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Comparing Social Networks: Size, Density, and
Local Structure

Katherine Faust

Abstract

This paper demonstrates limitations in usefulndsthe triad census for
studying similarities among local structural projes of social networks.
A triad census succinctly summarizes the localdtrie of a network using
the frequencies of sixteen isomorphism classesriafd$ (sub-graphs of
three nodes). The empirical base for this studg tllection of 51 social
networks measuring different relational contentgie¢(fdship, advice,
agonistic encounters, victories in fights, dominamrelations, and so on)
among a variety of species (humans, chimpanzeaenasy monkeys, ponies,
cows, and a number of bird species). Results skimat, in aggregate,
similarities among triad censuses of these emdinneworks are largely
explained by nodal and dyadic properties — the dgrdf the network and
distributions of mutual, asymmetric, and null dyad§hese results remind
us that the range of possible network-level prapgsris highly constrained
by the size and density of the network and cautstwould be taken in
interpreting higher order structural properties wheéhey are largely
explained by local network features.

1 Introduction

This paper addresses several issues concernind ktcacture in social
networks. Most generally, it continues the workSkvoretz and Faust (Faust and
Skvoretz, 2002; Skvoretz and Faust, 2002) modesimglarities in the structural
features of diverse social networks. It also edterthe idea of “structural
signatures” for these comparisons (Skvoretz ancs£#002). In addition to these
methodological contributions, the empirical exampl®vides insights into the
local nature of the structures of a diverse coitectof social networks and in
doing so challenges the basis for comparative modedf higher order (macro)
structures in networks. In particular, this papees triad censuses for network
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comparison and points out limitations in their udeéss for that purpose by
showing that these triad distributions are largelyplained by more local
properties — network density and the dyad distributio

The general question addressed throughout thisrpi@paVhat accounts for
similarities among triad censuses from diverse aooetworks? The analytic
strategy is straightforward. Similarities among etyed triad distributions for a
collection of social networks are represented usingespondence analysis and
the resulting dimensions of similarity are interget using local network
properties.

2 Comparing networks

The majority of social network studies are case istsidf a single group or setting.
Relatively less attention has been paid to compassasing networks from
multiple settings. Studies employing multiple netisrfocus on one of two
distinct general questions. The first asks whetietvorks of a specific relational
content, in aggregate, exhibit common structuratiemcies. The second asks what
structural features distinguish among different danof social relations. In
approaching the first sort of question, some stad@®@amine the same relation
measured in multiple settings. Empirical exampleslude friendships in schools
or classrooms (Bearman, Jones, and Udry, 1997; had|i1974b; Leinhardt, 1972;
Snijders and Baerveldt, 2003), social interactionsvorkplaces (Johnson, Boster
and Palinkas, 2003), and social and economic wiatin communities or villages
(Laumann and Pappi, 1976; Rindfuss et al., 2004wishe et al., n.d.) and so on.
Wasserman (1987) and Pattison and Wasserman (2yibe methodology for
these comparisons. In addition, there are studimesvhich roughly similar
relations are compared across different settinBsrnard, Killworth, and Sailer’s
studies of informant accuracy using observations\arthal reports of interactions
are an example of such applications (Bernard etl8i84) as is Freeman’s study of
group structure of social interactions in differsettings (Freeman, 1992). One of
the most prolonged projects along these lines s thassic work by Davis,
Holland, and Leinhardt using the sociometric datanky a collection of
sociometric measurements of positive interpersosahtiments from different
settings to investigate the presence of structoadénce, clustering, hierarchy, and
transitivity (Davis, 1970; Davis and Leinhardt, 19Fblland and Leinhardt, 1971,
1973). Similarly, Butts (2001) investigated the oy of complexity in social
networks gathered using different data collectiootcols.

In contrast, another line of research is concermeth distinctions among
diverse kinds of social relations in disparate gr@u The work of Skvoretz and
Faust is a case in point (Faust and Skvoretz, 2@Xoretz and Faust, 2002).
Using exponential random graph models (Wassermah Rattison, 1996), they
compared the direction and magnitudes of parametdraracterizing local



Comparing Social Networks: Size, Density, and L&talcture 187

structure in graphs and calculated measures ofndilssity between graphs for a
variety of social networks. Results showed diffees in the “structural
signatures” of different kinds of relations, notaldntagonistic relations such as
fighting and dominance on the one hand, and ratatiof affection (friendship,
liking) and affiliation on the other. Differencdsetween species were apparent
only for the first kind of relation, where humansosled tendencies toward
mutuality and in-stars and away from transitivity wéas non-human primates
showed tendencies in the opposite direction onehgoperties (Skvoretz and
Faust, 2002).

The current work continues the line of inquiry iated by Skvoretz and Faust.
In particular, it uses the triad census as a vehiol comparisons to investigate
local structural similarities among a collection &fL networks of different
relational contents and measured on different gseci

3 Notation

Social networks consist of social relationshipswesn pairs or sets of social
units, such as directed friendship choices betwsemool children, victories in
antagonistic encounters between fighting deer, dwvic seeking between
corporate managers. Formally, a social network dodirected dyadic relation
consists of a set of social units, referred to @ers, and a set of linkages between
pairs of actors, referred to as ties. Social nekw@re commonly represented by a
graph or directed graph. In a directed graph nadpsesent the social units in the
network and arcs represent the directed ties betvedrs of actors. A directed
graph with node se¥ and arc seE is denoted5(V,E), with n the number of nodes
in the graph. A social network or its associatddeated graph can also be
presented in a sociomatrix withrows and columns indexing actors (in identical
order). An entry in the sociomatrix codes the tieni the row actor to column
actor. When a tie is either present or absent,réaion is dichotomous, taking
on values of 0 or 1. In general self ties are dimeel.

4 Local structure, isomorphism classes and subgraph
censuses

There has been considerable and enduring intenekical structure in networks
since the early years of social network studies. alostructure consists of
configurations and properties of small subgraphsi@des and arcs, most notably
dyads and triads. A dyad is a subgraph of two naghelsthe possible arcs between
them. In a directed graph there are three isomempltlasses of dyads: mutual
(M), asymmetric (A) ignoring the direction of thecarand null (N). A triad is a
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subgraph of three nodes and the arcs between themdes. In a directed graph
each triad is isomorphic with one of sixteen isoptosm classes or triad types,
shown in Figure 1. Holland and Leinhardt (1970%tfiproposed the now standard
MAN notation for triads. This notation records tmeimber of mutual (M),
asymmetric, (A) and null (N) dyads in each triad,ngavith further indication of
the direction of ties, when there is more than om&d with a given number of
mutual, asymmetric, and null dyads. In Figure 1 thed types are arranged
vertically by the number of ties present.
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Figure 1: Triad isomorphism classes with MAN labelling.
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A standard vehicle for studying local structure issabgraph census. A
subgraph census records the frequency of each igdnson class observed in a
directed graph or network. For example, a dyad egengcords the number of
mutual, asymmetric, and null dyads in a network. ifirty, a triad census records
the number of triads in each of the sixteen triemmorphism classes.

