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0  INTRODUCTION

The light emitting diode (LED) industry has been 
evolving rapidly over the past several years. The fast 
pace of research and development in the field has 
had a number of impacts. One of the results is the 
massive use and implementation of LED elements in 
all kind of luminaires. While some of these luminaires 
are designed for ambient illumination, the majority 
are technical luminaires that have to conform not 
only to electrical and mechanical safety regulations 
but also to regulations that define and restrict the 
photometry of a certain luminaire. This means that 
the photometry of a luminaire has to be defined prior 
to production. In order to do that efficiently and with 
minimal errors the design engineer must virtually test 
the luminaires performance. Tools that can be used 
for this (OpticsWorks [1], LigthTools [2], TracePRO 
[3]) do exist and they offer a vast repository of sub-
modules to develop and design custom lenses, 
reflectors, light guides, etc. However, these universal 
tools do not completely exploit the luminaire design 
possibilities that were introduced by the transition 
from conventional light source technologies to LED. 
One of the possibilities, which is also the main aim of 
a larger study that incorporates the research presented 
here, is to have an expert or intelligent system that 
would be capable of suggesting a secondary lens 
combination that would result in a user defined end 

photometry. In other words, the system would take 
some stock secondary LED lenses from different 
manufactures, place them on a defined LED array 
and search for the optimal combination of the lenses 
so that the resulting photometry would be as close as 
possible to the user defined one.

The method could enable the luminaire designer 
to custom design the light engine to a specific area 
of illumination, while keeping the mechanical and 
electrical parts of a luminaire untouched. This 
would in turn provide a customer with a tailored 
solution that would guarantee maximum efficiency, 
lower prices, less light pollution and the possibility 
of individualizing the illumination effect while 
maintaining a consistent visual appearance of the 
luminaries. There are several optimization tasks 
related to the development of the above idea. 
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Secondary optical element

Fig. 1.  LED with attached secondary lens
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Here we focus on the approximation of spatial 
light distribution with a moderate number of suitable 
basis functions ([4] and [5]). The problem that is 
defined formally in the next section is motivated by 
the following. The data describing the properties of 
the lenses and/or of the desired light distribution is 
nowadays usually given in some standard format 
files that correspond to the measured (or desired) 
values at a number of points in space. This results in 
relatively large data files of unstructured data. Clearly, 
if the data can be well enough approximated i.e. as 
a linear combination of certain basis functions, this 
may enable faster computations using less computer 
storage. Indeed, for some special cases including 
LED lenses with symmetric light distribution, it is 
possible to find reasonably good approximations 
quickly (8 minutes’ runtime on an Intel Core I7-
4790K CPU @ 4 Ghz, the code is written in C++ 
and is not fully optimized). Sufficiently good 
approximation here means 2 % to 5 % RMS error (to 
be defined later) for target light distribution, taking 
into account expected noise in measurement using 
current technology. Recent experiments show that 
sufficiently good approximations can be obtained 
using some basic optimization algorithms, including 
local search algorithms and genetic algorithms ([6] to 
[8]). However, when using predefined lenses to design 
a luminaire that closely approximates a desired light 
distribution, it may be necessary for the approximation 
error to be much lower. The same task can also be seen 
as solving a problem of data compression, replacing 
a long unstructured data file with a much shorter 
one, in this case a sequence of parameters. It makes 
sense to aim at 0 % approximation when considering 
the data compression task. As the functions to be 
approximated are smooth, it is natural to try to 
improve the basic discrete optimization methods with 
continuous optimization techniques, i.e. Newton’s 
method [9]. Here we consider Newton’s method both 
as a standalone (restarted) algorithm and as a post-
processor of other algorithms. The datasets used for 
testing and analysis are a selection of real lenses as 
used in previous studies and an artificial dataset that 
is large enough for statistical analysis. The artificial 
dataset is also generated in a way which assures that 
0 % approximation is possible. Note that we have no 
guarantee that the realistic lenses can be approximated 
within our model with an arbitrary low RMS error.  
The rest of the paper is organized as follows: in 
Section Two we discuss the problem and present the 
mathematical model, Section Three is all about the 
algorithms and Newton’s method implementation, 
Section Four presents the datasets used in the 

experiment, Section Five provides the experiment set-
up, Section Six unveils the results, and Section Seven 
wraps everything up in the conclusion. The Appendix 
provides some formal details related to the application 
of Newton’s method.

