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Abstract

In 1994, it was conjectured by Fan and Raspaud that every simple bridgeless cubic
graph has three perfect matchings whose intersection is empty. In this paper we answer
a question recently proposed by Mkrtchyan and Vardanyan, by giving an equivalent for-
mulation of the Fan-Raspaud Conjecture. We also study a possibly weaker conjecture
originally proposed by the first author, which states that in every simple bridgeless cubic
graph there exist two perfect matchings such that the complement of their union is a bipar-
tite graph. Here, we show that this conjecture can be equivalently stated using a variant of
Petersen-colourings, we prove it for graphs having oddness at most four and we give a nat-
ural extension to bridgeless cubic multigraphs and to certain cubic graphs having bridges.
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1 Introduction and terminology
Many interesting problems in graph theory are about the behaviour of perfect matchings
in cubic graphs. One of the early classical results was made by Petersen [28] and states
that every bridgeless cubic graph has at least one perfect matching. Some years ago, one
of the most prominent conjectures in this area was completely solved by Esperet et al. in
[5]: the conjecture, proposed by Lovász and Plummer in the 1970s, stated that the number
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of perfect matchings in a bridgeless cubic graph grows exponentially with its order (see
[20]). However, many others are still open, such as Conjecture 2.1 proposed independently
by Berge and Fulkerson in the 1970s as well, and Conjecture 2.2 by Fan and Raspaud (see
[10] and [7], respectively). These two conjectures are related to the behaviour of the union
and intersection of sets of perfect matchings, and properties of this kind are already largely
studied: see, amongst others, [1, 2, 15, 16, 17, 19, 22, 23, 25, 30, 31]. In this paper we
prove that a seemingly stronger version of the Fan-Raspaud Conjecture is equivalent to the
classical formulation (Theorem 3.3), and so to another interesting formulation proposed in
[21] (see also [18]). In the second part of the paper (Section 4 and Section 5), we study
a weaker conjecture proposed by the first author in [24]: we show how we can state it in
terms of a variant of Petersen-colourings (Proposition 4.1) and we prove it for cubic graphs
of oddness four (Theorem 5.4). Although all mentioned conjectures are about simple cubic
graphs without bridges, we extend our study of the union of two perfect matchings to
bridgeless cubic multigraphs and to particular cubic graphs having bridges (Section 6.1
and Section 6.2).

Graphs considered in the sequel, unless otherwise stated, are simple connected bridge-
less cubic graphs and so do not contain loops and parallel edges. Graphs that may contain
parallel edges will be referred to as multigraphs. For a graph G, let V (G) and E(G) be
the set of vertices and the set of edges of G, respectively. A matching of G is a subset of
E(G) such that any two of its edges do not share a common vertex. For an integer k ≥ 0, a
k-factor of G is a spanning subgraph of G (not necessarily connected) such that the degree
of every vertex is k. The edge-set of a 1-factor is said to be a perfect matching. The least
number of odd cycles amongst all 2-factors of G, denoted by ω(G), is called the oddness
of G, and is clearly even for a cubic graph since G has an even number of vertices. For
M ⊆ E(G), we denote the graphG\M byM . In particular, whenM is a perfect matching
of G, then M is a 2-factor of G. In this case, following the terminology used for instance
in [8], if M has ω(G) odd cycles, then M is said to be a minimal perfect matching.

A cut in G is any set X ⊆ E(G) such that X has more components than G, and
no proper subset of X has this property, i.e. for any X ′ ⊂ X , X ′ does not have more
components than G. The set of edges with precisely one end in W ⊆ V (G) is denoted
by ∂GW , or just ∂W when it is obvious to which graph we are referring. Moreover, a cut
X is said to be odd if there exists a subset W of V (G) having odd cardinality such that
X = ∂W .

We next define some standard operations on graphs that will be useful in the sequel.
Let G1 and G2 be two bridgeless graphs (not necessarily cubic), and let e1 and e2 be two
edges such that e1 = u1v1 ∈ E(G1) and e2 = u2v2 ∈ E(G2). A 2-cut connection on
u1v1 and u2v2 is a graph operation that consists of constructing the new graph

[G1 − e1] ∪ [G2 − e2] ∪ {u1u2, v1v2},

and denoted by G1(u1v1) ∗G2(u2v2). It is clear that another possible graph obtained by a
2-cut connection on e1 and e2 is G1(u1v1) ∗ G2(v2u2). Clearly, the two graphs obtained
are bridgeless, and, unless otherwise stated, if it is not important which of these two graphs
is obtained, we use the notation G1(e1) ∗G2(e2) and we say that it is a graph obtained by
a 2-cut connection on e1 and e2.

Now, letG1 andG2 be two bridgeless cubic graphs, v1 ∈ V (G1) and v2 ∈ V (G2) such
that the vertices adjacent to v1 are x1, y1 and z1, and those adjacent to v2 are x2, y2 and z2.
A 3-cut connection (sometimes also known as the star product, see for instance [11]) on v1
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and v2 is a graph operation that consists of constructing the new graph

[G1 − v1] ∪ [G2 − v2] ∪ {x1x2, y1y2, z1z2},

and denoted byG1(x1y1z1)∗G2(x2y2z2). The 3-edge-cut {x1x2, y1y2, z1z2} is referred to
as the principal 3-edge cut (see for instance [9]). As in the case of 2-cut connections, other
graphs can be obtained by a 3-cut connection on v1 and v2, and, unless otherwise stated,
if it is not important how the adjacencies in the principal 3-edge cut look like, we use the
notation G1(v1) ∗ G2(v2) and we say that it is a graph obtained by a 3-cut connection on
v1 and v2. It is clear that any resulting graph is also bridgeless and cubic.

