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Abstract
Analyzing piles that are subjected to lateral loads reveals 
that their behavior depends on the soil’s resistance at any 
point along the pile as a function of the pile’s deflection, 
known as the p-y curve. On the other hand, the deforma-
tion characteristics of soil defined as “the soil strain at 50% 
of maximum deviatoric stress (ε50)” have a considerable 
effect on the generated p-y curve. In this research, several 
models are proposed to predict ε50 specifically for designing 
the very long pile foundations of offshore oil and gas plat-
forms in the South Pars field, Persian Gulf, Iran. Herein, ε50 
is evaluated using extensive soil data, including in-situ and 
laboratory test results using evolutionary polynomial regres-
sion (EPR). The effects of the undrained shear strength, the 
normalized tip resistance of the cone penetration test, the 
over-burden pressure, the plasticity index and the over-
consolidation ratio on ε50 are investigated in marine clays. 
It is demonstrated that the normalized cone tip resistance, 
which is an indication of the soil’s undrained shear strength, 
leads to more realistic ε50 values compared with the 
laboratory-derived undrained shear strength parameter. In 
addition, the application of the soil-index properties and the 
over-burden pressure in the models, improves their estima-
tion quality. Furthermore, the results of full-scale lateral 
pile load tests at different sites are used in order to validate 
the performance of the proposed models when it comes to 
predicting the behavior of the lateral piles.
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1 INTRODUCTION

Pile foundations are often required to be designed 
against significant lateral, in addition to vertical, loads. 
These lateral loads can be imposed by wind, earth pres-
sure, wave, tide, current and ship impact, mooring rope, 
earthquake, vehicle traction, etc. The performance of 
pile foundations is usually governed by either deflection 
or bearing capacity. Exceeding the maximum allowable 
lateral load may cause the failure of the soil around the 
pile, or structural failure of the pile itself. In order to 
design a pile foundation safely and economically, an 
accurate assessment of its behavior should be made 
using pile load test data and/or the well-known analyti-
cal or numerical methods. As full-scale load tests are 
very expensive and time consuming, analytical and 
numerical approaches are normally used to evaluate the 
lateral behavior of pile-soil systems.

The lateral pile-soil interaction behavior is commonly 
characterized by a series of uncoupled, nonlinear springs 
applied along the pile, known as p-y curves. Various 
formulations have been proposed to predict these p-y 
curves in different site conditions [1-7]. The American 
Petroleum Institute (API) method [7] is a widely used 
method based on Matlock’s field research [1].

The pile geometry and the soil properties are the key 
parameters for developing p-y curves. These curves 
mostly depend on the ultimate horizontal soil reaction 
(Pu) and the critical lateral displacement (yc) corre-
sponding to 50% mobilized Pu . yc is defined as

502.5cy De=         (1)
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where D is the pile diameter, and ε50 is the strain at 
one-half of the maximum stress in laboratory undrained 
compression tests on undisturbed cohesive soil samples. 
Typical p-y curves for cohesive soils, shown in Fig.1, 
illustrate the role of the above-mentioned parameters 
on developing such curves. The curves A and B in this 
figure are schematic p-y curves for soils with different 
ε50 values. As ε50B > ε50A , with the same pile geometry 
we have yCB > yCA . As shown in this figure, ε50 is an 
effective factor in generating the p-y curves for clays. It 
is clear that higher ε50 values lead to softer pile behavior 
and higher lateral displacements for constant lateral load 
ratios (P/Pu). Furthermore, the ultimate lateral load is 
obtained at higher levels of pile lateral displacements 
as the ε50 increases. Hence, the lateral stiffness and the 
resistance of the pile-soil system are affected by ε50 .

Sullivan et al. [8] recommended ε50 values for different 
clayey soils based on their undrained shear strength. 
However, such proposed ε50 values are not consistent 
with those obtained from experimental measurements 
conducted at different sites and do not result in accurate 
p-y curves in most soil conditions [9,10].