1  THE MODEL

The method mentioned above seems natural and 
straightforward, but looking closer, we observe some 
fundamental problems related to the realization of the 
main idea. Namely, both the spatial light distribution 
of LED lenses and the desired illumination are given 
in the standard data formats, which are just long 
unstructured lists of data. In particular, when the aim is 
to construct a lighting system that provides the desired 
illumination of the environment, it is necessary or at 
least very convenient to have the data in some more 
structured format. It is known that the spatial light 
distribution of some LED lenses can be approximated 
by the sum of a small number of certain basis functions 
[4]. Provided the approximation is sufficiently good, it 
may be possible to provide designs combining several 
lenses with a controlled error rate. This naturally 
opens several research avenues. For example, it 
is important to have error free or at least very good 
approximations of the basic lenses, and to have 
methods that are stable, in the sense that they are not 
too sensitive to the noise in the presentation of basic 
elements. Here we focus on the first abovementioned 
task, approximation of the unstructured spatial light 
distribution data. We search for an approximation of 
the Luminous intensity I(Φ, a, b, c) at the polar angle 
of Φ in the form:

 I I a cos bmax
k
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where K is the number of functions to sum and ak , 
bk , ck are the function coefficients that we search 
for. For brevity, coefficients are written as vectors 
a = (a1, a2, ..., aK), b = (b1, b2, ..., bK), c = (c1, c2, ..., cK). 
The interval range of the coefficients is: a = [0, 1],  
b = [–90, 90], c = [0, 100]. Discrete optimization 
algorithms will work on the finite subsets where the 
possible values will be: a* ϵ {0, 0.001, 0.002, ..., 1}, 
b* ϵ {–90, 89.9, 89.8, ..., 90}, c* ϵ {0, 1, 2, ..., 100}.

Here we need to note two restrictions on the 
model. The first restriction emerges from the LEDs 
physical design. LED’s cannot emit any light to 
the back side which is the upper hemisphere in our 
case. That is why all intermediate values that are 
calculated at the combined angle (Φ – bk) greater than 
90° equal 0. The second restriction deals with the 
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slightly unusual description of the light distribution in 
standard files such as Elumdat (file extension .ldt) [10] 
and IESNA (.ies) [11]. These files at present provide 
measured candela values per angle Φ on so called C 
planes which can be observed on Fig. 2. One C plane 
is actually only one half of the corresponding cross-
section and does not describe the other half. But from 
a physical point of view we need to consider the 
impact from the other half of the cross-section.

Taking into account that all lenses used here are 
symmetric, we can simplify the calculation of the 
intermediate values and incorporate the impact of the 
other half by mirroring (multiplying by –1) all values 
that are calculated with the combined angle (Φ – bk) 
less than 0°. Note however that this only works with 
symmetrical distributions, and should be reconsidered 
carefully when the method is to be applied to 
asymmetrical distributions.

The goodness of fit is defined as the root mean 
square error, formally defined by the expression:

RMS I I
i

N

m i ia b c
N

a b c, , , , ,( ) = ( ) − ( ) 
=
∑1
1

2

Φ Φ ,  (2)

where N is the number of measured points in the 
input data, Im(Φi) the measured Luminous intensity 
value at the polar angle Φi from the input data, and 
I(Φi, a, b, c) the calculated Luminous intensity value 
at the given polar angle Φi RMS represents the error 
of the approximation. Later in tables we provide the 
relative RMS error (RMSp) defined by Eq. (2a).
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Remark. The model was successfully applied to 
LED’s with attached secondary optics and symmetric 
light distribution [4] showing that sufficiently good 
approximations (RMS error below 5 %) can be 
obtained using a sum of only three functions, K = 3. 
Approximation of spatial light distribution of a LED 
with uniform distribution and without a secondary 
lens using this type of functions was first proposed 
in [5]. The model was slightly modified in [4] where 
a new normalizing parameter was introduced and, 
consequently, all other parameters will have values 
at fixed intervals known in advance. It should be 
noted that the modified model is equivalent to the 
original, only the number of parameters and their 
meaning differ. It is interesting to note that due to 
the symmetries in the examples, K = 3 is sufficient 
for both applications ([4] and [5]). In the general 
case, we expect that K > 3 functions will be needed 
for sufficiently good approximations, and in view 

of the optimization of the design of a luminaire it is 
interesting to have an idea how large the parameter K 
can grow to assure that the light distribution fits the 
desired (and/or standard) sufficiently well. We do not 
address this question here.

