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Abstract

Investigating the equality of the chromatic number and the circular chromatic num-
ber of graphs has been an active stream of research for last decades. In this regard,
Hajiabolhassan and Zhu in 2003 proved that if n is sufficiently large with respect to k,
then the Schrijver graph SG(n, k) has the same chromatic and circular chromatic num-
ber. Later, Meunier in 2005 and independently, Simonyi and Tardos in 2006 proved that
χ(SG(n, k)) = χc(SG(n, k)) if n is even. In this paper, we study the circular chromatic
number of induced subgraphs of Kneser graphs. In this regard, we shall first generalize the
preceding result to s-stable Kneser graphs for large even n and even s. Furthermore, as
a generalization of the Hajiabolhassan-Zhu result, we prove that if n is large enough with
respect to k, then any sufficiently large induced subgraph of the Kneser graph KG(n, k)
has the same chromatic number and circular chromatic number.
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1 Introduction
Throughout the paper, the symbol [n] stands for the set {1, . . . , n}. Let n and d be two
positive integers. The circular complete graph Kn

d
is a graph with vertex set [n] and two

vertices i and j are adjacent whenever d ≤ |i − j| ≤ n − d. For a graph G, the circular
chromatic number of G, denoted by χc(G), is defined as follows:

χc(G)
def
= inf

{n
d

: there is a homomorphism from G to Kn
d

}
.

It is known that the infimum can be replaced by minimum. Moreover, one can see that
χ(G) − 1 < χc(G) ≤ χ(G), see [36]. Therefore, the circular chromatic number is a
refinement of the chromatic number. It is a natural question to ask for which graphs G, we
have χc(G) = χ(G). However, it turns out to be a difficult question. Hell [19] proved that
the problem of determining whether a graph has the circular chromatic number at most nd is
NP-Hard. Hatami and Tusserkani [18] showed that the problem of determining whether or
not χc(G) = χ(G) is NP-Hard even if the chromatic number is known. Therefore, finding
necessary conditions for graphs to have the same chromatic and circular chromatic number
turns out to be an interesting problem. This problem has received significant attention, for
instance see [1, 17, 36, 37].

For two positive integers n and k, where n ≥ 2k, the Kneser graph KG(n, k) is a
graph with vertex set

(
[n]
k

)
, that is, the family of all k-subsets of [n], and two vertices are

adjacent if their corresponding k-subsets are disjoint. Kneser in 1955 [23] conjectured that
the chromatic number of KG(n, k) is n− 2k+ 2. In 1978, Lovász [26] gave an affirmative
answer to Kneser’s conjecture. He used algebraic topological tools, giving birth to the field
of topological combinatorics. For a positive integer s, a nonempty subset S of [n] is said
to be s-stable if for any two different elements i and j in S, we have s ≤ |i− j| ≤ n− s.
Throughout the paper, the family of all s-stable k-subsets of [n] is denoted by

(
[n]
k

)
s
. The

subgraph of KG(n, k) induced by all s-stable k-subsets of [n] is called the s-stable Kneser
graph and is denoted by KGs(n, k). The 2-stable Kneser graph KG2(n, k) is known as the
Schrijver graph SG(n, k). Schrijver [31] proved that Schrijver graphs are vertex critical
subgraphs of Kneser graphs with the same chromatic number. Meunier [30] showed that for
any two positive integers n and k, where n ≥ sk, the s-stable Kneser graph KGs(n, k) can
be colored by n−s(k−1) colors and conjectured that the chromatic number is n−s(k−1).
Jonsson [22] proved that this conjecture is true provided that s ≥ 4 and n is sufficiently
large with respect to k and s. Also, Chen [12] confirmed Meunier’s conjecture for even
values of s.

Lovász’s theorem [26] has been generalized in several aspects. For a hypergraphH, the
general Kneser graph KG(H) is a graph with vertex setE(H) and two vertices are adjacent
if their corresponding edges are vertex disjoint. Dol’nikov [13] generalized Lovász’s result
and proved that the chromatic number of KG(H) is at least the colorability defect of H,
denoted by cd(H), where the colorability defect of H is the minimum number of vertices
which should be excluded from H so that the induced subhypergraph on the remaining
vertices is 2-colorable.