The appeal of the triad census as a means for tigatsg structural patterns
in social networks lies in the fact that it sucdlpgcsummarizes a large amount of
information about a network while retaining inforiwen about theoretically

n
important structures. In a directed graphnohodes there ar{sjtriads. This

guantity increases rapidly as the size of the graygheiases, making summary into
sixteen isomorphism classes a substantial simplifoen (Wasserman and Faust,
1994). Nevertheless, this summary retains importafdrmation about local
features of the network and allows one to test hyps¢s about the prevalence of
structural properties such as transitivity or insiivity.

5 Macro structures and thetriad census

Research employing triads and triad censuses hasegriuitful and long lived,
largely due to the important theoretical propereesbodied in triads and the links
they afford between local (micro) structures andbglo(macro) structures (Davis,
1967, 1970; Davis and Leinhardt, 1972; Holland aminhardt, 1971; Johnsen,
1985, 1986, 1989, 1998; Friedkin, 1998). Whereasronstructures pertain to
small subgraphs and properties measured on therororsdructures characterize
the entire graph or network. Usefulness the tiadsus for testing theoretical
macro structures arises because some theoreticalons&ructures are contradicted
by specific configurations of triads. Support fbeetmacro theory is evaluated by
examining empirical networks for the occurrencetmads inconsistent with the
theory. Theories that have been expressed in triagims include structural
balance, clusterability, ranked clusters, and triarigy.

Structural balance is one of the most straightfodvtheories expressed in
triadic terms. In early work in this area, Cartwrigand Harary (1956) generalized
Heider's (1946) cognitive balance notion to struatubalance. As a macro
structure, a balanced signed graph has two subgrauere all ties within each
subgroup have positive signs and all ties betwaentwo subgroups have negative
signs. Structural balance also can be examinedgudirected rather than signed
graphs (Johnsen, 1985, 1986, 1998), where mutealtdike the place of positive
ties and null ties take the place of negative tiés.a balanced directed graph all
mutual ties are within subgroups and all null teee between subgroups. In a
balanced directed graph only two kinds of triads peemitted: {300 and 102}.
Other triads violate the theory.



190 Katherine Faust

The idea of structural balance was extended tontiteon of clusterability by
Davis (1967) to allow more than two subgroups.alolusterable signed graph all
positive ties are within subgroups and negative aee between subgroups. In a
clusterable directed graph three triads are peewhitt{300, 102, 003}. All other
triads violate the theory. As a substantive exampttusterability would
characterize a relation such as friendship if th@ege multiple cliques of mutual
friendships in a population, but no friendshipsvbetn cliques.

Further generalizations of these ideas include ednk&lusters (Davis, 1970;
Davis and Leinhardt, 1972) and transitivity (Hollarethd Leinhardt, 1971).
Ranked clusters extend the clustering model towalldirected ties between
clusters. The permitted triads for this model §60, 102, 003, 120D, 120U,
030T, 021D 021U}. This macro model would represamopulation with multiple
friendship cliques ranked in prestige or popularity,which friendships between
cligues are directed from lower to higher statugue# members. Transitivity holds
for a triple of distinct nodes if, whenever the> | tie and the j> k ties are
present, then the® k tie is present. The transitivity model includeseadriad in
addition to those for ranked clusters: {300, 10R30120D, 120U, 030T, 021D
021U, 012}. The macro structure for transitivityoprdes for separate systems of
ranked clusters within a population. As a substengxample, this macro model
would characterize friendships in a population vghéifferent categories of people
maintained separate systems of ranked cliques.

Since these structural theories imply different pesf of triads, we expect to
observe dissimilar triad distributions for sociatworks of diverse kinds of social
relations. For example, relations of dominance g&) 1974) generally exhibit
hierarchical patterns and would be expected to aantriads consistent with
transitivity. On the other hand, affectionate ipenrsonal relations, such as
friendship, would be expected to form subgroupsmaftual ties, consistent with
balance or clusterability. Thus, triad distributsoshould be useful for studying
similarities and dissimilarities in the local sttural properties of diverse social
networks. The following section describes methodglfor these comparisons.

6 Data and analysis strategy

6.1 Data

The empirical base for this investigation is a eotlon 51 of social networks
representing a variety of types of relations and ahispecies. This collection
includes relations of dominance, friendship, adveeeking, grooming, fights,
social grazing, non-agonistic social acts, emarhownications, and confiding, to
name a few. Relations are measured among manyreiiffespecies, including
humans, baboons, colobus monkeys, cows, hyenas, gyorad deer, sparrows,
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willow tits, and vervet monkeys. These networks argample of social networks
of the sort generally seen in the social network atitblogy literatures and were
compiled from widely available sources (for examplee standard data in

UCINET, journal articles, and other published s@s#)}c The Appendix lists and

describes the networks and their sources. All oéte are coded to be

dichotomous and the ties are directed. The hgtareity of relations in this

sample is an advantage for the current analysisesthe goal is to examine

similarities and dissimilarities among the netwqrksather than structural

tendencies in a single type of relation. The ihigapectation is that networks
with similar social relations should exhibit similatructural tendencies and thus
have similar profiles of triad censuses. Datanwestigate this expectation consist
of the triad census (expressed as relative freqgeshdor each network in the set
of 51. This information is arrayed in a matrix withhe 51 networks on the rows
and 16 triad types on the columns. The entriedlegaelative frequencies of each
triad type for each network.