φ = 0°

φ = 180°

C = 180°

C = 0°

C = 90°

C = 270°

C = 135°

Fig. 2.  C-planes according to standard;  
C-planes angles: 0° to 360° | Φ angles: 0° to 180°

When applying the model to the data compression 
problem, the target RMS error is 0 %. Therefore, we 
aim to improve the approximation results that were 
obtained previously ([6] and [7]) and restrict attention 
to the symmetric light distributions. We also fix K = 3 
functions in the model. Besides the dataset of 14 
realistic lenses that was used in some previous studies, 
here we also generate an artificial dataset in which a 
sample is simply a sum of three basis functions with 
randomly chosen parameters. This assures that a 
zero error approximation is possible for the instances 
of the artificial dataset. We are interested first in 
minimizing the approximation error and second in 
the computational time of the methods. In the next 
section we briefly outline the algorithms we use in the 
experiments.

2  THE ALGORITHMS

In previous work ([6] and [7]), the model described 
above was applied in conjunction with several 
custom built algorithms that are based on local 
search heuristics and some meta-heuristics. The 
algorithms implemented include a steepest descend 
algorithm, two iterative improvement algorithms with 
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different neighborhoods, and two genetic algorithms, 
a standard one and a hybrid one in which the best 
individuals of every generation are optimized with 
the iterative improvement algorithm. For a more 
detailed description of the algorithms we refer to 
([6] and [7]). The results of the experiments showed 
that all of the algorithms applied are capable of 
providing satisfactory results on all tested instances, 
and differed mainly in computational time needed. 
The average RMS values obtained on real lenses 
were around RMS = 2 %. Hence, the results mentioned 
proved that the model is accurate and that sufficiently 
good approximations can be found with a variety of 
algorithms. However, recall that the model can also be 
used for data compression task. Zero or very low RMS 
error is also essential in the foreseen application, in 
which the pre-manufactured lenses are to be combined 
into a more complex luminaire with prescribed light 
distribution. In the model we use a sum of functions 
that are smooth and hence the first and second 
derivatives can be calculated allowing application 
of continuous optimization methods, in addition to 
the general discrete optimization meta-heuristics that 
were used before.  We have chosen to use Newton’s 
(also known as Newton - Raphson) iterative method 
[9] to find the solution that we seek. It is understood 
that the convergence of Newton’s method largely 
depends on the initial solution. Therefore, we have 
applied the method in two ways. First, we use 
Newton’s method as an optimizer which will pinpoint 
the local minimum of the solutions found by the 
heuristic algorithms. In a sense this implementation of 
Newton’s method will be an extension of the discrete 
optimization algorithm, used to finalize the search to 
end in a local minimum. (Note that the local minima 
may be missed by the discrete optimization algorithms 
due to predefined length of the discrete moves.)

Secondly, we use Newton’s method as a 
standalone algorithm that will on initialization 
generate a number of random (initial) solutions that 
are uniformly scattered over the whole search space 
and then the algorithm will use Newton’s method on 
a number of best initial solutions to find the local 
minima. Of course, for both implementations to be 
comparable, the iteration count has to be controlled 
so that the overall maximum amount of computation 
time will be roughly the same.

Preprocessor multi-start IF. The multi-start 
iterative improvement with fixed neighborhood 
(IF) algorithm ([7] and [8]) first initializes several 
initial solutions. The initial solutions are randomly 
chosen from the whole search space. Each of the 
initial solutions is then optimized using the following 

steps. In the beginning the search step values (step 
for numerical differentiation) da = 0.01, db = 1 and 
dc = Imax / 10, are initialized, giving 512 neighbors 
of the initial solution: (a1±da, b1±db, c1±dc, a2±da, 
b2±db, c2±dc, a3±da, b3±db, c3±dc).