Hamilton et al. [10] performed some triaxial compres-
sion tests under isotropically consolidated undrained 
(CIU) and unconsolidated undrained (UU) conditions 
on Tilbrook Grange clays and measured the ε50 values. 
They realized that the ε50 values obtained from the CIU 
tests show less scatter than those of the UU tests and 
found a trend line for ε50. It was demonstrated that the 
ε50 values obtained from laboratory tests were nearly five 
times greater than the values recommended by Sullivan 
for sites having similar undrained shear strengths. 

Afterwards, they compared different p-y curves derived 
from laboratory ε50 values and those recommended by 
Sullivan. It was demonstrated that the uncertainty of the 
predicted p-y curves decreases from 65% to 35% if the 
laboratory ε50 values are used instead of those recom-
mended by Sullivan. Additionally, they noted that the 
use of p-y curves based on the Matlock method with ε50 
values from CIU tests leads to a more reliable prediction 
of the lateral load-displacement response.

Hamilton et al. [10] discussed different methods to 
develop p-y curves for piles in stiff, over-consolidated 
clays. They compared the measured values of ε50 derived 
from UU tests with those typically assumed from the 
Sullivan recommendations and indicated that a slightly 
better prediction of the load–displacement curves is 
achieved using measured ε50 values instead of those 
recommended by Sullivan.

Dunnavant [11] performed experimental and analytical 
investigations to predict the influences of the pile and 
soil characteristics as well as the loading conditions on 
the lateral pile-soil interaction in saturated over-consol-
idated clays. It was shown that the over-consolidation 
ratio (OCR) of the soil can affect the reference critical 
displacement (yc) in the p-y curves. In other words, for 
over-consolidated clays, the value of yc would be smaller 
than those available in the literature. The degradation 
of p-y curves in over-consolidated clays begins at much 
smaller deflections than in soft clays. Also, it was recog-
nized that the pile stiffness and the pile diameter could 
affect yc .

Davies [12] and Robertson et al. [6] presented a 
preliminary semi-empirical method to evaluate p-y 
curves based on flat dilatometer test (DMT) data. They 
employed the DMT-based p-y curves to model the 
behavior of three full-scale lateral pile load tests. They 
showed that ε50 has an increasing trend versus depth in 
both clays and sands in the considered sites. It was found 
that the predicted deflections using the DMT results 
agree well with those obtained from the pile load tests. 
In all the studied cases the calculated bending moments 
from the DMT-derived p-y curves were larger than those 
calculated from the measured pile deflection profiles.

Soil properties such as ε50 are very sensitive to soil 
disturbance due to the coring procedure, and using ε50 
values based on the tests on core samples may finally 
lead to a considerable deviation in predicting the real 
pile behavior. On the other hand, in-situ testing meth-
ods, such as the flat dilatometer (DMT), the pressure-
meter (PMT) and the cone penetration test (CPT) offer 
excellent means by which representative soil properties 
can be obtained [6,12,13]. Therefore, such in-situ tests, 

Figure 1. Typical p-y curves for pile in cohesive soil under 
static loading.
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with a minimum soil disturbance, can be used for evalu-
ating ε50 and developing p-y curves.

The cone penetration test (CPT) is a reliable in-situ test 
for its continuous sounding capability and good repeat-
ability. It provides valuable geotechnical information in 
the soil. Furthermore, the similarity between the CPT 
penetration process and the pile installation has led to 
its popularity in deep foundation analysis and design. 
The total cone tip resistance obtained from the CPT has 
a strong correlation with the soil’s shear strength [14]; on 
the other hand, due to the direct dependence of ε50 on 
the shear strength, the total tip resistance of the CPT can 
be employed in evaluating ε50 .

Despite the significant influence of ε50 on determining 
the p-y curves, prediction methods used to evaluate this 
parameter are very rare in the literature. Therefore, this 
study investigates the use of CPT data to predict ε50 in 
clayey soils and examines the capability of predicted ε50 
values to generate realistic p-y curves for laterally loaded 
piles at different sites. The present calculations of ε50 
are based on a comprehensive databank from labora-
tory and field tests, performed in the South Pars field, 
Persian Gulf, southwest of Iran. The field is an extremely 
strategic offshore area which contains the world’s largest 
gas resources. Many gas-extraction facilities supported 

Figure 2. Location of survey area in South Pars Field, south-west of Iran.