2 A list of relevant conjectures
One of the aims of this paper is to study the behaviour of perfect matchings in cubic graphs,
more specifically the union of two perfect matchings (see Section 4 and Section 5). We
relate this to well-known conjectures stated here below, in particular: the Berge-Fulkerson
Conjecture and the Fan-Raspaud Conjecture.

Conjecture 2.1 (Berge-Fulkerson [10]). Every bridgeless cubic graphG admits six perfect
matchings M1, . . . ,M6 such that any edge of G belongs to exactly two of them.

⇒ ⇒Conjecture 2.3 Conjecture 2.4⇒Berge-Fulkerson
Conjecture Conjecture

Fan-Raspaud Prop. 2.5

Figure 1: Conjectures mentioned and how they are related.

We also state here other (possibly weaker) conjectures implied by the above conjecture.

Conjecture 2.2 (Fan-Raspaud [7]). Every bridgeless cubic graph admits three perfect
matchings M1,M2, and M3 such that M1 ∩M2 ∩M3 = ∅.

In the sequel we will refer to three perfect matchings satisfying Conjecture 2.2 as an
FR-triple. We can see that Conjecture 2.2 is immediately implied by the Berge-Fulkerson
Conjecture, since we can take any three perfect matchings out of the six which satisfy
Conjecture 2.1. A still weaker statement implied by the Fan-Raspaud Conjecture is the
following:

Conjecture 2.3 ([21]). For each bridgeless cubic graph G, there exist two perfect match-
ings M1 and M2 such that M1 ∩M2 contains no odd-cut of G.

We claim that any two perfect matchings out of the three in an FR-triple have no
odd-cut in their intersection, in other words that Conjecture 2.2 implies Conjecture 2.3.
For, suppose not. Then, without loss of generality, suppose that M2 ∩ M3 contains an
odd-cut X . Hence, since every perfect matching has to intersect an odd-cut at least once,
|M1∩(M2∩M3)| ≥ |M1∩X| ≥ 1, a contradiction, since we assumed thatM1∩M2∩M3

is empty. In relation to the above, the first author proposed the following conjecture:

Conjecture 2.4 (S4-Conjecture [24]). For any bridgeless cubic graph G, there exist two
perfect matchings such that the deletion of their union leaves a bipartite subgraph of G.
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For reasons which shall be obvious in Section 4 we let such a pair of perfect matchings
be called an S4-pair of G and shall refer to Conjecture 2.4 as the S4-Conjecture. We will
first proceed by showing that this conjecture is implied by Conjecture 2.3, and so, by what
we have said so far, is a consequence of the Berge-Fulkerson Conjecture. In particular, we
can see the S4-Conjecture as Conjecture 2.3 restricted to odd-cuts ∂V (C), where C is an
odd cycle of G.

Proposition 2.5. Conjecture 2.3 implies the S4-Conjecture.

Proof. Let M1 and M2 be two perfect matchings such that their intersection does not
contain any odd-cut. Consider M1 ∪M2, and suppose that it contains an odd cycle C.
Then, all the edges of ∂V (C) belong to M1 ∩ M2. If ∂V (C) has exactly two com-
ponents, then ∂V (C) is an odd-cut belonging to M1 ∩ M2, a contradiction. Therefore,
∂V (C) must have more than two components, say k, denoted by C1, C2, . . . , Ck, where
the first component C1 is the cycle C. Let [C1, Cj ] denote the set of edges between C1

and Cj , for j ∈ {2, . . . , k}. Since
∑k

j=2 |[C1, Cj ]| = |∂V (C)| ≡ 1 (mod 2), there exists
j′ ∈ {2, . . . , k}, such that |[C1, Cj′ ]| ≡ 1 (mod 2). However, [C1, Cj′ ] is an odd-cut
which belongs to M1 ∩M2, a contradiction.

3 Statements equivalent to the Fan-Raspaud Conjecture
Let M1, . . . ,Mt be a list of perfect matchings of G, and let a ∈ E(G). We denote the
number of times a occurs in this list by νG[a : M1, . . . ,Mt]. When it is obvious which
list of perfect matchings or which graph we are referring to, we will denote this as ν(a)
and refer to it as the frequency of a. We will sometimes need to refer to the frequency
of an ordered list of edges, say (a, b, c), and we will do this by saying that the frequency
of (a, b, c) is (i, j, k), for some integers i, j and k. Mkrtchyan et al. [27] showed that the
Fan-Raspaud Conjecture, i.e. Conjecture 2.2, is equivalent to the following:

Conjecture 3.1 ([27]). For each bridgeless cubic graphG, any edge a ∈ E(G) and any i ∈
{0, 1, 2}, there exist three perfect matchingsM1,M2, andM3 such thatM1∩M2∩M3 = ∅
and νG[a :M1,M2,M3] = i.