Then the algorithm randomly chooses a 
neighbor, and immediately moves to the neighbor if 
its RMS value is better than the current RMS value. 
If no better neighbor is found after 1000 trials, it is 
assumed that no better neighbor exists. In this case 
the algorithm morphs the neighborhood by changing 
the step according to the formula di+1 = di + d0. More 
precisely, dai+1 = dai + da0 where da0 is the initial step 
value. Analogously for db and dc. This is repeated 
until i = 10. If there still is no better solution, the initial 
step value is multiplied by 0.9 and the search resumes 
from the current solution with a finer initial step. 
The algorithm stops when the number of generated 
solutions reaches Tmax.

Newton’s method. Newton’s method ([9], [12] 
and [13]) is a well-known numerical optimization 
method that can provide very good results under 
certain assumptions on the evaluation function and on 
the initial solution. Newton’s method indirectly 
minimizes the evaluation function by looking for a 
solution for a system of nonlinear equations (first 
derivatives of the evaluation function). Newton’s 
method solves the system of nonlinear equations 
iteratively by approximating it with a system of linear 
equations in each step which produce the delta vector. 
The delta vector is a part of the iterative scheme 
x x dk
i

k
i

k
i+ = −1 . Newton’s method converges when the 

delta vector vanishes, d = 0. At this point the evaluation 
coefficients found are the local minimum. Details are 
given in the Appendix. An obvious assumption is that 
the evaluation function has to be a continuous non-
linear function for which the first and second order 
derivatives are defined. The initial solution has to be 
close enough to a local or global optimum for 
Newton’s method to converge. Hence, the method 
may be very sensitive to the choice of the initial 
solution. 

3  THE DATASETS

The experimental study uses two batches of instances, 
a dataset of 14 instances that correspond to real LED 
lenses and a dataset of artificial instances generated 
for purpose of this experiment. The artificial lenses 
are used to obtain more conclusive results on the 
statistical test, because a sample of 14 is rather small 
and may provide statistically insignificant results. The 
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real lenses on the other hand show that the algorithms 
are useful in real life scenarios. 

Real lenses. We have chosen 14 different 
symmetrical lenses which are meant to be used with 
a CREE XT-E series LED, from one of the world’s 
leading lens manufacturer LEDIL from Finland. We 
acquired the photometric data from LEDIL’s on-line 
catalogue [14]. The data was provided in .ies format, 
which we then converted to a vector list that is more 
suitable to use in our algorithms. LEDIL measured 
the individual lenses with a 1° polar precision on 
four C panels. This means that from every .ies file we 
extracted 720 vectors. As the lenses are symmetric we 
only needed one C panel and, because we are only 
working on the lower half of the sphere (DLOR), we 
end up with 91 vectors (counting the 0° vector) on 
which we approximate the model.

Artificial lenses. In the dataset of 100 artificial 
examples, each element in the dataset was generated 
as follows. 

A value from an interval was generated using 
uniform random distribution. (Intervals are [0, 1], 
[0, 90], or [0, 10], depending on the parameter. More 
precisely, the random generator chose one of the 
values from the finite sets: 

 a1, a2, a3  ϵ {0, 0.001, 0.002, ..., 0.999, 1},
 b1, b2, b3  ϵ {0, 0.01, 0.02, ..., 89.99, 90},
 c1, c2, c3  ϵ {0, 0.1, 0.2, ..., 9.9, 10}.

Then the function values or candela values were 
computed for each polar angle Φ ϵ {0, 1, 2, ..., 89}. The 
candela values for polar angles Φ ϵ {90, 91, 92, ..., 180} 
were set to 0. The data was then encoded into an .ies 
file structure, yielding a data file in the same format 
as the real lenses have. Note that the data generated 
assure that in each case zero RMS error approximation 
is possible within our model. Second, the dataset of 
100 samples is sufficiently large for a meaningful 
statistical analysis of the experimental results.

