell. The in-

FCas 2

unc a
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Figure 3.8 Comparison between the “coupled” (Feqs|u, 0n]) and “uncoupled”

(Féne) Casimir force in a free-standing film for the director anchoring strength

W = 107° J/m?2, coupling constant D = 10° N/m?, and different surface
tensions: a) v = 1072 J/m?, b) v =5x 1072 J/m?, ¢) v = 107! J/m?.

crease is substantial in the case of a small surface tension « (Fig. 3.8a), while it does
not exceed a few ten percents otherwise. This can be explained considering that in
a coupled system the fluctuations of surface layers are hindered primarily by surface
tension and also indirectly by director anchoring. So even if the surface tension is
small the strong director anchoring effectively contributes to the binding of surface
layers. This is not the case in a “decoupled” system, where layer fluctuations are
independent of director, and therefore the reduction of the magnitude of the force
due to weak surface tension 7 is stronger. In the case of a strong surface tension the
additional effect of director anchoring on surface layers is not significant.
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3.3 Casimir force in slightly dilated or compressed
cell

In Sec. 3.1 we considered the Casimir force in homeotropic cell whose thickness h

corresponded to an integer value of smectic layers with equilibrium period dy. In this

section we study what happens if one of the plates is displaced so that the smectic
film is slightly dilated or compressed (Fig. 3.9). If the upper plate is displaced by

I - =/ + AL
z =/ I

d, |

z =0 I I - - 0
Figure 3.9 Homeotropic cell whose thickness corresponds to an integer num-
ber of smectic layers with equilibrium thickness dy on the right and slightly
stretched homeotropic cell on the left. In the latter case the smectic layers are
still equidistant but with increased period d’.

Ah than the equilibrium profile of layer displacement is given by wu,,f(z) = zAh/h.
The smectic layers are still equidistant but with increased period d’. For the sake
of simplicity, we continue the calculation by considering only fluctuations of smectic
layers. This can be justified by the fact that according to Eq. (3.1) the director
fluctuations are coupled to transverse gradient of layer displacement V u which
is not affected by the mean-field structure. Therefore we assume that director-
layer coupling effects would be similar as in the undeformed homeotropic cell. The
possibility of a stress-induced director tilt is here neglected. We furthermore assume
that dilation or compression of the cell does not affect the degree of smectic order
1 which is justified when the system is deep in smectic phase where smectic order
is well developed.
Starting with elastic free energy of layer deformations

2
Foy =3 [ |8 (a_u> + Ky (Viu)’

dVv 3.38
o (3.38)
and writing the layer displacement profile as u(r) = w,,f(z) + du(r) we obtain the

mean-field free energy

mp 1 AR?
Fpd = SBS—— (3.39)

and the Hamiltonian of fluctuations

Hiou] = %/ o220 L {a(;:

. A4
R dV (3.40)
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The mean-field elastic deformation results in a mean-field force given by

oF Ah
Foi = ~giar = BT (3.41)

The mean field force is proportional to relative strain Ah/h of the smectic film. In
the case of dilation (Ah > 0) the mean field force is attractive while in the case of
compression (Ah < 0) it is repulsive.

The calculation of the Casimir force proceeds in a standard manner. Performing
the Fourier transformation du(r) = 3 duq(2) exp(iqp) we obtain

HIou] = ZH:—S/dZ( ' (Ouq)

Ah d(6u )6
h 0z *°)-

2
+ Kpq* \5uq]2 +

(3.42)

The boundary conditions at hard plates require duq(z = 0) = duq(z = h) = 0. We
now note that the last term in H[0u] can be integrated over z and thus transformed
into surface term. As we require the fluctations to vanish at the plates, this surface
term does not contribute to the Hamiltonian. The partition function is now obtained
in usual manner

duq(z=h)=
Zou] = HZ = H/ eXp (—BHq4) D(dug) , (3.43)

duq(z=0)=0

and can be evaluated using the familiar analogy with the propagator of harmonic

oscillator giving
1
K 2
sinh <\/§Lq2h>] : (3.44)

Identifying surface, bulk and interaction parts of partition function we arrive at the
interaction free-energy

; kgTS [~
Fiiod = 225 [T (1- e (2VEaTB ) Jadg. ()

™

Zq X

This integral can be evaluated analytically leading to the standard layer-induced
smectic Casimir force

kpTS B
167h2 Cr(2) K

Therefore the conclusion is that the Casimir force in slightly dilated or compressed

Fly = — (3.46)

cell is the same as in nondeformed system.
This was an example of a system with non-trivial equilibrium configuration which
did not result in modification of the Casimir force. Here we wish to investigate
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this further and draw a more general conclusion about the connection between the
equilibrium order parameter profile and the Casimir force. We start formally with
a general quadratic free energy expansion

F = /Z [a(2)7? + 2b(2)nm + c(z)n* + 2d(2)n + 2e(2)n] dz . (3.47)

For simplicity we consider a one-dimensional system and the dot denotes the deriva-
tive with respect to this dimension z. The mean-field profile of an arbitrary order
parameter 7 is obtained by Euler-Lagrange extremality equation

ijmf + @y + (b= )y +d —e =10, (3.48)

while obeying some boundary conditions 7,,7(2") = 1’ and n,¢(2") = n”. We now
introduce fluctuations around the mean-field configuration and write the order pa-
rameter as 1(z) = Nyr(2) + 0n(z). This leads to Hamiltonian of fluctuations

H= / / [aaf;? + 268101 + cdn® + 2d51) + 250 + 2am, 00+ (3.49)

Performing some per partes integrations, considering the Euler-Lagrange equation
for n,s and assuming fixed boundary conditions [07(2') = 0n(2"”) = 0], the Hamil-
tonian is considerably simplified

H= / [a(2)0i7 + 20(=)6i16n + ()07 = (3.50)

Here we stress the following important facts. There are no linear terms in the
Hamiltonian due to the extremality of mean-field configuration. The coefficients
of quadratic terms in Hamiltonian are the same as in the free energy expansion
[Eq. (3.47)]. Most importantly, the Hamiltonian of fluctuations does not depend on
the mean-field configuration. Because of this a non-trivial mean-field configuration
does not influence the Casimir force. We again need to stress that this considerations
are valid for quadratic free-energy and fixed boundary conditions which do not allow
for fluctuations at boundaries. The studied case of a dilated/compressed smectic
cell was just a special example to which the above general conclusion can be applied.

It is important to note that in the case of strained smectic cell the coefficients
of quadratic terms a(z) and ¢(z) in Hamiltonian are independent of coordinate z,
whereas the coefficient b(z) is 0. This enabled a straightforward evaluation of the
Casimir force. In the last chapter of this thesis, we consider a different type of
systems where equilibrium structure dictates a spatial dependence of coefficients of
quadratic terms n? and 7?. This complicates the calculations considerably and has
a strong impact on the Casimir force.
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3.4 Importance of Casimir force in smectic-A
systems

Here we compare the magnitude of the Casimir force with other interactions present
in confined smectic systems. First of all, there is ubiquitous van der Waals interac-
tion between materials with different dielectric and optical properties. For planar
geometry the van der Waals force is given by [153]

AS

Fy = ——
W 6mh3 "’

(3.51)

where A is a Hamaker constant which is a sum of entropic and dispersion terms,
A= A,_qg+ A,~9. For very thin systems the Hamaker constant can be efficiently
approximated by

3 a—e\’ 3w, (n?—n2)?
A=A,_g+ Aypso = -kpT + :

(3.52)

where €; and n; are the static dielectric constant and refractive index of confining
boundaries (plates or air), €5 and ny are the static dielectric constant and refractive
index of smectic material and w, = 27 -3-10% s7! is the plasma frequency taken to
be equal for all media. As smectics are anisotropic, the dielectric constant €, and
refractive index ny should be replaced by effective values given by €& = , /€€ and
ng = \/nni, where indices | and L denote directions parallel and perpendicular
to the layer normal, respectively [171]. At small thicknesses h the dispersion term
in Eq. (3.52) dominates. However, at larger thicknesses, above h ~ 10 nm, the
retardation effects come into play and the dispersion term decays faster, as 1/h*.
Finally, at very large separations the dispersion term becomes negligible compared
to the entropic term, which is unaffected by the retardation effects, and the van der
Waals force recovers the 1/h® dependence.

For evaluation of the van der Waals force we use dielectric constants and refrac-
tive indices of 8CB smectic liquid crystal at 27° C: ¢ = 13.6, ¢, = 5.1, n| = 1.67,
n, = 1.52 [172]. The magnitude of the Casimir force is evaluated using the material
constants given in the previous sections. We first consider free-standing films where
smectic material is bounded by air and hence ¢; = 1, ny = 1. In a very thin film of
h = 10 nm the Casimir force is equal to about 625 pN/um? while the van der Waals
force is almost ten times larger. At thickness h = 20 nm the Casimir force amounts
to about 100 pN/um? while the van der Waals force is still about six times larger.
We should mention that because we used the Eq. (3.52), which neglects retardation
effect, the magnitude of the van der Waals force is here a bit overestimated. In thick
films we can neglect the dispersion contribution in the van der Waals force and re-
tain only the entropic part. The ratio between the Casimir and van der Waals force
is then given by Feas/Fw ~ h/A where smectic correlation length A = /K /B is
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of order of layer thickness (dg ~ 3 nm). This shows that in thick films the Casimir
force dominates over the van der Waals force.

For the homeotropic cell we assume that the smectic material is bounded by
glass plates and we use the dielectric constant and refractive index of BK 7 glass:
€1 = 6.2, n; = 1.51. In this case the van der Waals force is much smaller than in
free-standing films, due to the similar dielectric properties of smectic and glass. At
cell thickness & = 10 nm the Casimir force is equal to about 800 pN/um? while the
van der Waals force is about ten times smaller. At thickness A = 20 nm the Casimir

2 and the van der Waals force is about fifteen

force amounts to about 145 pN/um
times smaller. In thick cells the ratio between the Casimir force and van der Waals
force is given by Feas/Fw =~ 40h/ ), so the Casimir force again dominates.

We can conclude that in thin smectic systems either of the two compared forces,
van der Waals or Casimir, can be dominant, depending on specific values of dielectric
constants and refractive indexes. In thick smectic systems however, the Casimir force
is always dominant due to the slower power law decay.

Further we compare the Casimir force with the force caused by dilation or com-
pression of smectic layers which is given by

Food = —BS% . (3.53)
Here Ah is the compression or dilation of the system from equilibrium thickness.
We take the deformation of about one tenth of layer thickness Ah ~ 0.3 nm and
the compression constant B = 2 x 10° N/m?2. For the cell of thickness h = 10 nm
the mean field force is equal to ffs;// S ~ 60000 pN/um? and for the thickness
h = 20 nm it amounts to f:ﬁ/S ~ 30000 pN/um?. This is orders of magnitude
stronger than the Casimir force and the ratio between the forces becomes even larger
in thick systems. Therefore it is essential to avoid elastic deformations of smectic
layers or in some other way eliminate the elastic mean-field force from experimental
data when attempting to detect the Casimir interaction.
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4

Casimir force in vicinity of
smectic-A to smectic-C phase transition

The Casimir force in vicinity of Sm-A to Sm-C phase transition is discussed within
the Landau model for chiral smectics described in Sec. 2.2. This model takes into
account only director degrees of freedom described by the director tilt vector &.
The director fluctuations slow down critically at the Sm-A — Sm-C transition and
represent the so-called soft-mode of the phase transition. On the other hand, the
positional smectic order does not change considerably at this transition and therefore
the exclusive consideration of director degrees of freedom is somewhat justified.
But as we have argued in the previous chapter, the effect of coupling between the
smectic layers and the director can not be always neglected. Hence the results
presented here are not quantitatively exact but give a qualitative picture of the
phenomenon. The use of the simplified model enables us to obtain some results which
could not be derived within the full description of smectics and also enable to expose
some characteristics of the Casimir force more clearly as in the cumbersome case of
coupled director-layer system. Although we employ a model originally designed to
describe chiral smectics the application to less complex non-chiral systems is trivial.
Therefore the obtained results are valid for a general Sm-A — Sm-C system, either
chiral or non-chiral. Some specifics related only to chiral systems will be pointed
out explicitly.

We start our analysis with the free energy expansion Eq. (2.11). The Hamiltonian
of fluctuations is obtained by expanding the free energy around the equilibrium
configuration. We write the order parameter € = (§,,£,) as a sum of a mean-field
value and a fluctuating part, & = &, + 0€ = ({0 + 0, €10 + 0€1), and insert it into
the free energy expression [Eq. (2.11)]. We neglect higher order fluctuation terms,
keeping only the harmonic part of the Hamiltonian. From here on, the Sm-A and
Sm-C phases have to be treated separately. In the Sm-A phase the mean-field value
of the order parameter £ is equal to 0 as the molecules are oriented perpendicular
to the layers. In the Sm-C phase where the molecules are tilted with respect to

23
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the layer normal, the mean-field value of £, is equal to {g = v/« (T, — T) /b, while
&0 =0. The Hamiltonian densities of fluctuations then read

o { TG Yo (42 (252

(ago N 8(35”)2 N (agjo B a(giu)?

1
K
+2

)

where in the first term the upper line corresponds to the Sm-A phase and the lower
to the Sm-C phase. We have introduced the correlation lengths of fluctuations:
0= (a/Ks—q2) " and p = [2(—a/Ks + ¢2)]*.

In the Sm-A phase two degenerate types of fluctuation modes are present, 0§,
and 0£,. Both these modes represent the tilt of molecules away from the layer
normal and are massive. Upon approaching the phase transition, their mass, which
is proportional to ™% = «(T — T.), goes to 0. This means that a uniform tilt of the
director over the whole sample does not cost any energy and the phase transition
to the smectic-C phase occurs. The tilt fluctuations therefore represent the soft
mode of this continuous phase transition. The relaxation time of tilt fluctuations,
which is related to their energy, becomes very large and eventually diverges at the
phase transition (critical slow down) as shown in Fig. 4.1. In the Sm-C phase the
degeneration of fluctuation modes is broken. The fluctuation mode 0§, is massive
and represents fluctuations of the tilt angle amplitude of molecules. These so-called
amplitude fluctuations are analogous to the tilt fluctuations in Sm-A, but their
correlation length p is different. The so-called phase fluctuations ¢, do not change
the amplitude of the tilt but represent the rotation of director around the z axis.
As a uniform rotation of director in whole sample does not modify the energy of the
system, the phase fluctuations are massless with infinite correlation length. This is
an example of a zero-energy Goldstone fluctuation mode which tries to restore the
continuous symmetry of a high-temperature phase.

In chiral smectics, the fluctuations of orientational order result in inhomogeneity
of spontaneous polarization. This leads to the appearance of space charge and
Coulomb interaction in the system [161, 173-177]. We are not able to establish the
importance of this effect in our systems at present. However, as this interaction is
especially prominent in systems with a large value of spontaneous polarization, it
is reasonable to assume that our results apply at least for chiral materials with a
small value of spontaneous polarization.

4.1 Homeotropic cell

In a homeotropic cell the confining boundaries favor perpendicular orientation of
director at the plates (§¢ = 0). This director anchoring can be described by the
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Figure 4.1 Schematic spectrum of fluctuation modes close to Sm-A — Sm-C
phase transition [160]. In Sm-A phase (T" > T¢) there are two degenerate
massive fluctuation modes which slow down critically at the transition (soft
modes). In Sm-C phase (T' < T¢) the degeneracy is split into zero-energy
Goldstone phase fluctuations and massive amplitude fluctuations. The inverse
relaxation time of fluctuation modes 7! is proportional to their energy.

Rapini-Papoular free-energy model

Fale] = 5W; [ sin?((g)dsi + W [ s (g ass (4.2)

Here we allow for different director anchoring strengths at each of the plates. As a
consequence of these boundary conditions, the Sm-A structure in the homeotropic
cell can be supercooled below the bulk Sm-A — Sm-C phase transition temperature
To. In this case the system is in a frustrated state as it can not simultaneously
adjust to the imposed boundary conditions and satisfy the tendency of the smectic
to tilt. Due to the frustration, the director fluctuations are enhanced. Therefore
we have to consider the cases of a “normal” (T' > T¢) and “supercooled” (T < T¢)
homeotropic cell separately, even though the equilibrium structure is the same in
both cases. When the temperature is lowered to the maximum supercooling value
Tnae the structural transition to a deformed Sm-C structure occurs.

The maximum supercooling temperature 7,,,, of course depends on the thickness
of the cell. The relation between the critical thickness h. and the corresponding
temperature 7,,,., where the transition occurs, is obtained by minimizing the mean-
field free energy of the system. As we expect the transition to be continuous it suffices
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to consider only the lowest order terms in free energy expansion [see Eq. (2.11)]

F:%Kg/ [—(\/ﬁp) 2+ (—5) + L0 (2) + Ly 0z = h) [ AV . (4.3)

Here we introduced the anchoring extrapolation lengths L; = K3/W,; and assumed
that the mean-field profile depends only on z direction. Applying the Euler-Lagrange
formalism we obtain the bulk differential equation

e (vae =0, (4.4

and the boundary equations

d£|\ (2=0) fu
() s o, (%) e 0. o

The solution of the bulk equation is given by &,(z) = C} sin(z/v/2p)+Cy cos(z/v/2p).
Considering the boundary conditions we obtain a system of two equations for coef-
ficients ' and Cy

Ly
—Cy=0, 4.6
72 ) (4.6)

Lﬁpﬂgm (fp)}CIJF [1_;5ptan(\/%p>}02:o' 47)

This system has a nontrivial solution only if the determinant of coefficients is 0,

which finally leads us to the relation

_ 1Ly — (v2p)?
h. = V/2parccot ( Vo + Ly) ) . (4.8)

Here the temperature dependence hides in correlation length p = [2a(T,—Tinee )] "2

For the limiting case of the infinitely strong anchoring (L; = 0, Ly = 0) the critical
thickness is equal to

he = V2mp . (4.9)

The transition from the Sm-A to the Sm-C structure in the homeotropic cell is
analogous to the Fréedericksz transition in a nematic homeotropic cell [178]. While
the Fréedericksz transition is driven by the quadratic coupling between an external
magnetic field and the director, in our case the transition is induced by an “internal”,
temperature dependent, smectic field. We consider only the case of h < h. (or
T > Thnaz), where the equilibrium structure between plates is a homogeneous Sm-A.
The problem of the Casimir force in deformed Sm-C structure (h > h. or T < T,0.)
belongs to the class of inhomogeneous systems, some of which are addressed in the
next chapter.
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4.1.1 Casimir force above 7,

The Casimir force in the Sm-A homeotropic cell above the bulk phase transition
temperature 7T, can be obtained by following a standard procedure. First the
fluctuating fields are Fourier transformed, 6¢,1 (r) = >, Eu (q, z) exp(iqp), and
the Hamiltonian is reduced to an ensemble of independent harmonic oscillators,

H=73", ( €] + Hyq [fj) In the Sm-A phase, the fluctuation modes &, and &,

are degenerate so the Hamiltonians H, [EH] and H, [f 1] are identical and read

Hq[gn,l] = §KSS/O (77 + Eq ) gu,i + ( dz ) 1z (4]_0)

+%K3 <L Ly gu),

where 5.1 = g“l(z 0), and §H | = éﬁ(z = h). The partition function for harmonic
oscillators can be readily evaluated and we obtain

NI

. L*lLfl + pQ -
Zgl€1] {; sinh(ph) + COSh(ph):| : (4.11)
? p(Ly L L, 1)
where we introduced notation p? = n~ + K 2. Having identified and eliminated

the bulk and surface contribution in partltlon function by the usual factorization we
acquire the interaction part of free energy

kpTS Ky “m(L_@—Mﬂ(—L*>
/n

Fint —
Jloe ™ or K (p+ LY (p+ LyY)

exp(— 2ph)) pdp , (4.12)

and by differentiation the Casimir force

kpTS Ky [* p?dp

T K (p+LiHp+L: Y .
1/n LT exp(2ph) 1

fCas:_

(4.13)

This result is analogous to the short-range Casimir force induced by pure director
fluctuation modes in the coupled director-layer system [Egs. (3.26, 3.31)] which
was discussed in the previous chapter. A new feature here is the generalization to
asymmetric anchoring conditions with anchoring strength 1W; at one plate and W,
at the other. Therefore we here focus on specifics of anchoring effect on the Casimir
force.

