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Composite powders including Ti, B4C and Stellite 6 were deposited on the 316 stainless steel using plasma-transferred arc
welding to improve the wear resistance. Microstructural characterisation using an optical microscope and a Vickers hardness
tester was performed on the surface to determine the coating and hardness. Scanning electron microscopy and
energy-dispersive-spectroscopy line scanning were also applied to characterise the microstructure, the chemical composition
and the process of wear. Results showed that Ti, B4C and Stellite 6 considerably affected the microstructure and morphology of
the coating. The in-situ new phases, namely, TiC and TiB, remarkably improved the wear resistance compared with the Stellite 6
coating only.
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Avtorji so kompozitne prahove iz zlitine Stellite 6, Ti in B4C nanasali na povr$ino preizkuSancev s plazemskim naprSevanjem
(PTAW), da bi izboljsali njihovo odpornost proti obrabi. Izvedli so mikrostrukturno in mehansko karakterizacijo povrSine z
uporabo opti¢nega mikroskopa in Vickersovega merilnika trdote. Prav tako so izvedli preiskave z vrsticnim elektronskim
mikroskopom (SEM) in linijsko energijsko disperzijsko spektroskopijo (EDS), da bi ugotovili mikrostrukturo, kemijsko sestavo
in potek obrabe. Rezultati raziskav so pokazali, da so Ti, B4C in Stellite 6 znatno vplivali na mikrostrukturo in morfologijo
prevleke. In-situ sinteza novih faz (TiC in TiB) med plazenskim naprSevanjem kompozitnih prahov je moc¢no izboljSala
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odpornost prevlek proti obrabi v primerjavi s prevlekami, izdelanimi samo iz prahu Stellita 6.
Kljucne besede: in-situ sinteza novih faz, mikrostruktura, PTAW (plazemsko napr$evanje), odpornost proti obrabi

1 INTRODUCTION

Wear consistently occurs as long as engineering
components come in contact with one another, thus
causing a component loss and local temperature incre-
ments."? Wear reduces the components’ strength and
corrosion resistance and decreases their service life.3
Suitable metals with good hardness and wear-resistant
coating are deposited on the matrix to resolve these
problems.* Hard coating alloys, such as Co-based ones,
demonstrate excellent performance and are widely used
in scientific research and industrial applications.’>”’
Stellite 6 is a Co-based alloy that consists of complex
carbides included in an alloy matrix.® Co is resistant to
wear, galling and corrosion at high temperatures. Stellite
6 is the most widely used wear-resistant Co-based alloy,
exhibiting good performance. It is an industry standard
for general-purpose wear-resistance applications, exhib-
iting excellent resistance to many forms of mechanical
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and chemical degradation. Stellite 6 also has good
resistance to impact and cavitation erosion. It is adopted
in many hardfacing processes and can be used with
carbide tooling. Stellite 6 is an effective hardfacing alloy
because Co exhibits good corrosion resistance, high
strength and good wear resistance. The Mo and W
formed with C affect the solid solution and precipi-
tation-hardening phase to improve the strength of Stellite
6.9 Ceramic powders that contain N, C, B and Si are
introduced into composite powders and combined with
Stellite 6.>!>-1> Phases B4C and TiB, provide a homoge-
nous morphology and excellent mechanical properties.*
These ceramic particles improve the wear resistance of
welding coatings.'®!” SiC dispersed in the AISI 316L
stainless steel has also been used to improve the wear
resistance. Several techniques, such as gas tungsten arc
welding (GTAW),!® plasma transferred arc welding
(PTAW)," laser cladding,? electric spark deposition
(ESD)?!' and shielded metal arc welding (SMAW),? are
used for the surface modification of the hard faces of
metal powders. PTAW has the advantages of high energy,
controlled welding depth, high efficiency and excellent

3
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Table 1: Nominal chemical composition of Stellite 6 (w/%)

Composition C Cr Si W

Fe Mo Ni Mn Co

Mass percent 1.15 29.00 1.10 4.00

3.00 1.00 3.00 0.50 Bal.

direction control and metallurgical bonding of the
interface.?*-%

Previous studies showed that delamination and
abrasive wear can be observed by studying wear debris.
In the present study, Stellite 6 and composite powders
were used to prepare a welding coating. The composite
powders consisted of Ti, B4C and Stellite 6. Our aim is to
study the effect of these powders on the microstructure,
hardness, friction coefficient and wear resistance of
welding coatings. We maintain that these components
and phases affect the wear resistance.

2 EXPERIMENTAL PART
2.1 Materials and welding experiments

In this study, the 316 stainless steel was used as the
base material. Its composition (w/%) was 0.05 C, 0.76
Mn, 0.30 Si, 2.4 Mo, 12.2 Ni, 17.3 Cr, 0.015 P, 0.02 S
and Fe balance. The Stellite 6 powder was utilised as a
PTAW welding material. The composition of Stellite 6 is
shown in Table 1. The composite powders consisted of
Ti, B4C and Stellite 6. These powders were mixed using
a ball mill. The composition of the mixed powder is
indicated in Table 2. The mixed powder was pre-painted
on the surface of the base metal. Prior to welding, the
matrix surface was cleaned carefully with acetone to
remove residues and grease. The powder was deposited
onto the matrix, having a thickness of approximately
2 mm. The welding coatings were prepared using PTAW
with a current of 150 A.