4  THE EXPERIMENT SETUP

Before we go ahead and explain the experimental 
set-up, let us first remember the evaluation function 
that is the basis of Newton’s method [9]. We already 
showed that the goodness of fit is measured using the 
RMS value that is calculated from Eq. (2). From this 
we can define the evaluation function as:

E

N
I G G G I

i

N

max i i i m i
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Here E represents the error to be minimized, N 
the number of measured points in the input data, Imax 
the maximum candela value, and Im(Φi) the measured 
Luminous intensity value at the polar angle Φi from 
the input data. The experiment was set-up to provide 
data from different algorithms. This in turn enables an 
objective comparison and a statistical test to determine 
the best algorithm. Recall that we implemented 
Newton’s method in two distinct ways. The first 
implementation uses the multi-start version of iterative 
improvement (IF) to find a good approximation which 
is then optimized via Newton’s method. The second 
implementation uses the random generator to generate 
initial solutions of which 100 best are optimized with 
Newton’s method. Table 1 shows different algorithms 
that were prepared for the experiment. After each run 
Newton’s optimization method is applied.

Table 1.  Experiment algorithms

Config. Algorithm Multi-start IF steps

Short runs 
1 million

1 S-Newton 1000000 NA
3 IF10 10 100000
4 IF20 20 50000
5 IF50 50 20000
6 IF100 100 10000

Long runs  
4 million

2 L-Newton 4000000 NA
7 IF40 40 100000
8 IF80 80 50000
9 IF200 200 20000

10 IF400 400 10000

Time. We ran the algorithms for two different 
lengths of time. The short run evaluates approximately 
one million possible solutions per instance (lens) in 
just under 45 s, and the long run approximately four 
million possible solutions per instance in about 3 
minutes on a Core I7 - 4790K CPU. Newton’s method 
took an average of 3 to 4 iterations to converge, which 
means that the time it took to run Newton’s method is 
negligible in comparison to the time it took the whole 
algorithm run. Expressed in seconds, the Newton’s 
method took approximately 2×10–3 s, opposed to 
minutes of CPU for the heuristics. In addition to the 
different time/iteration spans we ran the algorithms on 
two instance sets.
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Datasets. Recall the two datasets of instances 
explained above, the dataset of 14 real lenses and the 
dataset of 100 randomly generated artificial instances.

Algorithms. We apply Newton’s method both 
as a standalone algorithm (restarted on a selection of 
randomly generated initial solutions) and as a final 
step after discrete local search algorithm (IF) outlined 
above. There are several algorithms that vary in the 
number of multi-starts (or, equivalently in the length 
of each local search). Depending on the length (short 
run, long run) and the number of restarts we denote 
the algorithms IF10, IF20, IF50, IF100 and IF40, 
IF80, IF200, IF400. The versions without a local 
search are denoted by S-Newton and L-Newton for 
short and long runs, respectively. See Table 1.

5  EXPERIMENTAL RESULTS

We begin the section with a comparison of the raw 
experimental data followed by the performance 
(quality of results) ranking and finish with the results 
of the Wilcoxon Signed rank test.

Experimental results are given in Figs. 3 to 6 and 
are summarized in Tables 2 and 3. 

Comparison of the algorithms based on raw 
experimental results. Obviously, the pure multi-
start Newton’s method is by far the best in artificial 
instances. On the real lenses, the situation is a bit 
different. The Iterative improvement on several 
occasions outperforms Newton’s method with random 
initial solutions. On both datasets, the long run yields 

Fig. 3.  Best found solution on a short run; Artificial lenses per algorithm

Table 2.  Artificial lenses statistical data in RMSp for short and long 
runs

Alg. Mean Std. dev. Min. Max.

Sh
or

t r
un

s 
1 

m
illi

on S-Newton 1.38E–04 8.51E–05 3.51E–05 3.91E–04

IF10 2.34E+01 3.04E+01 5.81E–05 2.43E+02

IF20 1.12E+01 1.64E+01 4.96E–05 1.33E+02

IF50 6.33E+00 9.22E+00 4.13E–05 6.87E+01

IF100 7.23E–01 2.71E+00 3.49E–05 1.91E+01

Lo
ng

 ru
ns

 4
 m

illi
on L-Newton 1.38E–04 8.51E–05 3.51E–05 3.91E–04

IF40 1.21E+01 2.54E+01 4.89E–05 2.43E+02

IF80 1.75E+00 4.30E+00 3.51E–05 1.95E+01

IF200 4.04E–01 1.96E+00 3.51E–05 1.42E+01

IF400 6.17E–01 2.41E+00 3.49E–05 1.89E+01

Table 3.  Real lenses statistical data in RMSp for short and long 
runs

Alg. Mean Std. dev. Min. Max.