In other words they show that if a graph has an FR-triple then, for every i in {0, 1, 2},
there exists an FR-triple in which the frequency of a pre-chosen edge is exactly i. In
the same paper, Mkrtchyan et al. state the following seemingly stronger version of the
Fan-Raspaud Conjecture:

Conjecture 3.2 ([27]). Let G be a bridgeless cubic graph, w a vertex of G and i, j and k
three integers in {0, 1, 2} such that i + j + k = 3. Then, G has an FR-triple in which the
edges incident to w in a given order have frequencies (i, j, k).

This means that we can prescribe the frequencies to the three edges incident to a given
vertex. At the end of [27], the authors remark that it would be interesting to show that
Conjecture 3.2 is equivalent to the Fan-Raspaud Conjecture. We prove here that this is
actually the case.

Theorem 3.3. Conjecture 3.2 is equivalent to the Fan-Raspaud Conjecture.

Proof. Since the Fan-Raspaud Conjecture is equivalent to Conjecture 3.1, it suffices to
show the equivalence of Conjectures 3.1 and 3.2. The latter clearly implies the former, so
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assume Conjecture 3.1 is true and let a, b and c be the edges incident to w such that the
frequencies (i, j, k) are to be assigned to (a, b, c). It is sufficient to show that there exist
two FR-triples in which the frequencies of (a, b, c) are (2, 1, 0) in one FR-triple (Case 1
below) and (1, 1, 1) in the other FR-triple (Case 2 below).

u4

u1 u2

u3

G1 G2

u3

a1

b1
c1

a2

c2
b2

u4

Figure 2: The graphs K4 and K∗4 in Case 1 of the proof of Theorem 3.3.

Case 1. Let u1, u2, u3 and u4 be the vertices of the complete graph K4 as in Figure 2.
Consider two copies of G, and let the vertex w in the ith copy of G be denoted by wi, for
each i ∈ {1, 2}. We apply a 3-cut connection between ui and wi, for each i ∈ {1, 2}. With
reference to this resulting graph, denoted by K∗4 , we refer to the copy of the graph G − w
at u1 as G1, and to the corresponding edges a, b and c as a1, b1 and c1, respectively. The
graph G2 and the edges a2, b2 and c2 are defined in a similar way, and the 3-cut connection
is done in such a way that b1 and b2 are adjacent, and also c1 and c2, as Figure 2 shows. Note
also that a1 and a2 coincide in K∗4 . By our assumption, there exists an FR-triple M1,M2

and M3 of K∗4 in which the edge u3u4 has frequency 2. Without loss of generality, let
u3u4 ∈ M1 ∩M2. Then, a1 (and so a2) must belong to M1 ∩M2. Clearly, a1 (and so
a2) cannot belong to M3, and so the principal 3-edge-cuts with respect to G1 and G2 do
not belong to M3. If b1 ∈M3, then we are done, as then M1,M2 and M3 restricted to G1,
together with a and b having the same frequencies as a1 and b1, induce an FR-triple of G
such that the frequencies of (a, b, c) are (2, 1, 0). So suppose c1 ∈ M3. Then, b2 ∈ M3,
and so by a similar argument applied to G2 and the corresponding edges, M1,M2 and M3

induce an FR-triple in G such that the frequencies of (a, b, c) are (2, 1, 0).

e

G1

G2 G3

G4

a1

b1

c3

a4

c2

c1

a2 a3

u2

u4

e

u1

u3

b3b2

b4

c4

Figure 3: The graphs P and P ∗ in Case 2 of the proof of Theorem 3.3.

Case 2. Let P be the Petersen graph and {u1, u2, u3, u4} be a maximum independent set
of vertices in P as in Figure 3. Consider four copies of G. Let the vertex w in the ith copy
of G be denoted by wi, for each i ∈ {1, . . . , 4}. Let P ∗ be the graph obtained by applying
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a 3-cut connection between each ui and wi, as shown in Figure 3. Similar to Case 1 we
refer to the copy of G − w at ui as Gi and to the corresponding edges a, b and c as ai, bi
and ci, respectively. Since we are assuming that Conjecture 3.1 is true, we can consider
an FR-triple M1,M2 and M3 of P ∗ in which the edge e incident to both a1 and a4 has
frequency 2. Without loss of generality, let the two perfect matchings containing e be M1

andM2. The edges a1, c2, c3 and a4 are not contained inM1 and neitherM2, since they are
all incident to e, and so no principal 3-edge-cut leavingGi belongs toM1 orM2. Then,M1

and M2 induce perfect matchings of P (clearly distinct), and since there are exactly two
perfect matchings of P containing e, we can assume that M1 contains {e, b1, a2, a3, b4},
and M2 contains {e, c1, b2, b3, c4}.

If the third perfect matching M3 induces a perfect matching of the Petersen graph then
the induced perfect matching cannot be one of the perfect matchings induced by M1 and
M2 in P . Hence, since every two distinct perfect matchings of P intersect in exactly
one edge of P , there exists i ∈ {1, 2, 3, 4} such that the frequencies of (ai, bi, ci) are
(1, 1, 1) and so, M1,M2 and M3 restricted to Gi, together with a, b and c having the same
frequencies as ai, bi and ci, induce an FR-triple in G with the needed property.