6.2 Analysis strategy

The logic of the analysis is as follows. The fire#srepresents similarities among
the networks based on their triad censuses and aqurtréad types based on their
distributions across networks. Correspondenceyaiglis used to produce a low
dimensional representation of the similarities amoetworks and among types of
triads. The second step in the analysis seekstéopret the spatial configurations
of networks and triads using local structural pmbjgs of the networks
Correspondence analysis (Blasius and Greenacre,; 188&nacre and Blasius,
1994; Weller & Romney, 1990) is a method for studyietationships in two-way
arrays, and results in a low dimensional representaif similarities in the data.
It is accomplished through decomposition of a mxatnito its basic structure using
singular value decomposition (Clausen 1998; We#Hled Romney, 1990; Digbhy
and Kempton, 1987). In practice, a “normalized’rsien of the matrix is
decomposed: entries in the original matrix are didd by the square root of the
product of the row and column marginal totals pritw singular value

decomposition. LeA be a rectangular matrix of positive entries witihows and
1 1

h columns (whergy > h). Two diagonal matrice® 2and C 2 have entries equal
to reciprocals of the row and column totalsAaf

R_% = diag{%}

(6.1)
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1
C2=diad *_ (6.2)

Correspondence analysis is a singular value decompof the normalized
11
matrix: R 2AC 2 = XAY'where A is a diagonal matrix of singular valuegj, , }

andX andY are the left and right singular. Graphic displayssented below use
principal coordinatesy, (for rows) andv, (for columns) where:

a,, .
Uy = A X a1_ (6.3)

- a.,
Vi = A Yik a_ (6.4)
+j

On each dimension these scores have weighted mequnal to 0.0 and
weighted variances equal to the squared singulluresa

g h
a, _ & _ 6.5
u = u. =0 ( . )
; « a++ ; K a'++
iu? a. :iu? a+j :/]2
i=1 « a++ i=1 X 4+ “ (66)

Squared singular values express the amount of tvamigchi square distance)
that is explained by each dimension in the modéie fotal amount of variation in
the data is referred to as inertia (Greenacre, 1@3#¢enacre and Blasius, 1994;

W
Clausen, 1998) and is equal to the sum of the sguaingular vaIues:Z/lﬁ.

k=1

Table 1: Descriptive Statistics for 51 Networks.

Mean

Nodal Proportion Proportion Proportion Proportior
Size Degree Density Mutual Asymmetric Null Transitive
Mean 20.51 5.06 0.37 0.15 0.43 0.42 0.64
Std. Deviation 16.89 2.93 0.20 0.17 0.28 0.30 0.20
Minimum 4 0.55 0.02 0.00 0.01 0.00 0.21
Maximum 73 13.75 0.86 0.81 0.93 0.98 0.98
Percentiles 25 10 2.62 0.21 0.03 0.19 0.15 0.52
50 14 4.64 0.43 0.07 0.40 0.41 0.63

75 28 6.83 0.50 0.23 0.73 0.69 0.80
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7 Results
7.1 Descriptive statistics and triad censuses

Descriptive statistics for the networks are presdnin Table 1 These results
show considerable variability among the networkstheir size, density, dyadic
distributions, and tendencies toward transitivitiNetworks range from 4 to 43
members, with densities ranging from 0.02 to 0.86.

The triad censuses for the 51 networks are predeimtelable 2. Censuses
were calculated using an adapted version of the B§ram described by Moody
(1998). Glancing at these distributions shows somt@ble distinctions among the
networks. First, 003 (all null) triads are prevslein friendships between
adolescent boys (colel and cole2), grazing preferdetween cows (cowg), social
licking between cows (cowl), and dominance betweersery school boys (kids2),
accounting for more than 50% of the triads in thds&ributions. Completely
mutual triads, 300, are rare across the networks, rbach almost 50% in the
network of grooming between chimpanzees (chimpB)e 030T transitive triad is
prevalent in agonistic bouts between baboons (baBpdhreats between Highland
ponies (ponies), fights between adult rhesus monkggesusl and rhesus6),
dominance between sparrows (sparrow), and aggmessivcounters between
juvenile vervet monkeys (vervet2a).

7.2 Correspondence analysis, network and triad spaces

Turning now to similarities among the 51 tirad distitions, scores for the first
four dimensions of the correspondence analysis ef nbtwork-by-triad census
array are presented in Table 3, for both networks @iad types. The first four
dimensions account for 33.8%, 24.9%, 10.7% and3%8.of the inertia,

respectively (77.7% of the total inertia).

2The density of a network is the proportion of pb$sities that are present. The measure of
mutuality is the proportion of dyads that are muthd/(M+A+N). The proportion of dyads that
are asymmetric and null are computed similarly. Theasure of transitivity is the number of
transitive triples divided by the number of tripléisat meet the condition for possibly being
transitive. Specifically, it is the proportion afji k triples where the-»j tie and the £ k ties are
present in which the> k tie is also present.
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Table 2: Triad distributions for 51 Networks, expressedascentages.

Tryad type

Network 003012102 021D 021U 021C 111D 111U 030T 030C 201 120D 120U 120C 210 300

baboonf 12 35 02 10 09 07 05 01 14 01 00083 00 01 01 o0
baboonml1 00 00 00 00 00 00 00 00 15 00 00 00 50 00 15 20
baboonm2 00 05 00 10 10 00 00 10 40 00 0000 20 00 05 00
baboonm3 02 18 02 02 00 08 01 02 51 00 0003 10 00 01 o0

banka 13 36 02 12 08 05 03 01 15 00 01083 00 01 00 00
bankc 21 33 08 06 12 04 05 04 04 00 0102 02 00 00 00
bankf 38 29 11 05 04 03 04 02 00 00 00 02 01 00 00 01
banks 07 13 01 19 01 04 00 13 09 00 0201 14 03 10 03
cattle 12 31 02 13 07 10 02 02 17 00 00 02 01 01 00 00

chimpl 00 08 01 10 19 06 01 04 42 00 o001 05 02 01 00
chimp2 00 00 00 04 00 00 02 08 06 00 0212 19 08 27 11
chimp3 00 00 02 00 00 00 04 00 00 00 17 00 01 00 27 49
colel 81 12 06 00 00 00 00 00 00 00 00 00 00 00 00 00
cole2 79 14 06 00 00 00 00 00 00 00 00 00 00 00 00 00
colobusl 00 00 00 25 00 00 00 25 00 00 00 00 25 00 25 00
colobus2 00 00 10 20 00 00 20 00 00 00 0010 00 10 20 10
colobus3 02 08 19 00 00 02 10 13 00 00 2102 02 02 08 08

