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Comparing Social Networks: Size, Density, and 
Local Structure 

Katherine Faust1 

Abstract 

This paper demonstrates limitations in usefulness of the triad census for 
studying similarities among local structural properties of social networks.  
A triad census succinctly summarizes the local structure of a network using 
the frequencies of sixteen isomorphism classes of triads (sub-graphs of 
three nodes).  The empirical base for this study is a collection of 51 social 
networks measuring different relational contents (friendship, advice, 
agonistic encounters, victories in fights, dominance relations, and so on) 
among a variety of species (humans, chimpanzees, hyenas, monkeys, ponies, 
cows, and a number of bird species).  Results show that, in aggregate, 
similarities among triad censuses of these empirical networks are largely 
explained by nodal and dyadic properties – the density of the network and 
distributions of mutual, asymmetric, and null dyads.  These results remind 
us that the range of possible network-level properties is highly constrained 
by the size and density of the network and caution should be taken in 
interpreting higher order structural properties when they are largely 
explained by local network features. 

1 Introduction 

This paper addresses several issues concerning local structure in social 
networks.  Most generally, it continues the work of Skvoretz and Faust (Faust and 
Skvoretz, 2002; Skvoretz and Faust, 2002) modeling similarities in the structural 
features of diverse social networks.  It also extends the idea of “structural 
signatures” for these comparisons (Skvoretz and Faust, 2002).  In addition to these 
methodological contributions, the empirical example provides insights into the 
local nature of the structures of a diverse collection of social networks and in 
doing so challenges the basis for comparative modeling of higher order (macro) 
structures in networks.  In particular, this paper uses triad censuses for network 
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comparison and points out limitations in their usefulness for that purpose by 
showing that these triad distributions are largely explained by more local 
properties – network density and the dyad distribution. 

The general question addressed throughout this paper is: What accounts for 
similarities among triad censuses from diverse social networks?  The analytic 
strategy is straightforward.  Similarities among observed triad distributions for a 
collection of social networks are represented using correspondence analysis and 
the resulting dimensions of similarity are interpreted using local network 
properties.   

2 Comparing networks 

The majority of social network studies are case studies of a single group or setting.  
Relatively less attention has been paid to comparisons using networks from 
multiple settings. Studies employing multiple networks focus on one of two 
distinct general questions.  The first asks whether networks of a specific relational 
content, in aggregate, exhibit common structural tendencies. The second asks what 
structural features distinguish among different kinds of social relations.  In 
approaching the first sort of question, some studies examine the same relation 
measured in multiple settings. Empirical examples include friendships in schools 
or classrooms (Bearman, Jones, and Udry, 1997; Hallinan, 1974b; Leinhardt, 1972; 
Snijders and Baerveldt, 2003),  social interactions in workplaces (Johnson, Boster 
and Palinkas, 2003), and social and economic relations in communities or villages 
(Laumann and Pappi, 1976; Rindfuss et al., 2004; Entwisle et al., n.d.) and so on.  
Wasserman (1987) and Pattison and Wasserman (1999) describe methodology for 
these comparisons.  In addition, there are studies in which roughly similar 
relations are compared across different settings.  Bernard, Killworth, and Sailer’s 
studies of informant accuracy using observations and verbal reports of interactions 
are an example of such applications (Bernard et al., 1984) as is Freeman’s study of 
group structure of social interactions in different settings (Freeman, 1992).  One of 
the most prolonged projects along these lines is the classic work by Davis, 
Holland, and Leinhardt using the sociometric data bank, a collection of 
sociometric measurements of positive interpersonal sentiments from different 
settings to investigate the presence of structural balance, clustering, hierarchy, and 
transitivity (Davis, 1970; Davis and Leinhardt, 1972; Holland and Leinhardt, 1971, 
1973).  Similarly, Butts (2001) investigated the degree of complexity in social 
networks gathered using different data collection protocols. 

In contrast, another line of research is concerned with distinctions among 
diverse kinds of social relations in disparate groups.  The work of  Skvoretz and 
Faust is a case in point (Faust and Skvoretz, 2002; Skvoretz and Faust, 2002).   
Using exponential random graph models (Wasserman and Pattison, 1996), they 
compared the direction and magnitudes of parameters characterizing local 
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structure in graphs and calculated measures of dissimilarity between graphs for a 
variety of social networks.   Results showed differences in the “structural 
signatures” of different kinds of relations, notably antagonistic relations such as 
fighting and dominance on the one hand, and relations of affection (friendship, 
liking) and affiliation on the other.  Differences between species were apparent 
only for the first kind of relation, where humans showed tendencies toward 
mutuality and in-stars and away from transitivity whereas non-human primates 
showed tendencies in the opposite direction on these properties (Skvoretz and 
Faust, 2002). 

The current work continues the line of inquiry initiated by Skvoretz and Faust.  
In particular, it uses the triad census as a vehicle for comparisons to investigate 
local structural similarities among a collection of 51 networks of different 
relational contents and measured on different species. 

3 Notation 

Social networks consist of social relationships between pairs or sets of social 
units, such as directed friendship choices between school children, victories in 
antagonistic encounters between fighting deer, or advice seeking between 
corporate managers.  Formally, a social network for a directed dyadic relation 
consists of a set of social units, referred to as actors, and a set of linkages between 
pairs of actors, referred to as ties.  Social networks are commonly represented by a 
graph or directed graph.  In a directed graph nodes represent the social units in the 
network and arcs represent the directed ties between pairs of actors.  A directed 
graph with node set V and arc set E is denoted G(V,E), with n the number of nodes 
in the graph.  A social network or its associated directed graph can also be 
presented in a sociomatrix with n rows and columns indexing actors (in identical 
order).  An entry in the sociomatrix codes the tie from the row actor to column 
actor.  When a tie is either present or absent, the relation is dichotomous, taking 
on values of 0 or 1.  In general self ties are undefined. 

4  Local structure, isomorphism classes and subgraph 
censuses 

There has been considerable and enduring interest in local structure in networks 
since the early years of social network studies.  Local structure consists of 
configurations and properties of small subgraphs of nodes and arcs, most notably 
dyads and triads.  A dyad is a subgraph of two nodes and the possible arcs between 
them.  In a directed graph there are three isomorphism classes of dyads: mutual 
(M), asymmetric (A) ignoring the direction of the arc, and null (N).  A triad is a 
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subgraph of three nodes and the arcs between these nodes.   In a directed graph 
each triad is isomorphic with one of sixteen isomorphism classes or triad types, 
shown in Figure 1.  Holland and Leinhardt (1970) first proposed the now standard 
MAN notation for triads.  This notation records the number of mutual (M), 
asymmetric, (A) and null (N) dyads in each triad, along with further indication of 
the direction of ties, when there is more than one triad with a given number of 
mutual, asymmetric, and null dyads.  In Figure 1 the triad types are arranged 
vertically by the number of ties present.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 1:  Triad isomorphism classes with MAN labelling. 
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A standard vehicle for studying local structure is a subgraph census.  A 
subgraph census records the frequency of each isomorphism class observed in a 
directed graph or network.  For example, a dyad census records the number of 
mutual, asymmetric, and null dyads in a network.  Similarly, a triad census records 
the number of triads in each of the sixteen triad isomorphism classes.  