Therefore, suppose M3 contains the principal 3-edge-cut of one of the Gis, say G1

by symmetry of P ∗. Thus, a1, b1 and c1 belong to M3. The perfect matching M3 can
intersect the principal 3-edge-cut at G2 either in b2 or c2 (not both). If c2 ∈ M3 we are
done by the same reasoning above applied to G2 and the corresponding edges. So suppose
b2 ∈ M2 ∩M3. Then, c4 ∈ M3, and M3 can only intersect the principal 3-edge-cut at G3

in c3, implying that the frequencies of (a3, b3, c3) are (1, 1, 1) in P ∗ and that M1,M2 and
M3 restricted to G3, together with a, b and c having the same frequencies as a3, b3 and c3,
induce an FR-triple in G with the needed property.

In [27] it is also shown that a minimal counterexample to Conjecture 3.2 is cyclically
4-edge-connected. It remains unknown whether a smallest counterexample to the original
formulation of the Fan-Raspaud Conjecture has the same property. Indeed, we only prove
that the two assertions are equivalent, but we cannot say whether a possible counterexample
to Conjecture 3.2 is itself a counterexample to the original formulation.

4 Statements equivalent to the S4-Conjecture
All conjectures presented in Section 2 are implied by a conjecture made by Jaeger in the
late 1980s. In order to state it we need the following definitions. Let G and H be two
graphs. AnH-colouring ofG is a proper edge-colouring f ofG with edges ofH , such that
for each vertex u ∈ V (G), there exists a vertex v ∈ V (H) with f(∂G{u}) ⊆ ∂H{v}. If G
admits anH-colouring, then we will writeH ≺ G. In this paper we consider S4-colourings
of bridgeless cubic graphs, where S4 is the multigraph shown in Figure 4.

g3 g0g4
z

g1

g2

Figure 4: The multigraph S4.
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The importance ofH-colourings is mainly due to Jaeger’s Conjecture [14] which states
that each bridgeless cubic graph G admits a P -colouring (where P is again the Petersen
graph). For recent results on P -colourings, known as Petersen-colourings, see for instance
[12, 13, 26, 29]. The following proposition shows why we choose to refer to a pair of
perfect matchings whose deletion leaves a bipartite subgraph as an S4-pair.

Proposition 4.1. Let G be a bridgeless cubic graph, then S4 ≺ G if and only if G has an
S4-pair.

Proof. Along the entire proof we denote the edges of S4 by using the same labelling as in
Figure 4. Let M1 and M2 be an S4-pair of G. The graph induced by M1 ∪M2, denoted
by G[M1 ∪M2], is made up of even cycles and isolated edges, whilst the bipartite graph
M1 ∪M2 is made up of even cycles and paths. We obtain an S4-colouring of G as follows:

• the isolated edges in M1 ∪M2 are given colour g0,

• the edges of the even cycles in M1 ∪M2 are properly edge-coloured with g3 and g4,
and

• the edges of the paths and even cycles in M1 ∪M2 are properly edge-coloured with
g1 and g2.

One can clearly see that this gives an S4-colouring of G. Conversely, assume that S4 ≺ G.
We are required to show that there exists an S4-pair of G. Let M1 be the set of edges of
G coloured g3 and g0, and let M2 be the set of edges of G coloured g4 and g0. If e and f
are edges of G coloured g3 (or g4) and g0, respectively, then e and f cannot be adjacent,
otherwise we contradict the S4-colouring of G. Thus, M1 and M2 are matchings. Next,
we show that they are in fact perfect matchings. This follows since for every vertex v of
G, f(∂G{v}) is equal to {g1, g3, g4}, or {g2, g3, g4}, or {g0, g1, g2}. Thus, M1 ∪M2 is
the graph induced by the edges coloured g1 and g2, which clearly cannot induce an odd
cycle.

Hence, by the previous proof, Conjecture 2.4 can be stated in terms of S4-colourings,
which clearly shows why we choose to refer to it as the S4-Conjecture. In analogy to what
we did for FR-triples, here we prove that for S4-pairs we can prescribe the frequency of an
edge and the frequencies of the edges leaving a vertex (the proof of the latter also implies
that we can prescribe the frequencies of the edges of each 3-cut). Consider the following
conjecture, analogous to Conjecture 3.1:

Conjecture 4.2. For any bridgeless cubic graph G, any edge a ∈ E(G) and any i ∈
{0, 1, 2}, there exists an S4-pair, say M1 and M2, such that νG[a :M1,M2] = i.

In Theorem 4.3 we show that the latter conjecture is actually equivalent to the S4-Con-
jecture. The proof given in [27] to show the equivalence of the Fan-Raspaud Conjecture
and Conjecture 3.1 is very similar to the proof we give here for the analogous case for the
S4-Conjecture, however, we need a slightly more complicated tool in our context.

Theorem 4.3. Conjecture 4.2 is equivalent to the S4-Conjecture.

Proof. Clearly, Conjecture 4.2 implies the S4-Conjecture so it suffices to show the con-
verse. Assume the S4-Conjecture to be true and let f1, f2, f3 be three consecutive edges
of K4 inducing a path. Consider two copies of G. Let the edge a in the ith copy of G
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be denoted by ai, for each i ∈ {1, 2}. Let K ′4 be the graph obtained by applying a 2-cut
connection between fi and ai for each i ∈ {1, 2}. We refer to the copy of the graph G− a
on fi as Gi.

G1

G2

Figure 5: An edge in P transformed into the corresponding structure in H .