Some profiles of the Casimir force for different sets of anchoring strengths are
shown in Fig. 4.2. Presented is the reduced amplitude of the Casimir force as

compared to the force in the case of symmetric infinitely strong anchoring conditions
[see Eq. (3.31)]:

fCas(Lla L27 h7 77)
fcaS(Ll = 0, LQ = O, h, 77) '

R= (4.14)
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Figure 4.2 Casimir force in the homeotropic cell for 7' > T,.. The dependence
of the reduced amplitude R on the parameter h/7 is presented for different sets
of anchoring strengths: a) Li/n = 0.5, Ly/n =0.5; b) L1/n =1, Ly/n = 0.05;
c) L1/n=0.1, Ly/n =0.01; d) L1/n =10, La/n = 0.05.

The profiles in Fig. 4.2 can be explained by the interplay of four characteristic
lengths: the distance between plates h, the correlation length of fluctuations n, and
the two extrapolation lengths L; and Ls. It is known from the previous studies of
the Casimir effect [121] that in the case of symmetric boundary conditions (strong-
strong or weak-weak anchoring at the plates) the force is attractive, whereas in the
case of antisymmetric boundary conditions (strong-weak anchoring at the plates) the
force is repulsive. In our system it is not very obvious which parameters determine
the effective anchoring strengths. It seems (Fig. 4.2) that there are actually two
different regimes. When h/n < 1 the effective anchoring strengths are determined
by ratios L;/h and Ls/h. In the case of L;/h < 1 the anchoring is effectively
strong, and correspondingly if L;/h > 1 the anchoring is effectively weak. In the
second regime, where h/n > 1, the effective anchoring strengths are determined by
parameters L1 /n and Lo /7, using the same criteria as in the first regime. This can be
explained if we recall that the anchoring is effectively strong when the interaction
between the substrate and liquid crystal is stronger than the internal interaction
in liquid crystal [111]. The strength of the surface interaction is measured by the
extrapolation lengths L;. The internal interaction includes two contributions, as can
be seen from Eq. (4.1): the massive contribution whose strength is characterized by
n~!, and the elastic contribution which scales as h~'. At small h/n the elastic
contribution dominates, and the effective strength of the anchoring is obtained by
comparing parameters L; and h. At large h/n the massive contribution is dominant,
and consequently the effective strength of the anchoring depends on parameters L;
and 7).
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All the lengths in Fig. 4.2 are scaled by the correlation length 7. The values of
parameters L;/h change by varying the parameter h/1n. Therefore the Casimir force
in the first regime (h/n < 1) exhibits cross-overs from attractive to repulsive and
vice versa [Figs. 4.2(b)-(d)]. The parameters L;/n are fixed, therefore the character
of the force in the second regime (h/n > 1) does not change. It should be kept
in mind that n is temperature dependent, and that the character of the force is
consequently also temperature dependent. At large separations (h/n > 1) the
reduced amplitude R saturates at a constant value. This shows that in this regime
the force has the same functional form as the leading term in the case of infinitely
strong anchoring, which decays as exp(—2h/n)/h. The saturation value is the largest
when the anchoring at the plates is either very strong or very weak. It can be shown
that in the case of very strong anchoring at both plates (Li/n, La/n < 1) the
reduced amplitude saturates at R = 1—2(Ly/n+ Lo/n) [Fig. 4.2(c)], whereas in the
case of very weak anchoring at both plates (L1/n, La/n > 1) the saturation value
is R=1-—2(n/Ly +n/Ls). In the antisymmetric case where the anchoring at one
plate is very weak (L;/n > 1) and at the other very strong (Ls/n < 1) the reduced
amplitude saturates at R = —1+2(n/Ly + Lo/n) [Fig. 4.2(d)]. The behavior of the
force at large separations is substantially modified in the case of L;/n = 1, where
the anchoring at one or both plates is neither strong nor weak. It can be shown that
in the first case the force decays as exp(—2h/n)/h* and consequently the reduced
amplitude goes to zero at h/n > 1 [Fig. 4.2(b)]. In the case of Li/n = Ly/n =1
the force decays even faster — as exp(—2h/n)/h>.

4.1.2 Casimir force in frustrated system (7,,,<T <T.)

The equilibrium structure in frustrated homeotropic cell is still homogeneous Sm-A.
Therefore the starting point of our calculation is again Hamiltonian (4.10). However,
if T < T the value of =2 is negative. The parameter p? = n=2 + %QQ can now be
either positive or negative depending on the value of ¢. The calculation of partition
function is therefore split into two parts. If p*> > 0 then Z, is the same as in the
non-frustrated case

1
2

L*lLfl 2
Lt TP sinh(ph) + COSh(ph):| : (4.15)

el [

whereas in the case of p? < 0 it is equal to

sin(|p|h) + COS(‘p’h):| . (4.16)

Nl

Ly +p?

sl [y

The bulk and surface terms can be easily removed from Zg for p? > 0, while in the
case of p> < 0 the partition function contains only pure interaction contribution.
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The interaction free energy of fluctuations is now given by

, kTS Ky [ —L7YHY(p—L;?!
R R =

or K J, (p+ L (p+ LY

kpTS Ky (V20" (L7'L —p?
— _— h h d
27T K 0 p(LIl + L;l) Sln(p ) + COS(p ) p p7

eXp(—Qph)) pdp
(4.17)

and after the differentiation the Casimir force, consisting of two terms Fg.s =
F1+ Fo, reads

kpTS K3 [ [ P’ dp
Fea==""% |} wnienY exp(2ph) — 1
(p—Ly H(p—L3 ") (4.18)

; /(ﬂp)l (Ly'Ly' — p?) cot(ph) — p(Ly + L3)
0

+ = —= — — p2 dp} .
(Ly 1L2 t— p?) +p(L; L+ Ly 1) cot(ph)

2

Note that (v/2p)~2 = —(n72). It is instructive to consider the Casimir force in the
limiting case of infinitely strong anchoring (L; = 0, Ly = 0)

-1
Feus(Ly =0,Ls =0) = _ksT5 Ky [§(3) + 2/(\@)) cot(ph)p? dp] . (4.19)
4 K | h3 0
The first term in Foqs has the typical form of the Casimir interaction induced
by massless fluctuation modes with infinite correlation lengths. This term is actu-
ally the same as the interaction induced by director fluctuations in the homeotropic
nematic cell. Its dependence on anchoring conditions was analyzed in detail in
Refs. [117, 137]. Here we reproduce these results in Fig. 4.3 where the ratio R be-
tween the term F in case of finite director anchoring and infinitely strong anchoring
(h™3 force) is given
_ AL, Ly #0:h)
C F(Ly=Ly=0;h)

Here h = h/«/LiLs is the scaled thickness, and the ratio is plotted for Lo/L; =
1,10,10%,10%,10%,10°,10°. Finite anchoring strengths in general reduce the magnitude

(4.20)

of the Casimir force. If the extrapolation lengths L; and Ly are similar (symmetric
anchoring) the force is attractive at all thicknesses. In case of dissimilar boundary
conditions (asymmetric anchoring) the force exhibits crossovers from attraction to
repulsion and vice versa. This can be explained by noting that effective anchoring
strength is determined by parameters L;/h which give the ratio of surface and elastic
energies of liquid crystal. In case of L;/h < 1 the anchoring is effectively strong and
in case of L;/h > 1 the anchoring is effectively weak. The limits h — oo and h — 0
correspond to very strong and very weak effective anchoring, respectively. Therefore
the reduction factor in these limits is equal to R = 1. In the intermediate range one
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Figure 4.3 Reduction factor R = Fi(Ly, Lo # O;il)/}"l(Ll = [y = O;il) for

various anchoring parameters Lo/L; = 1,10,102,10%,10*,105,10° [117, 137].

of the extrapolation lengths can be shorter and the other larger than h. This gives
mixed boundary conditions (strong—weak) which results in repulsive Casimir force.

The characteristics of the second term in F¢,s are shown in Fig. 4.4 by comparing
it to the same reference force as F;. The reduction factor is now defined as

0= -7:2(L1,L2,Pa h)
fl(Ll = Lg = O; h) ’

(4.21)

The term F, is for small values of h/p attractive and of about the same order

62 1 a
b
0.5
0
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-0.5¢
d
_17
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_2 L L L
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Figure 4.4 Reduction factor Q = Fa(L1, Lo, p,h)/F1(L1 = Lo = 0; h) for var-
ious anchoring parameters: a) Ly /p =0,La/p =0;b) L1/p=0.1,Ly/p = 0.1;
c) Li/p=0.05,Ls/p=1;d) L1/p=0.05Ly/p = 10.

of magnitude as F;. Then with increasing h/p it becomes repulsive and finally
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diverges at the structural transition to the deformed Sm-C structure. The critical
thickness, and consequently also the maximum magnitude of attraction, increases
with stronger anchoring as described by Eq. (4.8).

It is also illustrative to present temperature dependence of the Casimir force in a
homeotropic smectic cell at some fixed thickness h. Above the bulk phase transition
temperature T, the force is given by Eq. (4.13) and below T in a frustrated system
the force is described by Egs. (4.18 and 4.19). The temperature profile is presented
in Fig. 4.5 for various anchoring parameters. The behavior of the force in the

10+
5t C d
«/T‘Cas
Fo LA\
O \=7

“10 5 0 5
t—t.

Figure 4.5 Temperature profile of the Casimir force in a homeotropic cell.

We introduced a unitless temperature ¢ = ah?T/K3z. The amplitude of the
force is given in the natural unit Fo = |Fy(L12 = 0)| = kgTSK3(r(3)/4r K h?
(we neglect a weak temperature dependence of Fy). The force is plotted for
different sets of anchoring strengths: a) L1/h =0, Ly/h = 0; b) Li/h = 0.1,
Ly/h =0.01;¢c) Li/h =1, Ly/h =0.05; d) L1/h =10, La/h = 0.05.

regime t > t. was commented along with Fig. 4.2. On supercooling the system
(t < t.) the force approaches a local minimum, and eventually it diverges at the
structural transition to the Sm-C structure. The stronger the anchoring at the
plates, the deeper the supercooling limit, and the more pronounced the minimum.
The repulsive divergence of the fluctuation-induced force is characteristic for second
order transitions and is logarithmic. Close to the transition the leading term diverges
as Fév o In (sin(h/v/2p)) (in the case of strong anchoring). The behavior of
this system is analogous to the nematic Freedericksz cell [121], as we have already
mentioned.

To summarize, the frustration enhanced fluctuations affect the Casimir force in
two ways. Firstly, the force becomes long-range and behaves like as the modes were
massless. Secondly, there is an additional term present due to frustration which
results in repulsive logarithmic divergence of the force at the transition. This is
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however not all. As we have discussed in the Sec. 2 the free energy of a bulk reference
system has to be subtracted from the total free energy of a confined system in order
to obtain the interaction contribution. But in the case of a frustrated system, where
T < T,, the bulk reference is no longer in Sm-A but in Sm-C phase. In the Sm-C
phase we have massive amplitude fluctuations with correlation length p and massless
phase fluctuations with infinite correlation length [Eq. (4.1)]. The reference bulk free
energy of fluctuations is then given by

kTS

™

Fi{sm-C| =

/000 In <exp (\/KQQ/KS + P72h>> qdg
+/000 In <eXp (th)) qdq] :

(4.22)

In frustrated Sm-A cell the bulk term in fluctuations free energy is equal to
k TS

Fipitfsm-A] = 22 /¢

Their difference, contributing to the interaction, is then equal to
/_ _Z dg — / ¢*dg—
/\/K3 - Kgq P 2qdq / K3 q
\/ = d

/ Kgq +p2q QI )

using the relation —1=2 = p=2/2. These integrals are unfortunately divergent and

In (exp <\/7)_2 + Kq¢?/K3h )) qdq . (4.23)

K3 n—2

. kBTSh
AFfe =

(4.24)

so is their difference. This is a consequence of the continuum model, where also
fluctuations with infinitely large wave-vectors ¢ are allowed. We first try to avoid

the divergence by introducing large wave vector cut-off ¢,,.., = ). This leads to the
force
AFfiue _ kpTS

Fy= 25 o5 (4 LA K
T on  4r |3V K, 2KQ2p? K 3

KQ22
_Q 1+ + K 1 — 14.@
3p 3K p3 K, '

Let us now evaluate the parameters appearing in this expression. Using the material
constants a = 4 x 10* N/m?K and K3 = 107'! N the correlation length p = [2a(T,. —
T)/Ks3)~/2 can vary from approximately 100 nm very close to T, to about 10 nm

when 1 K below the T, [160]. The value of @ is estimated by 27 /I, where [ ~ 0.1 nm
-1

(4.25)

is the transversal dimension of a liquid crystal molecule. This gives Q ~ 101 m
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As Q > p~! the force F3 can be simplified to

kTS [ [KsQ  Ks 1
= i A — . 4.2
5= ( K p? 3Kp3> O (Qp4) (4:26)

It is thickness independent and consists of a dominant repulsion term, which de-

pends linearly on the cut-off value (), a small attraction term independent of (),
and lower order terms which go to zero in the limit of () — co. The magnitude of
ratio between F3 and the reference force Fy(L; o = 0) is estimated by Qh*/p*. For
thin cells of thickness h ~ 10 nm, which are relevant for the frustrated system, this
ratio varies from 10 — 10%, depending on value of p. Therefore one could conclude
that term F3 represents a dominant contribution to the Casimir force in a frustrated
homeotropic cell, except very close to the divergence. However we should stress that
our regularization procedure, by introducing a cut-off ¢,,.. = @, is somewhat over-
simplified and can not give more than a qualitative picture. Indeed the final result
linearly depends on the cut-off value () which is a signature of a poor regularization
procedure. Therefore we try to introduce a slightly more sophisticated regulariza-
tion. We use exponential cut-off which smoothly discards the contribution of large
wave-vectors. Now the following integrals have to be evaluated
pur _ kBT'Sh

o0 K 1
A Ftutk — lim |2 = — =p? “X2%) dg—
flue A )}E}) [ /\/Z%P—Z Kgq 2p q exp( q ) q
~ [K ~ [K
—/ \ @ exp(—/\2q2)dq—/ \/ =%+ p~2q exp(—=N°¢*) dg| .
0 K 0 K

(4.27)

This gives

kpTSh [ N2K Ks A
App = bT5 ﬁhm[zexp(— 3)—1 2,/ 3

4 K3 4)3 A=0

where erfc(z) is the complementary error function erfc(z) = 1 — erf(z). For small
arguments erfc(x) can be expanded in series

2 23 x°
f N=1-—+ —— ——+.... 4.29
erfe(x < 1) NG + NN + (4.29)
Using this expansion we obtain the force
kgTS K .. K /m 1
= —1 — R —— 4.30
Fo= T K oy [ K3 202 3p3] (4:30)
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The F3 term now consists of a repulsive divergent term and a small attraction term.
This result is qualitatively the same as Eq. (4.26) with the inverse cut-off length A\~*
taking the role of the maximum wave vector number Q).

At present we still lack the physical interpretation of the F3 term characteristics.
But although we are unable to properly regularize the F3 contribution to the Casimir
force this does not pose any practical difficulties. The force scanning techniques,
such as atomic force microscopy and surface force apparatus measurements, actually
measure the difference of the force at different thicknesses h and not the absolute
magnitude. So the thickness independent contributions to the interaction, such as
is F3, are irrelevant.

Furthermore, as the bulk reference is in Sm-C phase, there is also the mean-
field force present in a frustrated Sm-A homeotropic cell. The mean-field force is
a consequence of a difference between mean-field free energies of structure between
plates (Sm-A) and Sm-C reference as given by Eq. (2.11) and is equal to

2

Fmg = (Jo = fa)S == (Tc = T)*s, (4.31)
where fo and f4 are free energy densities of the Sm-C and Sm-A phases. The
mean-field force is attractive and thickness independent. The comparison between
the mean-field force and the Casimir force [Eq. (4.19)] can be performed using the
following set of the material constants: a = 4 x 10* N/m?K, b = 105 N/m?, K3 =
K =10"" N, T, = 368 K, [160] and taking the thickness of the cell to be A = 20 nm.
In the limit of strong anchoring the Sm-A structure could be supercooled to about
Taz = T. —5 K. Very close to T, the Casimir force is dominant as the mean-
field force is very small there. By supercooling the system the mean-field force
becomes larger and prevails over the Casimir force. Even very close to the repulsive
divergence the Casimir force does not amount to more than a few ten percent of the
mean-field force. However as the mean-field force is thickness independent it can
not be measured by differential force scanning techniques, as was mentioned earlier,
and would not hinder the detection of the Casimir force.

4.2 Free-standing films

In free-standing films, the smectic material is bounded by free surfaces in contact
with air. In our simple model we assume that preferential orientation of director
at the free surfaces matches the orientation in the bulk interior of the film. This
corresponds to an effective internal anchoring. The mean-field structure of the film
is therefore in this model homogeneous. The anchoring is the same at both free
surfaces which gives symmetric boundary conditions. We consider two cases: a
free-standing Sm-A film (7" > T.) and a free-standing Sm-C film (7" < T..).
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In Sm-A free-standing film the equilibrium bulk value of order parameter £ is
equal to 0 which is also the preferred value at the surface. The surface free energy
is then modeled by

Fsl€] = %Kng U sin?(|€|) dS; —|—%/sin2(\§])d5‘2] : (4.32)

The anchoring is at both surfaces characterized by extrapolation length L. The
Casimir force is calculated in the same way as in the homeotropic Sm-A cell above
T, and is given by

kBTS K3 o 2 dp

T K Jiy Ep+ 32 exp(2ph) — 1

This a typical short-range contribution of massive fluctuation modes with correlation

fCas:_

(4.33)

length 7. Its dependence on anchoring parameters was analyzed in Fig. 3.2.

In Sm-C film the equilibrium bulk value of tilt is equal to £ = \/a(T. —T)/b
and equilibrium value of phase parameter £, = 0. In our model of matching bulk
and surface order the director anchoring free energy is given by

— _K3 Z { / sin?(€, — €,0)dS; + L]* / sin2(§l)d5i} : (4.34)

Here we allow for different anchoring parameters for each type of fluctuations. Us-
ing the Hamiltonian of fluctuations in Sm-C phase [Eq. (4.1)] and performing the
Fourier transformation of fluctuating fields we obtain within harmonic approxima-

tion H =3, ( €] + Hy [fl]), where

~ 1 h P2 ds; 2
Hql&] = §K3S</ { £q12(3 }512 + (d—;> dz +
’ " (4.35)

The upper line corresponds to Fourier components g,‘(q, z) and the lower to 5 1(q, 2).
The Casimir force is calculated following the procedure described in the case of the
homeotropic cell. It consists of two terms:

z kTS K; /°° r2dr +/°° r2dr
Cas — — s 1
2r K|y, R sexp(2rh) —1  Jo (r+L£1)Z exp(2rh) — 1
(r L e (r=L17)

(4.36)
The first term is a contribution of massive amplitude fluctuations with correlation
length p. The second term is a long-range contribution of massless phase fluctua-
tions. The characteristics of these terms have already been analyzed in the preceding
discussion [Figs. (3.2,4.3)].
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Here we investigate the temperature dependence of the Casimir force in a free-
standing smectic film which is presented in Fig. 4.6. We present the force only for
the limiting case of infinitely strong anchoring; that is L = 0 in the Sm-A film and
L, =0, L, =0 in the Sm-C film. Due to the symmetric boundary conditions, the

fCas

o

-5 0 5
t—1.

Figure 4.6 Temperature dependence of the Casimir force in a free-standing
smectic film. Again the unitless temperature t = ah?T /K3 is introduced. The
amplitude of the force is given in the natural unit o = kpTSK3(r(3)/4mKh3
(a weak temperature dependence of Fy is neglected). Presented is the limiting
case of infinitely strong anchoring; L = 0 in the Sm-A filmand L, =0, L, =0
in the Sm-C film.