cowg 93 02 04 00 00 00 00 00 00 00 00 00 00 00 00 00
cowl 87 12 01 00 00 00 00 00 00 00 00 00 00 00 00 00
eieskl 49 23 15 01 02 01 02 03 00 00 0100 01 00 01 o0
eiesk2 39 23 17 02 03 01 05 04 01 00 0201 01 00 01 01
eiesm 20 09 12 06 00 01 01 13 01 00 1401 02 00 08 10
fifth 29 32 21 02 02 01 02 03 01 00 0102 01 01 01 01
fourth 19 25 28 04 02 02 05 05 01 00 0302 01 01 03 01
hyenaf 55 31 01 06 01 02 00 01 02 00 0000 01 00 00 00
hyenam 28 34 02 15 04 05 00 04 07 00 0000 01 00 00 00
kids1 06 11 13 05 01 04 08 14 03 00 06 03 04 03 12 07
kids2 60 28 04 02 02 02 01 01 01 00 0000 00 00 00 00

macaca 09 13 21 083 02 02 09 09 00 00 1002 02 01 10 07
nfponies 21 41 00 12 06 08 00 00 13 00 00 00 00 00 00 00

patasf 00 00 00 03 03 05 00 00 81 01 0005 02 00 00 00
patasg 38 29 14 02 01 03 03 04 00 00 0200 00 01 01 01
ponies 00 01 00 02 04 04 01 02 52 00 0017 12 01 04 00
prison 82 12 05 00 00 00 00 00 00 00 00 00 00 00 00 00

reddeer 06 20 09 06 00 00 00 26 00 00 09 00 11 00 06 09
rhesusl 00 00 00 03 00 09 00 03 74 00 0003 09 00 00 00
rhesus2 00 10 00 00 00 40 00 00 50 00 00 00 00 00 00 00
rhesus4 01 07 00 10 10 16 01 01 45 01 0004 01 02 01 00
rhesus5 00 25 00 10 08 16 00 01 37 00 o001 02 00 00 00
rhesus6 00 03 01 13 01 05 00 02 61 01 0010 02 01 03 00

silver 00 00 03 06 01 01 02 06 19 01 0021 09 03 17 12
sparrow 01 08 00 09 05 09 01 01 54 01 0005 03 01 00 00
third 10 21 19 05 04 04 06 08 03 00 0405 02 01 06 03
tits 00 00 02 09 00 04 00 05 21 00 00 14 16 04 20 05
vebf 35 22 20 083 01 02 03 06 01 00 0102 01 00 01 01
vcg 09 14 17 05 02 02 06 12 03 00 06 05 03 02 08 05
VCWw 28 27 14 05 03 04 03 05 02 00 0003 02 01 01 01

vervetla 01 11 00 16 08 08 03 03 37 00 0005 05 02 01 00
vervetlm 02 07 01 15 12 02 04 04 34 00 0108 05 02 03 00
vervet2a 00 00 01 08 01 00 01 01 71 00 0014 04 00 01 o0
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Table 3: Correspondence analysis of triad censuses, séorestworks and triads.

Dimension

Network 1 2 3 4
baboonf 0.078 -0.360 -0.448 0.190
baboonml -0.980 1.141 1.395 0.307
baboonm?2 -0.803 -0.187 0.378 0.473
baboonm3 -0.656 -0.573 0.110 -0.131
banka 0.133 -0.371 -0.420 0.191
bankc 0.402 -0.166 -0.422 0.283
bankf 0.756 -0.107 -0.175 0.117
banks -0.341 0.388 0.126 0.597
cattle 0.024 -0.411 -0.361 0.172
chimpl -0.667 -0.563 -0.171 0.105
chimp2 -0.767 1.182 0.542 0.346
chimp3 -0.548 2.390 0.080 -1.675
colel 1.358 -0.206 0.620 -0.222
cole2 1.336 -0.209 0.582 -0.205
colobus1 -0.641 0.906 0.516 1.320
colobus?2 -0.406 1.013 -0.392 0.223
colobus3 -0.014 1.214 -0.841 -0.388
cowg 1.478 -0.225 0.869 -0.314
cowl 1.414 -0.267 0.772 -0.252
eieskl 0.955 -0.026 -0.018 0.002
eiesk2 0.784 0.077 -0.213 0.037
eiesm 0.208 0.904 -0.289 -0.298
fifth 0.700 0.072 -0.388 0.124
fourth 0.517 0.274 -0.605 0.147
hyenaf 0.971 -0.275 0.242 0.036
hyenam 0.456 -0.286 -0.174 0.273
kids1 -0.102 0.782 -0.397 0.142
kids2 1.092 -0.229 0.250 -0.041
macaca 0.117 0.848 -0.602 -0.084
nfponies 0.304 -0.462 -0.293 0.153
patasf -1.081 -0.965 0.181 -0.570
patasg 0.797 0.011 -0.206 0.078
ponies -0.985 -0.427 0.354 -0.099
prison 1.369 -0.222 0.651 -0.225
reddeer80 0.768 -0.347 0.019 0.023
rhesusl -1.071 -0.829 0.302 -0.393
rhesus2 -0.750 -1.008 -0.344 -0.644
rhesus4 -0.729 -0.721 -0.217 -0.172
rhesus5 -0.463 -0.695 -0.349 -0.060
rhesus6 -0.938 -0.675 0.094 -0.243
silver -0.799 0.642 0.341 -0.015
sparrow -0.783 -0.710 -0.058 -0.206
third 0.154 0.370 -0.550 0.188
tits -0.837 0.493 0.480 0.299
vcbf 0.725 0.112 -0.235 0.091
vcg 0.045 0.632 -0.461 0.122
vVCw 0.539 0.003 -0.266 0.187
vervetla -0.634 -0.477 -0.136 0.138
vervetlm -0.622 -0.291 -0.100 0.200
vervet2a -1.059 -0.739 0.265 -0.343
vervet2m -0.802 -0.426 -0.041 0.015
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Dimension 2

Triad 1 2 3 4
003 1.209 -0.179 0.452 -0.139
012 0.489 -0.207 -0.394 0.183
102 0.542 0.450 -0.657 0.053
021D -0.360 -0.066 -0.166 0.520
021U -0.243 -0.485 -0.399 0.258
021C -0.426 -0.693 -0.437 -0.295
111D -0.011 0.597 -0.738 0.066
111U -0.189 0.606 -0.220 0.623
030T -0.933 -0.760 0.126 -0.302
030C -0.681 -0.460 -0.195 -0.263
201 -0.011 1.538 -0.843 -0.940
120D -0.737 0.017 0.093 0.033
120U -0.859 0.589 0.999 0.732
120C -0.501 0.708 -0.199 0.390
210 -0.603 1.311 0.295 0.181
300 -0.543 1.955 0.256 -1.142
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Figure 2a: Correspondence analysis of triad censuses, netajmake.
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Figure 2b: Correspondence analysis of triad censuses, tpades