Sh
or

t r
un

s 
1 

m
illi

on S-Newton 5.39E+00 3.74E+00 1.79E+00 1.58E+01

IF10 3.45E+00 1.52E+00 1.29E+00 5.79E+00

IF20 8.95E+00 8.30E+00 1.60E+00 3.17E+01

IF50 6.46E+00 4.78E+00 1.60E+00 2.09E+01

IF100 4.91E+00 2.46E+00 1.60E+00 9.35E+00

Lo
ng

 ru
ns

 4
 m

illi
on L-Newton 4.61E+00 2.65E+00 1.13E+00 1.03E+01

IF40 3.20E+00 1.44E+00 1.19E+00 5.79E+00

IF80 3.13E+00 1.75E+00 6.81E-01 6.33E+00

IF200 3.56E+00 2.06E+00 1.07E+00 8.02E+00

IF400 3.90E+00 1.85E+00 1.38E+00 7.56E+00
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Fig 4.  Best found solution on a long run; Artificial lenses per algorithm

Fig. 5.  Best found solution on a short run; Real lenses per algorithm

only slightly better results than the short run does (and 
the short run is executed four times faster). While 
we have no idea how far from optimal solutions the 
achieved values are for real lenses, we know that, by 
construction, a solution with 0 % RMS error exists for 
each of the artificial lenses. Because of that it is worth 
to note that on the artificial set, the random algorithms 
found nearly optimal solutions in all cases. The RMS 
errors are in the range of E-04, which still is not pure 
0 % RMS error, but the very small difference could be 
due to rounding of the values in the .ies files. On the 
other hand, we did not find very low RMS values on 
the real set. The values that were found corresponded 

with the values of previous tests that were performed 
without any numerical assistance. We did however 
perform an experiment on the real set with a longer 
running time, in which we generated 16 million 
and 64 million initial solutions that showed similar 
behavior. The mean error and the minimum error 
over 14 lenses decreased under 3 % and 1.5 % with 
16 million generated solutions, and under 2 % and 
1 % RMS error after 64 million. Recall that 0 % error 
approximation may not be possible in these instances. 
While the success of Newton’s method on artificial 
lenses is not surprising, it is not clear why the method 
is struggling on the realistic dataset. It may be that the 
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delta vector was too large due to a bad initial solution. 
One solution to that problem is the dampened 
Newton’s method, which introduces a dampening 
factor to vector d to slow down the convergence and 
allow for more maneuvering space. But as we set 
out to evaluate the benefits of a standard Newton’s 
method we did not implement any dampening in our 
algorithms. 

The winners in this comparison are the same 
for both sets, but on the real set the differences 
between the random Newton and IF assisted Newton 

algorithms are a lot smaller than on the artificial set, 
we even see that on some instances the IF algorithms 
are better. This could be due to the fact that the IF 
algorithm was previously developed for real lenses 
that are from a limited range in search space and thus 
has a slight advantage on the set. The advantage of the 
pure Newton’s method over the artificial dataset can 
be nicely observed from the data scatter in Fig. 7. We 
see that the IF algorithms provide a very high degree 
of data scatter whereas the random ones provide a 
very narrow result window. This may be due to the 

Fig. 6.  Best found solution on a long run; Real lenses per algorithm

Fig. 7.  Min-Max scatter diagram for artificial lenses; (logarithmic y axis!)
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nature of the search because the IF algorithms focus 
in one defined direction which may not be the best 
one. Because of that, Newton’s optimization cannot 
escape the potential pitfall of the direction. In contrast, 
the randomly generated solutions generally find lower 
quality results, while at the same time providing more 
maneuvering space for Newton’s method to find the 
best direction on more takes. 

A comparison of the algorithms based on 
weighted ranking. We assign a weight from 1 to 10 to 
each instance solution per algorithm. If the algorithm 
found the best solution on an instance it would get the 
weight 10 and if it found the second best solution it 
would get the weight 9, and so on until 1 for the worst 
solution. The total score of the algorithm is the sum of 
the scores on each instance. 