Let {e1, . . . , e15} be the edges of the Petersen graph and let T1, . . . , T15 be fifteen
copies of K ′4. For every i ∈ {1, . . . , 15}, apply a 2-cut connection on ei and the edge f3 of
Ti. Consequently, every edge ei of the Petersen graph is transformed into the structure Ei

as in Figure 5, and we refer to G1 and G2 on Ei as Gi
1 and Gi

2, respectively. Let H be the
resulting graph. By our assumption, there exists an S4-pair of H , say M1 and M2, which
induces a pair of two distinct perfect matchings in P , say N1 and N2, respectively. There
exists an edge of P , say ej , for some j ∈ {1, . . . , 15}, such that νP [ej : N1, N2] = 1, since
every two distinct perfect matchings of P have exactly one edge of P in common. Hence,
the restriction of M1 and M2 to the edge set of Gj

1, together with the edge a having the
same frequency as ej , gives rise to an S4-pair of G in which the frequency of a is 1.

Moreover, there exists an edge of P , say ek, for some k ∈ {1, . . . , 15}, such that
νP [ek : N1, N2] = 2. Restricting M1 and M2 to the edge set of Gk

1 , together with the edge
a having the same frequency as ek, gives rise to an S4-pair of G, in which the frequency of
a is 2. Also, the restriction of M1 and M2 to the edge set of Gk

2 gives rise to an S4-pair of
G (Gk

2 together with a), in which the frequency of a is 0, because if not, then there exists an
odd cycle in G, say of length α, passing through a and having all its edges with frequency
0. However, this would mean that there is an odd cycle of length α+4 on Ek in M1 ∪M2

(in H), a contradiction.

As in Section 3, we state an analogous conjecture to Conjecture 3.2, but for S4-pairs:

Conjecture 4.4. Let G be a bridgeless cubic graph, w a vertex of G and i, j and k three
integers in {0, 1, 2} such that i + j + k = 2. Then, G has an S4-pair in which the edges
incident to w in a given order have frequencies (i, j, k).

The following theorem shows that this conjecture is actually equivalent to Conjec-
ture 4.2, and so to the S4-Conjecture by Theorem 4.3.

Theorem 4.5. Conjecture 4.4 is equivalent to the S4-Conjecture.

Proof. Since the S4-Conjecture is equivalent to Conjecture 4.2, it suffices to show the
equivalence of Conjectures 4.2 and 4.4. Clearly, Conjecture 4.4 implies Conjecture 4.2 and
so we only need to show the converse. Let a, b and c be the edges incident to w such that
the frequencies (i, j, k) are to be assigned to (a, b, c). We only need to prove the case when
(i, j, k) is equal to (1, 1, 0), as all other cases follow from Conjecture 4.2.

Consider the graph G(w) ∗ P (v), where P is the Petersen graph and v is any vertex of
P . We refer to the edges corresponding to a, b and c in G(w) ∗ P (v), as aw, bw and cw.
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aw

d

cw

bw

G−w

Figure 6: The graph G(w) ∗ P (v) from Theorem 4.5.

Let d be an edge originally belonging to P and adjacent to cw in G(w) ∗ P (v). Since we
are assuming Conjecture 4.2 to be true, there exists an S4-pair in G(w) ∗ P (v) in which d
has frequency 2. If the frequencies of (aw, bw, cw) are (1, 1, 0), then we are done, because
the S4-pair for G(w) ∗ P (v) restricted to the edges in G−w, together with a and b having
the same frequencies as aw and bw, give an S4-pair for G with the desired property. We
claim that this must be the case. For, suppose not. Then, without loss of generality, the
frequencies of (aw, bw, cw) are (2, 0, 0). This implies that all the edges of G(w) ∗ P (v)
originally in P have either frequency 0 or 2, since the two perfect matchings in the S4-pair
induce the same perfect matching in P . However, this implies that P has a perfect matching
whose complement is bipartite, a contradiction since P is not 3-edge-colourable.

As in [27], a minimal counterexample to Conjecture 4.4 (but not necessarily to the
S4-Conjecture) is cyclically 4-edge-connected. We omit the proof of this result as it is very
similar to the proof of Theorem 2 in [27].

5 Further results on the S4-Conjecture
Little progress has been made on the Fan-Raspaud Conjecture so far. Bridgeless cubic
graphs which trivially satisfy this conjecture are those which can be edge-covered by four
perfect matchings. In this case, every three perfect matchings from a cover of this type
form an FR-triple since every edge has frequency one or two with respect to this cover.
Therefore, a possible counterexample to the Fan-Raspaud Conjecture should be searched
for in the class of bridgeless cubic graphs whose edge-set cannot be covered by four perfect
matchings, see for instance [6]. In 2009, Máčajová and Škoviera [22] shed some light on
the Fan-Raspaud Conjecture by proving it for bridgeless cubic graphs having oddness two.
One of the aims of this paper is to show that even if the S4-Conjecture is still open, some
results are easier to extend than the corresponding ones for the Fan-Raspaud Conjecture.
Clearly, the result by Máčajová and Škoviera in [22] implies the following result:
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Theorem 5.1. Let G be a bridgeless cubic graph of oddness two. Then, G has an S4-pair.

We first give a proof of Theorem 5.1 in the same spirit of that used in [22], however
much shorter since we are proving a weaker result.