Graphic display of the scores for the first two dite®ns are in Figures 2a and
2b, for network and triad spaces respectively. dohefigure, points that are close
in space have similar profiles. In Figure 2a nakgothat are close to one another
have similar profiles of proportions in their tri@ménsuses, whereas those that are
far apart have different triad census profiles.n this figure we see that triad
censuses for the networks of fights between yeanlivegus monkeys (rhesus2) and
fights between patas monkeys (patasf) are similaratth other and different from
networks of grooming between chimpanzees (chimp3jad distributions in these
three networks are different from the distributidos grazing preference between
cows (cowg), social licking between cows (cowl) afrtendships in a prison
(prison). Figure 2b presents the similarity spémetriads. In this figure triad
types that occur in similar proportions across thBection of networks are close
together. There is a clear diagonal pattern e dimilarity space for triad types,
related to the number of ties in the triad. Triadsh more ties (300) are toward
the upper left of the figure whereas triads withvée ties (003) are toward the
lower right. Symbols for points in Figure 2b code thumber of ties in the triad
(from 0 to 6) and in Figure 2a code the densityhaf hetwork (in quintiles).

We can also take a joint view of the relationshgivieen networks and triad
types, though, for ease of visualization the two figurations are presented in
separate plots in Figures 2a and 2b. Viewing tlspldys in Figures 2a and 2b
together, we see in the upper left of the plots fraoming between chimpanzees
(chimp3), agonistic encounters between chimpanz@dsmp2), non-agonistic
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social acts between colobus monkeys (colobus3), dordinance between male
baboons (baboonml) are associated with 300 triatts.the lower left of the

figures, fights between yearling rhesus monkeys @82y and fights between
female patas monkeys (patasf) are associated weghO80T, 030C, and 021C
triads. In the lower right, cows grazing and colisking (cowg and cowl),

friendships between adolescents (colel and col@?) faendships in a prison
(prison) are associated with the 003 triad.

7.3 Interpreting the correspondence analysis dimensions

What are the bases for resemblance among thesk delasuses? To investigate
this question, let us look more closely at the digiens of the correspondence
analysis solution, focusing first on the network spa Specifically, the following
correlations and scatterplots explore whether sirities among triad distributions
for these networks are largely patterned by nodaldyadlic properties.

2.0

Dimension 1

1.0

Density

Figure 3: Scatterplot of correspondence analysis netwodcsmimension 1 and the
network density, N = 51 networks.
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Figure 4: Scatterplot of correspondence analysis netwodcsplimension 1 and the
proportion of null dyads, N = 51 networks.

Dimension 2

-2 0.0 2 A4 .6 .8 1.0

Proportion Mutual Dyads

Figure5: Scatterplot of correspondence analysis netwodcspmimension 2 and the
proportion of mutual dyads, N = 51 networks.
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Figure 6: Scatterplot of correspondence analysis netwodcsplimension 3 and the
proportion of null dyads, N = 51 networRé= 067 - 49X + 52X ?.
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Proportion Asymmetric Dyads

Figure 7: Scatterplot of correspondence analysis netwodcsplimension 4 and the
proportion of asymmetric dyads, N = 51 netwoMs —059+ 382X — 403X 2.
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As suggested by the patterning of triad space, th& flimension of the
correspondence analysis network space is assochmtdd the density of the
network — the correlation between coordinates anfitst dimension and network
density is r = -0.882. However, the correlation @sen stronger with the
proportion of dyads that are null; r = 0.994. Tdexond dimension is associated
with the level of mutuality in the network. Thisndénsion correlates 0.941 with
the proportion of dyads that are mutual. The thintiension is quadratic function
relating to the proportion of dyads that are nutle best fitting quadratic equation
relating scores on dimension three to the proportiof null dyads is
Y = 067- 49X +53X? with r?= 0.792. The fourth dimension is related in a
guadratic form to the asymmetry in the network, albeweakly
(Y =-059+ 382X - 403X?, r> = 0.410). Scatterplots of these relationships are
shown in Figures 3 through 7.

Turning to the correspondence analysis space fadgrithe first dimension
correlates 0.962 with the proportion of null dyads the triad; the second
dimension correlates 0.956 with the proportion otitnal dyads; the third
dimension is related in a quadratic function to theportion of null dyads
(Y = 067+ 021X — 325X ?, r? = 0.592); and the fourth dimension is a quadratic
function of the proportion of asymmetric dyad¢ £ —053+ 328X — 306X ?, r? =
0.519).

These results demonstrate that similarities amdregy ttiad distributions for
these social networks are largely explained by vecall@roperties, the nodal and
dyadic distributions at most. In other words, maniglresemblance among these
triad distributions does not require triadic lepebperties.

Canonical correlation analysis (Tatsuoka, 1971) glesy a way to summarize
the overall degree of linear relationship betwedre tdimensions of the
correspondence analysis and dyadic properties ofn#tevorks. The canonical
correlation between two sets of variables is theximam correlation between
linear combinations of the variables in each s&wr this analysis the first set
consists of the four dyadic measures (the proportiat dyads, the proportion
mutual dyads, the best fitting quadratic functiontleé proportion of asymmetric
dyads, and the best fitting quadratic function of groportion of null dyads) and
the second set consists of the scores from thet fiosir dimensions of
correspondence analysis. Canonical correlationyarals repeated separately for
the network and the triad spaces.
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Table 4: Canonical correlation loadings.

4a Loadings from canonical correlation analysidwoek space

Dyadic Measures

Proportion null

Proportion mutual

Quadratic function of proportion null
Quadratic function of proportion asymmetric

Correspondence Analysis Dimensions

Dimension 1
Dimension 2
Dimension 3
Dimension 4

Canonical Variate

1 2 3 4
-0.996 0.060 0.065 0.005
0.3570.929 -0.095 0.010
-0.04D.127 -0.978 0.157
0.28Y¥.306 0.503 -0.766

-0.998 -0.048 0.041 0.008
0.044 -0.993 -0.054 -0.099
-0.045 0.072-0.973 -0.216
-0.003 0.085 0.223-0.971

4b Loadings from canonical correlation analysif@drspace.