In the same way, we compute the score based on 
the average values per algorithm and lens. The results 
are presented in Table 4. Note that the ranking here 
compares both short and long runs. As expected, 
Table 4 confirms the superiority of the pure Newton’s 
method with the artificial dataset. However, the 
situation is much more complicated on the dataset 
of real lenses. Despite Newton’s methods (long and 
short run) being the two best when considering the 
average results, they are not both when looking at the 
best solutions! The long run Newton is still the overall 
best, but the short run Newton is in fifth place, outrun 
by two short IF algorithms and one long IF algorithm. 
We can also observe that the score differences are 
much smaller on the real set, which indicates that the 
pure Newton’s method is not as superior as it was 
on the artificial set.  The lesser superiority could be 
explained in part by the fact that the IF algorithms 
were developed using the real lens set. Hence the IF 

could have some unexpected advantages. However, 
Newton’s method improves the results in all cases.

Wilcoxon test. The third comparison is based 
on the statistical paired signed Wilcoxon [15] rank 
test. This statistical test compares algorithms pair by 
pair to estimate the difference between them. This 
is done via the asymptotic difference. If the value of 
the asymptotic difference is lower than 0.05 then the 
algorithms in the pair significantly differ one from 
another. The asymptotic differences in the algorithm 
pairs is presented in Tables 5 to 8.

Table 5.  Asymptotic significances of Wilcoxon Signed rank test for 
results for short runs on artificial lenses

algorithm IF10 IF20 IF50 IF100 S-Newton
IF10 4.078E–11 1.020E–13 1.000E–13 1.000E–13
IF20 7.162E–04 3.120E–13 1.000E–13
IF50 3.628E–06 1.650E–13

IF100 3.234E–08

Table 6.  Asymptotic significances of Wilcoxon Signed rank test for 
results for long runs on artificial lenses

algorithm IF40 IF80 IF200 IF400 L-Newton
IF40 1.736E–11 3.917E–11 7.950E–09 1.899E–12
IF80 3.269E–02 5.563E–01 3.411E–06

IF200 4.818E–06 7.044E–05
IF400 1.176E–08

Table 7.  Asymptotic significances of Wilcoxon Signed rank test for 
results for short runs on real lenses

algorithm IF10 IF20 IF50 IF100 S-Newton
IF10 9.815E–04 9.815E–04 9.815E–04 9.815E–04
IF20 4.326E–01 4.133E–02 5.936E–01
IF50 5.098E–01 9.750E–01

IF100 4.703E–01

Table 4.  Weighted ranking score of the algorithms

RANK
Artificial Real

Best Mean Best Mean
Alg. Score Alg. Score Alg. Score Alg. Score

1 L-Newton 944 L-Newton 1000 L-Newton 102 L-Newton 140
2 S-Newton 940 S-Newton 900 IF 100 97 S-Newton 124
3 IF 200 836 IF 20 588 IF 400 96 IF 10 114
4 IF 80 810 IF 100 585 IF 50 94 IF 50 89
5 IF 100 678 IF 10 559 S-Newton 90 IF 20 77
6 IF 400 660 IF 50 538 IF 20 88 IF 100 72
7 IF 50 529 IF 400 385 IF 200 86 IF 40 61
8 IF 40 514 IF 40 358 IF 80 83 IF 80 39
9 IF 20 379 IF 80 304 IF 10 23 IF 400 34

10 IF 10 212 IF 200 283 IF 40 21 IF 200 20
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Table 8. Asymptotic significances of Wilcoxon Signed rank test for 
results for long runs on real lenses

algorithm IF40 IF80 IF200 IF400 L-Newton
IF40 9.815E–04 9.815E–04 9.815E–04 9.815E–04
IF80 5.509E–01 5.553E–02 3.546E–02

IF200 4.703E–01 1.240E–01
IF400 4.703E–01

A look over the Wilcoxon test results reveals 
that there are mostly no similarities between the 
algorithms when they ran on the artificial set. We can 
see that the asymptotic significance values are very 
low, which means that there are significant differences 
between algorithms in pairs. We do however have 
one exception in the pair IF 80 to IF 400, where the 
asymptotic difference is just over the margin, so we 
could say that these two have some similarities. The 
story is completely different on the real dataset, where 
we can find that most IF algorithms are similar to 
random algorithms. Thus, based on the statistical test 
we cannot conclude that either of them is superior. 
This also corresponds with the findings of the ranking 
and RMS error comparison. The Wilcoxon test 
provided similar conclusions as the previous tests did, 
but we need to be careful because the data sets differ 
in size and the real lenses set can be a bit inconclusive 
as it is a rather small sample with only 14 instances. 
That is why the artificial lenses with 100 instances 
could give a more accurate result.