Casimir force in the free-standing smectic film is always attractive. It reaches the
maximum at the structural transition from the Sm-A to the Sm-C film (7" = T..).
Lowering or rising the temperature reduces the amplitude of the force. In the Sm-A
film there are two degenerate massive fluctuation modes whose contributions to the
Casimir force decay rapidly while rising the temperature. In the Sm-C film the
contribution of the massless mode is almost temperature independent, while the
contribution of the massive mode again decays rapidly away from 7" = T.. The
profile of the force is therefore asymmetric. There is no divergence of the force at
the structural transition from the Sm-A to the Sm-C film as in the homeotropic cell.
In our simple model of the smectic film no frustration is induced by the boundary
conditions, and consequently the divergence does not occur. The increase of the
amplitude is a consequence of the fact that when approaching 7" — T, all fluctuation
modes become massless. The implementation of finite anchoring strengths does
not significantly alter the temperature profile of the force but merely reduces its
amplitude.
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4.2.1 Casimir force in free-standing Sm-A films with
enhanced surface order

As the fluctuations of surface layers in free-standing films are suppressed by the
surface tension, the boundary layers often posses more order than interior ones.
Close to the Sm-A — Sm-C phase transition the molecules in boundary layers can
already be tilted while the bulk interior is still in the Sm-A phase [164]. We model
this surface ordering by demanding that the magnitude of tilt order parameter £ at
the surfaces is equal to a non-zero &g (Fig. 4.7). If we assume that g, and hence

N |~ | = |~ |\
N |~ —|~|N
N |~ | = |~ |\
N |~ | =~ |\
N | S[—|~|N
N |~ | = |~ |\
N | S[—|S|\N

Figure 4.7 Free-standing Sm-A film with enhanced surface order. The
molecules in surface layers are tilted while the interior of the film is still in the
Sm-A phase.

also interior |£|, is very small, we can perform the analysis retaining only lowest
order terms in the free-energy expansion (2.11)

e \?  [0e\?
F=fas bkt (@ v )+ L [(6—5) (%) ]

1 ae,  0c \> [0, 0c\? 437)
)l e he R .
+2 (8x+6y>+(8y ax)]
Minimization of the free energy leads to the Euler-Lagrange equation
26
sl 2¢,=0. (4.38)

With boundary conditions &,(z = —h/2) = {,(z = h/2) = s this gives the mean-
field profile
mf i cosh(z/n)
() =& cosh(h/2n)
Note that for simplicity we here placed the boundaries at z = +h/2. The component
&, is not affected by the surface induced order and é"Tf = 0. The mean-field free-

(4.39)

energy of this deformed structure is given by

K3S5¢2 ( h )
Fnr=—""2tanh | — | , 4.40
7 » o (4.40)
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which leads to the mean-field force

OFmp K35
Oh  2n2cosh®(h/2n)

Fonf = — (4.41)
This is a well-known short-range attraction characteristic for symmetric systems
with enhanced surface order [179].

The Casimir force is calculated in the usual manner. We write the order pa-
rameters as §, = fo + 6§, and &, = £, and obtain the Hamiltonian density of
fluctuations

B 1 9 mf 2 2 Z
h = 2K377 <2£H 6£H + 5§H + 5§J-) + K3 0z 0z 0z

2
00\ | 1, | (008) 00\ (908) _000€) Y’
+( 0z ) +2K or Dy * Dy oz '
Fourier transforming the fluctuating fields and integrating over volume we obtain

H =3 Hql0§]| + Hy[d€1], where

1 h K )\ ~ AN
Hq[(sgu] = §K3S/0 [ (772 + EQQ) §‘|2 + <(9—i’>

1 [(@) L o064 905

(4.42)

. (4.43)
—aemrg 96T 06,
+2 (77 2£H gl\ + O (92’) 5(31,0] dz )
1 h K )\ ~ 08\
Hql061] = S K5S /O (n—2 - Eq2> 7+ (a—;> dz . (4.44)

The 6£, fluctuations are not affected by the deformed mean-field structure and their
contribution to the Casimir force is the same as in homogeneous Sm-A film. The
Hamiltonian of ¢, fluctuations contains additional terms for wave vector q = 0.
However, performing a per partes integration over z and considering the Euler-
Lagrange equation for the mean-field profile €™ [Eq. (4.38)] these additional terms
are transformed into a surface term. If we assume fixed boundary conditions,
0¢(z = —h/2) = 6§,(2 = h/2) = 0, then this surface term is equal to zero and does
not contribute to the Hamiltonian and does consequently also not affect the parti-
tion function. Hence the contribution of the §¢, fluctuations to the Casimir force
is also the same as in a non-deformed film. This is in agreement with the general
conclusions of Sec. 3.3.

The free-standing Sm-A film with enhanced surface order represents another
example of a system where non-trivial equilibrium structure does not modify the
Casimir force, provided the surface induced order is small enough that quadratic
approximation of free-energy can be used. A similar study of the Casimir force
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was performed for the case of a presmectic system, where confining boundaries
enforce enhanced positional order, and the same conclusions were reached [129].
This is therefore a universal result for systems with fixed surface induced order and
quadratic free energy.



5

Inhomogeneous systems

Systems with non-trivial equilibrium order pose a special problem in the theory of
the Casimir force and were to our knowledge studied only rarely [120, 129, 180].
The main problem in these system lies in the regularization of divergent free energy
of fluctuations which can not always be performed analytically. In this thesis we
have already studied two systems with non-trivial equilibrium order — a stretched
homeotropic cell and a free standing Sm-A film with enhanced surface order. In
both cases a non-trivial equilibrium profile resulted in additional linear terms in the
Hamiltonian of fluctuations which could be transformed into surface terms and, as
argued in Section 3.3, did not affect the Casimir force provided the boundary con-
ditions were fixed. It is not always so simple, though. In this chapter we study two
systems with surface induced order where the inhomogeneity of the ordering results
in spatial variation of smectic material constants. In this case the Casimir force is
considerably modified. The third type of inhomogeneous systems was mentioned in
Section 4.1, where in a frustrated Sm-A cell at low enough temperature the transi-
tion to the deformed Sm-C structure occurs. In this case the enhanced order, i.e.
tilt, is induced by bulk interior whereas the boundaries suppress it. The Casimir
force in this kind of system was addressed in Ref. [180] and we do not consider it
here, though it has not been indisputably solved yet.

5.1 Casimir force close to smectic-nematic phase
transition

In calculation of the Casimir force in a Sm-A homeotropic cell, we assumed that
the magnitude of degree of smectic order ¢ is constant over the whole sample and
equal to the bulk value ¢y = \/—a/b, where a and b are the coefficients in free
energy expansion (2.6). Close to the smectic to nematic phase transition where
is small, this assumption may not be valid as the surface positional order induced
by the confining plates may be much larger than the intrinsic bulk value 9. In

71
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this case we obtain an inhomogeneous equilibrium profile of ¢. If we consider layer
fluctuations described by a simple Hamiltonian

n=s |
2

and recall that elastic constants are proportional to the )2

2
B(%) + K, (V2)?| av, (5.1)

B =Cyqv?*, K = digay? (5.2)

we obtain a system with a spatial dependence of elastic constants, B = B(z) and
K = Kr(2).

The first task is therefore to calculate the equilibrium profile ¢ = 1(z). We
consider a homeotropic smectic-A cell with plates located at z = £h/2 and inducing
surface smectic order ¥g (Fig. 5.1). If the layers in the cell are neither stretched nor

<

[V

Figure 5.1 Homeotropic smectic-A cell with surface enhanced positional order
1. The profile of positional order is presented schematically. We consider the
Casimir force induced by the fluctuations of smectic layers wu.

dilated, the equilibrium profile can be calculated by minimizing the free energy

2
F = / an - %bw“ + %C” (g—f)

where a is negative in the smectic phase and we neglect higher order elastic terms.

v, (5.3)

In general, the solution can not be obtained analytically. Therefore we first separate
the bulk value ¢y = \/—a/b from the total order parameter and write ¢ = 1)y + 1.
Assuming that ¢ is small we can expand the free energy to quadratic order

-\ 2
~ -~ 1 oY
F=F—-F= —a? + =Cy | == dv . 5.4
=/ W+2n<32> (5.4
Now the analytical solution is given by
~ cosh(z/¢€)

Y(2) = o +P(2) = o + s (5.5)

cosh(h/28) "’
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where g = )5 — ¥y and €2 = —2a/C).
The spatial dependence of elastic constants B and K is now described by

cosh(z/€) 1 '

B =Cyq5 [vo + U cosh(h/2€)

cosh(z/f))r Ky =i {% + s (5.6)

cosh(h/2¢

Unfortunately it turns out that we are not able to calculate the Casimir force using
this full profile, as the partition function of fluctuations can not be evaluated analyti-
cally. We therefore neglect the constant vy contribution, continuing our calculations
with the inhomogeneous part of the ¢ only:

Lo [0, oG/ P cosh®(:/6)

=i {¢Scosh(h/2§)] 5 cos?(h26) (5.7)
o[- cosh(z/€) 2_ cosh?(z/€) |

K — digq {%m} =S o (h26)

This approximation can not be justified on physical grounds and one should be aware
of the inconsistency of our approach. However, we are here mainly interested in the
effect of inhomogeneous profile of elastic constants on the Casimir force. Therefore
we expect that despite this approximation we will still obtain a qualitative picture
of the phenomenon. Our approximation could also be interpreted in the sense that
we ad hoc invented a plausible profile of elastic constants and studied its effect
on the Casimir force. Furthermore we should mention that in our simple model
[Eq. (5.1)], where we consider only layer fluctuations assuming that director is fixed
perpendicular to the layers, the constant K should also include the contribution
of splay director elastic constant K; which is proportional to degree of nematic
order, K; o 93%. This would pose no difficulties if the profile of ¥ (z) could be
approximated by the same spatial dependence as ¢(z). Otherwise the Casimir force
could not be calculated and we therefore avoid this complication.

We start the calculation of the Casimir force by Fourier transforming the Hamil-
tonian Eq. (5.1). This transformation is not affected by the K (z) and B(z) profiles
so we obtain

Hylu] = %SKS /h/2 [/\_2 cosh?(z/€) > cosh®(z/€)

cosh?(h/2¢)

Oug
0z

q4|uq|2 dz, (5‘8)

—h/2 cosh?(h/2€)
where we introduced the characteristic length A = \/Kg/Bg. Now the partition

function of fluctuations has to be evaluated, where we assume fixed boundary con-
ditions at the plates

uq(z:%):O
Zalil = [0 e (i) Dugl2). (5.9)
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This partition function does not belong to a class of standard path integrals, such as
for example path integral of a harmonic oscillator with constant mass and elasticity,
but it can be evaluated. For a general quadratic Hamiltonian

H= / [a(2)@? + 2b(2)dx + c(2)2” + 2d(2)& + 2e(z)x] dz (5.10)
the partition function Z = f;((;;):jc” exp(—FH|[z(z)]) Dz(2) is given by [168§]
82Hcl(x”7 ZL") "o
A - —BH . A1

Here H, is the analog of classical action in quantum mechanics and is obtained by
minimizing Hamiltonian H with respect to z(z).

The Euler-Lagrange equation for minimization of the Hamiltonian Hg[u] leads
to the differential equation for classical path ugl

022 £ &) 0z

with general boundary conditions ug (z = £h/2) = ug. The solution of this equation

aZucl ) aucl
1 + = tanh (f) — — Nl =0, (5.12)

reads

i (3o {ow [ (% =) Ve oo (4 42) vi )
)

X |coth (hW) — 1] % .

(5.13)

It is obvious that for fixed boundary conditions, ug = 0, the classical path ug
and hence also H. are equal to 0. Thus it only remains to evaluate the deriva-
tive 0°H,/ 8uf;8u;. This calculation is straightforward and leads to the partition

Zgu] x [sinh <\//\2q47+§_2 h)}i . (5.14)

After performing the usual extraction of the bulk and surface parts we obtain the

function

NI

interaction part of the fluctuations free energy

Fi = kBTS/ In (1 — exp (—2§\/1 + 52/\2(14)) qdq , (5.15)
0

47

and the corresponding Casimir force

kTS [ JITeng
Foue = 1015 &A% qdq . (5.16)
21€ Jo exp (2% 1+ 52)\2(14) -1
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This integral can not be evaluated analytically. We can however obtain the behavior
of the force in the limiting cases of small and large thicknesses. In the limit of small
thickness, h/& — 0, the force is equal to

kBT SCa(2)
167 A\R?
This is just the usual layer-fluctuations induced Casimir force [Eq. (1.13)]. Such a

Feas (h/§ —0) = (5.17)

behavior can be easily explained by the fact that at very small thicknesses the profile
of ¢, and hence also of K and B, is practically constant and there is no effect of
inhomogeneity. In the opposite limit of very large thicknesses, h/{ — oo, the force

is given by
kTS exp (—2h/¢)

ENCDNENT:

This is a very interesting result which shows that fluctuations of smectic layers

FCas(h/é._)oo):

(5.18)

described by a purely elastic Hamiltonian [Eq. (5.1)], due to the space dependent
elastic constants induce a short-range Casimir force which decays exponentially as
exp(—2h/§&)/ \/hi/f . Such a short-range exponentially decaying force is characteristic
for massive fluctuation modes, so the inhomogeneity here obviously acts as some
effective mass of fluctuations. The numerically calculated profile of the Casimir
force in a broader range of thicknesses is shown in Fig. 5.2.

15*1 1 10?
h/§

Figure 5.2 The profile of the Casimir force induced by the layer fluc-
tuations in the homeotropic smectic-A cell with a surface enhanced posi-
tional order compared to the usual layer-fluctuations induced Casimir force
flc?gs = —kpTSCr(2)/16mAh2. At small thicknesses Foqs is equal to Fgé’s. At
large thicknesses it decays much faster, as exp(—2h/€)/\/h/€.

In the end we should again note that the system studied here was somewhat
special, as the spatial profiles of K; and B were taken to be equal and also consider-
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ably simplified. This enabled us to obtain an analytical solution which would not be
possible in a more general case. Nevertheless, we expect that our simple model still
contains some physical reality. In reference to our result we must mention a study
of de Oliveira et al. [133] where the Casimir force in a free standing smectic-A film
close to the Sm-A — nematic phase transition was studied within discrete model. It
was claimed that due to the inhomogeneous profile of elastic constants the magni-
tude of the force is strongly enhanced. This is obviously in contradiction with our
conclusions. As we are not able to reproduce their numerical results we can not
make the final judgement whether this contradiction stems from the inconsistency
of our model or some other source.

5.1.1 Force induced by fluctuations of degree of smectic or-

der v

We can also evaluate the contribution of fluctuations of positional order ¢ to the
Casimir force. We make use of the fact that in the lowest order the fluctuations of
u and v are not coupled and start with the harmonic free energy

F[qz]:/ —ay? + 0” (gw) +%c1 (vﬂz)Q v . (5.19)

We write ¢ = 1y, F+ 61, where the mean field part has already been calculated

~ ~ cosh(z/¢€)

Yy = wscosh(h/%) : (5.20)

We now note that this system is equivalent to the case of a free standing smectic-A
film with enhanced surface order (Sec. 4.2.1). Therefore we can directly write the
mean field force

C)S¢%
Fong = — . 5.21
d 262 cosh?(h/2€) (5.21)
and the Casimir force
~ k;BTS C” 1 exp( 2hl<:/£) h?
_— . .22
Feusl0¥) = ——— W Z 3 €k+ o —k? (5.22)

The inhomogeneity of equilibrium profile does not affect the Casimir force in this
case and we obtain the usual short-range attraction as in a homogeneous system
[Eq. (3.10)]. This is just another example of a system described by a quadratic free
energy functional and with fixed boundary conditions where the nontrivial equilib-
rium order profile does not change the Casimir force, as it was discussed in Sec. 3.3.
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5.2 Casimir force in presmectic nematic film

Even if the system is in nematic phase there is always some positional order of
molecules present in confined geometries. The origin of this presmectic positional
order lies in the fact that molecules can not penetrate into the hard boundaries
so there is always at least one ordered layer present. How this surface induced
order penetrates into the bulk depends on the proximity of the nematic — smectic
phase transition. Very close to the transition the positional order extends over
large distances, whereas far above the transition it is basically only the boundary
layer being ordered. As the orientational fluctuations of director are coupled to
the smectic order, this presmectic ordering results in increased energy of director
fluctuation modes. The otherwise massless nematic director fluctuations become
massive due to the surface induced positional order. It is the aim of this section to
calculate the Casimir force due to the director fluctuations in such a nematic system
with a presmectic positional order.

We begin by calculating the equilibrium profile of degree of positional order ¢ in
a homeotropic nematic cell with plates imposing surface smectic order ¢g (Fig. 5.3).
We use the following free energy expression

| Won | I |
I v

Figure 5.3 Homeotropic nematic cell with surface induced presmectic order
1. The profile of positional order is shown schematically. We consider the
Casimir force induced by the director fluctuations dn.

dv . (5.23)

1 1 o\ ?
ool (3)

As the system is in a nematic phase the coefficient a is positive and the bulk order

g is equal to 0. We here consider only the basic elastic term and do not include
higher powers of ¢ in the expansion as the magnitude of positional order is expected
to be small and the quadratic approximation should therefore suffice. Placing the
plates at z = +h/2 we obtain, by minimization of F'; the mean-field profile

cosh(z/€)

% cosh(h/2€) (5:24)

Vmp(2) =9
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This is analogous to the profile obtained in the previous section [Eq. (5.20)] with
the correlation length now being £72 = a/C|. The correlation length £ also rep-
resents the characteristic length of penetration of surface smectic order into the
bulk. Far from the nematic — smectic phase transition £ is of order of a molecular
length whereas close to the transition its value increases and finally diverges at the
transition.

In the one-constant approximation, the nematic free energy density is given by

f= %D(énf + %K [(V-n)>+ (V xn)?] . (5.25)

Here dn is the deviation of director from z direction and D = C lqgwif. In usual
nematics with no smectic order (¢» = 0) D is 0. Here, due to the surface induced
smectic order, the director fluctuations become massive with spatially dependent
mass

5 cosh?(z/€)
5 cosh?(h/2¢)

The nematic elastic constant KX is assumed to be uniform as the nematic order is well

D(z) = C1ggd (5.26)

developed. In equilibrium, the director is oriented in z direction and the fluctuations
are given by on = (n,,n,). This leads to the harmonic Hamiltonian of fluctuations

g (a2 (2 ) 4 (2 O (O _ O
H_QK/A (Z)(n‘”+ny)+(8x+8y + ox y +

N ong \ 2 n on, 2
0z 0z
where we introduced a spatially dependent correlation length A™%(2) = D(z2)/K.
After Fourier transformation we obtain H = Hq[n,| + Hg[n,| with

(5.27)
dVv

1 hz —2 2 2, |9ng ’
Hg[neq) = Hqlnyg] = Hg[ng] = §KS " (A (2) + ¢ ) Ing|” + Oz dz.
(5.28)
The partition function
nq(z:%)zo
Zana = [ 7, e (<Helna) Dl (5:29)
ng(z=—3)=

is analogous to the quantum propagator of harmonic oscillator with a time dependent
frequency (see Appendix A.1). We assume that the director orientation is fixed at
the plates. The partition function is given by

Zqlng) o< [g (h/2)] (5.30)
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where ¢(z) is a solution of differential equation

9%9(z)
022

— (A%(2) +¢*) g(2) =0 (5.31)

with boundary conditions

g(z:—g):(), %(z:—g)zl. (5.32)

Here we can not proceed with a general profile of D(z) [Eq. 5.26] but need to make
an approximation. We introduce a parabolic profile of D(z)

(2/8)*
(h/2¢)?