The appeal of the triad census as a means for investigating structural patterns 
in social networks lies in the fact that it succinctly summarizes a large amount of 
information about a network while retaining information about theoretically 

important structures.  In a directed graph of n nodes there are 



3

n
triads.  This 

quantity increases rapidly as the size of the graph increases, making summary into 
sixteen isomorphism classes a substantial simplification (Wasserman and Faust, 
1994).  Nevertheless, this summary retains important information about local 
features of the network and allows one to test hypotheses about the prevalence of 
structural properties such as transitivity or intransitivity. 

5 Macro structures and the triad census 

Research employing triads and triad censuses has proved fruitful and long lived, 
largely due to the important theoretical properties embodied in triads and the links 
they afford between local (micro) structures and global (macro) structures (Davis, 
1967, 1970; Davis and Leinhardt, 1972; Holland and Leinhardt, 1971; Johnsen, 
1985, 1986, 1989, 1998; Friedkin, 1998).  Whereas micro structures pertain to 
small subgraphs and properties measured on them, macro structures characterize 
the entire graph or network.  Usefulness the triad census for testing theoretical 
macro structures arises because some theoretical macro structures are contradicted 
by specific configurations of triads.  Support for the macro theory is evaluated by 
examining empirical networks for the occurrence of triads inconsistent with the 
theory.  Theories that have been expressed in triadic terms include structural 
balance, clusterability, ranked clusters, and transitivity. 

Structural balance is one of the most straightforward theories expressed in 
triadic terms.  In early work in this area, Cartwright and Harary (1956) generalized 
Heider’s (1946) cognitive balance notion to structural balance. As a macro 
structure, a balanced signed graph has two subgroups where all ties within each 
subgroup have positive signs and all ties between the two subgroups have negative 
signs.  Structural balance also can be examined using directed rather than signed 
graphs (Johnsen, 1985, 1986, 1998), where mutual ties take the place of positive 
ties and null ties take the place of negative ties.  In a balanced directed graph all 
mutual ties are within subgroups and all null ties are between subgroups.  In a 
balanced directed graph only two kinds of triads are permitted:  {300 and 102}.  
Other triads violate the theory. 
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The idea of structural balance was extended to the notion of clusterability by 
Davis (1967) to allow more than two subgroups.  In a clusterable signed graph all 
positive ties are within subgroups and negative ties are between subgroups.  In a 
clusterable directed graph three triads are permitted:  {300, 102, 003}.  All other 
triads violate the theory.  As a substantive example, clusterability would 
characterize a relation such as friendship if there were multiple cliques of mutual 
friendships in a population, but no friendships between cliques. 

Further generalizations of these ideas include ranked clusters (Davis, 1970; 
Davis and Leinhardt, 1972) and transitivity (Holland and Leinhardt, 1971).  
Ranked clusters extend the clustering model to allow directed ties between 
clusters.  The permitted triads for this model are {300, 102, 003, 120D, 120U, 
030T, 021D 021U}.  This macro model would represent a population with multiple 
friendship cliques ranked in prestige or popularity, in which friendships between 
cliques are directed from lower to higher status clique members. Transitivity holds 
for a triple of distinct nodes if, whenever the i � j tie and the j � k ties are 
present, then the i � k tie is present. The transitivity model includes one triad in 
addition to those for ranked clusters: {300, 102, 003, 120D, 120U, 030T, 021D 
021U, 012}.  The macro structure for transitivity provides for separate systems of 
ranked clusters within a population. As a substantive example, this macro model 
would characterize friendships in a population where different categories of people  
maintained separate systems of ranked cliques. 

Since these structural theories imply different profiles of triads, we expect to 
observe dissimilar triad distributions for social networks of diverse kinds of social 
relations.  For example, relations of dominance (Chase, 1974) generally exhibit 
hierarchical patterns and would be expected to contain triads consistent with 
transitivity.  On the other hand, affectionate interpersonal relations, such as 
friendship, would be expected to form subgroups of mutual ties, consistent with 
balance or clusterability.  Thus, triad distributions should be useful for studying 
similarities and dissimilarities in the local structural properties of diverse social 
networks.  The following section describes methodology for these comparisons.   

6  Data and analysis strategy 

6.1 Data 
 
The empirical base for this investigation is a collection 51 of social networks 
representing a variety of types of relations and animal species.  This collection 
includes relations of dominance, friendship, advice seeking, grooming, fights, 
social grazing, non-agonistic social acts, email communications, and confiding, to 
name a few.  Relations are measured among many different species, including 
humans, baboons, colobus monkeys, cows, hyenas, ponies, red deer, sparrows, 
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willow tits, and vervet monkeys.  These networks are a sample of social networks 
of the sort generally seen in the social network and ethology literatures and were 
compiled from widely available sources (for example the standard data in 
UCINET, journal articles, and other published sources).  The Appendix lists and 
describes the networks and their sources.  All networks are coded to be 
dichotomous and the ties are directed.   The heterogeneity of relations in this 
sample is an advantage for the current analysis since the goal is to examine 
similarities and dissimilarities among the networks, rather than structural 
tendencies in a single type of relation.  The initial expectation is that networks 
with similar social relations should exhibit similar structural tendencies and thus 
have similar profiles of triad censuses.  Data to investigate this expectation consist 
of the triad census (expressed as relative frequencies) for each network in the set 
of 51.  This information is arrayed in a matrix with the 51 networks on the rows 
and 16 triad types on the columns.  The entries are the relative frequencies of each 
triad type for each network.  