Dyadic Measures

Proportion null

Proportion mutual

Quadratic function of proportion null
Quadratic function of proportion asymmetric

Correspondence Analysis Dimensions

Dimension 1
Dimension 2
Dimension 3
Dimension 4

Canonical Variate

1 2 3 4
0.947-0.042 0.316 0.027
-0.4260.900 -0.009 0.086
-0.07®.159 -0.970 -0.165
-0.298513 0.049 0.804

0.930-0.235 0.281 0.040
-0.308 -0.921 0.066 0.228
-0.044 -0.059 -0.976 0.206
0.075 0.512-0.077 0.852
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For the network space, there are four significaambhanical correlations (all
with p <.0001), equal to 1.0, 0.999, 0.951, andb@, respectively. Together the
first four canonical variates account for 86.7%tbé& variance in the first four
dimensions of the correspondence analysis of theor&tspace and 90.4% of the
variance in the four dyadic network measures. Cam@dnloadings for the
variables in the two sets are reported in Table @de canonical loading is the
correlation of the variable with the linear comMiona.). For the triad space there
are also four significant canonical correlationise(ffirst two with p < .0001, and
the second two with p < .001), having values 90, 0.979, 0.825, and 0.714
respectively.

In light of the fact that the first four dimensiongthe correspondence analysis
network space explain 77.7% of the inertia in thad census distributions for
these 51 networks, and dyadic level network propsrticcount for 86.7% of this
space, one might argue that around 67% (0.867 X7).df the similarity among
these triad distributions is accounted for by dyatdeel network properties.
Similarly, around 62% (0.802 x 0.777) of the simifyaramong triad types is
accounted for by dyadic features of these triads.

In summary, these results demonstrate that, in agdee similarities in the
triad censuses for a wide range of different somatworks can largely be
accounted for by dyadic level features of the networlA reasonable estimate is
that around two thirds of the variance among thevoeks’ triad distributions is
accounted for by no more than nodal and dyadic featutHow are we to interpret
these results, and what are their implications éor understanding of social
network structure? The following section addredbese questions.

8 Discussion and implications

Two related questions are raised by these resulisst, what gives rise to the
finding that similarity among triadic distributions largely accounted for by lower
order (nodal or dyadic) properties? Second, whatthee implications of these
result for comparisons of triad distributions inced networks? Clues to the
answer these questions are found throughout thexatiire on triads and are
provided more directly in literature on effects @twork size and density on graph
level indices. Four points are pertinent: effeatsize and density on graph level
measures; comparative use of triad censuses; abseEngocial structure in many
social networks; and distinction between triad rlisttions and configurations of
local structural properties.
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8.1 Size and density

Network size has been recognized an issue in sudfi¢riads since their earliest
empirical use. In his 1970 paper on clustering dmeérarchy, Davis (1970)
analyzed 742 sociomatrices and presented resultdriafl distributions and
statistics for triadic cycles separately for networiks five ranges of sizes.
However, he does not reveal his rationale for dadng Davis does note that for
the 210 triad, which is not permitted under thekesth clusters model, “results are
catastrophic in the larger groups” (1970: 845-84bBpvis attributes the surplus of
210 triads in large networks to the frequency ofefixchoice data collection
designs that force otherwise mutual ties to be asgtnm Johnsen (1985, 1986,
1998) pays considerably more attention to network sizd its impact on possible
micro and macro structural models. Picking up oavi®’' (1970) results for
networks of different sizes, Johnsen (1985) obsethat for network sizes 8 to 13,
data perfectly fit the ranked clusters of mutualquks model. Friedkin (1998:
143) addresses the point more extensively in hisudision of macro models for
large networks. With respect to the 003 triad ¢aill dyads) he notes that “...
especiallyin large groups, the possibility of three N linkadtors should not be
forbidden” (Friedkin, 1998: 143, emphasis in thegmal).®? So, authors have
recognized the relationship between network sizé @radic macro models, but
have not addressed the issue directly.

Importantly, network density and not network sizer e, is crucial for
understanding the distribution of triadic configuoams. The densityd, of a
network is the number of arcs in the network dividey the possible number of
arcs. If the average number of arcs from each nedeed, the total number of
arcs increases as a linear function of network bizethe possible number of arcs
increases with the square of network size. Thluishe average number of arcs
from each node is fixed, a reasonable assumpticactibrs can only maintain a
limited number of ties, then network density mustreéase with network size.
Why is this important?

Given the density of the network, the range of gasstriad distributions
is heavily constrained. Some triad types have exgigrow probabilities, simply
because of the density of the network. Formulaettierprobability of each of the
16 triad types, given network density, are preseime8kvoretz et al. (2004). To
illustrate, the probability of a 300 triad (all maluties) is equal td®. In a
network with 10 actors and 3 ties per actor, thasity is equal to .33, and the
probability of a 300 triad is 0.0014. If the sizetbe network is increased to 100,

% Network size is also mentioned in discussionstsfeffect on statistics for testing structural
hypotheses, but largely in the context of its effen the standard errors. It is easier to detect
departures from expected frequencies in larger gsotlhan in smaller groups (Leinhardt 1972,
Hallinan 1974a, Holland and Leinhardt 1975).
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but the mean number of ties per actor remains 8 dénsity decreases to 0.03, and
the probability of a 300 triad is 0.0000000008.

Table 5: Triad census of the routing data.

Triad Count Percent

003 322,769,974,374,083 99.99252370409
012 23,955,959,979 0.00742143658
102 175,605,448 0.00005440169
021D 882,596 0.00000027342
021U 109,179 0.00000003382
021C 444,490 0.00000013770
111D 4917 0.00000000152
111U 15,508 0.00000000480
030T 17,107 0.00000000530
030C 111 0.00000000003
201 1002 0.00000000031
120D 899 0.00000000028
120U 1120 0.00000000035
120C 96 0.00000000003
210 121 0.00000000004
300 69 0.00000000002
Total 322,794,107,416,725

Adapted from Vladimir Batagelj and Andrej Mrvar @D): A
subquadratic triad census algorithm for large spametworks with
small maximum degree. Social Networ8, 237-243.