There exists no physical argument to justify such an approximation, but we again

D(z) — CLgg¥s (5.33)

ad hoc introduce a plausible inhomogeneous profile which enables us to continue
the calculation, and hope that it still contains some physical reality. With this
approximation we can now obtain the partition function as

1 1 1\ M[2A+3,2 1321 9

7 I A= 2 4>2°8%0 £

alna] NGT 2:’:0( + 2) MEA+ 111 o
1 7 5 1._9771/2 (5.34)

2%\ 3 2) M[A+3,3 137 ’

where Ma, b, z] is the Kummer confluent hypergeometric function [181]. We have
introduced the following parameters

§2Ciqg¢% hE
_ = - = A _ >
7 , 4\/5(1 , 45 (5.35)

The degree of induced surface order ¥g is now controlled by parameter «. The free
energy of fluctuations is given by
kgTS

Friue = 5 / In(Z4[ng))qdq , (5.36)
™ Jo

where we took into account that there are two degenerate director fluctuation modes
present.

The regularization of the fluctuations free energy F;,. can unfortunately not be
performed by a simple factorization into bulk, surface and interaction parts, as was
the case in previous examples. Therefore we proceed in the following manner. We
first calculate the derivative 0Fy,./Oh. With this we dispose of thickness indepen-
dent terms. Assuming that interaction part goes to 0 at large thicknesses h, we
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numerically calculate OFf,,./0h at large h’s for various wave vectors g. This enables
us to evaluate the bulk contribution. In analogy with the previously studied systems
we expect the bulk contribution to be constant, dIn(exp(rh))/0h = r = const. How-
ever in our case it turns out that the derivative 0F},,./0h changes very slightly while
increasing the distance h. This indicates that the bulk term in partition function
can not be described by a simple exp(rh) dependence, but the correction seems to be
very small. Being unable to exactly determine the bulk contribution, our numerical
calculations of the force are limited to very small thicknesses h where the interaction
part is dominant and the correction due to the uncertainty of regularization is not
crucial. The results presented here are hence by no means the final solution of the
problem and should serve only as qualitative information of the force behavior. The
question of the Casimir force in such systems, with position dependent mass of the
fluctuations, remains open for further studies.

The Casimir force calculated using the above described procedure is shown in
Figs. 5.4 and 5.5. We first compare the Casimir force in a presmectic nematic with
the typical 1/h® nematic force which is present in systems with no smectic order
and hence massless director fluctuations (Fig. 5.4):

Ry = Fowle) (5.37)
Cas
where Fem™ = kpTSCr(3)/4mh®. The thickness is measured in units of correla-

tion length £. Various parameters « describe different magnitudes of the surface
induced smectic order, where larger a means larger 1g. At very small thicknesses
the compared forces are equal. This is in agreement with the known results for
homogeneous massive systems where in the limit of small thicknesses the force ex-
hibits 1/h% behavior. Such a behavior can be explained by the fact that in very thin
cells the elastic contributions (which scale as 1/h) in the Hamiltonian dominate over
the massive term (which scales linearly with h). At larger thicknesses the force in
a presmectic system decays faster than 1/h3. This is somewhat expected as the
fluctuations are massive. The larger the surface induced order, the larger the mass
and the faster the decay of the force.

Secondly, we compare the director-induced Casimir force in a presmectic sys-
tem to the director force in a homogeneous smectic with constant positional order
(Fig. 5.5):

~ Feas(a)

Ry =——= 5.38
2 févm 9 ( )

as

where

smo

= AT, P
Cas o h3 s k3 + -

2 " As A2

0o . 2
kTS 1 N exp (—2hk/As) (1 hp B ) (5.39)

We defined Ag = C' | ¢2v%/K, meaning that the mass of fluctuations in the homo-
geneous system is set equal to the boundary value of mass of fluctuations in the
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Figure 5.4 Casimir force in a presmectic nematic system compared to the
typical 1/h3 Casimir force in a nematic system with no smectic order. The
different values of « describe the different degrees of the surface induced po-
sitional order 1g. The error bars indicate the uncertainty stemming from the
approximate regularization procedure.

presmectic system. One should note that Ag depends on « . The Casimir force in
a presmectic system decays slower than in a homogeneous smectic. This is again
somewhat expected as an average mass of fluctuations in the presmectic system is
smaller than in the homogeneous system, due to the decreased smectic order in the
middle of the cell. If we apply the rationale known from homogeneous systems, a
larger mass means a shorter correlation length of fluctuations and hence a shorter
range of the force. The larger the surface induced smectic order, the larger the
difference between the homogeneous and the inhomogeneous system.

Even though we failed to completely solve the problem of the Casimir force
induced by director fluctuations in a presmectic system, we can still make some
qualitative conclusions. The force in a presmectic nematic system obviously decays
faster than the 1/h3 force in a pure nematic system without smectic order. As
some surface induced positional order is present in every confined system, even deep
in the nematic phase, our result indicates that the typical 1/h3 nematic director-
fluctuations induced force is hardly to be observed in experiments. At present we
can not give a more definite answer concerning the behavior of the Casimir force in
such systems but we must mention that a complete study should also include the
effect of a realistic finite director anchoring at the boundaries which is also known to
modify the ideal 1/h% thickness dependence of the Casimir force in nematic systems
[137].
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Figure 5.5 Casimir force in a presmectic nematic system compared to the
director-fluctuations induced force in a homogeneous smectic system with con-
stant positional order equal to 1g. Note that different parameters a corre-
spond to different values of g so that the reference force Fg". is different
for each case. The error bars indicate the uncertainty stemming from the
approximate regularization procedure.
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Conclusion

The majority of studies of the Casimir phenomenon in liquid crystalline systems
was concerned with the simplest, i.e. nematic, phase. In this thesis, we tried to
reveal the various aspects of the Casimir force in the smectic phase, which possesses
a more complex ordering and is thus even more interesting. Many new questions
concerning the Casimir effect were raised, but not all the final answers have been
given yet.

In Chapter 3 we studied the Casimir force in two smectic-A systems with plan-
parallel geometry:a homeotropic cell and a free-standing film. We assumed that the
equilibrium structure of the systems was homogeneous. We considered the force
induced by thermal fluctuations of positional order (degree of order and position
of smectic layers) and by fluctuations of orientational order (director). We also
took into account the coupling between the positional and the orientational order.
Within the harmonic approximation, the fluctuations of degree of positional smectic
order are decoupled from the layer and director fluctuations and were found to
contribute a short-range attractive contribution to the total Casimir force. The
coupled fluctuations of director and smectic layers result in a long-range Casimir
force. It turned out that the effect of director degrees of freedom is important
at small thicknesses of the systems whereas at large thicknesses the force can be
modeled by considering only layer fluctuations while assuming that the director
rigidly follows layer deformations. We evaluated the net effect of the director-layer
coupling by comparing the “coupled” force to its “uncoupled” counterpart where
director and layer fluctuations were treated independently. We found out that the
coupling increases the force by no more than a few ten percent except in some special
cases. With results presented in this Chapter we have provided a complete picture,
the first to our knowledge, of the Casimir effect in planar smectic-A systems with
homogeneous equilibrium structure.

In Chapter 4 we addressed some peculiarities related to the smectic-A to smectic-
C phase transition. The theoretical model that we used enabled the study of the
plain as well as the chiral smectics. Especially interesting was the case of a frustrated
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homeotropic cell, where smectic-A structure is stabilized by the boundaries and su-
percooled below the bulk phase transition temperature. In this case the fluctuations
and the force are enhanced. At the structural transition to a deformed smectic-C
structure, the Casimir force exhibits repulsive logarithmic divergence characteristic
for continous structural transitions. However, we did not fully solve the problem of
the Casimir force in frustrated systems as we were unable to regularize the diver-
gent bulk contribution with our calculation method. Fortunately, this contribution
is thickness independent and therefore of no practical importance but the theo-
retical challenge remains. On the other hand, in free-standing smectic films with
no surface-induced frustration the phase transition is characterized by an increased
magnitude of the Casimir force but there is no divergence present. We also analyzed
the effect of different boundary conditions on the Casimir force induced by massive
director fluctuations with finite correlation length in smectic-A phase. We found
that in thin cells the effective anchoring strength is determined by the ratio of the
anchoring extrapolation lengths and thickness of the system. On the other hand, in
thick cells the effective anchoring is determined by the ratio of extrapolation lengths
and the correlation length of fluctuations. In the case of symmetric boundary con-
ditions at the plates (effectively strong-strong or weak-weak anchoring) the Casimir
force is attractive whereas in the case of asymmetric boundary conditions (effec-
tively strong-weak anchoring) the force is repulsive, in agreement with the previous
studies of the Casimir force in other systems.

A special attention was devoted to the Casimir force in systems with non-trivial
equilibrium structure, which were only rarely studied in the past. We first considered
two systems, dilated or compressed smectic cell and smectic film with enhanced sur-
face order, where the inhomogeneity of equilibrium order did not affect the Casimir
force. We came to the conclusion that when the free energy functional of a system
is quadratic and the boundary conditions are fixed an inhomogeneous equilibrium
ordering does not affect the Hamiltonian of fluctuations and hence does also not
affect the Casimir force. In Chapter 5 we considered two systems where the non-
trivial equilibrium order resulted in spatial dependence of material constants. In a
smectic cell with surface enhanced elastic constants we discovered that the other-
wise long-range smectic force becomes short-range. This inhomogeneity thus acts as
some effective mass of fluctuating fields. Furthermore we analyzed how the surface-
induced presmectic order, which increases the energy of director fluctuations, affects
the Casimir force in a nematic system. We found that the magnitude of the force
in such a system is reduced as compared to the long-range nematic force. In both
systems we had to introduce several approximations in order to calculate the force,
therefore the obtained results do not give the final answer on the Casimir force in
systems with inhomogeneous equilibrium order. Nevertheless, we believe that an in-
structive qualitative picture of the phenomenon in such systems has been obtained.
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Future perspectives

Undoubtedly, the main challenge in the theory of the Casimir force in liquid crys-
tals is presented by systems with non-trivial equilibrium order and hence spatially
dependent Hamiltonian of fluctuations. In this thesis we were able to give a solution
for some special examples. The treatment of the more general cases will probably
require a more sophisticated calculation and regularization methods. As in real con-
fined systems some inhomogeneity of equilibrium order — either nematic or smectic
— is frequently encountered, these open problems are highly relevant.

Some interesting problems concerning the chiral smectics also remain open for
further studies. In the thesis we addressed the Casimir force induced by orientational
fluctuations, while the polarization fluctuations were eliminated by the adiabatic
approximation. However, at least two effects related to the presence of spontaneous
polarization should be considered. Firstly, the fluctuations of orientational order
result in inhomogeneity of spontaneous polarization, which leads to appearance of
space charge and Coulomb interaction in the system. And secondly, the spontaneous
polarization can be coupled to an external electric field. It would be interesting to
investigate how these two effects affect the behaviour of the Casimir force in chiral
smectics.

The main problem in the field remains the lack of experimental evidence of the
Casimir interaction. It appears that liquid crystal systems are simply too complex
to allow for the detection of the Casimir force, because there is always a variety of
other phenomena which mask the Casimir interaction. New possibilities for the ob-
servation of the phenomenon could open with the development of colloidal systems
with nano-sized dispersed particles, where the fluctuation-induced forces presum-
ably dominate the elastic liquid crystal interaction. We believe that an experimental
confirmation of the Casimir force in a liquid-crystalline system would provide a mo-
tivation for further studies in this field, as it happened in the case of electromagnetic
Casimir effect.
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Appendix

Calculation of quantum propagators

Throughout this thesis, we employed the analogy between partition functions of
thermal fluctuations in one-dimensional systems and propagators of quantum sys-
tems to obtain the free energy of fluctuations. Here we present technical details of
propagator evaluation.

The propagator for a quantum system evolving from state x, at time t, to a
state x, at time ¢, is defined as [167]

(blrtd = S exp (iAlz]/h) = / Dar exp (iAlz]/B) . (A1)
all paths (Tasta)—(zp:ts)
(Tata)—(p,ts)

This definition has a simple intuitive interpretation. The amplitude of the propaga-
tor is obtained by summing over all paths z(t) along which a system can possibly
evolve, assigning each path a phase factor exp (i.A[x]/h). Here A[z] is the action of
the system defined by

Alx] = /t "L, 5)dt (A.2)

with L(z, %) being the Lagrangian of the system.

A.1 Quantum propagator for harmonic oscillator

The action for harmonic oscillator reads

Ale] = /t "Lz, i) dt tb%M [ — W (0)e?] dt (A3)

where we allow for time-dependent frequency w(t). For calculation of the propagator
it is convenient to employ the splitting of paths into classical and fluctuation part

z(t) = za(t) + ox(t) . (A.4)
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The classical path x.(t) is the path which minimizes the action A[z| and is obtained
from Euler-Lagrange equation which gives the equation of motion

T+ W (t)za =0 (A.5)

with boundary conditions z(t,) = z, and x4(t,) = xp. The action is now decom-
posed into a classical and a fluctuating part

A[ZE] == Acl[xcl] + .Afl [(5117] (A6)
Alz] = t b %M (@2, — w?(t)2?] dt + /t b %M [(02)* —w?(t)(0x)?] dt, (A7)

with boundary conditions for fluctuating part dz(t,) = dxz(t,) = 0. Due to the
extremality of classical action, there is no mixed term between the classical path and
fluctuations. Therefore also the propagator is split into a classical and a fluctuation

factor
(xptp|zata) = /D:I: exp (iA[z]/h) = exp (iAq/h) F,(ty, ta) - (A.8)
The fluctuation factor
Fu(tyt) = / D(52) exp (iAnlse]/h) | (A.9)
(0,ta)—(0,tp)

can be evaluated in various ways. We here follow the approach with a discretization
of time axis presented in Ref. [166]. First, the time interval [t,, ¢;] is sliced into N +1
short intervals of length e. The action Ag[dx] in discretized form reads

N M 1
A%[(S.ﬁlﬁ] = 2—6 (533'j+1 — (S.lej)Q — §€Mw]2- (5.1']')2 s (AlO)
=0
where dx; = dx(t;) and w; = w(t;). The boundary conditions require dzg = dx(t,) =
0 and dzn41 = dx(ty) = 0. The fluctuation factor is now given as

M )(N+l)/2

(e 9]

im déx;...ddxN (

Fw(tba ta)

=1
N—oo | 2mihe

. N
X exp {1 E l%(&v —6x;)? — 1e]\4<,u2-((5x-)2} }
i %e J+1 J 92 J J :
J=0

Some caution is necessary with determination of normalization factor but we shall

(A.11)

not deal with this detail here. The calculation of fluctuation factor requires an
evaluation of a series of Gaussian integrals. For this purpose it is convenient to
introduce the matrix notation. We define a vector 7 as

n= : : (A.12)
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The argument of exponent in Eq. (A.11) can now be written as —n”on where the
matrix o is given by

[ 2 -1 Wi
-1 2 -1 w;
M -1 2 - n 1Me
c=— —_—
2ehi 2h
2 -1 wi
L -1 2 | | w3
(A.13)
The fluctuation factor can now be concisely written as
(N+1)/2
T N T
Fu(ty, ta) = lim_ (the) /d nexp (—n'on) . (A.14)

The matrix o is of the form 76 where ¢ is real and Hermitian. Thus o can be
diagonalized by a unitary matrix

o=UlopU, (A.15)

where op is the diagonal matrix of eigenvalues of ¢. Now the above integral can be
transformed and directly evaluated

/dNn exp (—n"on) = /dNC exp (—("TopC) = H R (A.16)

a=1

where we introduced the coordinate transformation ¢ = Un and because U is unitary
the Jacobian for going from d¥n to dV( is equal to 1. The fluctuation factor is now
given by

1/2 1/2
F(ty,t,) = li e ] lim | 2L 2 ! /
wllby lg) = 11N . = Jgm ; € (2 ’
b N=oo | \ 27ihie det o N—oo | 2mih € (%ﬂ?)Ndeta
(A.17)

and the main task is now the evaluation of determinant det o. We first define the
function f such that

LN
f(tp, ta) = A}l_r)n [e (%ﬁe) det a] (A.18)
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and a renormalized determinant

([ 2 -1 T
-1 2 -1
2ihe\ ~1 2
—— | deto =det
(20) -
2 -1
) -z (A.19)
—w% —\ .
w3
— ¢ h ' =detoy = py -
u)12\1—1
| WJQV_)

Next we define truncated j x j matrices a} that consist of the first j rows and
columns of oy with determinant det a;- = p;. By expanding a;- 41 in minors, the
following recursion formula is obtained

Pj+1 — (2 — €2wj2»+1) Dj + Pj—1 = 0 s (AZO)
with p; = 2 — €?w} and py is defined to be 1. Rewriting Eq. (A.20) into the form

Dj+1 — 2p; + i1
2

+ w]2'+1pj =0 (A.21)
it is apparent that py will be obtained by solving a differential equation. Introducing
¢(t) = ep; for t =t, + je we obtain, in the limit of € — 0, the differential equation
d?¢ 5
@ + w (t)¢ =0. (A.22)
The initial conditions for ¢(t) follow from

O(ty) = epo — 0, (A.23)

do(ta) :e(pl—po> =211, (A.24)

dt €

in the limit N — oo (¢ — 0). Finally the function f(¢,,t,) = ¢(t) is obtained by
solving the differential equation

d2f(t,t
d¢?
with the initial conditions
df(t,t,
Pt =0, Pl (A.26)

dt
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We can now write the propagator of harmonic oscillator in the final form

(xbtb‘xata) = I, (tba ta) eXp (ZACZ/FL) = eXp (ZAcl/h) : (A27)

M
27”’-hf(tb7 ta)

As an example we can now directly calculate the propagator for harmonic os-
cillator with constant frequency [w # w(t)]. From the Euler-Lagrange equation
[Eq. (A.5)] we obtain the classical path

xpsinfw(t — t,)] + x4 sinfw(ty — t)]

za(t) = (= )] , (A.28)

which starts at the point x, at time ¢, and ends at point x; at time ¢,. The classical
action can now be readily evaluated leading to

Mw

Ad = 2 sinfw(t, — to)]

{(22 + 27) coslw(ty — t,)] — 22amp} . (A.29)

The function f(t,,t,) is obtained straightforwardly from Eqs. (A.25 and A.26)

f(ty,ta) = M . (A.30)

The propagator now reads

(2ot |zat) Mw

Tplp|Tats) = ——

b 2mihsin[w(t, — t,)]
tMw

(A.31)
exp {2hsin[w(tb Y

[(z} + z2) cos[w(ty — ta)] — 22p2,] } :

A.2 Quantum propagator for two coupled har-
monic oscillators

The Lagrangian for two coupled harmonic oscillators can be written as

1
L= Z §Mk (47 — wpzy) — Az1as (A.32)

k=1,2

We wish to calculate the propagator

. ty
(Xptp|Xata) = / Dx1Dxy exp (1/ L(x,%) dt) : (A.33)
(Xa,ta)*)(xb,tb) h ta

where x = (1, x3). The calculation presented here follows the approach of Ref. [169].
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The first step in evaluation of the propagator is to diagonalize the Lagrangian.
This can be done conveniently by applying the following coordinate transformation

2] [V, o]l o

Here ¢ is the angle of rotation and M an arbitrary parameter with dimension of
mass. This leads to Lagrangian

.. .
L' =S M(g; + 1) — ayi = B3 — vnys (A.35)
where
1 1 1 M
o = aMW% COS2(¢) + ang SiHQ(Qb) — aAW Sln(ng) s
1 1 1 M
B = §wa Sin2(¢) + ing COSQ(¢) + iA\/ﬁ Sln(2¢) s (A36)

1
v = =M(w? — w3)sin(2¢) + A

5 cos(29) .