6.2 Analysis strategy 

The logic of the analysis is as follows. The first step represents similarities among 
the networks based on their triad censuses and among triad types based on their 
distributions across networks.  Correspondence analysis is used to  produce a low 
dimensional representation of the similarities among networks and among types of 
triads.  The second step in the analysis seeks to interpret the spatial configurations 
of networks and triads using local structural properties of the networks 
Correspondence analysis (Blasius and Greenacre, 1998; Greenacre and Blasius, 
1994; Weller & Romney, 1990) is a method for studying relationships in two-way 
arrays, and results in a low dimensional representation of similarities in the data.  
It is accomplished through decomposition of a matrix into its basic structure using 
singular value decomposition (Clausen 1998;  Weller and Romney, 1990; Digby 
and Kempton, 1987).  In practice, a “normalized” version of the matrix is 
decomposed: entries in the original matrix are divided by the square root of the 
product of the row and column marginal totals prior to singular value 
decomposition.  Let A be a rectangular matrix of positive entries with g rows and 

h columns (where g ≥  h).  Two diagonal matrices 2

1−
R and 2

1−
C have entries equal 

to reciprocals of the row and column totals of A: 
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Correspondence analysis is a singular value decomposition of the normalized 

matrix: YXΛACR ′=
−−

2

1

2

1

where Λ  is a diagonal matrix of singular values, }{ kλ , 

andX  and Y are the left and right singular.  Graphic displays presented below use  
principal coordinates, iku  (for rows) and jkv  (for columns) where: 

 
           (6.3) 

 

     (6.4) 

 
On each dimension these scores have weighted means equal to 0.0 and 

weighted variances equal to the squared singular values: 
 
      (6.5) 

 

      (6.6) 

Squared singular values express the amount of variation (chi square distance) 
that is explained by each dimension in the model.  The total amount of variation in 
the data is referred to as inertia (Greenacre, 1984; Greenacre and Blasius, 1994; 

Clausen, 1998) and is equal to the sum of the squared singular values: ∑
=

W

k
k

1

2λ .  

  

 Table 1: Descriptive Statistics for 51 Networks. 

  Size 

Mean 
Nodal 
Degree Density 

Proportion 
Mutual 

Proportion 
Asymmetric 

Proportion 
Null 

Proportion 
Transitive 

Mean  20.51 5.06 0.37 0.15 0.43 0.42 0.64 
Std. Deviation 16.89 2.93 0.20 0.17 0.28 0.30 0.20 
Minimum  4 0.55 0.02 0.00 0.01 0.00 0.21 
Maximum  73 13.75 0.86 0.81 0.93 0.98 0.98 
Percentiles 25 10 2.62 0.21 0.03 0.19 0.15 0.52 
 50 14 4.64 0.43 0.07 0.40 0.41 0.63 
 75 28 6.83 0.50 0.23 0.73 0.69 0.80 
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7 Results 

7.1 Descriptive statistics and triad censuses 
 
Descriptive statistics for the networks are presented in Table 12.  These results 
show considerable variability among the networks in their size, density, dyadic 
distributions, and tendencies toward transitivity.  Networks range from 4 to 43 
members, with densities ranging from 0.02 to 0.86. 

The triad censuses for the 51 networks are presented in Table 2.  Censuses 
were calculated using an adapted version of the SAS program described by Moody 
(1998). Glancing at these distributions shows some notable distinctions among the 
networks.  First, 003 (all null) triads are prevalent in friendships between 
adolescent boys (cole1 and cole2), grazing preference between cows (cowg), social 
licking between cows (cowl), and dominance between nursery school boys (kids2), 
accounting for more than 50% of the triads in these distributions.  Completely 
mutual triads, 300, are rare across the networks, but reach almost 50% in the 
network of grooming between chimpanzees (chimp3).  The 030T transitive triad is 
prevalent in agonistic bouts between baboons (baboon3), threats between Highland 
ponies (ponies), fights between adult rhesus monkeys (rhesus1 and rhesus6), 
dominance between sparrows (sparrow), and aggressive encounters between 
juvenile vervet monkeys (vervet2a).  

7.2 Correspondence analysis, network and triad spaces 

Turning now to similarities among the 51 tirad distributions, scores for the first 
four dimensions of the correspondence analysis of the network-by-triad census 
array are presented in Table 3, for both networks and triad types.  The first four 
dimensions account for 33.8%, 24.9%, 10.7%  and  8.3% of the inertia, 
respectively (77.7% of the total inertia).   

 
 
 
 
 
 
 

                                                 
2 The density of a network is the proportion of possible ties that are present.  The measure of 

mutuality is the proportion of dyads that are mutual: M/(M+A+N).  The proportion of dyads that 
are asymmetric and null are computed similarly. The measure of transitivity is the number of 
transitive triples divided by the number of triples that meet the condition for possibly being 
transitive. Specifically, it is the proportion of i, j, k triples where the i�j tie and the j� k ties are 
present in which the i� k tie is also present.   
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Table 2:  Triad distributions for 51 Networks, expressed as percentages. 