on long pile foundations have been constructed in this 
important region and a large number of such facilities 
are still under development. Hence, this research mainly 
focuses on an accurate evaluation of ε50 as an influential 
parameter in the analysis and design of piles against 
lateral loads in this region. In this regard, several statisti-
cal models based on the evolutionary polynomial regres-
sion (EPR) method are proposed to evaluate the ε50 
values for clayey soils. The effects of the cone tip resis-
tance, the undrained shear strength, the over-burden 
pressure as well as different index properties of the soils, 
such as the over-consolidation ratio and the plasticity 
index on ε50 are evaluated and discussed. In particular, 
the effect of the undrained shear strength of the cohesive 
soils obtained from field tests on ε50 is investigated and 
compared with the recommended values available in the 
literature. Finally, the validation of the proposed models 
is performed for full-scale piles tested at two different 
sites with different soil conditions.

2 SITE DESCRIPTION

The survey area, approximately 50×45 km2, is located 
in the Persian Gulf, Iran, between 27° 27' to 27° 28' 
Northing and 52° 27' to 52° 44' Easting (Fig. 2). The 
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soil investigation activities were comprised of sixteen 
boreholes: eight boreholes with a depth of 110 m and 
the rest with a depth of 80 m below the seabed. In-situ 
and laboratory tests were carried out to determine 
the geotechnical properties of the sub-seabed soils. 
The in-situ tests included piezocone penetration and 
torvane. Laboratory tests such as unconsolidated 
undrained (UU) triaxial compression were performed, 
which resulted in the undrained shear strength of the 
soil. The strain at 50% of the maximum deviatoric stress 
(ε50) and the strain at failure were also obtained from 
stress-strain curves in the UU tests. Atterberg limits and 
sieve tests were performed as well. Typical profiles of the 
soil properties are shown in Fig. 3 for a 110 m borehole 
within the considered survey area. The sub-seabed soils 
are generally clay, including very soft clay at the top, up 
to approximately 20 m, which become stiffer with depth. 
In addition, lenses of sandy silt and gypsum are found at 
several depths.

3 EVOLUTIONARY POLYNOMIAL 
REGRESSION

Evolutionary polynomial regression (EPR) is a useful 
toolbox developed on a modeling methodology based 
on the hybrid regression method by Giustolisi et al. 
[15] and Giustolisi and Savic [16]. It is a symbolic 
data-driven method that is used to create polynomial 
models to evolutionary compute based on input data 
and belongs to the family of Genetic Programming [17]. 
The constitutive modeling of soil [18] and an assessment 
of earthquake-induced soil liquefaction and lateral 
displacement [19] are some successful examples of the 
use of EPR in the field of geotechnical engineering.

Figure 3. Soil profile and the field and laboratory results for a typical 110 m borehole within survey area.

The EPR method includes two general stages: search-
ing the model structures based on an integer Genetic 
Algorithm (GA) and evaluating each of the model 
parameters, such as the numerical constant coefficients 
considering linear optimization [16]. The general 
symbolic expression derived from EPR is as follows:

0
1

ˆ (X, (X), )
m

j
j

Y F f a a
=

= +å         (2)

where Ŷ is the estimated outputs of the system derived 
from EPR, F is the function constructed by the program,  
X is the input variables matrix, f is a user-defined func-
tion, aj is an adjustable parameter determined by the 
program, and m is the number of terms of the expression 
defined by the user, excluding the bias a0 , if any. The 
general process can be rewritten based on vector form as

1 1 0 1 1( , )
Tj T

N N N n n N d dY Z I Z a a a Zq q´ ´ ´ ´ ´
é ù é ù= ´ = ´ê ú ë ûë û    (3)

where YN×1(θ,Z) is the least-squares estimate vector 
of the N target values, θd×1 is the vector of d = m + 
1 parameters aj and a0 (θT is the transposed vector), 
ZN×d  is a matrix formed by І, unitary vector for bias 
a0 , and m vectors of variables Zj that for a fixed j are a 
product of the independent predictor vectors of inputs, 

1 2 ... kX X X X= .