M
v My M,
The Jacobian of this coordinate transformation is equal to J = /M;Ms/M so the

path integral measure changes as Dx1Dxy — JDy;Dys. As we wish to obtain a
diagonalized Lagrangian we set the parameter v to 0 which gives the condition

2
VMM (w3 — wi)

Solving this equation we obtain two physically equivalent solutions for decoupling

tan(2¢) = (A.37)

angle ¢, which differ only by interchange of coordinates y;. One of the solutions is

cos(¢) = 4/ ? : (A.38)

VM My (w3 — wi)?

given by

where

= . (A.39)
VM My (w? — wF)2 + 422
With this solution the Lagrangian is transformed into the diagonal form
1 . )
L'= oM [37 =yt + 95 — Bys) (A.40)
with
1| x|
U =5 ol +w; - \/(w%—w%>2+ VI,
- - (A.41)
1 4)\?
0; = 3 wf+w§+\/(w%—w§)2+ VL
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The problem is now reduced to calculation of propagators for two independent har-
monic oscillators

M, M-

# (ylbtb‘ylata) X (y2btb’y2ata) (A42)

(thb‘xata> = M

and the solution Eq. (A.31) can readily be applied. The final result is obtained by
returning to original coordinates

o]= [Vl 0T [a]

After lengthy but straightforward calculation the propagator for two coupled har-
monic oscillators reads

(thb‘xata>

1 MMy, 1M°
2wk | sin(Qy7) sin(Qy7)

/I/Q " " " "
o {W(IQN) lCOS(QlT) <M102fl?12 + MySPa,® — 24/ My MySCly

’ 1"

+ M C%2 2 + MyS?x — 24 MlMQSCfL‘/lfL‘;) —2M,C?%z,x,

+ 2/ My My SCx 2y 4 24/ My My SCayey — 2M252x/2xg} }

Z’Q 1" " "on
X exXp {W(QQQT) [COS(QQT) <M202x22 + M S?x,? + 27/ My My SCxy 1,

/ "

+ MpC22 + M, S22 + 2\/M1M250x'2x/1> — IM, Py,

— 2/ M My SCnts — 2/ MMy SCry vy — 2M1521r'1:1r'{} } :
(A.44)

where 7 = t, — t,, S = sin(¢) and C = cos(¢).
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RazSirjeni povzetek

Uvod

Zgodovina Casimirjevega pojava sega v leto 1948, ko je nizozemski fizik H. B. G.
Casimir napovedal obstoj privla¢ne interakcije med dvema vzporednima nenaele-
ktrenima kovinskima plos¢ama [1]. Ta interakcija izvira iz spremenjenega spektra
fluktuacij elektromagnetnega polja v ograjenem prostoru v primerjavi s spektrom
polja na prostem. Pri absolutni nicli, kjer so prisotne le kvantne nicelne fluktuacije
elektromagnetnega polja, je Casimirjeva sila enaka

her?S

Feas(T =0) = ~a0mt

(1)

pri ¢emer je h Planckova konstanta, ¢ hitrost svetlobe, S povrSina in h razdalja med
plos¢ama. V limiti visokih temperatur, kjer prevladujejo termic¢ne fluktuacije polja,
Casimirjeva sila znaSa,

S Gn(3) @

kjer je kp Boltzmannova konstanta in ( Riemmanova funkcija zeta.

Casimirjevemu pionirskemu delu je sledila kopica teoreti¢nih in v zadnjih letih
tudi eksperimentalnih $tudij Casimirjeve sile [2]. Te Studije so obravnavale popravke
h Casimirjevi sili zaradi kon¢ne temperature, kon¢ne prevodnosti in deformira-
nosti kovinskih plos¢ ter magnetnih efektov [5-27|. Nadalje so Studije obravnavale
Casimirjevo interakcijo v razli¢nih geometrijah: sferi¢ni, cilindri¢ni, toroidni in kli-
nasti [28-34]. Kar nekaj pozornosti je bil delezen tudi dinamiéni Casimirjev pojav,
pri katerem kovinski plos¢i ne mirujeta, ampak se gibljeta [35-39|. Prva zanesljiva
eksperimentalna potrditev obstoja Casimirjeve sile je prisla Sele leta 1997, skoraj
pol stoletja za teoreti¢no napovedjo. Lamoreaux je z uporabo elektromehanskega
sistema uspel izmeriti silo med pozlaceno plosco in sferi¢no leco, ki se je zelo dobro
ujemala s teoreti¢nimi napovedmi [78]. Nadaljnji eksperimenti z mikroskopom na
atomsko silo so prav tako potrdili obstoj Casimirjeve interakcije [80-84]. V nove-
jsih eksperimentih so uspeli izmeriti tudi silo v originalni Casimirjevi konfiguraciji
[86], torej med dvema vzporednima plos¢ama, in silo med dvema prekrizanima va-
ljema [85]. Prav tako so bili izvedeni dinami¢ni eksperimenti, kjer so izmerili vpliv
Casimirjeve sile na obnasanje mikromehanskih nihal [92-95].
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Casimirjeva sila je univerzalen pojav, ki ni znacilen le za elektromagnetno polje,
ampak je prisoten v vsakem ograjenem sistemu, kjer robni pogoji spremenijo spekter
fluktuacij nekega fizikalnega polja. Tako je Casimirjev pojav prisoten v kvantni kro-
modinamiki [40-42|, kvantni elektrodinamiki [25|, kozmologiji in astrofiziki [42, 50—
55]. Kot mehanski primer Casimirjeve sile naj navedemo akusti¢ni Casimirjev po-
jav, kjer se interakcija med dvema bliznjima ploS¢ama pojavi zaradi spremenjenega
spektra zvo¢nega Suma [56-58|. Podoben pojav je poznan tudi iz pomorske fizike
[59]. Med dvema blizu plovec¢ima ladjama se namre¢ zaradi spremenjenega spek-
tra vodnega valovanja pojavi mocan privlak. Zelo veliko studij je bilo posvecenih
Casimirjevemu pojavu v koreliranih tekocinah, kot so kriti¢ne tekocine in binarne
zmesi tekocin [64-69], superfluidi [70-73|, teko¢i kristali in elektroliti [74-76]. Vpliv
Casimirjeve sile je bil eksperimentalno potrjen pri opazovanju mocenja kovinske
povrsine s teko¢im helijem [70, 71]. Ravnovesna debelina tvorjenega filma je nam-
re¢ odvisna od interakcije med povrSinama filma. V blizini prehoda iz tekoce v
supertekoco fazo se amplituda Casimirjeve sile mo¢no poveca, kar se odraza v stanj-
Sanju helijevega filma. Podoben pojav so opazili tudi v binarnih tekoc¢inskih zmeseh
[67, 105-107].

Casimirjeva interakcija je na makroskopskih skalah zanemarljiva, na veljavi pa
pridobi Sele na mikronskih in nanometrskih skalah. Ni Se popolnoma jasno, kaksen
bo pomen Casimirjeve sile v mikro in nanotehnologiji. Tako so recimo razisko-
valci v Bellovih laboratorijih razvili mikroelektromehansko napravo, ki jo poganja
prav Casimirjeva sila [92]. Po drugi strani pa Casimirjeva sila omejuje delovanje
nanonaprav, saj se premicni deli zaradi moc¢nega privlaka pogosto zlepijo skupaj
[102-104]. Pri¢akujemo lahko, da bo z razvojem nanotehnologije poznavanje karak-
teristik Casimirjevega pojava pridobivalo na pomenu in vplivalo na nadaljni razvoj
tega podrocja fizike.

Casimirjeva sila v tekoc¢ih kristalih

Tekocekristalne faze so vmesne faze med kristalnim in teko¢im stanjem [111]. Sre-
¢amo jih v nekaterih snoveh, zgrajenih iz anizotropnih molekul palic¢aste ali diskaste
oblike. Poznamo vrsto razli¢nih tekocekristalnih faz, ki jih zaznamujeta orientacijska
in véasih tudi delna pozicijska urejenost molekul. Pomemben vpliv na fizikalne last-
nosti tekocih kristalov imajo termic¢ne fluktuacije ureditve, ki so tudi izvor Casimir-
jeve interakcije v ograjenih tekocekristalnih sistemih. Zaradi obilice razli¢nih faz,
faznih prehodov in parametrov urejenosti so tekocekristalni sistemi Se posebej zani-
mivi za Studij Casimirjevega pojava.

Nematski tekodi kristali

Najpreprostejsa tekocekristalna faza je nematska. V nematski fazi se molekule
gibljejo prosto kot v tekocini, vendar pri tem ohranjajo orientacijski red. Skusajo
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se urediti ¢imbolj vzporedno ena drugi. Lokalno povpre¢no smer urejenosti molekul
imenujemo direktor in oznac¢ujemo z enotskim vektorjem n. Stopnjo orientacijske
urejenosti meri paremeter S = <% cos? ) — %>, kjer € oznacuje kot med dolgo osjo
molekule ter direktorjem in oklepaji zaznamujejo termodinami¢no povprecje. Ne-
matski tekoc¢i kristali so ve¢inoma enoosno anizotropni. V nekaterih posebnih siste-
mih pa lahko pride tudi do dvoosnosti nematske ureditve, ki jo opiSeta smer dvo-
osnega direktorja n, in stopnja dvoosnega reda P.

V ravnovesju se skusajo molekule v nematskem tekocem kristalu po celotnem
vzorcu orientirati v isti smeri. Deformacije direktorskega polja opisemo s Frankovo
prosto energijo

F:%/[Kl(v.n)2+K2(n.vxn)2+K3(n><vxn)2}dv, (3)

kjer so K1,K5 in K3 pahljacna, zvojna ter upogibna elasti¢na konstanta. Za popol-
nejsi opis nematske faze, ki vkljucuje tudi stopnjo orientacijskega reda in dvoos-
nost ureditve, je potrebno vpeljati tenzorski parameter reda Q, ki je brezsleden in
simetricen. Definiramo ga na osnovi primerne makroskopske koli¢ine, ki je enaka
0 v izotropni fazi in je nenicelna v nematski fazi. Ponavadi za ta namen upora-
bimo tenzor magnetne susceptibilnosti x in definiramo tenzorski parameter reda kot
Q=C(x — %I Tryx), pri ¢emer je C' normalizacijska konstanta ter | enotski tenzor.
Gostoto proste energije nematskega sistema v blizini faznega prehoda v izotropno
fazo lahko sedaj opiSemo z Landauovim razvojem

kjer so A, B, C ter L materialne konstante in 7™ temperatura maksimalne mozne
podhladitve izotropne faze.

Prvo studijo Casimirjevega pojava v nematskih tekocih kristalih so objavili Aj-
dari in sodelavci leta 1991 [114, 115]. Izrac¢unali so Casimirjevo silo v homeotropni
nematski celici, ki je sestavljena iz dveh vzporednih plos¢, obdanih s tekocekristalnim
materialom. Plosci vsiljujeta homeotropno orientacijo direktorja, s ¢imer vplivata
na spekter termic¢nih fluktuacij in s tem na pojav Casimirjeve sile med plo$¢ama,

 kgTS Ky K,
Fou = =g r3) (Kl + KQ) ‘ (5)

Nematska sila je analogna elektromagnetni Casimirjevi sili [enacba (2)], kar je odraz
univerzalnosti Casimirjeve interakcije. Le-ta ni odvisna od podrobnosti sistema,
temvec le od tipa fluktuacijskih na¢inov in robnih pogojev. Ajdarijevo delo so nad-
gradili Ziherl in sodelavci [116], ki so izrac¢unali prispevke h Casimirjevi sili zaradi
termic¢nih fluktuacij stopnje nematskega reda in dvoosnosti ureditve. Ti znasajo

kTS 1 = exp(—2hk/n;) (1 h  h?,
=—— 4 —k+ <k
fCas Ar h3 ; L3 2 + n; + 7712 ) (6)
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pri ¢emer so 7); korelacijske dolzine ustreznega fluktuacijskega nacina. Za razliko
od direktorske Casimirjeve sile [enac¢ba (5)| so ti prispevki kratkega dosega in pri
velikih razdaljah upadajo kot exp(—2h/n;)/h. Doseg Casimirjeve sile je v sploSnem
odvisen od korelacij v sistemu. Tako je v sistemu s fluktuacijskimi korelacijami
kratkega dosega Casimirjeva sila prav tako kratkega dosega. Fluktuacijski nacini
s korelacijami dolgega dosega, kot so direktorske fluktuacije v nematikih, pa dajo
Casimirjevo interakcijo dolgega dosega. Zgornja osnovna rezultata [enacbi (5 in 6)]
sta bila posplogena tudi za konéno jakost povrSinskega sidranja [116, 117]. Izkaze
se, da koncna jakost sidranja v splosnem zmanjsa velikost Casimirjeve sile in lahko
vpliva tudi na njen predznak. V primeru simetri¢nih robnih pogojev, kjer je sidranje
na obeh ploscah ali moc¢no ali Sibko, je sila privlacna. V primeru antisimetri¢nih
robnih pogojev, kjer je sidranje na eni povrsini moc¢no, na drugi pa Sibko, postane
sila odbojna.

Nadaljnje studije so obravnavale razne vidike Casimirjeve sile v nematskih tekocih
kristalih. Li in Kardar sta ocenila popravke k sili zaradi hrapavosti plos¢ [118, 119].
Ziherl je obravnaval silo v prednematskem sistemu z nehomogeno ravnovesno uredi-
tvijo [120]. Precej pozornosti je bilo posveéene tako imenovanim frustriranim siste-
mom, kot sta hibridna in Fréederickszova celica [121]. V teh sistemih se ravnovesna
nematska struktura ne more prilagoditi vsem zunanjim vplivom — robnim pogojem
ali zunanjim poljem. Zaradi te frustracije so fluktuacije ureditve Se posebej izrazite,
kar se odraza v specificnem obnaSanju Casimirjeve sile. Do podobnega pojava pride
tudi v kiralnih nematskih sistemih, kjer frustracija izvira iz dejstva, da se perioda
kiralne vija¢nice ne ujema z razdaljo med ograjujo¢ima povrSinama. Omenimo Se
studije Casimirjeve sile v nematskih polimerih [125], med sferi¢nimi necistocami [124]
in napoved obstoja Casimirjevega navora med ploS¢ama z anizotropnimi energijami
sidranja [127].

Smekti¢ni tekodi kristali

Smektic¢ne tekoce kristale odlikuje poleg nematske orientacijske urejenosti tudi eno-
razsezni pozicijski red. V izbrani smeri se gostota molekul periodi¢no spreminja.
Ta pozicijska urejenost ni zelo izrazita, saj so variacije gostote majhne. Lahko si
predstavljamo, da so molekule v smektiku razporejene v vzporednih plasteh. Vsaka
od teh plasti predstavlja dvorazsezno tekocino, znotraj katere se molekule prosto
gibljejo. Gibanje med plastmi pa ni povsem prosto, zato pride do modulacije gos-
tote v smeri pravokotno na plasti. Pozicijski smekti¢ni red opisemo s kompleksnim
parametrom reda W = 1 exp(ip), pri ¢emer ¢ podaja stopnjo pozicijskega reda,
medtem ko faza ¢ opisuje lego smekti¢nih plasti. Pozicijski red dolgega dosega v
smektikih je nepravi, saj zaradi Landau-Peierlsove nestabilnosti urejenost dolgega
dosega v eni razseznosti ni mogoca.

Prvo $tudijo Casimirjevega pojava v smekti¢nih tekocih kristalih je objavil Mihe-



jev leta 1989 [128]. Obravnaval je silo, ki jo povzrocijo fluktuacije smekti¢nih plasti
v ograjenem sistemu. Prosto energijo deformacij plasti lahko zapisemo kot

F =3 / [B(Vju)* + K(Viu)*]dV, (7)
kjer u(r) predstavlja odmik plasti od ravnovesne lege. Prvi ¢len v prosti energiji
opisuje stiskanje, drugi pa upogib smekti¢nih plasti. V homeotropni smekti¢ni celici
so plasti v ravnovesju urejene vzporedno z ograjujo¢ima ploscama. Fluktuacije
robnih plasti zaradi prisotnosti trdnih sten niso mogoce, kar vodi do Casimirjeve

 kpTS [B
fCas — _WCR(z) ? . (8)

V primeru smekti¢nih filmov je ravnovesna struktura enaka kot v homeotropni celici,

sile med plos¢ama,

le da so tu dovoljene tudi fluktuacije povrsinskih plasti. Amplituda povrsinskih fluk-
tuacij je odvisna od povrSinske napetosti med smektikom in ograjujo¢im medijem.

Casimirjeva sila je v tem primeru enaka
f‘c _ kBTS BLI (71_ VKB)(/Y2_ VKB)
as — T 1.4 719 s 2
167h? V K (1 + VKB)(y2+ VKB)

kjer je Lip dilogaritemska funkcija, definirana kot Lis(z) = Y07, 2"n~2. Povrsin-

: (9)

ski napetosti v; in 79 na zgornji in spodnji povr§ini filma sta v splosnem lahko
razli¢ni. Casimirjeva sila je v primeru kon¢ne povrsinske napetosti vedno Sibkejsa
kot v primeru ograditve s trdimi plos¢ami. Ce sta povrsinski napetosti vy in vy, zelo
razli¢ni, tako da imamo opravka z antisimetri¢nimi robnimi pogoji, Casimirjeva sila
zamenja predznak in postane odbojna.

Posebej moramo omeniti Se $tudije Casimirjevega pojava izvedene v okviru di-
skretnega opisa smekti¢ne faze [130-133]. Rezultati, dobljeni z diskretnim modelom
so zelo podobni rezultatom kontinuumskega modela, razen za nekatere zelo specifi¢ne
vrednosti povrsinskih napetosti. Nadalje so te Studije obravnavale vpliv magnetnega
polja na Casimirjevo silo ter obnasanje sile v blizini faznega prehoda iz smekti¢ne
v nematsko fazo. Napovedale so veliko povecanje amplitude sile v blizini faznega
prehoda, kar bi pomenilo, da je Casimirjeva sila dominantna interakcija dolgega
dosega v tem podrocju.

Namen disertacije

Vecina dosedanjih $tudij v smekti¢nih tekoc¢ih kristalih je obravnavala Casimirjevo
silo, ki jo povzroc¢ajo fluktuacije smekti¢nih plasti v ograjenih sistemih [114, 115, 128,
130-133]. V tej tezi obravnavamo Casimirjevo silo v smekti¢nih sistemih upostevajo¢
oba vidika ureditve — porzicijskega in orientacijskega. S tem podajamo kompletno
sliko Casimirjevega pojava v smektikih. Glavni poudarek disertacije je na Studiju



vi

interakcije v smekti¢ni A fazi. Nadalje obravnavamo obnasanje Casimirjeve sile v
blizini faznega prehoda iz smekti¢ne A faze v smekti¢no C fazo. Posebna pozornost
je posvecena sistemom z nehomogeno ravnovesno ureditvijo. Kot prvi tak primer
obravnavamo smekti¢no A celico, kjer se nehomogenost pozicijskega reda odraza
v krajevni odvisnosti elasti¢nih konstant. Kot drugi primer obravnavamo vpliv
povrsinsko induciranega predsmekti¢nega reda na direktorsko Casimirjevo silo v
nematski fazi. V disertaciji se omejimo na izra¢un sile v planarni geometriji. To
ustreza geometriji prostostojecih filmov, dobljene rezultate pa je mozno razsiriti
na nekatere ukrivljene geometrije s pomocjo Derjaginove aproksimacije. Nekateri
rezultati, predstavljeni v tej disertaciji, so bili objavljeni v dveh ¢lankih v reviji
Physical Review E [154, 155].