       Tryad type         
Network 003 012 102 021D 021U 021C 111D 111U 030T 030C 201 120D 120U 120C 210 300 
baboonf 12 35 02 10 09 07 05 01 14 01 00 03 00 01 01 00 
baboonm1 00 00 00 00 00 00 00 00 15 00 00 00 50 00 15 20 
baboonm2 00 05 00 10 10 00 00 10 40 00 00 00 20 00 05 00 
baboonm3 02 18 02 02 00 08 01 02 51 00 00 03 10 00 01 00 
banka 13 36 02 12 08 05 03 01 15 00 01 03 00 01 00 00 
bankc 21 33 08 06 12 04 05 04 04 00 01 02 02 00 00 00 
bankf 38 29 11 05 04 03 04 02 00 00 00 02 01 00 00 01 
banks 07 13 01 19 01 04 00 13 09 00 02 01 14 03 10 03 
cattle 12 31 02 13 07 10 02 02 17 00 00 02 01 01 00 00 
chimp1 00 08 01 10 19 06 01 04 42 00 00 01 05 02 01 00 
chimp2 00 00 00 04 00 00 02 08 06 00 02 12 19 08 27 11 
chimp3 00 00 02 00 00 00 04 00 00 00 17 00 01 00 27 49 
cole1 81 12 06 00 00 00 00 00 00 00 00 00 00 00 00 00 
cole2 79 14 06 00 00 00 00 00 00 00 00 00 00 00 00 00 
colobus1 00 00 00 25 00 00 00 25 00 00 00 00 25 00 25 00 
colobus2 00 00 10 20 00 00 20 00 00 00 00 10 00 10 20 10 
colobus3 02 08 19 00 00 02 10 13 00 00 21 02 02 02 08 08 
cowg 93 02 04 00 00 00 00 00 00 00 00 00 00 00 00 00 
cowl 87 12 01 00 00 00 00 00 00 00 00 00 00 00 00 00 
eiesk1 49 23 15 01 02 01 02 03 00 00 01 00 01 00 01 00 
eiesk2 39 23 17 02 03 01 05 04 01 00 02 01 01 00 01 01 
eiesm 20 09 12 06 00 01 01 13 01 00 14 01 02 00 08 10 
fifth 29 32 21 02 02 01 02 03 01 00 01 02 01 01 01 01 
fourth 19 25 28 04 02 02 05 05 01 00 03 02 01 01 03 01 
hyenaf 55 31 01 06 01 02 00 01 02 00 00 00 01 00 00 00 
hyenam 28 34 02 15 04 05 00 04 07 00 00 00 01 00 00 00 
kids1 06 11 13 05 01 04 08 14 03 00 06 03 04 03 12 07 
kids2 60 28 04 02 02 02 01 01 01 00 00 00 00 00 00 00 
macaca 09 13 21 03 02 02 09 09 00 00 10 02 02 01 10 07 
nfponies 21 41 00 12 06 08 00 00 13 00 00 00 00 00 00 00 
patasf 00 00 00 03 03 05 00 00 81 01 00 05 02 00 00 00 
patasg 38 29 14 02 01 03 03 04 00 00 02 00 00 01 01 01 
ponies 00 01 00 02 04 04 01 02 52 00 00 17 12 01 04 00 
prison 82 12 05 00 00 00 00 00 00 00 00 00 00 00 00 00 
reddeer 06 20 09 06 00 00 00 26 00 00 09 00 11 00 06 09 
rhesus1 00 00 00 03 00 09 00 03 74 00 00 03 09 00 00 00 
rhesus2 00 10 00 00 00 40 00 00 50 00 00 00 00 00 00 00 
rhesus4 01 07 00 10 10 16 01 01 45 01 00 04 01 02 01 00 
rhesus5 00 25 00 10 08 16 00 01 37 00 00 01 02 00 00 00 
rhesus6 00 03 01 13 01 05 00 02 61 01 00 10 02 01 03 00 
silver 00 00 03 06 01 01 02 06 19 01 00 21 09 03 17 12 
sparrow 01 08 00 09 05 09 01 01 54 01 00 05 03 01 00 00 
third 10 21 19 05 04 04 06 08 03 00 04 05 02 01 06 03 
tits 00 00 02 09 00 04 00 05 21 00 00 14 16 04 20 05 
vcbf 35 22 20 03 01 02 03 06 01 00 01 02 01 00 01 01 
vcg 09 14 17 05 02 02 06 12 03 00 06 05 03 02 08 05 
vcw 28 27 14 05 03 04 03 05 02 00 00 03 02 01 01 01 
vervet1a 01 11 00 16 08 08 03 03 37 00 00 05 05 02 01 00 
vervet1m 02 07 01 15 12 02 04 04 34 00 01 08 05 02 03 00 
vervet2a 00 00 01 08 01 00 01 01 71 00 00 14 04 00 01 00 
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Table 3: Correspondence analysis of triad censuses, scores for networks and triads. 

 
 Dimension 
Network 1 2 3 4 
baboonf 0.078 -0.360 -0.448 0.190 
baboonm1 -0.980 1.141 1.395 0.307 
baboonm2 -0.803 -0.187 0.378 0.473 
baboonm3 -0.656 -0.573 0.110 -0.131 
banka 0.133 -0.371 -0.420 0.191 
bankc 0.402 -0.166 -0.422 0.283 
bankf 0.756 -0.107 -0.175 0.117 
banks -0.341 0.388 0.126 0.597 
cattle 0.024 -0.411 -0.361 0.172 
chimp1 -0.667 -0.563 -0.171 0.105 
chimp2 -0.767 1.182 0.542 0.346 
chimp3 -0.548 2.390 0.080 -1.675 
cole1 1.358 -0.206 0.620 -0.222 
cole2 1.336 -0.209 0.582 -0.205 
colobus1 -0.641 0.906 0.516 1.320 
colobus2 -0.406 1.013 -0.392 0.223 
colobus3 -0.014 1.214 -0.841 -0.388 
cowg 1.478 -0.225 0.869 -0.314 
cowl 1.414 -0.267 0.772 -0.252 
eiesk1 0.955 -0.026 -0.018 0.002 
eiesk2 0.784 0.077 -0.213 0.037 
eiesm 0.208 0.904 -0.289 -0.298 
fifth 0.700 0.072 -0.388 0.124 
fourth 0.517 0.274 -0.605 0.147 
hyenaf 0.971 -0.275 0.242 0.036 
hyenam 0.456 -0.286 -0.174 0.273 
kids1 -0.102 0.782 -0.397 0.142 
kids2 1.092 -0.229 0.250 -0.041 
macaca 0.117 0.848 -0.602 -0.084 
nfponies 0.304 -0.462 -0.293 0.153 
patasf -1.081 -0.965 0.181 -0.570 
patasg 0.797 0.011 -0.206 0.078 
ponies -0.985 -0.427 0.354 -0.099 
prison 1.369 -0.222 0.651 -0.225 
reddeer80 0.768 -0.347 0.019 0.023 
rhesus1 -1.071 -0.829 0.302 -0.393 
rhesus2 -0.750 -1.008 -0.344 -0.644 
rhesus4 -0.729 -0.721 -0.217 -0.172 
rhesus5 -0.463 -0.695 -0.349 -0.060 
rhesus6 -0.938 -0.675 0.094 -0.243 
silver -0.799 0.642 0.341 -0.015 
sparrow -0.783 -0.710 -0.058 -0.206 
third 0.154 0.370 -0.550 0.188 
tits -0.837 0.493 0.480 0.299 
vcbf 0.725 0.112 -0.235 0.091 
vcg 0.045 0.632 -0.461 0.122 
vcw 0.539 0.003 -0.266 0.187 
vervet1a -0.634 -0.477 -0.136 0.138 
vervet1m -0.622 -0.291 -0.100 0.200 
vervet2a -1.059 -0.739 0.265 -0.343 
vervet2m -0.802 -0.426 -0.041 0.015 
      



196 Katherine Faust  

Triad 1 2 3 4 
003 1.209 -0.179 0.452 -0.139 
012 0.489 -0.207 -0.394 0.183 
102 0.542 0.450 -0.657 0.053 
021D -0.360 -0.066 -0.166 0.520 
021U -0.243 -0.485 -0.399 0.258 
021C -0.426 -0.693 -0.437 -0.295 
111D -0.011 0.597 -0.738 0.066 
111U -0.189 0.606 -0.220 0.623 
030T -0.933 -0.760 0.126 -0.302 
030C -0.681 -0.460 -0.195 -0.263 
201 -0.011 1.538 -0.843 -0.940 
120D -0.737 0.017 0.093 0.033 
120U -0.859 0.589 0.999 0.732 
120C -0.501 0.708 -0.199 0.390 
210 -0.603 1.311 0.295 0.181 
300 -0.543 1.955 0.256 -1.142 
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Figure 2a: Correspondence analysis of triad censuses, network space. 
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Figure 2b: Correspondence analysis of triad censuses, triad space. 