The EPR performs an evolutionary search of the model 
space using an analogy with stepwise regression [20], 
rather than by means of the traditional symbolic regres-
sion search based on parse tree structures. In this way, 
the EPR performs a global search of the input exponents 
and a combination of input variables according to the 
user-defined cost function.
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The program search is based on pseudo-polynomial and 
true structures using a single and multi-objective genetic 
algorithm, with different general expression forms. The 
expression form considered in this research is defined as 
below:

( )( ,1) ( , ) ( , 1)
0 1 1

1
.( ) . .( ) . ( ) .

m
ES j ES j k ES j k

j k
j

Y a a X X f X +

=

= +å 
  

                                ( )( ,2 ). . ( )ES j k
kf X

In the above expression, Xi are the k candidate inputs 
vectors, aj are constant values, ES is the matrix of 
unknown exponents that can be edited by the user 
within the defined range of values, and m is the length 
of the expressions defined by the user, which represents 
the number of maximum terms in each set of results. 
Each monomial of the polynomial models can contain 
user-defined functions. For this purpose, f() is the func-
tion that can be selected by the user based on available 
functions in the program. These functions may be 
logarithmic, exponential, tangent hyperbolic, etc.

In order to determine all the models corresponding to 
the optimal trade-off between the fitness and the brevity 
of the model, the EPR performs a multi-objective search 
exhibiting various mathematical models representing 
the best fitness for possible models. For a particular 
purpose, one can choose the best models based on 
short gap reconstruction, gaining a physical insight or 
forecasting the phenomenon. The fitness model defined 
in the EPR is the Coefficient of Determination (CoD), 
which refers to how closely the regression expression fits 
the data points:
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(4)

where p is the predicted values by model derived from 
the EPR, m is the measured value, m̄  is the average of the 
measured values, and n is the number of data points. More 
details about the EPR architecture for model representa-
tion as well as the method employed for the parameter 
estimation can be found in Giustolisi and Savic [16].

4 RESULTS AND DISCUSSION

The field and laboratory test results, including 274 data 
series, are considered as the databank for the numerical 
regression. In the present study, five variables are identified 
as the primary input data of cohesive soils for evaluating 
ε50 as an output. The input data includes the undrained 
shear strength (su), the normalized cone tip resistance (qc), 
the total over-burden pressure (σ0), the plasticity index 
(PI) and the over-consolidation ratio (OCR).

In pattern recognition procedures it is common practice 
to divide the available data into two subsets: training and 
testing. The model is firstly developed using the former 
and then tested using the latter one to ensure that the 
final obtained model has the ability to properly estimate 
ε50 for unseen or untrained cases. Here, the entire data-
bank is divided into several random combinations of 
training and testing sets until a robust representation of 
the whole population, in terms of statistical properties, is 
achieved for both training and testing sets. The statistical 
properties of the parameters considered in this study, 
including the values of maximum, minimum, mean, and 
the standard deviation, are presented in Table 1 for the 
training, testing and all datasets. The training dataset 
includes 80% of all the data (219), and the rest (55) are 
used as the testing dataset. The statistical values of the 
training, testing and all datasets, shown in Table 1, are 
close to each other.

Subsets Statistical characteristics σ0
(kPa)

su
(kPa)

qc
(kPa)

PI
(%) OCR Measured ε50

(%)

Testing data (55 data)

Minimum 216 19 162 14 0.9 0.9
Maximum 1933 504 8767 40 4 9.2

Mean 1081 241 4155 29 2.2 3.9
Standard deviation 462 112 2190 6.8 0.74 2.1

Training data (219 data)

Minimum 217 19 139 12 0.9 0.7
Maximum 2207 634 8943 47 5.3 9.3

Mean 1077 274 4184 30 2.4 3.5
Standard deviation 515 129 1996 7.4 1.1 2.0

All data (274 data)

Minimum 216 19 139 12 0.9 0.7
Maximum 2207 634 8943 47 5.3 9.3

Mean 1078 268 4178 30 2.4 3.6
Standard deviation 505 126 2037 7.3 1.0 2.1

Table 1. Statistical characteristics of databank.
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After several analyses in the EPR framework, four 
relationships are developed for evaluating ε50 , which 
are presented in Table 2. To examine the robustness and 
assess the performance of the EPR models, the following 
three statistical criteria were used:

– Coefficient of determination (R2), is a measure used 
to determine the relative correlation between two 
sets of variables, and defined as:

  

2

2 1

2

1

( )
1

( )

n

i i
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i
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m p
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m m
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        (6)

– Root mean square error (RMSE), is a measure of the 
error, defined as:
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1
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n
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         (7)

The advantage of this criterion is that large errors receive 
greater attention than smaller ones.