Casimirjeva sila v smekticni A fazi

Homeotropna smekti¢na A celica

Homeotropna celica sestoji iz dveh vzporednih plos¢, ki obdajata smekti¢ni ma-
terial (slika 1). Smekti¢ne plasti se uredijo vzporedno s plos¢ama, medtem ko je

| Von |
I o,

Slika 1 Homeotropna smekti¢na A celica. Prikazane so fluktuacije stopnje

smekti¢nega reda dy, fluktuacije plasti w in direktorske fluktuacije dn.

direktor orientiran pravokotno na plos¢i. Ravnovesno strukturo lahko tedaj za-
piseno kot: n,,; = n, = (0,0,1), wys(r) = 0. Hkrati predpostavimo, da je stop-
nja smekticnega reda v celici konstantna in enaka ravnovesni vrednosti v neome-
jenem vzorcu: 1,5 = 1. Casimirjevo silo povzrocajo termicne fluktuacije okrog
ravnovesja. Hamiltonka fluktuacij se v harmoni¢nem priblizku glasi

H[0Y,u,on] = H[0Y] + H[u, dn] ,

H(oy] = / dv [—a&ﬁ + %CII(VII‘W)Q + %Cl(VﬁW :
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1
Hlu,on] = 5 /dV{B (Viu)® + Kp (V2u) + D (Viu+ én)’ +

on on, \ > on on, \ > on, \ 2 on, \
K Ty =Y K S— K ad -4
e (G ) (G5 e | (52) < (3) ]}

ox oy
kjer smo z d1)(r) = 1) — 1)y oznadili fluktacije stopnje smekti¢nega reda, z u(r) fluk-

(10)

tuacije smekti¢nih plasti in z dn(r) = (n,,n,) direktorske fluktuacije. Kot vidimo,
so fluktuacije smekti¢nega reda ¢ neodvisne od med seboj sklopljenih fluktuacij
plasti in direktorja. Za izracun Casimirjeve sile moramo dolociti e robne pogoje.
Predpostavimo, da sta tako lega smekti¢nih plasti kot stopnja smekti¢nega reda na
plos¢ah fiksni: u(z = 0) = u(z = h) =0, 0¢(z = 0) = dp(z = h) = 0. Direktorsko
sidranje opiSemo z Rapini-Papoularjevim modelom

1
Hg[n] = 5W/ on|*dsS, (11)
kjer parameter W podaja jakost povrSinskega sidranja.

Fluktuacije stopnje smekti¢nega reda v

Pri¢nimo z izra¢unom sile, ki jo povzrocajo fluktuacije stopnje smekti¢nega reda d1).
Ker je homeotropna celica v pre¢nih dimenzijah zelo razsezna, si pomagamo z dvo-

razsezno Fourierovo transformacijo fluktuirajocega polja, 09 (r) = > ¥,(2) exp(igp).
Hamiltonka se sedaj glasi

H[0y] = ZH 0] = —(JHSZ/ dz ] (12)

kjer smo vpeljali korelacijsko dolzino fluktuacij ! = v/ —2a/C). Ker so fluktuaci-
jski nacini z razli¢nimi valovnimi vektorji q med seboj neodvisni, lahko izracunamo

Cl 2 awq

¢*) [va)? + ‘E

particijsko funkcijo za vsak nacin posebej
Yq(2=h)=0
Zapil = [ exp (<BHofou]) Duils). (13
Pq(2=0)=0

Particijska funkcija Zq4[d7)] je analogna kvantnemu propagatorju harmoni¢nega os-
cilatorja [168] in jo lahko direktno izra¢unamo

~1/2
o (e oo
Zg[09)] [smh( §24 — C” h)] . (14)

Prosta energija fluktuacij je sedaj enaka

Fpiue[d)] = —kBTZInZ (6] = sz;S /m [sinh (, [e-2 + %q? h)] qdq .

(15)
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[z celotne proste energije je potrebno izlusciti koncen interakcijski prispevek. Z
uporabo relacije sinh(x) = exp(x)x1/2x[1—exp(—2z)] faktoriziramo prosto energijo

kTS Cy [~

Ffluc[(sw] - 47T CJ_ -1

In (exp(ph) X % X [1— exp(—2ph)]) pdp, (16)

pri ¢emer smo vpeljali p? = €2+ %qQ. Prvi ¢len v prosti energiji je sorazmeren pro-

stornini vzorca Sh in predstavlja referen¢no prosto energijo neomejenega sredstva.
Drugi ¢len ni odvisen od razdalje med plos¢ama A in zato ne prispeva k interakciji.
Zadnji clen, ki gre v limiti h — oo proti 0, je iskani interakcijski prispevek

kBTSﬂ/OO

Filucloy] = In (1 —exp (—2ph)) p dp . (17)

47 CJ_

&'71

Casimirjevo silo sedaj dobimo s preprostim odvajanjem po h in ovrednotenjem in-
tegrala

kTS Cp 1 <~ exp(—2hk 1 h, A2
fCas[(sw] - _Z—WC_JH_ﬁ Z w (5 + Ek + §k2) . (18)
k=1

Casimirjeva sila zaradi fluktuacij stopnje smekti¢nega reda je kratkega dosega in
v limiti velikih debelin (h > &) upada kot exp(—2h/&)/h. Pri majhnih debelinah
(h < &) pa se sila spreminja kot 1/h3.

Tukaj izpeljan izracun sile predstavlja vzorec po katerem racunamo Casimirjevo
silo v vecini primerov v tej disertaciji. Zato bomo podrobnosti izracunov navajali
le, kjer bo nujno potrebno.

Fluktuacije direktorja in smekti¢nih plasti

Hamiltonka fluktuacij se po Fourierovi transformaciji glasi

1 h ou
q

+ D (|nigl* + Inagl®) + igD (ugniy — ujnig) + Kiq* Inig)* (19

i

Pri tem smo izvedli transformacijo direktorskih fluktuacij dng = (n4q, nyq) v (n1q, N2q);

2
+ Dq2 |“q|2 + KLq4 |“q|2

2
8n1q

0z

8n2q

0z

+ Kag® [nag)”* + K (

kjer komponenta n;4 predstavlja direktorske fluktuacije vzporedne s q = (¢,, q,), in
komponenta nyq fluktuacije pravokotne na q. PovrSinska energija direktorskih fluk-
tuacij je enaka

1
Hsln) = 3KSL Y (gl + ool + s + [nd*) - (20)
q
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Vpeljali smo ekstrapolacijsko dolzino sidranja L = K3/W ter ny,, = n12q(2 = 0)

in nfaq = n12q(2 = h). Kot vidimo iz hamiltonk, so le fluktuacijski nac¢ini n,q sklo-

pljeni s fluktuacijami plasti uq, medtem ko nacini nyq predstavljajo ciste direktorske

fluktuacije. Particijska funkcija sklopljenih fluktuacij Zq[niq, uq je analogna kvant-

nemu propagatorju dveh sklopljenih harmonic¢nih oscilatorjev, particijska funkcija

¢istih direktorskih fluktuacij Zy[noq| pa propagatorju navadnega harmoni¢nega os-
cilatorja [168, 169]. Obe particijski funkciji lahko izra¢unamo analiti¢no in po prej

opisanem postopku regularizacije proste energije dobimo Casimirjevo silo

Feoas|u, on] = Flng; L] + Fi[ny, u] + Fo[ny, u] + Fa[n, u; L],

kjer so
F[n27 L] = — 27T / (Q3+L_1)2 Q h 5
0 m 6Xp(2 3 ) —1

__kgTS [ (yqdg
. kBTS 0 QQq dq

0252 0202

Fslng,u; L] = _kBTS /OO d 1+coslh(01h) ™ 1+cos2h(92h)
3111, Wy 47T 0 qaq QISQAI— +Q202A2— ‘f‘L*l

~ B 0252 Q30?2 7
_kBTS/ qdq 1—cosh(Q1h) + 1—cosh(Q2h)
0 9152141‘_ + QQCQA;— + L1

1 K
Q1o = ——{1 +(p* + X + ?L)\2A2q4
3

LEW

Q3 = /A2
3 +K3Q7

2
[1 + (p2 — A2)¢? — %/\2/\2(]4}

2 ’
[1 + (p2 — A2)¢% — %AQ)\Qq‘l} + 4g2)\2
§P=1-C?,
COSh(QLQh) +1
sinh(QLgh)

+
A1,2 =

(21)

(22)

(23)

(24)

(26)

(27)

(28)

(29)

(30)



in korelacijske dolzine A = (K3/D)Y?, X = (K3/B)Y? in p = (K,/D)"/2.
Casimirjeva sila vsebuje $tiri prispevke. Prispevek direktorskih fluktuacij F|ng; L]
je kratkega dosega in pri velikih debelinah upada kot exp(—2h/A)/h. Clen Fi[nq, u]
predstavlja prispevek fluktuacij, kjer so plasti in direktor v fazi. Ta prispevek je dol-
gega dosega in v limiti velikih razdalj vodi k znani Casimirjevi sili sorazmerni z 1/h?
lenacba (8)]. Clen Fy[ny,u] predstavlja prispevek fluktuacij, kjer direktor ne sledi
plastem. Ta prispevek je kratkega dosega in ima podobne lastnosti kot prispevek
¢istih direktorskih fluktuacij F[ng; L]. Zadnji ¢len, F3[nq, u; L], predstavlja popravek
zaradi kon¢ne jakosti sidranja direktorja in je enak 0 v limiti neskon¢no mocnega
sidranja W — oo. Obnasanje Casimirjeve sile je prikazano na sliki 2. Primerjamo

fCas

lay
’,FCas

10 102 10°
h [nm]
Slika 2 Casimirjeva sila Fogs[u,dn] v homeotropni smekti¢ni A celici v

primerjavi z referen¢no silo Fgé’s za razliéne jakosti direktorskega sidranja:
a) W — 00, b) W=10"3J/m? ¢) W =10"% J/m? d) W = 1075 J/m?.

jo z referen¢no silo ]—"lcafs = —kpTS¢(2)/16mwh*\/K} /B, ki jo dobimo, ¢e uposte-
vamo le fluktuacije smekti¢nih plasti in zanemarimo direktorske prostostne stopnje
s predpostavko, da je direktor stalno orientiran pravokotno na plasti. Casimirjeva
sila Fogs[u, 0n] je obéutno vedja od referencne sile ]:g’fs le v tankih celicah de-
beline najve¢ nekaj korelacijskih dolzin A (pri uporabljenih snovnih parametrih je
A = 10 nm). V tem obmodju k sili znatno prispevata tudi ¢lena kratkega dosega
Flng; L] in Fyny,u]. Pri vedjih debelinah k sili znatno prispeva le ¢len dolgega
dosega Fi[ni,u]. Le-ta je v limiti A/A > 1 totno enak referenéni sili Fio?,. Konéna
jakost sidranja v sploSnem zmanj$a jakost Casimirjeve sile v primerjavi z limitnim
primerom fiksnih robnih pogojev. To je najbolj o¢itno v primeru parametra sidranja
W =107% J/m? (L = 10 nm) na sliki 2, kjer je ekstrapolacijska dolZina L primerljiva
s karakteristi¢nimi dolzinami v sistemu in je sidranje nekje vmes med moc¢nim in
Sibkim. Pri ostalih parametrih, kjer je sidranje bodisi mo¢no bodisi Sibko, se jakost
sile bistveno ne zmanjsa.
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Vpliv razli¢nih parametrov sklopitve med smekti¢nimi plastmi in direktorjem D
je prikazan na sliki 3. Cim Sibkejsa je sklopitev D tem vecdja je Casimirjeva sila.

-,FCas
lay
fCas

10 102 10°

h [nm]
Slika 3 Vpliv razli¢nih jakosti sklopitve med direktorjem in smekti¢nimi plas-
tmi D na Casimirjevo silo: a) D = 10° N/m?, b) D = 10* N/m?, c)
D = 10° N/m2. Predpostavili smo neskontno moé¢no sidranje direktorja
(W — o).

To je po eni strani posledica povec¢ane korelacijske dolzine A in s tem povezanim
ve¢jim prispevkom direktorskih ¢lenov kratkega dosega. Poleg tega se pri Sibkejsi
sklopitvi poveca tudi velikost ¢lena dolgega dosega Fi[ny, u]. Tako povecanje jakosti
Casimirjeve sile lahko pri¢akujemo v blizini faznega prehoda iz smekti¢ne A faze
v smekti¢no C fazo, kjer se sklopitvena konstanta v okviru Landauovega modela
spreminja kot D o (T — T.). Bolj podrobno si obnaganje sile v okolici tega faznega
prehoda ogledamo v posebnem poglavju.

Prostostojec¢i smekti¢ni A film

Prostostojeci filmi so poseben primer ograjenega sistema, kjer smektika ne omejujeta
trdni plos¢i, ampak prosti povrsini, ki sta v stiku z zrakom (slika 4). Pripravijo jih
tako, da smektik razvlecejo preko luknjice v stekleni ali kovinski plos¢ici. Smekti¢ne
plasti se uredijo vzporedno s prosto povrsino. Debeline filmov lahko znasajo od
le nekaj (najmanj dveh) do ve¢ tiso¢ plasti. Prostostojeci filmi so zelo primerni
za Studij lastnosti tekocih kristalov, saj je razmeroma enostavno dose¢i homogeno
strukturo brez defektov.

Ravnovesna struktura prostostojecega filma je enaka strukturi v homeotropni
celici. Razlika se pojavi pri robnih pogojih, saj so v filmu dovoljene tudi fluktuacije
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Slika 4 Prostostojeci smekti¢ni A film. V prostostojeem filmu je smektic¢ni
material razvleCen preko luknjice v kovinski ali stekleni plos¢i. Smekti¢ne
plasti se uredijo vzporedno s prosto povr§ino. Direktor je v smekticnem A
filmu orientiran pravokotno na plasti.

robnih plasti. Povrsinska hamiltonka se sedaj glasi
1 2 1 2
Hg[n,u| = §W |on|"dS + 37 (Viu)"dsS . (31)
Direktorsko sidranje smo znova opisali z Rapini-Papoularjevim modelom. Drugi ¢len

opisuje povecanje povrsinske energije zaradi zvecanje sti¢ne povrsine med smektikom
in zrakom, ki ga podaja povrSinska napetost . S Fourierovo transformacijo dobimo

1
Hs o] = SIGSL™ Y (Jnig|” 4 [nfy*+ i + || ) +
q
1
3RS Do (Jal” + [ )
q

Vpeljali smo ekstrapolacijsko dolzino x = K3/ ter ug = uq(z = 0) in uf = uq(z = h).

(32)

Ker je snovna hamiltonka H [u, dn] enaka kot v homeotropni celici, lahko na podoben
nacin izracunamo Casimirjevo silo tudi v prostostojecem filmu. Ta se sedaj glasi

Feas(u, 0] = Flng; L] + Fi[ng, u] + Falng, u] + Fsng,u; L, x| (33)

Prvi trije ¢leni so enaki kot pri homeotropni celici. Spremeni se le zadnji ¢len
Fslny,u; L, x], ki opisuje vpliv direktorskega sidranja in sidranja plasti

kpTS o [ Lf AT LAf
Loy = — 2,0 2 2 ;
Fa[n, u; L, X] An Z/Oq dq{ 18224 (1 + cosh(21h) * 1+ COSh(QQh)>

i=1,2
0252 02C? Q2C?
~1,2 1 2 7-1\-2 1
x4 <1 + cosh(h) 1T COSh(QQh)) * <1 + cosh(€4h)
Q352

i m)] * [ﬂlﬂwAfAi + X7 (USPAT + 20247

—1
+ L‘1> LA (QlCQAT + QQSQA;Fﬂ .
(34)
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Ta ¢len je vsota dveh prispevkov (i = 1,2), ki se razlikujeta le po zamenjavi pred-
znakov (%) v nekaterih faktorjih. Ker sedaj robni pogoji vsebujejo tudi sidranje
plasti, je popravek zaradi kon¢ne jakosti povrsinske interakcije Fs[ny, u; L, x| dolgega
dosega.

Vpliv konéne povrsinske napetosti na Casimirjevo silo v prostostojecih filmih je
predstavljen na sliki 5. Prikazana je primerjava med silo v prostostojecem filmu

fC’as 1F
fC’as(’y — OO)

Slika 5 Casimirjeva sila Fgqs[u, dn] v prostostojecem smekti¢nem filmu v
primerjavi s silo v homeotropni celici [Feqs(y — o0)|. Uporabili smo sledece
parametre: jakost direktorskega sidranja W = 107° J/m?, sklopitveno kon-
stanto med direktorjem in plastmi D = 10° N/m? ter razli¢ne povrginske
napetosti [a) v = 1072 J/m?2 b) v = 5 x 1072 J/m?, ¢) v = 107! J/m?].
Prekinjene ¢rte predstavljajo flc‘fgs('y).

in homeotropni celici. Izbrali smo si specificen parameter direktorskega sidranja
W = 107" J/m?, vendar to ne vpliva bistveno na dobljene rezultate, ki bi bili podobni
tudi pri izbiri kake druge vrednosti W. Kot je vidno s slike 5 se v primeru konc¢ne
povrsinske napetosti v velikost Casimirjeve sile zmanjsa. To je napovedal ze Mihejev
v okviru modela, ki uposteva le fluktuacije smekti¢nih plasti [128]. Sila zaradi fluk-
tuacij plasti znasa Fe (1) = —888, [ Lia [(v = VELB)/ (v + VELB)] in jo
na sliki predstavljena s prekinjenimi ¢rtami. V limiti velikih debelin, kjer direktorski

prispevki kratkega dosega nimajo vpliva, se nas rezultat ujema z fg’fs(ﬂy). Pri majh-
nih debelinah so pomembni tudi prispevki kratkega dosega. Le-ti so v homeotropni
celici in prostostojec¢em filmu podobni, zato se razlika med primerjanima silama pri
majhnih debelinah zmanjsa.
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Casimirjeva sila v rahlo raztegnjeni ali stisnjeni celici

V prejsnjih razdelkih smo obravnavali Casimirjevo silo v sistemih, katerih debelina
je to¢no ustrezala mnogokratniku debeline smekti¢ne plasti dy. Sedaj nas zanima,
kaj se zgodi s Casimirjevo silo, ¢e smekti¢no celico nekoliko raztegnemo ali sti-
snemo (slika 6). Zaradi preprostosti obravnavamo le deformacije smekti¢nih plasti

I - =/ + A
z =5 I

d, |

z =0 I I - - 0
Slika 6 Homeotropna celica, katere debelina je enaka mnogokratniku
ravnovesne debeline smekti¢nih plasti dg (levo). Na desni je nekoliko raztegn-
jena celica. V tem primeru so smekti¢ne plasti e vedno ekvidistantne, vendar
s povetano periodo d’.

in zanemarimo druge vidike smekti¢ne ureditve. Prosta energija deformacij plasti je
enaka
ou

1 2
Fmﬁi/ B(aT) + K (Vi)

Z minimizacijo proste energije enostavno dobimo ravnovesni profil u,,s(z) = zAh/h.

v . (35)

Pripadajoca prosta energija ravnovesne konfiguracije

1 Ah?
mf _
F}ay - 53577 (36)
je odvisna od razdalje med plos¢ama in vodi do sile povprec¢nega polja
OF ) Ah
=y — _BS— . 37
Fg A(Ah) h (37)

Hamiltonko fluktuacij dobimo z razvojem proste energije okrog ravnovesne kon-
figuracije u(r) = upf(2) + du(r),

H{su] — %/ ppAholy) o (3““))2 T Ky (V2 5u)

h 0z 0z
S Fourierovo transformacijo du(r) = > duq(2) exp(igp) hamiltonko prepisemo v
1 h 0(0uq)

AR 9(Sug)
FapBhO) )

av. (38

2
+ K¢t |(5uq|2 +

(39)
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Prisotnost trdih plos¢ ne dovoljuje fluktuacij plasti na robu celice, torej je duq(z =
0) = duq(z = h) = 0. Zadnji ¢len v hamiltonki lahko z integracijo pretvorimo v
povrsinski ¢len, ki je zaradi zgoraj opisanih robnih pogojev enak 0. Sedaj ni tezko

_1
e ’
sin < 74 )] (40)
in pripadajoce Casimirjeve sile

kTS | B
lay _ "B
fCas - 167h2 CR(2) K : (41)

Kot vidimo, je sila v rahlo stisnjeni oziroma raztegnjeni smekti¢ni celici povsem

izracunati particijske funkcije

Lq X

enaka kot v nedeformiranem sistemu. Netrivialna ravnovesna struktura tu ni vplivala
na Casimirjevo silo.