Graphic display of the scores for the first two dimensions are in Figures 2a and 
2b, for network and triad spaces respectively.  In each figure, points that are close 
in space have similar profiles.  In Figure 2a networks that are close to one another 
have similar profiles of proportions in their triad censuses, whereas those that are 
far apart have different triad census profiles.   In this figure we see that triad 
censuses for the networks of fights between yearling rhesus monkeys (rhesus2) and 
fights between patas monkeys (patasf) are similar to each other and different from 
networks of grooming between chimpanzees (chimp3).  Triad distributions in these 
three networks are different from the distributions for grazing preference between 
cows (cowg), social licking between cows (cowl) and friendships in a prison 
(prison).   Figure 2b presents the similarity space for triads.  In this figure triad 
types that occur in similar proportions across the collection of networks are close 
together.   There is a clear diagonal pattern in the similarity space for triad types, 
related to the number of ties in the triad.  Triads with more ties (300) are toward 
the upper left of the figure whereas triads with fewer ties (003) are toward the 
lower right.  Symbols for points in Figure 2b code the number of ties in the triad 
(from 0 to 6) and in Figure 2a code the density of the network (in quintiles). 

We can also take a joint view of the relationship between networks and triad 
types, though, for ease of visualization the two configurations are presented in 
separate plots in Figures 2a and 2b.  Viewing the displays in Figures 2a and 2b 
together, we see in the upper left of the plots that grooming between chimpanzees 
(chimp3), agonistic encounters between chimpanzees (chimp2), non-agonistic 
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social acts between colobus monkeys (colobus3), and dominance between male 
baboons (baboonm1) are associated with 300 triads.  In the lower left of the 
figures, fights between yearling rhesus monkeys (rhesus2) and fights between 
female patas monkeys (patasf) are associated with the 030T, 030C, and 021C 
triads.  In the lower right, cows grazing and cows licking (cowg and cowl), 
friendships between adolescents (cole1 and cole2) and friendships in a prison 
(prison) are associated with the 003 triad. 

7.3  Interpreting the correspondence analysis dimensions 

What are the bases for resemblance among these triad censuses?  To investigate 
this question, let us look more closely at the dimensions of the correspondence 
analysis solution, focusing first on the network space.  Specifically, the following 
correlations and scatterplots explore whether similarities among triad distributions 
for these networks are largely patterned by nodal and dyadic properties.   
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Figure 3:  Scatterplot of correspondence analysis network space dimension 1 and the 
network density, N = 51 networks. 
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Figure 4:  Scatterplot of correspondence analysis network space dimension 1 and the 

proportion of null dyads, N = 51 networks. 
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Figure 5:  Scatterplot of correspondence analysis network space dimension 2 and the 
proportion of mutual dyads, N = 51 networks. 
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Figure 6:  Scatterplot of correspondence analysis network space dimension 3 and the 

proportion of null dyads, N = 51 networks 22.59.467.0 XXY +−= . 
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Figure 7:  Scatterplot of correspondence analysis network space dimension 4 and the 

proportion of asymmetric dyads, N = 51 networks 203.482.359.0 XXY −+−= . 



Comparing Social Networks: Size, Density, and Local Structure 201 

 

 

As suggested by the patterning of triad space, the first dimension of the 
correspondence analysis network space is associated with the density of the 
network – the correlation between coordinates on the first dimension and network 
density is r = -0.882.  However, the correlation is even stronger with the 
proportion of dyads that are null;  r = 0.994.  The second dimension is associated 
with the level of mutuality in the network.  This dimension correlates 0.941 with 
the proportion of dyads that are mutual.  The third dimension is quadratic function 
relating to the proportion of dyads that are null; the best fitting quadratic equation 
relating scores on dimension three to the proportion of null dyads is 

23.59.467.0 XXY +−=  with  =2r  0.792.  The fourth dimension is related in a 
quadratic form to the asymmetry in the network, albeit weakly 

( 203.482.359.0 XXY −+−= , =2r  0.410).  Scatterplots of these relationships are 
shown in Figures 3 through 7.   

Turning to the correspondence analysis space for triads, the first dimension 
correlates 0.962 with the proportion of null dyads in the triad; the second 
dimension correlates 0.956 with the proportion of mutual dyads; the third 
dimension is related in a quadratic function to the proportion of null dyads 

( 225.321.067.0 XXY −+= , =2r  0.592); and the fourth dimension is a quadratic 

function of the proportion of asymmetric dyads ( 206.328.353.0 XXY −+−= , =2r  
0.519).   

These results demonstrate that similarities among the triad distributions for 
these social networks are largely explained by very local properties, the nodal and 
dyadic distributions at most.  In other words, modeling resemblance among these 
triad distributions does not require triadic level properties. 

Canonical correlation analysis (Tatsuoka, 1971) provides a way to summarize 
the overall degree of linear relationship between the dimensions of the 
correspondence analysis and dyadic properties of the networks.  The canonical 
correlation between two sets of variables is the maximum correlation between 
linear combinations of the variables in each set.  For this analysis the first set 
consists of the four dyadic measures (the proportion null dyads, the proportion 
mutual dyads, the best fitting quadratic function of the proportion of asymmetric 
dyads, and the best fitting quadratic function of the proportion of null dyads) and 
the second set consists of the scores from the first four dimensions of 
correspondence analysis.  Canonical correlation analysis is repeated separately for 
the network and the triad spaces.   
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Table 4: Canonical correlation loadings. 

4a Loadings from canonical correlation analysis, network space 

 Canonical Variate 

Dyadic Measures 
1 2 3 4 

Proportion null -0.996 0.060 0.065 0.005 
Proportion mutual 0.357 -0.929 -0.095 0.010 
Quadratic function of proportion null -0.042 0.127 -0.978 0.157 
Quadratic function of proportion asymmetric  0.257 -0.306 0.503 -0.766 

Correspondence Analysis Dimensions 
    

Dimension 1 -0.998 -0.048 0.041 0.008 
Dimension 2 0.044 -0.993 -0.054 -0.099 
Dimension 3 -0.045 0.072 -0.973 -0.216 
Dimension 4 -0.003 0.085 0.223 -0.971 

 

4b Loadings from canonical correlation analysis, triad space. 