– Mean absolute error (MAE) is another measure of 
the error which eliminates the emphasis given to 
large errors, presented as:

  1

n

i i
i

m p
MAE

n
=

-

=
å

        (8)

In the above relations, mi and pi are the ith measured and 
predicted values of the output parameter (ε50), respec-
tively, n is the number of data points, and m̄  indicates 
the average of the measured output.

No. Equation Involved 
parameters

 R2

(%) RMSE MAE

Model 1 0.2
50 0.79 1.5 use =- +  su 6.6 1.99 1.65

Model 2 3 0.9
50 1.48 1.2 10 cqe -= + ´  qc 20.8 1.84 1.52

Model 3
2 0.3 0.5 0.1 12 3.3 0.3

50
6 1.4 0.7 0.1 3 0.5 0.8 0.7

4.84 8.76 10 1.24 10
5.43 10 2.1 10

c c

c c

q PI OCR q OCR
q PI OCR q PI OCR

e - - - -

- - -

= - ´ - ´

+ ´ - ´
qc , PI,
OCR 36.7 1.64 1.34

Model 4
13 1.5 2.6 1.3 0.2 10 0.6 1.3 1.6 2

50
6 1.5 0.4 0.1 0.6

1.55 2.7 10 1.8 10
1.5 10

c c

c

q PI OCR q PI OCR
q PI OCR

e s s

s

- - - -

-

= - ´ - ´

+ ´  

σ0 , qc , PI,
OCR 64.8 1.22 1.02

Table 2. Proposed models for estimating ε50.

The suggested models to evaluate ε50 as well as the 
values of the statistical criteria are presented in Table 2. 
It is clear that the performance of the models improves 
from model 1 to 4, since the R2 value increases while the 
RMSE and MAE values decrease. Based on the results 
summarized in Table 2, the EPR model 4 was chosen as 
the most appropriate one, which is developed using four 
input parameters: qc , σ0 , PI, OCR .

The first relationship is developed between the 
undrained shear strength of the soil and ε50 , and the 
second one uses the normalized cone tip resistance (qc) 
to predict ε50 , as shown in Table 2. By comparing the 
statistical characteristics of models 1 and 2, it can be 
seen that the ε50 values predicted from the field-based 
resistance property (qc) are more accurate than those 
predicted from the laboratory-based resistance (su). By 
using qc instead of su , R2 increases from 6.6 for model 
1 to 20.8 for model 2. However, the R2 value is not yet 
acceptable, and it seems that other influential parameters 
should be included in the model development process. 
Therefore, after several trial-and-error procedures it was 
found that the index properties of the soil, e.g., OCR 
and PI, have strong effects on the predicted ε50 values. 
According to Table 1, it is realized that model 3, which 
includes the above-mentioned factors, predicts ε50 more 
accurately than model 2. Furthermore, model 4 shows 
that the over-burden pressure also has a significant posi-
tive influence on the prediction accuracy.

Fig. 4 illustrates the predicting capability of the models 
by plotting the ε50 values against their corresponding 
measured values in training and testing datasets and 
their statistical characteristics are shown for a quantita-
tive comparison. Considering the data scatter in the 
graphs of Fig. 4, the results of the models for the testing 
dataset are generally consistent with those for the 
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Figure 4. Predicted versus measured ε50 values for the proposed EPR-based models.

training dataset. The more the points are distributed 
uniformly around the ideal 45° line, and the less scatter 
around this line, the better the capability of the model 
at predicting ε50 . In this regard, it is clear that model 
4 behaves better than the others. The upper and lower 
lines in Fig. 4 show the boundaries for a zone that is 
characterized by the ratios of the predicted-to-measured 
ε50 between 0.5 and 2.0. The estimation quality of each 
model, defined as the number of points that fall inside 
these two boundaries as a percentage of the total points, 
is shown in the figure. As the performance of the models 
improves, the data show more concentration in the 
mentioned zone. While all the models show acceptable 
estimation qualities, the estimation quality for model 
4 has the highest value (91.6%) among the proposed 
models.