O vplivu netrivialne ravnovesne strukture na Casimirjevo silo lahko razmislja-
mo tudi bolj na splosno. Recimo, da lahko neki enorazsezen sistem opiSemo s
parametrom reda 7 in kvadrati¢nim razvojem proste energije po tem parametru:

F = / [a(2)7? + 2b(2)nm + c(2)n* + 2d(2)n + 2e(2)n] dz . (42)
Ravnovesni profil parametra urejenosti podaja Euler-Lagrangeva enacba
g + @y + (b= ) img +d —e =0 (43)

z robnima pogojema 0, (') = 1’ in N, (") = 1". Ce sedaj vpeljemo fluktuacije
okrog ravnovesnege profila 7(z) = 7,,7(2) +0n(z), dobimo z razvojem proste energije
hamiltonko fluktuacij

H = /Z,Z” [a(z)&f + 2b(2)0non + 0(2)5772] dz (44)

s pripadajo¢ima robnima pogojema dn(z') = dn(z”) = 0. Kot vidimo ima hamil-
tonka enako obliko kot prosta energija, le da ne vsebuje vec¢ linearnih ¢lenov. Poleg
tega v hamiltonki ni odvisnosti od ravnovesne konfiguracije 7,,;. Zaradi tega tudi
Casimirjeva sila ni odvisna od ravnovesne konfiguracije. Potrebno je poudariti, da ti
zakljucki veljajo le za sisteme, katere lahko opiSemo s kvadrati¢nim razvojem proste
energije in s fiksnimi robnimi pogoji, ki ne dovoljujejo fluktuacij. Rahlo deformirana
smektic¢na celica je le poseben primer, ki demonstrira navedena opazanja.

Casimirjeva sila v blizini prehoda iz smektic¢ne A faze
v smekti¢no C fazo

Fazni prehod iz smekti¢ne A faze v smekti¢no C fazo lahko opiSemo z dvorazseznim
parametrom reda € = (&,, &, ), ki podaja nagib molekul glede na normalo smekti¢nih
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plasti. ObnaSanje sistemov v blizini tega prehoda modeliramo s fenomenoloskim
Landauovim razvojem proste energije

1. 1 ~( 0 06,
F=fak a0 €4 €)+ @+ - K (e52 - 657
1 e, 06\ 1 &, 06,\° 1~ |[[06.\* [0\
+§K1(3x+(9—y) —l—iKz(ay—%) +§K3[(32) —i—(a) :

(45)

Ta model vsebuje tudi opis kiralnih smektikov, torej prehoda iz kiralne smekti¢ne
A* faze v kiralno smekti¢no C* fazo. Temperaturna odvisnost je vsebovana v koefi-
cientu a(T'), ki vodi fazni prehod, medtem ko ostali koeficienti v razvoju niso odvisni

od temperature. LifSicev ¢len, A ( %y _ ¢ %a

T 0z Y 0z
smekti¢ne C* faze. Trije elasticni ¢leni opisujejo deformacijsko energijo direktorskega

), opisuje vija¢no strukturo kiralne

polja in so analogni Frankovi elasti¢ni energiji v nematikih. V smekti¢ni A fazi, kjer
so molekule orientirane pravokotno na plasti, je ravnovesna vrednost parametra ure-
jenosti &, enaka 0. V smekti¢ni C fazi, kjer je prisoten nagib molekul od normale,
pa se velikost parametra reda spreminja kot €| oc (T, — T)'/2.

Z razvojem parametra reda v ravnovesni in fluktuacijski del, & = £,+d&, dobimo

hamiltonko fluktuacij

. 1K3{ 172 (562 + 6¢}) }+1K3 [(@)+ (a(mﬂ

2 p 2oL} 2 0z 0z (46)
Lo [(0(86) | 9(5€0) )" (9(66)  0(56)\
+§K [( or y ) * ( dy Oz ) ] '

V prvem ¢lenu zgornja vrstica ustreza smekti¢ni A fazi, spodnja pa smekti¢ni C fazi.
Vpeljali smo korelacijski dolzini fluktuacij: n72 = (T — T.) in p~2 = 2a(T, — T).
Spotoma smo izvedli transformacijo parametra reda v rotirajo¢ sistem, (&;,§,) —
(&,€1), ki sledi vija¢ni strukturi kiralne C faze. V smekti¢ni A fazi sta prisotna
dva degenerirana masivna fluktuacijska nacina, ki predstavljata nagib molekul od
normale. V smekti¢ni C fazi pa sta prisotna dva tipa fluktuacij. Masivne amplitudne
fluktuacije 6, vplivajo na velikost kota nagiba molekul, medtem ko brezmasne fazne
fluktuacije 0&, le spremenijo smer nagiba v prostoru.

Homeotropna celica

V homeotropni celici ograjujoc¢i plosci vsiljujeta orientacijo direktorja pravokotno
na njuno povrsino. To opiSemo z Rapini-Papoularjevim modelom

%@:%ﬂ/mﬂmm&+§%/mﬂmm&. (47)
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Tukaj dopustimo moznost razlicnih jakosti direktorskega sidranja na eni in drugi
povrsini. Zaradi vsiljenih homeotropnih robnih pogojev je mozno v celici smek-
ti¢no A strukturo podhladiti pod temperaturo faznega prehoda v smekti¢no C fazo.
Tak sistem je frustriran, saj smektik ne more hkrati zadovoljiti robnih pogojev in
tendence po nagibu molekul v smekti¢ni C fazi. Zaradi frustracije so fluktuacije di-
rektorja izrazitejSe, zato moramo lo¢eno obravnavati primer normalne homeotropne
celice (T' > T¢) in podhlajene celice (T' < T¢), Ceprav je ravnovesna struktura v
obeh enaka. Maksimalna mozna temperatura podhladitve 7)., kjer pride v celici
do prehoda v deformirano smekti¢no C strukturo, je odvisna od debeline celice in
jakosti sidranja. Izra¢unamo jo lahko z minimizacijo celotne proste energije, kar

he = V/2parccot (LlLQ — (ﬁp)2> : (48)

vodi do relacije

V2p(Ly + Ly)

Temperaturna odvisnost je tu skrita v korelacijski dolzini p = [2a(T. — Tynaz )]~ /?,
medtem ko h. oznacuje kriti¢no debelino, pri kateri pride do prehoda. Ekstrapo-
lacijski dolzini sidranja sta definirani kot \; = K3/W;. V limiti neskonéno mo¢nega
sidranja se relacija poenostavi v h, = v/2mp.

Casimirjeva sila nad T

Casimirjeva sila zaradi direktorskih fluktuacij v homeotropni celici je enaka

]{JBTS Kg o p2 dp

r K (p+LiH(p+Ly ) 1
T g P Ph) 1

fCas = - (49)

Predstavlja prispevek dveh degeneriranih masivnih fluktuacijskih nacinov s konc¢no
korelacijsko dolzino n. Ta sila je ekvivalentna prispevku ¢istih direktorskih fluktuacij
v sklopljenem sistemu plasti in direktorja, ki smo ga Ze obravnavali. Tu se bomo
osredotodili le na vpliv razli¢nih robnih pogojev na Casimirjevo silo.

Profil Casimirjeve sile za razli¢ne vrednosti parametrov povrSinskega sidranja je
prikazan na sliki 7. Predstavljen je redukcijski koli¢nik R, ki je definiran kot razmerje
med silo pri konc¢nih jakostih sidranja in silo v limitnem primeru neskon¢no mocnega

sidranja
fCaS(Lla L27 h? 77)

B fCas(Ll = L2 - O; h)”) '
Sila Feoas(Ly = Ly = 0; h,n) je pri tem enaka

R

(50)

kgTS Ky 1 — —2hk 1 A R
Feas(Ly = Ly = 0 h,n) = ——2-2 28 M( )

2
o KW 2 R PRl
(51)
Profile na sliki 7 lahko razlozimo takole. Casimirjeva sila je v primeru simetri¢nih
robnih pogojev, torej moc¢nega ali Sibkega sidranja na obeh plosc¢ah, privla¢na. V
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1
a
C
0.5}
R 0
b
-0.5
d
_1 L L L
1072 107t 1 10 102

h/n

Slika 7 Casimirjeva sila v homeotropni celici pri temperaturi nad 7.
Prikazana je odvisnost redukcijskega koli¢nika R od reducirane debeline celice
h/n. Uporabljeni so slede¢i parametri sidranja: a) Li/n = 0.5, La/n = 0.5;
b) Li/n = 1, Ly/n = 0.05; ¢) Li/n = 0.1, Ly/n = 0.01; d) L1/n = 10,
Ly /m = 0.05.

primeru antisimetri¢nih robnih pogojev, ko je sidranje na eni plos¢i moc¢no, na drugi
pa Sibko, Casimirjeva sila spremeni predznak in postane odbojna. Efektivno jakost
sidranja dolocajo razmerja med ekstrapolacijskima dolzinama, L, in L, ter karakter-
isti¢nimi dolzinami v sistemu, v naSem primeru sta to debelina celice h in korelacijska
dolzina 7. V tankih celicah (h/n < 1) efektivno jakost sidranja dolocata razmerji
Li/h in Ly/h. V primeru, da je L;/h < 1, je sidranje na izbrani plos¢i efektivno
mo¢no, medtem ko je v primeru L;/h > 1 sidranje efektivno Sibko. V debelejsih
celicah (h/n > 1) efektivno jakost sidranja dolo¢ata razmerji L1 /n in Lo /7, uposte-
vaje enak princip kot v prvem rezimu. Navedene kriterije za dolocitev efektivne
jakosti sidranja obrazlozimo z dejstvom, da je sidranje efektivno mocno, ¢e je inter-
akcija med tekoc¢im kristalom in povrsino moc¢nejsa od notranjih interakcij v tekocem
kristalu. Jakost povrSinske interakcije nam podajata ekstrapolacijski dolzini L; in
L,. Notranjo interakcijo pa opisemo z dvema prispevkoma, kot je razvidno iz hamil-
tonke (46): jakost “masivnega” prispevka je karakterizirana s korelacijsko dolzino
n, medtem ko se elasti¢ni prispevek skalira kot A~'. Pri majhnih debelinah h/n
je dominanten elasti¢ni prispevek, zato efektivno jakost sidranja podaja razmerje
L;/h. Pri velikih h/n prevlada “masivni” prispevek, zato efektivno jakost sidranja
merimo s parametroma Li/n in Ly /7.

Uporabimo sedaj zgornjo argumentacijo za razlago slike 7. Vse dolzine na sliki
so skalirane s korelacijsko dolzino n. Parametra L;/h in Ly/h sta odvisna od re-
ducirane debeline h/n. Zato se v rezimu h/n < 1 s spreminjanjem debeline lahko
zamenja predznak sile [slika 7(b)-(d)]. Parametra L;/n in Lo/n sta fiksna, zato v
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rezimu h/n > 1 sila ne spremeni predznaka. Ne smemo pozabiti, da je korelacijska
dolzina 7 odvisna od temperature in da se zato znacaj sile lahko spreminja s temper-
aturo. V limiti velikih debelin (h/n > 1) se redukcijski koli¢nik ustali pri konstantni
vrednosti, kar pomeni, da je krajevna odvisnost sile tam enaka exp(—2h/n)/h. Sa-
turacijsko vrednost R lahko izra¢unamo analiti¢no za primer zelo moc¢nega sidranja
na obeh plos¢ah, kjer znasa R = 1 — 2(Ly/n + Lo/n) [slika 7(c)]. V primeru zelo
Sibkega sidranja na obeh plos¢ah pa je enaka R = 1 — 2(n/Ly + n/Ly). V anti-
simetri¢nem primeru z zelo moc¢nim sidranjem na eni plosci in zelo Sibkim na drugi
se redukcijski koli¢nik nasiti pri R = —1 + 2(n/Ly + Lo/n) [slika 7(d)]. Posebno
obnasanje sile pri velikih razdaljah opazimo pri parametrih sidranja L;/n = 1, kjer
sidranje na ploscah ni niti moc¢no niti Sibko. V tem primeru sila upada hitreje, in
sicer kot exp(—2h/n)/h3.

Casimirjeva sila v frustriranem sistemu (7,,,, <7 <T.)

Casimirjeva sila v frustrirani homeotropni celici je enaka

kTS K[ [~ " dp
Fea=="""% || wnienY exp(2ph) — 1
(p—LyH(p—Ly ) (52)

~1 1 _ _
1 [V (Ly 1L2 t— pQ) cot(ph) — p(L; L+ L, 1) 24
2/, p ap| .

+ = —— = —
(Ly 1L2 t— p?) +p(L; L+ Ly 1) cot(ph)

Bolj ilustrativen izraz dobimo v limiti neskonéno mocnega sidranja (L; = 0, Ly = 0)

kTS Ks | ¢(3 (V20)~
Feas(L1 =0, Ly = 0) = _i—ﬂfg <) + 2/ cot(ph)p®dp| . (53)
0

h3

Prvi ¢len v sili je tipi¢en Casimirjev prispevek dolgega dosega, znacilen za direk-
torske fluktuacije v nematiku. Drugi ¢len je pri majhnih debelinah h/p privlacen
in priblizno enakega velikostnega reda kot prvi ¢len. 7 vecanjem debeline drugi
¢len postane odbojen in koné¢no logaritemsko divergira pri prehodu v deformirano
smekti¢no C strukturo.

Temperaturna odvisnost Casimirjeve sile v homeotropni celici je prikazana na
sliki 8. Pri temperaturah nad T, je sila podana z enacbo (49). Glede na parametre
sidranja je sila v tem obmodju lahko privlac¢na ali odbojna. S podhladitvijo sistema
sila najprej doseze lokalni minimum, nato pa pride do odbojne divergence sile pri pre-
hodu v deformirano smekti¢no C strukturo. Cim mocnejSe je sidranje na ploscah,
tem nizja je temperatura do katere lahko podhladimo smekti¢no A strukturo, in
izrazitejsi je lokalni minimum. Naj omenimo, da je obnasanje frustriranega smek-
ti¢nega sistema analogno obnasanju Casimirjeve sile v frustrirani nematski Fréede-
rickszovi celici [121].

V frustrirani homeotropni celici dobimo poleg Ze opisanih prispevkov h Casimir-
jevi sili 8e dodaten prispevek, ki je posledica dejstva, da je pri temperaturi 7' < T,
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Slika 8 Temperaturni profil Casimirjeve sile v homeotropni celici. Vpeljali smo

reducirano temperaturo t = ah?T/K3. Amplituda sile je podana v naravni
enoti Fo = kpTSK3(r(3)/4nKh3. Uporabljeni so sledeci parametri sidranja:
a) Ll/h = 0, L2/h = 0; b) Ll/h = 0.1, L2/h = 0.01; C) Ll/h = 1, L2/h = 0.05;
d) Li/h =10, Ly/h = 0.05.

referen¢na konfiguracija tekocega kristala izven plos¢ v smekti¢ni C fazi, medtem ko
je med plos¢ama Se vedno struktura smektika A. Ta prispevek je divergenten in ga z
naso metodo nismo uspeli regularizirati. Vendar za prakti¢ne namene to ni kljuc¢no,
saj ta prispevek ni odvisen od razdalje med plos¢ama in ga z eksperimentalnimi
aparaturami (AFM, SFA), ki merijo razliko sil pri razli¢nih debelinah, ne bi zaznali.
Nadalje je v frustrirani homeotropni celici prisotna tudi sila povpre¢nega polja, ki je
posledica razlik prostih energij med smekti¢no A fazo in referencno strukturo izven
plosé¢, ki je v smektic¢ni C fazi. Sila povpre¢nega polja je enaka

1a? 5
Fg = (fo — fa)S = _Z?(TC -T)5, (54)

kjer sta fo in fa gostoti prostih energij smekti¢ne C oziroma smekti¢ne A faze. Sila
povprec¢nega polja je precej moc¢nejsa od Casimirjeve sile, vendar je neodvisna od
razdalje med plos¢ama h, zato ne bi ovirala eksperimentalne detekcije Casimirjeve
sile.

Prostostojeci filmi

V prostostojecih filmih je smekti¢ni material omejen s prostima povrsinama, ki sta v
stiku z zrakom. V nasem preprostem modelu predpostavimo, da zazelena orientacija
direktorja na prostih povrSinah sovpada z ravnovesno orientacijo direktorja v no-
tranjosti filma. Vpeljemo torej neke vrste efektivno notranje sidranje. Ravnovesna
struktura filma je v takem modelu vedno homogena. Zaradi simetri¢nih robnih
pogojev je Casimirjeva sila v prostostojecih filmih vedno privlacna.
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V smekticnem A filmu je sila identi¢na kot v homeotropni celici, le da sta ek-
strapolacijski dolzini L; in L, na obeh povrSinah enaki:

]{?BTS K3 oo p2 dp

—1)2 N
T K Jiy B exp(2ph) — 1

fCas = - (55)

To je tipicna Casimirjeva sila kratkega dosega za masivne fluktuacijske nacine s
korelacijsko dolZino 7.

V smekti¢cnem C filmu so molekule nagnjene glede na normalo plasti. V nasem
modelu povrsinsko sidranje opisemo z

Fsl¢] = %Kg > lLl‘l / sin®(&, — &0) dS; + L7* / sinQ(@)dSi] , (56)

kjer je & ravnovesna vrednost nagiba molekul. V splosnem uvedemo razli¢ni jakosti
sidranja za amplitudne fluktuacije 6§, in fazne fluktuacije 0¢,. Casimirjeva sila je v
takem sistemu enaka

kTS K; °° r2dr o r2dr
fCas - B [ 1)2 ) _ +/0' (T‘+L71)2

2 K|y, % exp(2rh rfol)Z exp(2rh) — 1

(57)
Prvi ¢len predstavlja prispevek masivnih amplitudnih fluktuacij s korelacijsko dolzino
p, ki je kratkega dosega. Drugi ¢len pa je prispevek brezmasnih faznih fluktuacij in
je dolgega dosega.

Temperaturni profil Casimirjeve sile v prostostojetem filmu je predstavljen na
sliki 9. Predpostavili smo, da je sidranje neskon¢no moc¢no: L = 0 v smekti¢nem
A filmu ter L, = 0in L, = 0 v smekti¢cnem C filmu. Casimirjeva sila doseze mak-
simalno amplitudo pri strukturnem prehodu iz smekti¢nega A filma v smekti¢ni C
film (T = T.). Pri zviSevanju ali nizanju temperature se jakost sile zmanjsa. V
smekticnem A filmu sta prisotna dva degenerirana masivna fluktuacijska nacina, ka-
terih amplituda z oddaljevanjem od prehoda hitro upada. V smekti¢nem C filmu pa
je prispevek brezmasnih faznih fluktuacij skoraj neodvisen od temperature, medtem
ko prispevek masivnih amplitudnih fluktuacij naglo upada z nizanjem temperature.
Zato je profil Casimirjeve sile nesimetri¢en. Ob strukturnem prehodu Casimirjeva
sila v prostostojecem filmu ne divergira. To je posledica preprostega modela sidranja,
v katerem se povrsinski red vedno ujema z ureditvijo v notranjosti filma in ne pride
do frustracije. Povecana jakost sile pri prehodu je posledica divergence korelacijskih
dolzin pri temperaturi 7" = T,.. Uporaba bolj realisti¢nih robnih pogojev s konc¢no
jakostjo sidranja ne bi bistveno spremenila temperaturnega profila, ampak bi zgolj
zmanjsala amplitudo sile.
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Slika 9 Temperaturni profil Casimirjeve sile v prostostojecem smekti¢nem
filmu. Vpeljali smo reducirano temperaturo ¢t = ah?T/K3. Amplituda sile je
podana v naravni enoti Fy = kT SK3(r(3)/4mKh3. Predpostavili smo, da je
sidranje neskon¢no moc¢no: L = 0 v smekti¢nem A filmu ter L, =0in L, =0
v smekti¢nem C filmu.