 Canonical Variate 

Dyadic Measures 
1 2 3 4 

Proportion null 0.947 -0.042 0.316 0.027 
Proportion mutual -0.426 -0.900 -0.009 0.086 
Quadratic function of proportion null -0.076 -0.159 -0.970 -0.165 
Quadratic function of proportion asymmetric  -0.298 0.513 0.049 0.804 

Correspondence Analysis Dimensions 
    

Dimension 1 0.930 -0.235 0.281 0.040 
Dimension 2 -0.308 -0.921 0.066 0.228 
Dimension 3 -0.044 -0.059 -0.976 0.206 
Dimension 4 0.075 0.512 -0.077 0.852 
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For the network space, there are four significant canonical correlations (all 
with p < .0001), equal to 1.0, 0.999, 0.951, and 0.754, respectively.  Together the 
first four canonical variates account for 86.7% of the variance in the first four 
dimensions of the correspondence analysis of the network space and 90.4% of the 
variance in the four dyadic network measures.  Canonical loadings for the 
variables in the two sets are reported in Table 4a  (The canonical loading is the 
correlation of the variable with the linear combination.).  For the triad space there 
are also four significant canonical correlations (the first two with p < .0001, and 
the second two with p < .001),  having values of 0.997, 0.979, 0.825, and 0.714 
respectively.     

In light of the fact that the first four dimensions of the correspondence analysis 
network space explain 77.7% of the inertia in the triad census distributions for 
these 51 networks, and dyadic level network properties account for 86.7% of this 
space, one might argue that around 67% (0.867 x 0.777) of the similarity among 
these triad distributions is accounted for by dyadic level network properties.  
Similarly, around 62% (0.802 x 0.777) of the similarity among triad types is 
accounted for by dyadic features of these triads. 

In summary, these results demonstrate that, in aggregate, similarities in the 
triad censuses for a wide range of different social networks can largely be 
accounted for by dyadic level features of the networks.  A reasonable estimate is 
that around two thirds of the variance among the networks’ triad distributions is 
accounted for by no more than nodal and dyadic features.  How are we to interpret 
these results, and what are their implications for our understanding of social 
network structure?  The following section addresses these questions.  

8  Discussion and implications 

Two related questions are raised by these results.  First, what gives rise to the 
finding that similarity among triadic distributions is largely accounted for by lower 
order (nodal or dyadic) properties? Second, what are the implications of these 
result for comparisons of triad distributions in social networks?  Clues to the 
answer these questions are found throughout the literature on triads and are 
provided more directly in literature on effects of network size and density on graph 
level indices.  Four points are pertinent: effects of size and density on graph level 
measures; comparative use of triad censuses; absence of social structure in many 
social networks; and distinction between triad distributions and configurations of 
local structural properties. 
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8.1 Size and density 

Network size has been recognized an issue in studies of triads since their earliest 
empirical use.  In his 1970 paper on clustering and hierarchy, Davis (1970) 
analyzed 742 sociomatrices and presented results of triad distributions and 
statistics for triadic cycles separately for networks in five ranges of sizes.  
However, he does not reveal his rationale for doing so.  Davis does note that for 
the 210 triad, which is not permitted under the ranked clusters model, “results are 
catastrophic in the larger groups”  (1970: 845-846).  Davis attributes the surplus of 
210 triads in large networks to the frequency of fixed choice data collection 
designs that force otherwise mutual ties to be asymmetric.  Johnsen (1985, 1986, 
1998) pays considerably more attention to network size and its impact on possible 
micro and macro structural models.  Picking up on Davis’ (1970) results for 
networks of different sizes, Johnsen (1985) observes that for network sizes 8 to 13, 
data perfectly fit the ranked clusters of mutual cliques model.  Friedkin (1998: 
143) addresses the point more extensively in his discussion of macro models for 
large networks. With respect to the 003 triad (all null dyads) he notes that “… 
especially in large groups, the possibility of three N linked actors should not be 
forbidden”  (Friedkin, 1998: 143, emphasis in the original).3  So, authors have 
recognized the relationship between network size and triadic macro models, but 
have not addressed the issue directly. 

Importantly, network density and not network size, per se, is crucial for 
understanding the distribution of triadic configurations.  The density, d, of a 
network is the number of arcs in the network divided by the possible number of 
arcs.  If the average number of arcs from each node is fixed, the total number of 
arcs increases as a linear function of network size but the possible number of arcs 
increases with the square of network size.  Thus, if the average number of arcs 
from each node is fixed, a reasonable assumption if actors can only maintain a 
limited number of ties, then network density must decrease with network size.  
Why is this important?   

 Given the density of the network, the range of possible triad distributions 
is heavily constrained.  Some triad types have extremely low probabilities, simply 
because of the density of the network.  Formulae for the probability of each of the 
16 triad types, given network density, are presented in Skvoretz et al. (2004).  To 

illustrate, the probability of a 300 triad (all mutual ties) is equal to 6d .  In a 
network with 10 actors and 3 ties per actor, the density is equal to .33, and the 
probability of a 300 triad is 0.0014.  If the size of the network is increased to 100, 

                                                 
3 Network size is also mentioned in discussions of its effect on statistics for testing structural 

hypotheses, but largely in the context of its effect on the standard errors.  It is easier to detect 
departures from expected frequencies in larger groups than in smaller groups (Leinhardt 1972, 
Hallinan 1974a, Holland and Leinhardt 1975). 
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but the mean number of ties per actor remains 3, the density decreases to 0.03, and 
the probability of a 300 triad is 0.0000000008.  

 

Table 5:  Triad census of the routing data. 

Triad Count Percent 

003 322,769,974,374,083 99.99252370409 
012 23,955,959,979 0.00742143658 
102 175,605,448 0.00005440169 
021D 882,596 0.00000027342 
021U 109,179 0.00000003382 
021C 444,490 0.00000013770 
111D 4917 0.00000000152 
111U 15,508 0.00000000480 
030T 17,107 0.00000000530 
030C 111 0.00000000003 
201 1002 0.00000000031 
120D 899 0.00000000028 
120U 1120 0.00000000035 
120C 96 0.00000000003 
210 121 0.00000000004 
300 69 0.00000000002 

Total 322,794,107,416,725  
Adapted from Vladimir Batagelj and Andrej Mrvar (2001): A 
subquadratic triad census algorithm for large sparse networks with 
small maximum degree. Social Networks, 23, 237–243. 