Proof 1 of Theorem 5.1. Let M1 be a minimal perfect matching of G, and let C1 and C2

be the two odd cycles in M1. Colour the even cycles in M1 using two colours, say 1 and
2. For each i ∈ {1, 2}, let Ei be the set of edges belonging to the even cycles in M1 and
having colour i. In G, there must exist a path Q whose edges alternate in M1 and E1 and
whose end-vertices belong to C1 and C2, respectively, since C1 and C2 are odd cycles.
Note that since the edges of C1 and C2 are not edges in M1 ∪ E1, every other vertex on Q
which is not an end-vertex does not belong to C1 and C2.

For each i ∈ {1, 2}, let vi be the end-vertex of Q belonging to Ci, and let MCi be the
unique perfect matching of Ci − vi. Let M2 := (M1 ∩ Q) ∪ (E1 \ Q) ∪MC1

∪MC2
.

Clearly, M2 is a perfect matching of G which intersects C1 and C2, and so M1 ∪M2 is
bipartite.

We now give a second alternative proof of the same theorem using fractional perfect
matchings, which we will show to be easier to use for graphs having larger oddness. Let w
be a vector in R|E(G)|. The entry of w corresponding to e ∈ E(G) is denoted by w(e), and
for A ⊆ E(G), we let the weight of A, denoted by w(A), to be equal to

∑
e∈A w(e). The

vector w is said to be a fractional perfect matching of G if:

1. w(e) ∈ [0, 1] for each e ∈ E(G),

2. w(∂{v}) = 1 for each v ∈ V (G), and

3. w(∂W ) ≥ 1 for each W ⊆ V (G) of odd cardinality.

The following lemma is presented in [16] and it is a consequence of Edmonds’ characteri-
sation of perfect matching polytopes in [3].

Lemma 5.2. If w is a fractional perfect matching in a graph G, and c ∈ R|E(G)|, then G
has a perfect matching N such that

c · χN ≥ c · w,

where · denotes the inner product. Moreover, there exists a perfect matching satisfying the
above inequality and which contains exactly one edge of each odd-cut X with w(X) = 1.

Remark 5.3. If we let w(e) = 1/3 for all e ∈ E(G), for some graph G, then we know that
w is a fractional perfect matching of G. Also, since the weight of every 3-cut is one, then
by Lemma 5.2 there exists a perfect matching of G containing exactly one edge of each
3-cut of G.

Proof 2 of Theorem 5.1. Let M1 be a minimal perfect matching of G, and let C1 and C2

be the two odd cycles in M1. For each i ∈ {1, 2}, let ei1 and ei2 be two adjacent edges
belonging to Ci. We define the vector c ∈ R|E(G)| such that

c(e) =

{
1 if e ∈ ∪2i=1{ei1, ei2},
0 otherwise.
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By Remark 5.3, we also know that if we let w(e) = 1/3 for all e ∈ E(G), then w is a
fractional perfect matching of G. Hence, by Lemma 5.2, there exists a perfect matching
M2 such that c · χM2 ≥ c · w, which implies that

| ∪2i=1 {ei1, ei2} ∩M2| ≥ 1/3× 2× 2 = 4/3 > 1.

Therefore, for each i ∈ {1, 2}, there exists exactly one j ∈ {1, 2} such that eij ∈ M2.
Hence, M2 intersects C1 and C2 and so M1 ∪M2 is bipartite.

Using the same idea as in Proof 2 of Theorem 5.1, we also prove that the S4-Conjecture
is true for graphs having oddness four.

Theorem 5.4. Let G be a bridgeless cubic graph of oddness four. Then, G has an S4-pair.

Proof. Let M1 be a minimal perfect matching of G, and let C1, C2, C3 and C4 be the four
odd cycles in M1. By Remark 5.3, there exists a perfect matching N of G such that if
G has any 3-cuts, then N intersects every 3-cut of G in one edge. Moreover, for every
i ∈ {1, . . . , 4}, there exists at least a pair of adjacent edges ei1 and ei2 belonging to Ci ∩N .
We define the vector c ∈ R|E(G)| such that

c(e) =

{
1 if e ∈ ∪4i=1{ei1, ei2},
0 otherwise.

We also define the vector w ∈ R|E(G)| as follows:

w(e) =

{
1/5 if e ∈ N,
2/5 otherwise.

The vector w is clearly a fractional perfect matching of G because, in particular, N in-
tersects every 3-cut in one edge and so w(X) ≥ 1 for each odd-cut X of G. Hence, by
Lemma 5.2, there exists a perfect matching M2 such that c · χM2 ≥ c · w, which implies
that

| ∪4i=1 {ei1, ei2} ∩M2| ≥ 2/5× 2× 4 = 16/5 > 3.

Therefore, for each i ∈ {1, . . . , 4}, there exists exactly one j ∈ {1, 2} such that eij ∈ M2.
Hence, M2 intersects C1, C2, C3 and C4 and so M1 ∪M2 is bipartite.

As the above proofs show us, extending results with respect to the S4-Conjecture is
easier than in the case of the Fan-Raspaud Conjecture and this is why we believe that a proof
of the S4-conjecture could be a first feasible step towards a solution of the Fan-Raspaud
Conjecture. For graphs having oddness at least six we are not able to prove the existence of
an S4-pair and we wonder how many perfect matchings we need such that the complement
of their union is bipartite. In the next proposition we use the technique used in Theorem 5.4
and show that given a bridgeless cubic graph G, if ω(G) ≤ 5k−1 − 1 for some positive
integer k, then there exist k perfect matchings such that the complement of their union is
bipartite. Note that for k = 2 we obtain ω(G) ≤ 4.