Table 9.  Real lens RMSp for RAN 4M with and without Newton’s 
method; Quality increase ∆

Instance RAN 4M Newton ∆ [%]
CP12632 27.996 7.6908 72.53
CP12634 45.8986 9.05513 80.27
CP12633 10.7706 2.57185 76.12
CA11934 10.2492 2.7982 72.70
CA11268 15.1818 5.38851 64.51
CP12817 29.6252 10.3279 65.14
CA11265 9.6437 4.1553 56.91
CP12636 7.62895 4.03813 47.07
CA13013 2.70647 1.12548 58.42
FP13030 10.1866 3.34882 67.13
CA11525 12.0224 3.00557 75.00
CA12392 6.87747 2.51916 63.37
CA11483 24.5813 4.0032 83.71

6  CONCLUSION

Here we presented an upgrade of a previously 
developed most promising discrete optimization 
heuristics with a continuous optimization method. It 

was shown that the application of Newton’s method 
led to an improvement of both performance and 
quality of solutions. In terms of raw performance, 
we got from the initial 8 minutes’ runtime for one 
algorithm on one lens to an approx. 45 s runtime using 
the upgraded IF 10 or S-Newton algorithm. The stated 
runtime is accurate for symmetric lenses and an input 
of 91 vectors. When working on asymmetric lenses the 
input will be around 33,000 vectors, and this is when 
the problem becomes a big data problem. Because 
of the algorithms’ design, the runtime is expected to 
increase to about 2 hours and 15 minutes. The increase 
will be by a factor of 180, while the number of vectors 
is increased by a factor 360. On the asymmetric lenses, 
the runtime will be lowered from around 24 hours 
to 2 hours and 15 minutes. Despite the drastic time 
shortening the quality of the solutions was not worse 
thanks to Newton’s method, which enabled us to find 
local minimums on the majority of solutions found 
by the heuristic algorithms. In fact, Newton’s method 
successfully minimized the RMS error on all of the 
experiment cases with the average of 60 % increased 
quality (minimized RMS) over previous experiments 
done in ([4] and [7]). This can be well observed in 
Table 9, where we can see the RMS error found by the 
RAN 4M algorithm before the application of Newton’s 
method and after. We can conclude that the integration 
of a numerical approach with previously developed 
heuristics significantly improved the application 
performance to the level at which it is useful in the 
main research. On the other hand, we have learned 
that due to the sensitivity of Newton’s method to the 
choice of initial solutions, it may be rewarding to use 
a preprocessor that may provide promising initial 
solutions. In particular, on the dataset consisting of 
real lenses, the experiment showed that the initial 
solutions provided by a discrete local search algorithm 
improved the overall performance of the algorithm. 
This leads to the conclusion that a combination of an 
algorithm that finds promising initial solutions as a 
preprocessor to Newton’s method may be a winning 
combination, at least on some datasets of instances. 
Hence, in a practical application, it may be worth 
developing good heuristics that may handle specific 
properties of the instances and thus provide promising 
initial solutions for final optimization.
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9  APPENDIX

Jacobian matrix: 
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As the evaluation function is clear enough that it 
is not difficult to find the first and second derivatives 
using any of several available systems for symbolic 
computations, we only present the basic components 
of Newton’s method here. An earlier version of the 
manuscript with an extended appendix is available at 
ArXiv [16]. 

Delta vector: 

 d da da da db db db dc dc dc=
1 2 3 1 2 3 1 2 3[ ].

Right side:

 R a c E a b c
a

E a b c
c

T

( ,..., ) =
( , , ) ( , , )

1 3

1 3

∂
∂

∂
∂
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System of equations to solve for d:

 J x d R xi i i( ) = ( )× .

Coeficient vector:

 x a a a b b b c c c=
1 2 3 1 2 3 1 2 3[ ].

Iterative scheme:

 x x di i i+ −
1
= .
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