It is clear from Fig 4 that the predicted ε50 values 
from model 1, which was developed merely from the 
undrained shear strength (Su), are not well distributed 
along the diagonal line and are concentrated in a narrow 
horizontal band. However, implementing the normal-
ized cone tip resistance (qc), instead of Su , in model 2 
smoothed the above-mentioned shortcoming.

The log-normal distribution, used by Briaud and Tucker 
[21], is an appropriate statistical criterion to further 
evaluate the performance of the proposed models. 
In this regard, the natural logarithm of the ratio of 
the predicted-to-measured ε50 i.e., ln(ε50p / ε50m) , is 
calculated for each data point and then the mean and 
standard deviation of these values are determined as 
follows:
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where the subscripts p and m denote the “predicted” 
and “measured”, respectively, n is the number of data 
considered in the analysis, μln and σln are indicators for 
the accuracy and precision of the models, respectively, 
which are used to identify the log-normal distribution of 
the density function as:

50 50
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A better distribution is achieved when μln(ε50p / ε50m) and 
σln(ε50p / ε50m) approach unity and zero, respectively. The 
log-normal distribution of ε50p/ε50m for the proposed 
models are presented in Fig. 5.

(11)

Figure 5. Log-normal distribution of ε50p/ε50m for the proposed models.

Figure 6. Probability of ε50 estimation with absolute error less than a given error, x (%).
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The probability of predicting ε50 with a 0 to 90% accu-
racy (10-100% absolute error) is calculated from Fig. 5 
and shown in Fig. 6. The total area below each curve in 
Fig. 5 is equal to one. Therefore, at a specified absolute 
error level, the probability of predicting ε50 is derived by 
calculating the total area below the log-normal distribu-
tion curve within the accuracy limits. At a constant 
absolute error, a higher probability indicates the better 
ability of the model at predicting ε50 . Based on this defi-
nition, the performance of the models improves from 
model 1 to 4 at all levels of absolute error.

The ability of the different models to predict ε50 can be 
evaluated using cumulative probability, as used by Long 
and Wysockey [22]. They used the concept of cumulative 
probability as a criterion to evaluate the bias of their 
model. The cumulative probability for each ε50p/ε50m can 
be obtained with the following definition:

1i
iCP

n
=

+
        (12)

where i is the data number arranged in an ascending 
order. The cumulative probability versus the ratio 
ε50p/ε50m for the proposed models is depicted in Fig. 7. 
In order to assess the ability of each model at estimat-
ing ε50, the 50% and 90% cumulative probabilities 
(CP50% and CP90%) are calculated. The difference 
between CP90 and CP50 (CP90%–CP50%) represents 
the discrepancy from an accurate estimation. Ideally, if 
all the data are predicted with no bias, the distribution 
of the estimated-to-measured ε50 against CP will be a 
straight line with a value of unity, indicating an exact 

estimation. In reality, the better performance of the 
model is achieved when ε50p/ε50m is closer to unity 
at CP50%. Lower (CP90%–CP50%) for each model 
indicates the better prediction accuracy of the proposed 
model. According to this criterion, it is observed in Fig. 
7 that model 4 leads to an optimum value of CP50% 
equal to unity and a lower value of (CP90%–CP50%) 
compared with the other models.

In a statistical analysis a model would behave better 
if the residual values, i.e., the difference between the 
measured and predicted values of ε50 , are concentrated 
more uniformly around the mean value of the residuals. 
The mean value of the residuals is calculated by:

50 501
1 ( )n

m p iiMR
n

e e
=

= -å         (13)

Fig. 8 (see next page) depicts the residuals of the 
training and testing sets for all the presented models 
versus the data number. In this figure, the residuals 
are scattered along a line indicating the mean (MR). In 
addition, the upper and lower bounds of the residual 
scatter (MR±σ; σ is the standard deviation of residuals) 
are shown in the figure. The ideal performance of each 
model is achieved by MR and σ equal to zero. In general, 
the lower absolute values of these two parameters repre-
sent the better performance of the model. A comparison 
between the proposed models in Fig. 8, with respect to 
the above parameters, shows an improvement of the 
models from 1 to 4 by decreasing the absolute MR and 
σ values.