Proposition 5.5. Let G be a bridgeless cubic graph and let C be a collection of disjoint
odd cycles in G such that |C| ≤ 5k−1 − 1 for some positive integer k. Then, there exist
k − 1 perfect matchings of G, say M1, . . . ,Mk−1, such that for every C ∈ C, there exists
j ∈ {1, . . . , k− 1} for which C ∩Mj 6= ∅. Moreover, if ω(G) ≤ 5k−1− 1, then there exist
k perfect matchings such that the complement of their union is bipartite.
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Proof. We proceed by induction on k. For k = 1, the assertion trivially holds since C is the
empty set. Assume the result is true for some k ≥ 1 and consider k+1. LetC1, C2, . . . , Ct,
with t ≤ 5k − 1, be the odd cycles of G in C. Let N be a perfect matching of G which
intersects every 3-cut of G once. For every i ∈ {1, . . . , t}, there exists at least a pair of
adjacent edges ei1 and ei2 belonging to Ci ∩N . We define the vector c ∈ R|E(G)| such that

c(e) =

{
1 if e ∈ ∪ti=1{ei1, ei2},
0 otherwise.

We also define the vector w ∈ R|E(G)| as follows:

w(e) =

{
1/5 if e ∈ N,
2/5 otherwise.

As in the proof of Theorem 5.4, w is a fractional perfect matching of G and by Lemma 5.2
there exists a perfect matching Mk such that c · χMk ≥ c · w. This implies that

| ∪ti=1 {ei1, ei2} ∩Mk| ≥ 2× 2/5× t.

Let C′ be the subset of C which contains the odd cycles of C with no edge of Mk. Then,
|C′| ≤ |C| − 4

5 t = t − 4
5 t =

t
5 ≤ 5k−1 − 1

5 , and so |C′| ≤ 5k−1 − 1. By induction, there
exist k − 1 perfect matchings of G, say M1, . . . ,Mk−1, having the required property with
respect to C′. Therefore, M1, . . . ,Mk intersect all odd cycles in C. The second part of the
statement easily follows by considering C to be the set of odd cycles in the complement of
a minimal perfect matchingM ofG, since the union ofM with the k−1 perfect matchings
which intersect all the odd cycles in C has a bipartite complement.

Remark 5.6. We note that with every step made in the proof of Proposition 5.5, one could
update the weight w of the edges using the methods presented in [16, 23] which gives a
slightly better upper bound for ω(G). For reasons of simplicity and brevity, we prefer the
present weaker version of Proposition 5.5.

6 Extension of the S4-Conjecture to larger classes of cubic graphs
6.1 Multigraphs

In this section we discuss natural extensions of some previous conjectures to bridgeless
cubic multigraphs. We note that bridgeless cubic multigraphs cannot contain any loops.
We will make use of the following standard operation on parallel edges, referred to as
smoothing. Let G′ be a bridgeless cubic multigraph. Let u and v be two vertices in G′ such
that there are exactly two parallel edges between them.

x u v y

Figure 7: Vertices x, u, v and y in G′.

Let x and y be the vertices adjacent to u and v, respectively (see Figure 7). We say
that we smooth uv if we delete the vertices u and v from G′ and add an edge between x
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and y (even if x and y are already adjacent in G′). One can easily see that the resulting
multigraph, say G, after smoothing uv is again bridgeless and cubic.

In what follows, we will say that a perfect matching M of G and a perfect matching
M ′ of G′ are corresponding perfect matchings if the following holds:

M =

{
M ′ ∪ xy − {xu, vy} if xu ∈M ′,
M ′ − uv otherwise.

The following theorem can be easily proved by using smoothing operations.

Theorem 6.1. The S4-Conjecture is true if and only if every bridgeless cubic multigraph
has an S4-pair.

Now we show that Conjecture 4.4 can also be extended to multigraphs.

Theorem 6.2. Let i, j and k be three integers in {0, 1, 2} such that i + j + k = 2 and let
w be a vertex in a bridgeless cubic multigraph G′. Then, the S4-Conjecture is true if and
only ifG′ has an S4-pair in which the edges incident to w in a given order have frequencies
(i, j, k).

Proof. It suffices to assume that the S4-Conjecture is true and only show the forward di-
rection, by Theorem 6.1. Let G′ be a minimal counterexample and suppose it has some
parallel edges. If G′ = C2,3 then the result clearly follows. So assume G′ 6= C2,3. Let
a, b and c be the edges incident to w such that the frequencies (i, j, k) are to be assigned to
(a, b, c). We proceed by considering two cases: when w has two parallel edges incident to
it (Figure 8) and otherwise (Figure 9).

x w v y

a
c

b

Figure 8: Case 1 in the proof of Theorem 6.2.

Case 1. Let G be the resulting multigraph after smoothing wv. By minimality of G′, G
has an S4-pair (say M1 and M2) in which ν(xy) = k. It is easy to see that a pair of
corresponding perfect matchings in G′ give νG′(c) = νG′(vy) = k and can be chosen in
such a way such that νG′(a) = i and νG′(b) = j, a contradiction to our initial assumption.
Therefore, we must have Case 2.

a c

b

w

Figure 9: Case 2 in the proof of Theorem 6.2.