 
To put the effect of size and density in sharper perspective for comparing 

empirical networks, consider the network of routing linkages on the internet 
analyzed by Batagelj and Mrvar (2001).  This network has 124,651 nodes and 
207,214 edges.  The mean number of ties per node is 3.3 and the density is 
0.000027.  The triad census for the routing network, expressed as a percentage 
distribution, is in Table 5.  There are 322,794,107,416,725 triads in this network, 
of which 322,769,974,374,083, or 99.99%, are completely null (type 003).  This is 
slightly less than the percent expected, given the density of the network 
(99.99999999%).  In this network 69 triads,  0.00000000002%, are entirely mutual 
(type 300),  which is more than the expected percent of 8.6x10-63%.  For 
comparative purposes, consider what happens when the routing triad census is 
included in a correspondence analysis with the set of 51 networks analyzed above.  
The extremely low density of this network severely constrains its possible 
locations in the space of similarities among networks.  Figure 8 presents the first 
two dimensions of the correspondence analysis of 52 networks (the first four 
dimensions account for 34.1%, 24.4%, 11.3% and 8.2% of the inertia).  As 
expected, Batagelj and Mrvar’s network is in the far lower right corner with the 
other low density networks.  Given its density, it is virtually impossible for it to 
occupy any other region of the space. 
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Figure 8: Correspondence analysis dimensions 1 and 2 for 52 triad censuses including 
Batagelj and Mrvar’s internet routing network, network space. 

In contrast, consider the network of non-agonistic social encounters in a group 
of 5 colobus monkeys  (labeled colobus2 in Figure 2).  This network is toward the 
upper left corner of both correspondence analysis figures for the first two 
dimensions (Figures 2 and 8).  In the colobus monkey network the mean number of 
ties per monkey is 2.4, less than the mean for the routing network, and its density 
is 0.6.  Of its 10 triads, none is completely null (003), though based on the density 
of the network 0.4% are expected to be so.  This network has one triad that is 
completely mutual (type 300); 10% compared to an expectation of 4.7%.  Given 
the network’s density it is almost impossible for it to occupy the lower right corner 
of the correspondence analysis space and be associated with the 003 triad. 

Clearly these two illustrative networks are extreme in terms of size and 
density. However, regardless of other features they might share, because of their 
vastly different densities their triad distributions can not be similar. 

The profound effect of density on graph level indices (GLIs) more generally is 
clearly demonstrated in Anderson Butts and Carley’s  (1999) analyses.  They 
conclude: “As we have seen, both size and density have powerful – and complex – 
interactions with other GLIs.  These interactions stem from fundamental 
constraints on the space of graphs, constraints that severely limit the combinations 
of GLI values which can be realized on a given graph”  (1999: 257).  This is 
undoubtedly demonstrated in the triad census results presented here. 
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8.2 Comparing triad distributions 

The fact that, in aggregate, similarities among observed triad censuses are largely 
patterned by nodal and dyadic properties does not preclude higher order (i.e. 
triadic) structure in individual networks.  In fact, 80% of the networks in the 
collection of 51, exhibit tendencies toward transitivity more than three standard 
deviations greater than expected, given their dyadic distributions.  (Methodology 
for these tests is described in Holland and Leinhardt, 1976).  Rather, the result 
suggests that the space of possible triad distributions is so constrained by network 
density and dyadic properties that comparing these distributions among networks 
that differ in these tendencies is uninformative.   Little higher-order variability 
among the triad censuses remains to be explained. 

8.3 Is there social structure in social networks? 

As a third point addressing the questions posed above, it is important not to lose 
sight of the possibility that many social networks have little or no social structure.  
Holland and Leinhardt (1979) define social structure in network terms as the 
presence of higher order properties that are not adequately explained by nodal or 
dyadic tendencies.  In other words, triads are the lowest level at which there is 
interesting social structure.  With respect to the detection of triadic tendencies in 
the bank of 384 sociomatrices, Holland and Leinhardt (1979) found that when 
observed triad distributions were compared to those expected under different 
conditional distributions, a higher level of conditional distribution allowed fewer 
sociomatrices to exhibit significant tendencies away from intransitivity.  They 
concluded that “… what was previously thought to be structure was spurious” 
(1979: 77) and that about 40% of the networks had no social structure. 

Indeed, there may be many social networks in which there is little or no social 
structure in Holland and Leinhardt’s sense.  This finding is reinforced more 
recently in Butts’s (2001) examination of the complexity of social networks.  If 
networks exhibit patterns such as structural balance or classes of equivalent actors, 
then they should relatively “simple” compared to random graphs.  They should not 
be algorithmically complex.  However, evidence from networks collected by 
various methods (observations, self reports, and reports of others’ ties) fails to 
support this expectation, once network density is taken into account.  The 
observation that graph structure is largely explained by local properties leads Butts 
to pose the conditional uniform graph distribution hypothesis:  “…the aggregate 
distribution of empirically realized social networks is isomorphic with a uniform 
distribution over the space of all graphs, conditional on graph size and density”  
(Butts, 2001: 67).  Moreover, if this hypothesis is correct “… much of what will be 
found—or not found—in any given graph will be driven heavily by density and 
graph size.” (Butts, 2001: 69). 
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  Reiterating these observations, once we have taken lower order graph 
properties into account, there may be very little higher order structure in many 
social networks. 

8.4 Configurations rather than triad distributions 

As a final piece of the puzzle, reconsider the theoretically important structural 
information contained in triads. The discussion in section 5 above highlighted the 
linkage between macro structural theories and the particular triads that are 
consistent or inconsistent with them.  These macro theories imply different triad 
census distributions  A complementary approach to network structures links local 
properties and macro theories by focusing on configurations of relational ties 
between collections of actors rather than on the presence or absence of specific 
triads types.  For example, transitivity is expressed for an ordered triple of distinct 
actors (i, j, k) such that if the i�j tie is present and the j� k tie is present, then 
the i� k tie is present. Transitivity is violated for an ordered triple of distinct 
actors (i, j, k) if the i�j tie is present and the j� k tie is present, but the i� k is 
absent.  A network perfectly characterized by transitivity has transitive triple 
configurations but not intransitive triple configurations (other triple configurations 
are moot with respect to transitivity).  The problem with using a triad census to 
examine transitivity is that individual triads types contain multiple configurations 
of ordered triples, some of which might be transitive and others intransitive.  To 
illustrate, consider the 210 triad which is forbidden for the balance, clustering, 
ranked clusters, and transitivity macro models.  This triad contains three ordered 
triples that are transitive and one that is intransitive, so on the whole it is shows a 
greater tendency toward rather than away from transitivity.  

A slightly different implication of focusing on configurations of ties rather 
than triad censuses is presented in Davis’s (1979) review of the Davis, Holland, 
and Leinhardt work on triadic structure in networks.  The persistent presence of 
the 210 triad led their research toward the study of transitivity and a focus on i,j,k 
triplets and other configurations rather than on triad distributions.  As Davis notes, 
the focus on transitivity and sentiment patterns in triplets represented, for him, a 
retreat from a sociological perspective and “drifting back toward psychology” 
(Davis, 1979: 58) and “a slide from global structure to microanalysis” (1979: 60).   