To put the effect of size and density in sharperspective for comparing
empirical networks, consider the network of routifigkages on the internet
analyzed by Batagelj and Mrvar (2001). This netwbds 124,651 nodes and
207,214 edges. The mean number of ties per nod&3sand the density is
0.000027. The triad census for the routing netwakpressed as a percentage
distribution, is in Table 5. There are 322,794,80B,725 triads in this network,
of which 322,769,974,374,083, or 99.99%, are comatyenull (type 003). This is
slightly less than the percent expected, given tlensdy of the network
(99.99999999%). In this network 69 triads, 0.00@@0002%, are entirely mutual
(type 300), which is more than the expected perceit8.6x10°%%. For
comparative purposes, consider what happens whenrdhting triad census is
included in a correspondence analysis with the E&tlonetworks analyzed above.
The extremely low density of this network severely stoamins its possible
locations in the space of similarities among netsor Figure 8 presents the first
two dimensions of the correspondence analysis ofn&&vorks (the first four
dimensions account for 34.1%, 24.4%, 11.3% and 8&%he inertia). As
expected, Batagelj and Mrvar’s network is in the l@aver right corner with the
other low density networks. Given its density, itvistually impossible for it to
occupy any other region of the space.
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Figure 8: Correspondence analysis dimensions 1 and 2 fdri&@ censuses including
Batagelj and Mrvar’s internet routing network, netl space.

In contrast, consider the network of non-agonisticial encounters in a group
of 5 colobus monkeys (labeled colobus2 in Figure Bhis network is toward the
upper left corner of both correspondence analysgréis for the first two
dimensions (Figures 2 and 8). In the colobus mgmeatwork the mean number of
ties per monkey is 2.4, less than the mean for theeimg network, and its density
is 0.6. Of its 10 triads, none is completely n@08), though based on the density
of the network 0.4% are expected to be so. Thisvakk has one triad that is
completely mutual (type 300); 10% compared to an etgi®n of 4.7%. Given
the network’s density it is almost impossible fotatoccupy the lower right corner
of the correspondence analysis space and be asswevdh the 003 triad.

Clearly these two illustrative networks are extremeterms of size and
density. However, regardless of other features theghtnshare, because of their
vastly different densities their triad distributiooan not be similar.

The profound effect of density on graph level indi¢&LIs) more generally is
clearly demonstrated in Anderson Butts and Carley($999) analyses. They
conclude: “As we have seen, both size and densig Ippwerful — and complex —
interactions with other GLIs. These interactiongens from fundamental
constraints on the space of graphs, constraintsstnerely limit the combinations
of GLI values which can be realized on a given gfap(1999: 257). This is
undoubtedly demonstrated in the triad census repuétsented here.
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8.2 Comparingtriad distributions

The fact that, in aggregate, similarities amongeobed triad censuses are largely
patterned by nodal and dyadic properties does notlymte higher order (i.e.
triadic) structure in individual networks. In fac80% of the networks in the
collection of 51, exhibit tendencies toward traivsiy more than three standard
deviations greater than expected, given their dyalistributions. (Methodology
for these tests is described in Holland and Leidhat976). Rather, the result
suggests that the space of possible triad distiobstis so constrained by network
density and dyadic properties that comparing thes&idutions among networks
that differ in these tendencies is uninformativeLittle higher-order variability
among the triad censuses remains to be explained.

8.3 Istheresocial structurein social networ ks?

As a third point addressing the questions posed/@bib is important not to lose
sight of the possibility that many social networksvédittle or nosocial structure.
Holland and Leinhardt (1979) define social struetun network terms as the
presence of higher order properties that are netgadtely explained by nodal or
dyadic tendencies. In other words, triads are theebt level at which there is
interestingsocial structure. With respect to the detection of tigatndencies in
the bank of 384 sociomatrices, Holland and Leinhgd®79) found that when
observed triad distributions were compared to thespected under different
conditional distributions, a higher level of condital distribution allowed fewer
sociomatrices to exhibit significant tendencies aweom intransitivity. They
concluded that “... what was previously thought to dieucture was spurious”
(1979: 77) and that about 40% of the networks hadarcial structure.

Indeed, there may be many social networks in whi@&rehs little or no social
structure in Holland and Leinhardt’s sense. Thisdihg is reinforced more
recently in Butts’s (2001) examination of the congitye of social networks. If
networks exhibit patterns such as structural badasrcclasses of equivalent actors,
then they should relatively “simple” compared to ramdgraphs. They should not
be algorithmically complex. However, evidence frametworks collected by
various methods (observations, self reports, anbnte of others’ ties) fails to
support this expectation, once network density ikemainto account. The
observation that graph structure is largely expldibg local properties leads Butts
to pose the conditional uniform graph distributibppothesis: *“...the aggregate
distribution of empirically realized social networks isomorphic with a uniform
distribution over the space of all graphs, condiibon graph size and density”
(Butts, 2001: 67). Moreover, if this hypothesisarect “... much of what will be
found—or not found—in any given graph will be drivéeavily by density and
graph size.” (Butts, 2001: 69).
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Reiterating these observations, once we have ntalkaver order graph
properties into account, there may be very littlehleig order structure in many
social networks.

8.4 Configurationsrather than triad distributions

As a final piece of the puzzle, reconsider the th&oally important structural
information contained in triads. The discussiorséttion 5 above highlighted the
linkage between macro structural theories and tlaetiqular triads that are
consistent or inconsistent with them. These madhewries imply different triad
census distributions A complementary approach tevoek structures links local
properties and macro theories by focusing aamfigurationsof relational ties
between collections of actors rather than on thes@mce or absence of specific
triads types. For example, transitivity is expreskedan ordered triple of distinct
actors (i, j, k) such that if the3}j tie is present and the) k tie is present, then
the i= k tie is present. Transitivity is violated for amdered triple of distinct
actors (i, j, k) if the D] tie is present and the) k tie is present, but the> k is
absent. A network perfectly characterized by trawisyt has transitive triple
configurations but not intransitive triple configions (other triple configurations
are moot with respect to transitivity). The problevith using a triad census to
examine transitivity is that individual triads typesntain multiple configurations
of ordered triples, some of which might be tranvstand others intransitive. To
illustrate, consider the 210 triad which is forbésdfor the balance, clustering,
ranked clusters, and transitivity macro models. sTiniad contains three ordered
triples that are transitive and one that is intfans, so on the whole it is shows a
greater tendency toward rather than away from trauitsit

A slightly different implication of focusing on coglurations of ties rather
than triad censuses is presented in Davis’'s (199w of the Davis, Holland,
and Leinhardt work on triadic structure in netwark¥he persistent presence of
the 210 triad led their research toward the studtrarisitivity and a focus on i,j,k
triplets and other configurations rather than aadrdistributions. As Davis notes,
the focus on transitivity and sentiment patterndriplets represented, for him, a
retreat from a sociological perspective and “dniftiback toward psychology”
(Davis, 1979: 58) and “a slide from global struetio microanalysis” (1979: 60).