Case 2. Let G be the resulting multigraph after smoothing some parallel edge in G′ and
let aw, bw and cw be the corresponding edges incident to w in G after smoothing is done.
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In G, there exists an S4-pair such that the frequencies of (aw, bw, cw) are equal to (i, j, k).
Clearly, the corresponding perfect matchings in G′ form an S4-pair in which the frequen-
cies of (a, b, c) are (i, j, k), a contradiction, proving Theorem 6.2.

Using the same ideas as in Theorem 6.1 and Theorem 6.2 one can also state analogous
results for the Fan-Raspaud Conjecture in terms of multigraphs.

6.2 Graphs having bridges

Since every perfect matching must intersect every bridge of a cubic graph, then the Fan-
Raspaud Conjecture cannot be extended to cubic graphs containing bridges. The situation
is quite different for the S4-Conjecture as Theorem 6.3 shows. By Errera’s Theorem [4] we
know that if all the bridges of a connected cubic graph lie on a single path, then the graph
has a perfect matching. We use this idea to show that there can be graphs with bridges that
can have an S4-pair.

Theorem 6.3. Let G be a connected cubic graph having k bridges, all of which lie on a
single path, for some positive integer k. If the S4-Conjecture is true, then G admits an
S4-pair.

v3

xk+1

yk+1

x1

y1

u1
uk

vk+1Bk+1v2 B2B1 u2
e1 e2 ek

Figure 10: G with k bridges lying all on the same path.

Proof. Let B1, B2, . . . , Bk+1 be the 2-connected components of G and let e1, . . . , ek be
the bridges of G such that ei = uivi+1 for each i ∈ {1, . . . , k}, where ui ∈ V (Bi) and
vi+1 ∈ V (Bi+1). Let x1 and y1 be the two vertices adjacent to u1 in B1, and let xk+1

and yk+1 be the two vertices adjacent to vk+1 in Bk+1. Let B′1 = (B1 − u1) ∪ x1y1 and
B′k+1 = (Bk+1 − vk+1) ∪ xk+1yk+1. Also, let B′i = Bi ∪ viui for every i ∈ {2, . . . , k}.
Clearly, B′1, . . . , B

′
k+1 are bridgeless cubic multigraphs. Since we are assuming that the

S4-Conjecture holds, then, by Theorem 6.1, for every i ∈ {1, . . . , k+1},B′i has an S4-pair,
say M i

1 and M i
2. Using Theorem 6.2, we choose the S4-pair in:

• B′1, such that the two edges originally incident to x1 (not x1u1) both have fre-
quency 1,

• B′i, for each i ∈ {2, . . . , k}, such that νB′
i
(viui) = 2, and

• B′k+1, such that the two edges originally incident to xk+1 (not xk+1vk+1) both have
frequency 1.

Let M1 := (∪k+1
i=1M

i
1) ∪ (∪kj=1ej) − ∪kl=2vlul, and let M2 := (∪k+1

i=1M
i
2) ∪ (∪kj=1ej) −

∪kl=2vlul. Then, M1 and M2 are an S4-pair of G.
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Finally, we remark that there exist cubic graphs which admit a perfect matching how-
ever do not have an S4-pair. For example, since the edges uivi in Figure 11 are bridges,
then they must be in any perfect matching. Consequently, every pair of perfect matchings
do not intersect the edges of the odd cycle T . This shows that it is not possible to extend
the S4-Conjecture to the entire class of cubic graphs.

G2

G1

G3

T

v1

v3v2

u3u2

u1

Figure 11: A cubic graph with bridges having no S4-pair.

7 Remarks and problems
Many problems about the topics presented above remain unsolved: apart from asking if
we can solve the Fan-Raspaud Conjecture and the S4-Conjecture completely, or at least
partially for higher oddness, we do not know which are those graphs containing bridges
which admit an S4-pair and we do not know either if the S4-Conjecture is equivalent to
Conjecture 2.3. Here we would like to add some other specific open problems.

For a positive integer k, we define ωk to be the largest integer such that any graph with
oddness at most ωk, admits k perfect matchings with a bipartite complement. Clearly, for
k = 1, we have ω1 = 0, since the existence of a perfect matching of G with a bipartite
complement is equivalent to the 3-edge-colourability of G. Moreover, the S4-Conjecture
is equivalent to ωk = ∞, for k ≥ 2, but a complete result to this is still elusive. Proposi-
tion 5.5 (see also Remark 5.6) gives a lower bound for ωk and it would be interesting if this
lower bound can be significantly improved. We believe that the following problem, weaker
than the S4-Conjecture, is another possible step forward.

Problem 7.1. Prove the existence of a constant k such that every bridgeless cubic graph
admits k perfect matchings whose union has a bipartite complement.

It is also known that not every perfect matching can be extended to an FR-triple and
neither to a Berge-Fulkerson cover, where the latter is a collection of six perfect matchings
which cover the edge set exactly twice. We do not see a way how to produce a similar
argument for S4-pairs and so we also suggest the following problem.

Problem 7.2. Establish whether any perfect matching of a bridgeless cubic graph can be
extended to an S4-pair.
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It can be shown that Problem 7.2 is equivalent to saying that given any collection of
disjoint odd cycles in a bridgeless cubic graph, then there exists a perfect matching which
intersects all the odd cycles in this collection.
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