Figure 7. Cumulative probability plot of ε50p/ε50m for the proposed models.
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Figure 8. Distribution of residual for the EPR-based models.

Figure 9. Geotechnical characteristics of soil in the boreholes of Site 1.
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5 VALIDATION OF THE 
PROPOSED MODELS

In order to validate the proposed models, the test results 
at three different sites are considered. The first site is 
located at South Pars field, Persian Gulf, Iran, outside 
the survey area, shown as Site 1 in Fig. 2. The soil is a 
very soft clay overlying a sandy silt or silty sand layer 
at shallow depths. Stiff to very stiff clay dominates at 
deeper parts. The profiles of the soil properties in three 
boreholes within this site are presented in Fig.9. Fig. 10 
shows the ε50 values predicted by different models as 
well as the measured values obtained from UU tests in 
borehole depths. In all the figures the recommended ε50 
values by Sullivan et al. [8] are significantly lower than 
the measured ones. However, the ε50 values predicted 
by models 1 and 4 compare relatively well with the 
measured ones in the full range of values along the 
borehole depths, as shown in Fig. 10. Generally, the ε50 
values show an increasing trend with depth from both 
laboratory measurements and the predictions of the 
currently proposed models. This result is in contradic-
tion with the values of ε50 recommended by Sullivan.

Herein, it is attempted to validate the current models 
using the p-y curve results obtained from the pile load 
tests conducted at two different sites (Sites 2 and 3). 
General information about the considered sites is given 
in Table 3.

Figure 10. Profiles of predicted and measured ε50 values in Site 1 from (a) borehole 1, (b) borehole 2, and (c) borehole 3.

Figs. 11(a) and (b) show the p-y curves generated 
based on the ε50 values from different models as well as 
Sullivan’s recommendations for two different depths at 
Sites 2 and 3, respectively. The figures also include the 
p-y curves obtained from full-scale tests. It is noted that 
the procedure for generating p-y curves is based on API 
[27]. The figures show that the calculated p-y curves 
from the EPR-based models agree relatively well with the 
measured p-y curves. However, the p-y curves calculated 
from the Sullivan's recommendations show lower values 
of the lateral displacement at all the lateral load levels. 
This implies that using the ε50 parameter from the Sulli-
van recommendations in generating the p-y curve leads 
to a stiffer behavior of the pile-soil system against lateral 
loads in comparison with the real behavior. It is observed 
that the predicted lateral displacements at 50% of the 
maximum lateral load from the proposed models are 
1.5–3.5 and 2–4 times as large as those obtained from the 
Sullivan recommendations for Sites 2 and 3, respectively.

In addition, the ratio of the predicted-to-measured 
lateral pile displacements at the maximum lateral 
load levels for the generated p-y curves at both sites is 
summarized in Table 6. It is clear from Table 6 that the 
generated p-y curves based on the ε50 values from the 
proposed models yield lateral pile displacements very 
close to the measured ones, with a maximum error of 
6%. However, using the ε50 values from Sullivan’s recom-
mendation in generating the p-y curves leads to very 
non-conservative lateral pile displacements at both sites.

B. EBRAHIMIAN & A. NAZARI: EVOLUTIONARY-BASED PREDICTION OF ε50 FOR THE LATERAL LOAD-DISPLACEMENT BEHAVIOR OF PILES IN CLAY



ACTA GEOTECHNICA SLOVENICA, 2013/254.