The results presented in this paper need not herald a turn away from sociology 
toward psychology.  Rather, they remind us that system size and density, by 
mathematical necessity, constrain possible patterns of social organization 
(Mayhew and Levinger, 1976; Butts, 2001).  Moreover, if lower-order properties 
(density and dyad distributions) account for a substantial portion of the systematic 
patterning of similarities among networks, parsimony and good scientific practice 
require that we not exert effort “explaining” the remainder. 
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Appendix: List of social networks 

The following list gives the label for each network along with a reference for the 
source of the data. 
 

• baboonf: dominance interactions between female and one adult male 
baboons (Figure 3-8, page 69, Hall and DeVore, 1965) 

• baboonm1 and baboonm2: dominance between male baboons (Table 3-2, 
page 60, Hall and DeVore, 1965) 

• baboonm3:  outcomes of agonistic bouts between male baboons (Table XI, 
page 39, Hausfater, 1975) 

• banka:  advice in a bank office (Table 5, page 558, Pattison et al., 2000) 
• bankc: confiding in a bank office (Table 5, page 558, Pattison et al., 2000) 
• bankf:  close friends in a bank office  (Table 5, page 558, Pattison et al., 

2000) 
• banks:  satisfying interaction in a bank office  (Table 5, page 558, Pattison 

et al., 2000) 
• cattle:  contests between dairy cattle (Figure 1, page 49, Schein and 

Fohrman, 1955) 
• chimp1, chimp2, and chimp3:  Three relations between Chimpanzees. pant-

grunt calls (Table 9.3, page 119), initiation of dyadic agonistic 
confrontations (Table 9.4, page 119), and initiation of grooming (Table 
9.14a, page 126).  Data from Nishida and Hosaka (1996).   

• cole1 and cole2:  friendship at two time points between adolescent boys 
(Table 14.5 pages 450-451, Coleman, 1964) 

• colobus1, colobus2, colobus3:  non-agonistic social acts between colobus 
monkeys in a small group (Table I, page 86, Dunbar and Dunbar, 1976) 

• cowl, cowg: Two relations between cows, bos indicus.  social licking 
(Figure 7, page 130) and social grazing (Figure 4, page 126).  Data from 
Reinhardt and Reinhardt (1981).  
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• eiesk1:  EIES data, rating of acquaintanceship between social science 
researchers at time 1.  Recoded 3,4=1, <3=0. (Freeman and Freeman, 1979; 
Table B.8, page 745, Wasserman and Faust, 1994) 

• eiesk2:  EIES data, rating of acquaintanceship between social science 
researchers at time 2.  Recoded 3,4=1, <3=0. (Freeman and Freeman, 1979; 
Table B.9, page 746, Wasserman and Faust, 1994) 

• eiesm:  EIES data frequency of message sending between social science 
researchers, Recoded “1” if any message was sent. (Freeman and Freeman, 
1979; Table B.10, page 747,Wasserman and Faust, 1994) 

• fifth:  friendships between fifth graders (Table 3, page 44, Anderson et al., 
1999, data from Parker and Asher, 1993) 

• fourth: friendships between fourth graders (Table 3, page 44, Anderson et 
al., 1999, data from Parker and Asher, 1993) 

• hyenaf, hyenam:  Dominance, among females and among males Hyaena, 
crocuta crocuta.  Dominance among adult females (Table I, page 1513) and 
dominance among males (Table V, page 1519).  Data from Frank (1986). 

• kids1:  initiated agonism between children (Figure 2, page 986, Strayer and 
Strayer, 1976) 

• kids2: dominance among boys in a nursery school (Figure 5.5, page 125, 
McGrew, 1972) 

• macaca: Grooming between Macaca Mulatta.  (Table 1, page 274).  Data 
from Sade (1989). 

• nfponies: threats between ponies (Table XIV, page 122, Tyler, 1972) 
• patasf and  patasg:  Two relations between Patas monkeys: fighting (Table 

III, page 202) and grooming (Table V, page 205).  Data from Kaplan and 
Zucker (1980). 

• ponies: Threats between Highland ponies.  (Table 2, page 3).  Data from 
Roberts and Browning (1998), originally in Clutton-Brock, Greenwood, 
and Powell (1976).  

• prison:  closest friendships in a prison (Table 1, page 363, MacRae, 1960) 
• reddeer80: Winner and loser in encounters between Red deer stags, Cervus 

elaphus L.  (Figure 1a, page 601)  Data from Appleby (1983).  Data also in 
Freeman, Freeman, and Romney (1992) and Roberts (1994). 

• rhesus1:  fights between adult female rhesus monkeys (Table 1, page 105, 
Sade, 1967) 

• rhesus2:  fights between yearling rhesus monkeys (Table 2, page 107, Sade, 
1967) 

• rhesus4:  fights between adult rhesus monkeys (Table 4, page 108, Sade, 
1967) 

• rhesus5:  fights between adult rhesus monkeys (Table 7, page 110, Sade, 
1967) 
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• rhesus6: fights between adult rhesus monkeys (Table 8, page 111, Sade, 
1967)  

• silver: Victories in encounters between Silvereyes, zosterops lateralis.  
(Table 1, page 94).  Data from Kikkawa (1980).  

• sparrow: Dominance between Sparrows, zonotrichia querula, including 
both attacks and avoidances (Figure 2, page 19).  Data from Watt (1986). 

• third:  friendship between third graders (Table 1, page 42, Anderson et al., 
1999, data from Parker and Asher, 1993) 

• tits: dominance between Willow tits, parus montanus.  (Table 1, page 
1492).  Data from Tufto, Solberg, and Ringgsby (1998).  Data originally in 
Lahti, Koivula, and Orell (1994).  

• vcbf:  best friends between seventh graders (Table 3, page 385, Robins, 
Pattison, and Wasserman, 1999, from Vickers and Chan, 1981) 

• vcg:  get on with between seventh graders (Table 11, page 422, Wasserman 
and Pattison, 1996, from Vickers and Chan, 1981) 

• vcw:  work with between seventh graders   (Table 12, page 423, 
Wasserman and Pattison, 1996, from Vickers and Chan, 1981) 

• vervet1a and vervet2a: Vervet monkeys (Cercopithecus aethiops sabaeus), 
juveniles from two troops (1 and 2) dyadic aggressive / submissive 
interactions, both mothers absent (Table II, page 776), Data from Horrocks 
and Hunte (1983). 

• vervet1m and vervet2m: Vervet monkeys (Cercopithecus aethiops sabaeus), 
juveniles from two troops (1 and 2) dyadic aggressive/ submissive 
interactions, both mothers present (Table I, page 775), Data from Horrocks 
and Hunte (1983).  