The results presented in this paper need not heralotn away from sociology
toward psychology. Rather, they remind us that syssére and density, by
mathematical necessity, constrain possible patteofis social organization
(Mayhew and Levinger, 1976; Butts, 2001). Moreovielpwer-order properties
(density and dyad distributions) account for a sutttsaa portion of the systematic
patterning of similarities among networks, parsima@amnd good scientific practice
require that we not exert effort “explaining” themmainder.
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Appendix: List of social networks

The following list gives the label for each netwalong with a reference for the
source of the data.

baboonf: dominance interactions between female and adult male
baboons (Figure 3-8, page 69, Hall and DeVore, 1965

baboonml and baboonm2: dominance between male hab@able 3-2,
page 60, Hall and DeVore, 1965)

baboonm3: outcomes of agonistic bouts between inalb®ons (Table XI,
page 39, Hausfater, 1975)

banka: advice in a bank office (Table 5, page F%tison et al., 2000)
bankc: confiding in a bank office (Table 5, pag85Battison et al., 2000)
bankf: close friends in a bank office (Table &gp 558, Pattison et al.,
2000)

banks: satisfying interaction in a bank office Iflea5, page 558, Pattison
et al., 2000)

cattle: contests between dairy cattle (Figure 1gepd9, Schein and
Fohrman, 1955)

chimpl, chimp2, and chimp3: Three relations betw€aimpanzeesant-
grunt calls (Table 9.3, page 119), initiation of dia agonistic
confrontations (Table 9.4, page 119), and initiatiof grooming (Table
9.14a, page 126). Data from Nishida and Hosakag)L9

colel and cole2: friendship at two time pointswedn adolescent boys
(Table 14.5 pages 450-451, Coleman, 1964)

colobusl, colobus2, colobus3: non-agonistic soa@bk between colobus
monkeys in a small group (Table I, page 86, Dunlmar Runbar, 1976)
cowl, cowg: Two relations between cowBps indicus social licking
(Figure 7, page 130) and social grazing (Figur@age 126). Data from
Reinhardt and Reinhardt (1981).
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 eieskl: EIES data, rating of acquaintanceship betwsocial science
researchers at time 1. Recoded 3,4=1, <3=0. (Faeeand Freeman, 1979;
Table B.8, page 745, Wasserman and Faust, 1994)

» ceiesk2: EIES data, rating of acquaintanceship betwsocial science
researchers at time 2. Recoded 3,4=1, <3=0. (Faeeand Freeman, 1979;
Table B.9, page 746, Wasserman and Faust, 1994)

 eiesm: EIES data frequency of message sending betwecial science
researchers, Recoded “1” if any message was sergerffan and Freeman,
1979; Table B.10, page 747,Wasserman and Faus4)199

« fifth: friendships between fifth graders (Tablefge 44, Anderson et al.,
1999, data from Parker and Asher, 1993)

» fourth: friendships between fourth graders (Tablep&ge 44, Anderson et
al., 1999, data from Parker and Asher, 1993)

* hyenaf, hyenam: Dominance, among females and amalgsrilyaena
crocuta crocuta Dominance among adult females (Table I, page3)ahd
dominance among males (Table V, page 1519). Data fFrank (1986).

» Kkidsl: initiated agonism between children (Fig@repage 986, Strayer and
Strayer, 1976)

* kids2: dominance among boys in a nursery school (Eidgu5, page 125,
McGrew, 1972)

* macaca: Grooming betwedviacaca Mulatta (Table 1, page 274). Data
from Sade (1989).

* nfponies: threats between ponies (Table X1V, pag2, Tyler, 1972)

* patasf and patasg: Two relations betw®atas monkeydighting (Table
lll, page 202) and grooming (Table V, page 205)atdfrom Kaplan and
Zucker (1980).

* ponies: Threats betweddighland ponies (Table 2, page 3). Data from
Roberts and Browning (1998), originally in Cluttome8k, Greenwood,
and Powell (1976).

* prison: closest friendships in a prison (Tablgpdge 363, MacRae, 1960)

* reddeer80: Winner and loser in encounters betw®eth deer stagervus
elaphus L. (Figure 1la, page 601) Data from Appleby (198Bata also in
Freeman, Freeman, and Romney (1992) and Robertgl)199

* rhesusl: fights between adult female rhesus monKegble 1, page 105,

Sade, 1967)

* rhesus2: fights between yearling rhesus monkeysléTabpage 107, Sade,
1967)

* rhesus4: fights between adult rhesus monkeys (Tdbleage 108, Sade,
1967)

* rhesus5: fights between adult rhesus monkeys (Té&bleage 110, Sade,
1967)
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rhesus6: fights between adult rhesus monkeys (T8blpage 111, Sade,
1967)

silver: Victories in encounters betweeBilvereyes zosterops lateralis.
(Table 1, page 94). Data from Kikkawa (1980).

sparrow: Dominance betweeSparrows zonotrichia querula including
both attacks and avoidances (Figure 2, page 1@&ta Bom Watt (1986).
third: friendship between third graders (Tablepage 42, Anderson et al.,
1999, data from Parker and Asher, 1993)

tits: dominance betweefVillow tits, parus montanus (Table 1, page
1492). Data from Tufto, Solberg, and Ringgsby (1)99Bata originally in
Lahti, Koivula, and Orell (1994).

vcbf: best friends between seventh graders (T&plpage 385, Robins,
Pattison, and Wasserman, 1999, from Vickers anchCh@81)

vcg: get on with between seventh graders (Tablepage 422, Wasserman
and Pattison, 1996, from Vickers and Chan, 1981)

vcw:  work with between seventh graders (Table, page 423,
Wasserman and Pattison, 1996, from Vickers and Cha81)

vervetla and vervet2a/ervet monkey¢Cercopithecus aethiops sabagus
juveniles from two troops (1 and 2) dyadic aggressiv submissive
interactions, both mothers absent (Table II, page),/Data from Horrocks
and Hunte (1983).

vervetlm and vervet2m/ervet monkey@Cercopithecus aethiops sabagus
juveniles from two troops (1 and 2) dyadic aggreskissubmissive
interactions, both mothers present (Table I, pag®),/Data from Horrocks
and Hunte (1983).