Casimirjeva sila v prostostoje¢em smekti¢nem A filmu s povecanim
povrsinskim redom

V blizini faznega prehoda iz smekti¢ne A faze v smekti¢no C fazo se pogosto zgodi,
da so molekule v robnih plasteh prostostojecega filma nagnjene, medtem ko je no-
tranjost filma Se v smekti¢ni A fazi [164]. Tak sistem modeliramo tako, da v robnem
pogoju za velikost nagiba & predpiSemo neko nenic¢elno vrednost g (slika 10). Ob

N |~ | =~ |\
NS =—|~|N
N |~ | =~ |\
N || =~ |\
N (S[—|~|N
N | S| =~ |\
N (S —|~|N

Slika 10 Prostostojec¢i smekticni A film s povecanim povrSinskim redom.
Molekule v robnih plasteh so nagnjene, medtem ko je v notranjosti filma Se
vedno v smekti¢na A struktura.

predpostavki, da je povrsinski nagib molekul majhen, lahko v okviru kvadrati¢nega
razvoja proste energije dolo¢imo ravnovesni profil nagiba molekul v filmu

cosh(z/n)

f?.nf(z) = fsm . (58)
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Posledica te nehomogene ravnovesne ureditve je prisotnost sile povprecnega polja

Fop = — - _ . 59
d oh 2n2 cosh?(h/2n) (59)
Sila povprec¢nega polja je privlacna in kratkega dosega.
Hamiltonko fluktuacij dobimo z razvojem proste energije okrog ravnovesja
(=€ + 06, €L =861
_ 1 -2 mf 2 2 1 8(651\) ? afw?lf 8(651\)
h= 5 Kan ™ (260706, + 062 + 667 ) + 5K | (520 ) +22 20 "
60
L (DOEDNT L [(208) | 00ED N (D00&) 900\
0z 2 Ox oy oy Ox '

V hamiltonki nastopata dva ¢lena, ki sta odvisna od ravnovesne konfiguracije & ! ,
vendar ju je mozno prevesti v povrsinski prispevek. Ce predpostavimo fiksne robne
pogoje, ki ne dopuscajo fluktuacij na povrSini filma, sta ta ¢lena enaka 0 in ne
prispevata k hamiltonki. V tem primeru je hamiltonka enaka hamiltonki fluktuacij
v homogenem smekti¢nem A filmu. Zato je tudi Casimirjeva sila v filmu s pove¢anim
povrsinskim redom enaka kot v homogenem filmu. To je torej Se en primer sistema
z netrivialno ravnovesno strukturo, ki pa se ne odraza v Casimirjevi sili. Ponovno
poudarimo, da to velja za sisteme, ki jih lahko opiSemo s kvadrati¢nim razvojem
proste energije in s fiksnimi robnimi pogoji.

Nehomogeni sistemi

Sistemi z netrivialno ravnovesno ureditvijo predstavljajo posebno poglavje v teoriji
Casimirjeve interakcije in so bili dosedaj le redko obravnavani [120, 129, 180]. Glavni
problem v teh sistemih je regularizacija divergentne proste energije fluktuacij, ki
je ni vedno mozno izvesti analiti¢no. V predhodnih razdelkih smo ze srecali dva
primera sistemov z netrivialno ravnovesno strukturo — rahlo deformirano smekti¢no
celico in prostostojeci film s povecanim povrSinskim redom. V obeh teh primerih
se je ravnovesna struktura odrazala v dodatnih ¢lenih v hamiltonki fluktuacij, ki pa
jih je bilo mozno ob predpostavki fiksnih robnih pogojev izlo¢iti. Zato netrivialna
ureditev ni vplivala na Casimirjevo silo. V tem razdelku obravnavamo dva primera
sistemov, kjer se nehomogenost ravnovesne ureditve odraza v krajevni odvisnosti
snovnih konstant. V tem primeru je vpliv nehomogenosti na Casimirjevo silo bistven.

Casimirjeva sila v blizini prehoda iz smekti¢ne v nematsko fazo

V dosedaj obravnavanih sistemih smo predpostavljali, da je ravnovesna stopnja
smekti¢nega reda ¢ homogena po celotnem vzorcu. Vendar v blizini faznega pre-
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hoda iz smekti¢ne v nematsko fazo ta predpostavka postane vprasljiva, saj ograju-
joCe povrsine pogosto vsiljujejo ve¢jo stopnjo pozicijske ureditve od lastne, kakrSna
je v notranjosti vzorca.

Obravnavajmo primer homeotropne smekti¢ne A celice, kjer ograjujoc¢i plosci
vsiljujeta stopnjo pozicijskega reda g (slika 11). Profil pozicijske ureditve priblizno

[V

Slika 11 Homeotropna smekti¢na A celica s pove¢anim povrsinskim pozi-
cijskim redom 1. Profil pozicijskega reda je prikazan shemati¢no na desni.
Obravnavamo Casimirjevo silo, ki jo povzrocajo fluktuacije smekti¢nih plasti
U.

opisemo z

~ cosh(z/¢)

Y(2) = hs———=
cosh(h/2¢)

kjer je & smekticna korelacijska dolzina. Zaradi preprostejSega opisa smo za koor-

dinate ograjujocih plos¢ vzeli z = +h/2. Sedaj Zelimo izrac¢unati Casimirjevo silo

(61)

zaradi fluktuacij smekti¢nih plasti, ki jih opiSemo s hamiltonko
ou

1 2 2
n=3 [ B(&) K, (V2)

Elasti¢ni konstanti B in K sta sorazmerni s kvadratom pozicijskega reda 1) in ju

v . (62)

lahko zapisemo kot

cosh?(z/€) KoK cosh®(z/£)

ScoshQ(h/Qf) 7 b ScoshQ(h/Qé’) ' (63)

Imamo torej opravka s hamiltonko fluktuacij smekti¢nih plasti, kjer so elasti¢ne
konstante odvisne od kraja. S Fourierovo transformacijo fluktuirajocega polja u se
hamiltonka pretvori v

1 h/2 [)\_2 cosh?(z/€)

1 2 coshQ(z/f)
Halu] = QSKS/ cosh?(h/2€)

cosh?(h/2€)

Oug

- ol | 4z, (64

h/2

kjer smo vpeljali karakteristi¢no dolzino A = \/Kg/Bg. Ob predpostavki fiksnih
robnih pogojev, u(z = £h/2) = 0, lahko ovrednotimo particijsko funkcijo fluktuacij,

Zg[u] o [sinh(/A2¢* + €2 h) 2 . (65)

ki se glasi
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Po obic¢ajni regularizaciji proste energije fluktuacij dobimo Casimirjevo silo

F kgTS [~ V14 E2X2¢ d

Cas — — qaq
278 Jo  exp <2h\/1 n 52A2q4/5) 1

Tega integrala ni mozno izracunati analiti¢no, lahko pa izpeljemo obnaSanje sile v

limitah velikih in majhnih debelin celice. V limiti majhnih debelin (h/{ — 0) je sila
enaka

(66)

kT SCr(2
fCas(h/é-—)O):—Ble\Zg)

To je znan izraz za Casimirjevo silo, ki jo povzrocajo fluktuacije plasti, v homogenih

(67)

smekti¢nih sistemih. V limiti majhnih debelin je namre¢ profil pozicijskega reda

prakti¢no konstanten, zato vpliva nehomogenosti na silo ni. V limiti velikih debelin

(h/€ — 00) je sila enaka

kTS exp(—2h/§)
8/TE2N h/¢

To je zelo zanimiv rezultat, saj fluktuacije smekti¢nih plasti, ki jih opiSemo z

Feas (h/§ — 00) = (68)

elasti¢no hamiltonko, zaradi krajevno odvisnih elasti¢nih konstant povzrocajo Casi-
mirjevo silo kratkega dosega. Le-ta upada kot exp(—2h/€)/+/h/€. Tak eksponentni
upad Casimirjeve sile pri velikih debelinah je sicer znacilen za masivne fluktuacijske
nacine. Zato lahko sklepamo, da ima nehomogenost v takem sistemu vlogo efektivne
mase fluktuacij. Numeri¢no izracunan profil Casimirjeve sile za Sirsi razpon debelin
je prikazan na sliki 12.

fCas

10" 1 10"

h/€
Slika 12 Profil Casimirjeve sile v homeotropni smekti¢ni A celici z neho-
mogenim pozicijski redom. Silo skaliramo s Casimirjevo silo v homogeni smek-
ti¢ni celici fglgs = —kpTSCr(2)/16mAh%. Pri majhnih debelinah je Fo,s enaka
flc‘fgs. Pri velikih debelinah pa upada hitreje, in sicer kot exp(—2h/€)//R/E.
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Casimirjeva sila v predsmekti¢ni nematski celici

Tudi ce je tekoci kristal v nematski fazi, je v ograjenih sistemih vedno prisotna delna
povrsinsko vsiljena pozicijska urejenost. Izvor tega reda je v preprostem dejstvu, da
molekule ne morejo prodreti v trde robove, zato je vedno prisotna vsaj ena plast
pozicijsko urejenih molekul ob povrsini. Orientacijske direktorske fluktuacije so
sklopljene s smekti¢nim redom, zato se prisotnost predsmekti¢ne pozicijske ureditve
odraza v povecani energiji direktorskih fluktuacijskih nac¢inov oziroma njihovi “masi”.

Obravnavamo Casimirjevo silo v homeotropni nematski celici s povrsinsko vsilje-
nim smekti¢nim redom (slika 13). Ravnovesni profil stopnje pozicijske ureditve

| Won | I |
I
Slika 13 Homeotropna nematska celica s povrsinsko vsiljenim predsmekti¢nim

redom . Profil pozicijskega reda je shematsko prikazan na desni. Obrav-
navamo Casimirjevo silo, ki jo povzrocajo direktorske fluktuacije dn.

opiSemo z
cosh(z/€)
- = hg— 1> 69
Vs (2) ¢Scosh(h/2§) (69)
Nematska direktorska prosta energija se v enokonstantnem priblizku glasi
1 1
f= 5D(5n)2 +5K [(V-n)*+ (V xn)? . (70)

Sklopitvena konstanta med (pred)smekti¢nimi plastmi in direktorjem D je sorazmerna
s kvadratom stopnje pozicijskega reda 1. V obi¢ajnih nematikih brez smekti¢nega
reda je konstanta D enaka 0. Hamiltonka direktorskih fluktuacij, én = (n,,n,), je

L (a2 (2 ) o (2 4 O (O _ O
H_QK/A (2)(nx+ny)+(8x+8y + ox oy

+ on, 2_|_ % i
0z 0z

Vpeljali smo krajevno odvisno korelacijsko dolzino A=2(z) = D(z)/K. V splo$nem

enaka

dv.

ne moremo izrac¢unati particijske funkcije fluktuacij, zato aproksimiramo odvisnost
D(z) s paraboli¢nim profilom

(+/¢) -

P& = Psthagy
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V tem primeru je particijska funkcija direktorskih fluktuacij enaka

1 1 1\ M[EA+32 2 1321 2
7 - |z A= 2 4> 21870 Z 4
o | =g (A4 St
1 75 1,972 (73)
—|—11: lA_i_l M[3A+ 7, 5, 5%
27"\37 " 2) MIA+33 L2

kjer je Mla,b, z] Kummrova konfluentna hipergeometrijska funkcija [181]. Vpeljali
smo sledece parametre

_ ECLg5d S ~ fana | oh
Q—T, A—mQQ, o = 5 s k= 45\/5 (74)

Prosta energija fluktuacij je sedaj podana z

kgTsS [
Fe =52 [ (Zelnalads (75)
™ Jo

pri ¢emer smo upostevali, da sta v sistemu prisotna dva degenerirana direktorska
fluktuacijska nacina. Proste energije fluktuacij zal ni mozno regularizirati anali-
ti¢no. Zato uporabimo sledec¢o proceduro. Najprej izra¢cunamo odvod proste en-
ergije OFf1,c/0h, s ¢imer se znebimo prispevkov neodvisnih od debeline celice h, ki
ne prispevajo k interakciji. Nadalje upostevamo dejstvo, da mora iti v limiti ve-
likih debelin A interakcijski del proste energije proti 0. Zato za razli¢ne vrednosti
valovnega vektorja q izra¢unamo odvod OFy,./Oh pri velikih h. S tem dobimo
referen¢no vrednost, ki jo je potrebno odsteti od celotnega odvoda, da nam os-
tane le interakcijski del oziroma sila. Vrednost odvoda OFy,./Oh pa pri velikih
h ni povsem konstantna, kot bi pri¢akovali, ampak se z vecanjem debeline rahlo
spreminja. Zato nasa numeri¢na procedura regularizacije proste energije ni povsem
natanc¢na. Dobljeni rezultati so zato omejeni na majhne debeline celic, kjer je in-
terakcijski prispevek velik in je negotovost zaradi ne povsem tocne regularizacije
razmeroma majhna.

Casimirjeva sila v homeotropni nematski celici s predsmekti¢nim redom je prika-
zana na sliki 14. Primerjamo jo z obi¢ajno nematsko direktorsko silo, ki je prisotna
v sistemih brez smekti¢nega reda. Redukcijski koli¢nik R; je definiran kot

R, = Temla) (76)

nem
Cas

kjer je Faem = kT SCr(3)/4mh3. Razlitne vrednosti parametra « opisujejo razli¢ne
stopnje povrsinsko vsiljenega smekti¢nega reda. Pri zelo majhnih debelinah je sila
v predsmekti¢ni nematski celici enaka kot v obi¢ajnem nematiku. To je v skladu z
znanimi rezultati za homogene sisteme z masivnimi fluktuacijskimi nacini. Pri vecjih
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Slika 14 Casimirjeva sila v predsmekti¢nem nematskem sistemu v primerjavi
s tipi¢no Casimirjevo silo v obi¢ajnem nematiku, ki je sorazmerna z 1/h3. Ra-
zlicne vrednosti parametra « opisujejo razlicne stopnje povrsinsko vsiljenega
pozicijskega reda ®g. Na grafih je oznacena negotovost zaradi priblizne nu-
meri¢ne regularizacije.

debelinah sila v predsmekti¢nem sistemu upada hitreje kot 1/h3. To je pricakovano,
saj so direktorske fluktuacije zaradi prisotnosti smekti¢nega reda masivne. Cim
vecja je stopnja povrsinsko vsiljenega reda, tem vecja je masa fluktuacij in tem
hitreje upada sila.

Problem Casimirjeve sile v predsmekti¢ni nematski celici §e ni dokon¢no resen.
Predvsem bo potrebno poiskati boljso metodo za regularizacijo proste energije fluk-
tuacij. Kljub temu pa lahko napovemo, da zaradi vedno prisotnega povrSinskega
pozicijskega reda v realnih sistemih ne moremo pricakovati standardne nematske
direktorske Casimirjeve sile, sorazmerne z 1/h3.

Zakljucek

V tem delu smo se ukvarjali z razli¢nimi vidiki Casimirjevega pojava v smekti¢nih
tekocekristalnih sistemih. Najprej smo obravnavali Casimirjevo silo v dveh smek-
ti¢nih A sistemih s planarno geometrijo — v homeotropni celici in prostostojecem
smekticnem filmu. Predpostavili smo, da je ravnovesna ureditev smektika homogena.
Izrac¢unali smo silo, ki jo povzrocajo termic¢ne fluktuacije pozicijskega in orientaci-
jskega reda v smektikih. Pri tem smo upostevali sklopitev med pozicijsko in ori-
entacijsko ureditvijo. Ugotovili smo, da fluktuacije stopnje smekti¢nega reda rezul-
tirajo v privlacni Casimirjevi sili kratkega dosega, medtem ko sklopljene fluktuacije
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direktorja in smekti¢nih plasti povzrocajo interakcijo dolgega dosega. Izkazalo se
je, da je vpliv direktorskih prostostnih stopenj pomemben pri majhnih debelinah
sistemov. Pri velikih debelinah pa je mozno Casimirjevo silo zadovoljivo opisati s
poenostavljenim modelom, ki uposteva le fluktuacije smekti¢nih plasti, pri ¢emer
predpostavimo, da je direktor stalno orientiran pravokotno na plasti. S predstavlje-
nimi rezultati smo podali celovito sliko Casimirjevega pojava v planarnih smekti¢nih
A sistemih s homogeno ravnovesno strukturo.

Nadalje smo obravnavali obnasanje Casimirjeve sile v blizini faznega prehoda
iz smekticne A faze v smekti¢no C fazo. Z uporabljenim modelom smo zaobjeli
tako kiralne kot tudi obicajne smekti¢ne faze. Posebej zanimiv je primer frustri-
rane homeotropne celice, v kateri je smekti¢na A struktura stabilizirana z robnimi
pogoji in jo zato lahko podhladimo pod temperaturo faznega prehoda v smekti¢no
C fazo. V takem sistemu so direktorske fluktuacije Se posebej izrazite, kar se odraza
tudi na obnasanju Casimirjeve sile. Pri strukturnem prehodu v deformirano smek-
ticno C strukturo Casimirjeva sila logaritemsko divergira. Podrobno smo analizirali
vpliv robnih pogojev na Casimirjevo silo, ki jo povzro¢ajo masivne direktorske fluk-
tuacije s kon¢no korelacijsko dolzino v smekti¢ni A homeotropni celici. Ugotovili
smo, da efektivno jakost sidranja v tankih celicah dolo¢a razmerje med ekstrapo-
lacijsko dolzino sidranja in debelino celice, medtem ko v debelejsih celicah efektivno
jakost sidranja doloca razmerje med ekstrapolacijsko dolzino sidranja in korelacijsko
dolzino fluktuacij. V primeru simetri¢nih robnih pogojev, to je moc¢nega ali Sibkega
sidranja na obeh povrsinah, je Casimirjeva sila privla¢na. V primeru antisimetri¢nih
robnih pogojev, to je mo¢nega sidranja na eni ter Sibkega sidranja na drugi povrsini,
pa je Casimirjeva sila odbojna.

Posebno pozornost smo v disertaciji posvetili sistemom z netrivialno ravnovesno
strukturo. Najprej smo obravnavali dva sistema, rahlo deformirano smekti¢no celico
in prostostojeci film s pove¢anim povrsinskim redom, kjer nehomogenost ravnovesne
ureditve ni vplivala na Casimirjevo silo. Prisli smo do zakljucka, da v sistemih, ki jih
lahko opisemo s kvadrati¢nim razvojem proste energije in fiksnimi robnimi pogoji,
nehomogena ravnovesna ureditev ne vpliva na hamiltonko fluktuacij in zato tudi
ne na Casimirjevo silo. Nazadnje smo obravnavali dva sistema, kjer se je netri-
vialna ravnovesna struktura odrazala v krajevni odvisnosti snovnih konstant. V
homeotropni smektic¢ni celici s povecanim povrsinskim pozicijskim redom smo ugo-
tovili, da je zaradi nehomogenosti ureditve Casimirjeva sila kratkega dosega. Neho-
mogenost se je torej odrazila kot neka efektivna masa fluktuirajocega polja. Nadalje
smo raziskali vpliv povrSinsko vsiljenega predsmekti¢nega reda na Casimirjevo silo
v homeotropni nematski celici. Izkazalo se je, da Casimirjeva sila v takem sistemu
upada obc¢utno hitreje kot obicajna direktorska sila v nematikih.

Glavni izziv na podrocju teorije Casimirjevega pojava v tekocih kristalih bodo
v prihodnosti prav gotovo predstavljali sistemi z netrivialno ravnovesno ureditvijo.
V tej disertaciji smo podali reSitve le za nekaj posebnih primerov. Za obravnavo
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bolj splosnih sistemov bo najbrz potrebno razviti popolnejse in splosnejse metode
za izraCun ter regularizacijo proste energije fluktuacij. Ker je v realnih ograjenih
sistemih nehomogenost ravnovesne tekocekristalne ureditve skoraj vedno prisotna, so
ta vprasanja zelo relevantna. Glavni problem tega raziskovalnega podroc¢ja po nasem
mnenju predstavlja dejstvo, da obstoj Casimirjeve sile v tekocekristalnih sistemih
Se ni bil eksperimentalno potrjen. Verjamemo, da bi tak$na potrditev stimulirala
nadaljni razvoj tega podrocja, kot se je to zgodilo v primeru elektromagnetnega
Casimirjevega pojava.



Izjava

[zjavljam, da sem v disertaciji predstavil rezultate lastnega znanstvenoraziskoval-
nega dela.

V Ljubljani, 5. 1. 2007. Bostjan Markun