Table 2: Mass percent of the mixed powder (w/%)

Ti B.,C Stellite 6
10 3 87

2.2 Microstructural characterisation

The coating material was cut along the perpendicular
direction of the contact line of the substrate and coating.
The surface cut was trapped with Bakelite and the
sample was polished with abrasive paper down to #1000.
Subsequently, the surface of the sample was cleaned with
acetone and etched with nitrohydrochloric acid. The
surface images of the samples were obtained with a Zeiss
Merlin compact field-emission scanning electron micro-
scope (FE-SEM). An element analysis was performed
on the spots or areas of the samples using energy dis-
persive spectroscopy (EDS). An X-ray diffraction
(Bruker D8 ADVANCE) analysis was performed with
CuK, radiation. A step of 0.02° was used to scan 26 from
20° to 90°.

2.3 Vickers microhardness and properties of the wear
resistance

Vickers microhardness was measured with an MH-5
microhardness tester with five points of similar places
under a load of 0.5 kg. The test was repeated at least five
times to ensure good reproductivity. Experiments on the
wear resistance were conducted using a UMT-2 friction-
wear tester (USA). Samples with a size of (15 x 15 x
4) mm were extracted from the coating. The surfaces of
the samples were polished to keep them horizontally
parallel. Subsequently, the samples were ultrasonically
cleaned in acetone. A tribological test was conducted
using a ball-on-disc under a load of 10 N. The test was
conducted using the C45 spherical steel with a 9.38-mm
diameter (ASTM: 1045) at room temperature. The speed
of the sample against the ball was maintained at
2.5 cm s7! for 30 min. After testing the wear resistance,
the morphology of the wear track was examined with a
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Figure 1: XRD patterns of the hardfacing layers produced with
plasma arc surfacing: a) Stellite 6 powder coating and b) composite
powder coating
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confocal laser scanner (LEXTOLS400). The wear rate
was calculated as

CA
Wo=—r ey

where C is the length of the wear track, A is the average
area of wear loss, F is the loading and L is the distance
of wear. After the experiments, the surfaces of the
samples were characterised with SEM.

3 RESULTS AND DISCUSSION
3.1 XRD and SEM/EDS characterisation

The results of the X-ray diffraction analysis of the
alloy coating with Stellite 6 and composite powders are
shown in Figures 1la and 1b, respectively. The phases
after the deposition of the composite powders were
CrxCs, TiC, TiB, Cr;Cs and a-Co. The phases of the
coating using the Stellite 6 powder were a-Co and Cr;C;.
The addition of Ti and B4C to the Stellite 6 powders
changed the microstructure due to plasma surfacing.

SEM images of the Stellite 6 coating are shown in
Figure 2. The XRD analysis from Figure 1a shows that
the a-Co phase formed dendrites and that interdendrites
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were composed of (Cr.Fe),C;.20?7 The hard phases, such
as (Fe, Cr),C; and TiC, generated with the addition of Ti
and B.C using plasma arc surfacing, determined the
hardness, strength, corrosion resistance and wear resist-
ance at high temperatures.

A detailed microstructure of the coating with the
composite powder on the surface is shown in Figure 3,
where Figure 3a shows an optical image and Figure 3b
shows a SEM image. This coating consisted of the a-Co
matrix and TiC/TiB particles. Many particles smaller
than 3 ym were embedded in the a-Co matrix. The
solidification process of the coating followed the non-
equilibrium process of PTAW. When the Ti and B4C
powders were added to the Stellite 6 powder, the solidifi-
cation process became increasingly complex. The
melting points of TiB and TiC were 3498 K and 3340 K,
respectively. Freezing was observed initially, acting as
the core of the heterogeneous nucleation during the
solidification. Therefore, the in-situ phases of TiB and
TiC were surrounded by other phases such as a-Co and
(FC, CI')7C3.

The concentrations of C, Ti, Cr, Fe, Ni and W varied
considerably at the three analysed sites, as shown in
Figure 4. The results of the analysis from Figure 4 show
that the distribution of the elements changed with the
change in positions. These phases did not exhibit regular
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Figure 3: Microstructure of the transition zone of the composite coat-
ing: a) optical microscope and b) SEM image
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Figure 4: EDS point analysis of the composite coating and atomic
content of the spectrometer marked at EDS points

Element (%) | CK | TiK | CrK | FeK | NiK | WM
1 4344 | 1841 | 2.53 | 16.98 | 7.22 | 29.61
2 50.85 [ 29.10 | 1.36 | 4.37 | 5.88 | 8.43
3 31.24 | 1.95 | 19.22 | 25.88 | 7.87 | 13.83

sizes and were scattered in the substrate. Most of them
were carbides, as confirmed by the XRD analysis from
Figure 1b. The two in-situ phase particles, namely, TiC
and TiB, solidified first and were entrapped by the other
carbides because of the solidification. Parts of the
particles were nucleated during the solidification. The
composition of the particles was completely different, as
shown in Figure 4.