Site 
No. Location Source of p-y 

curve data Pile section 
Pile section
dimension

(m) 

Depth of
measurement

(m)

Pile 
length 

(m)

Relevant 
geotechnical 

properties
Reference

2
Incheon 
Bridge, 
Korea

Full-scale field 
load tests on 

piles
Circular

Diameter = 1.016 4D from ground 
surface (D= pile 

diameter)
26.6 Table 4 [23-25]

Thickness= 0.016

3

Bridge con-
struction 
site near 

Oskaloosa, 
Iowa

Lateral load 
tests on steel 
and concrete 

piles

UHPC1

H-shaped 0.254×0.254

5D from ground 
surface

(D=equivalent 
diameter, 0.287)

10.7 Table 4 [26]

Table 3. General information about Sites 2 and 3.

1 Ultra-high-performance concrete

Figure 11. Measured and calculated p-y curves: (a) Site 2 at depth = 4D; and (b) Site 3 at depth = 5D, (D = pile diameter).

(a)

(b)
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Type Depth
(m)

Unit weight
(kN/m3)

Moisture content
(%)

 su
(kPa)

Friction angle (φ)
(°)

Recommended ε50 
in the literature

Upper clay 0-6.3 17.5 21.2 15-30 - 0.02
Lower clay 6.3-16.5 17.5 7.6 30-50 - 0.01
Silty clay 16.5-22.0 17.8 12.7 70 - 0.005

Residual soil 22.0-24.0 18.0 4.33 - 34 -

Table 4. Soil properties of Site 2 [23-25].

6 SUMMARY AND CONCLUSIONS

In this research, the results of the field and laboratory 
test data of the South Pars field, Persian Gulf, Iran, are 
used to develop models for evaluating ε50 using the EPR. 
In this regard the cone tip resistance of the CPT and 
several parameters of cohesive soils (Su , σ0 , OCR and 
PI) are considered when developing the models. The 
conclusions are as follows:

– According to the statistical analyses, the models 
developed using the cone tip resistance (qc) yield 
more accurate ε50 values than those developed 
using the undrained shear strength of the soils (Su) 

Depth
(m)

classifica-
tion

Unit weight 
(kN/m3)

Moisture 
content (%)

LL
(%)

PI
(%)

 su 
(kPa)

Friction angle (φ)
(°)

Recommended ε50 in 
the literature

0-1.5 ML 18.8 21.2 42.1 10.4 60 - 0.007
1.5-2.8 CL 18.5 7.6 44.4 17.9 60 - 0.007
2.8-4.9 CL 18.5 12.7 27.9 7.4 136 - 0.005
4.9-5.8 SC 20.5 4.33 32.5 17.7 - 41 -
5.8-7.7 CL 20.4 4.83 36.7 19.2 - 35 -
7.7-9.2 SW 20.6 20.6 - - - 42 -

9.2-10.5 CL 20.4 - - - 800 - 0.004
10.5-12.0 SW 20.4 - - - - - -

Table 5. Soil properties of Site 3 [26].

Site 
No.

At maximum lateral load level

Depth Average of
proposed models Sullivan et al. [8]

2 4D 1.05 0.36
3 5D 1.06 0.31

Table 6. Ratio of predicted-to-measured lateral
pile displacement.

obtained from the UU tests. In general ε50 is more 
realistically predicted using the field-based, instead 
of the laboratory-based, resistance of the soil.

– The index properties of the soil, e.g., OCR and PI, 
significantly improve the performance of the propo-
sed models in predicting ε50.

– According to the statistical criteria, the models that 
are developed considering the effect of the over-
-burden pressure (σ0) lead to better predicted ε50 
values.

– The models are validated with the field data of Site 
1, located outside the main survey area, as shown 
in Fig. 2. The predicted ε50 values are in relatively 
good agreement with the measured ones for the full 
range of values along all the borehole depths in this 
site. It was found that the predicted ε50 values from 
the proposed models increase with soil depth, which 
agrees with the laboratory measurements.

– Further model validation with the full-scale lateral 
pile load test data at two different sites demonstrate 
the models’ capability in providing the ε50 parame-
ter to generate p-y curves consistent with the real 
behavior of a pile-soil system measured in the field. 
In particular, the results indicate that the p-y curves 
generated based on the ε50 values from the proposed 
models are in better agreement with the field data 
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rather than the p-y curves obtained from previously 
recommended ε50 values in the literature.
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