3.2 Vickers-hardness measurements

The Vickers-hardness profile is shown in Figure 5.
The Vickers hardness of the substrate was almost con-
stant and roughly 150 HV. The hardness values of the
coatings differed. In the case of the Stellite 6 coating, the
value was 412 HV and in the case of the composite
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Figure 5: Distribution curve of the hardness

6

coating, it was 458 HV. A sharp increase was observed
because of the carbide in the coating. In the substrate,
lower contents of C and hard cement components were
observed compared with the contents of the coatings that
used plasma arc welding, thereby showing a higher value
of hardness. These components were kept stable in
different structures, from the dilution zone to the grain
zone, primarily due to the Stellite 6 coating. The hard-
ness of the composite coating was better than that of the
Stellite 6 alloy coating. This improved hardness was also
related to the formation of boride and carbide in the alloy
coating, which increased the hardness of the coating. The
boride and carbide were TiC and TiB, respectively.®282
The structures of the coating differed from those of the
Stellite 6 coating, as shown in Figures 3 and 4. The two
phases enhanced the hardness of the composite coating.

3.3 Friction coefficient and worn-out surface

Figure 6a shows the friction coefficients of the
Stellite 6 alloy and composite coatings. The average
values of the friction coefficient of the coatings with
Stellite 6 and composite powders were 0.7 and 0.56,
respectively. The run-to-join stage differed significantly.
At this stage, the Stellite 6 coating used less time than
the composite coating. This result coincides with the
data on the wear rate, as shown in Figure 6b. The wear
rates of the coatings with Stellite 6 and composite pow-
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Figure 6: a) Friction coefficient of Stellite 6 and composite coating, b)
wear rate of Stellite 6 and composite coating
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Figure 7: SEM images of coatings with different compositions after
the wear and 3D morphology of different coatings after friction tests:
a), b), e) Stellite 6 powder coating, c), d), f) composite powder coating

ders were 0.145 x 10 and 0.091 x 10® mm?* N m s!,
respectively. With a lower friction coefficient and wear
rate, the composite coating showed better wear resist-
ance than the Stellite 6 coating.

Figure 7 shows the wear tracks and delamination of
different coatings. Figures 7a and 7b show the wear face
of the Stellite 6 coating. Figures 7c and 7d present the
wear surface of the composite coating. The surface wear
was superficial and plastic deformation was limited. A
comparison of Figures 7b and 7d shows that chunks of
debris chipped away from the substrate, as shown by the
red arrow in Figure 7b. M;C; was responsible for the
debris.’® The carbide phase, M;Cs, oxidised due to fric-
tion and cracked during the cyclic stress. These cracks
led to a decrease in the adhesion strength between the
coatings and caused the surface of the coating to
delaminate. Debris was formed and chipped away from
the coating. However, the coating with the composite
powder had different particle sizes of hard phases TiB
and TiC, which improved the lubricity during the cyclic
stress. The large white spots in Figure 7d contributed to
lubricity. In Figures 7e and 7f, the depth of the wear
surface is characterised with different colours. The
Stellite 6 alloy coating showed a deep colour in Figure
7e (marked with red arrows) compared with the uniform
colour in Figure 7f. Many uniform colour spots were
observed and these included accumulated particles on the
wear surface in Figure 7f. This finding is attributed to
the removal of the second-phase particles of solidifica-
tion, TiC and TiB, during the sliding. The improvement
in the wear resistance can be determined with these
accumulated particles on the surface of the coating
during the sliding. These particles reduced the friction

Materiali in tehnologije / Materials and technology 53 (2019) 1, 3-8

coefficient of the composite coating, as shown in Figure
6a. The amount of wear was also reduced compared with
the Stellite 6 coating. Therefore, sliding wear is the key
mechanism of the composite alloy coating.

4 CONCLUSIONS

In this study, AISI 316 stainless steel specimens were
used as a substrate and their surfaces were coated with
Stellite 6 and composite powders (including Ti, B4C and
Stellite 6) via PTAW. The results of the microstructure
tests, EDS analysis, SEM, microhardness and wear tests
of the coatings were discussed and the following conclu-
sions were derived:

The microstructures of the samples showed that
dendrites formed in the composite-powder-coated and
Stellite-6-coated zones, and secondary phases of TiC and
TiB were dispersed in the a-Co solution in the composite
coating.

The microhardness of the coating with composite
powders increased by 11.2 % and the friction coefficient
and wear rate decreased by 20 % and 37 %, respectively,
relative to the values for the Stellite 6 powder coating.
The wear resistance was improved due to the composite
powders.

The accumulated particles of TiC and TiB were the
result of the lubrication during the sliding. The sliding
wear was the key mechanism of sliding.
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