For a vector X = (x1, . . . , xn) ∈ {−, 0,+}n, a sequence xi1 , xi2 , . . . , xit (i1 <
· · · < it) is called an alternating subsequence of X with length t if xij 6= 0 for each
j ∈ {1, . . . , t} and xij 6= xij+1 for each j ∈ {1, . . . , t − 1}. The maximum length of an
alternating subsequence of X is called the alternation number of X , denoted by alt(X).
For 0 def

= (0, . . . , 0), we define alt(0)
def
= 0. Also, we defineX+ andX− to be respectively
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the indices of positive and negative coordinates of X , i.e.,

X+ def
= {i : xi = +} and X−

def
= {i : xi = −}.

Note that both X+ and X− are subsets of [n] and by abuse of notation, we can write
X = (X+, X−). For two vectors X,Y ∈ {−, 0,+}n, by X ⊆ Y , we mean X+ ⊆ Y +

and X− ⊆ Y −.
LetH = (V,E) be a hypergraph and σ : [n] −→ V (H) be a bijection. The alternation

number of H with respect to σ, denoted by altσ(H), is the maximum possible value of
an alt(X) such that E(H[σ(X+)]) = E(H[σ(X−)]) = ∅. Also, the strong alternation
number ofH with respect to σ, denoted by saltσ(H), is the maximum possible value of an
alt(X) such that E(H[σ(X+)]) = ∅ or E(H[σ(X−)]) = ∅. The alternation number of
H, denoted by alt(H), and the strong alternation number of H, denoted by salt(H), are
respectively the minimum values of altσ(H) and saltσ(H), where the minimum is taken
over all bijections σ : [n] −→ V (H). The present first author and Hajiabolhassan [4]
proved the following theorem.

Theorem A. For any hypergraphH, we have

χ(KG(H)) ≥ max {|V (H)| − alt(H), |V (H)| − salt(H) + 1} .

One can simply see that this result improves the aforementioned Dol’nikov’s result [13].
Using this lower bound, the chromatic number of several families of graphs is computed,
for instance see [2, 3, 5, 6, 8].

In 1997, Johnson, Holroyd, and Stahl [21] proved that χc(KG(n, k)) = χ(KG(n, k))
provided that 2k + 1 ≤ n ≤ 2k + 2 or k = 2. They also conjectured that the circu-
lar chromatic number of Kneser graphs is always equal to their chromatic number. This
conjecture has been studied in several articles. Hajiabolhassan and Zhu [17] using a com-
binatorial method proved that if n is large enough with respect to k, then χc(KG(n, k)) =
χ(KG(n, k)). Later, using algebraic topology, Meunier [29] and Simonyi and Tardos [33]
independently confirmed this conjecture for the case of even n. It should be mentioned that
the results by Hajiabolhassan and Zhu [17], Meunier [29], and Simonyi and Tardos [33]
are indeed proved for the Schrijver graph SG(n, k). Eventually in 2011, Chen [11] con-
firmed the Johnson-Holroyd-Stahl conjecture. Chen’s proof was simplified by Chang, Liu
and Zhu in [10] and by Liu and Zhu in [25]. The present first author, Hajiabolhassan, and
Meunier [8] generalized Chen’s result to a larger family of graphs. They introduced a suf-
ficient condition for a hypergraphH having χ(KG(H)) = χc(KG(H)).

Plan. The paper contains two main sections. In Section 2, we shall investigate the coloring
properties of stable Kneser graphs. In this regard, we prove the equality of the chromatic
number and the circular chromatic number of s-stable Kneser graph KGs(n, k) provided
that n ≥ (s+ 2)k − 2 and both n and s are even. In the last section, we study the circular
chromatic number of large induced subgraphs of Kneser graphs. Indeed, it is proved that,
for large enough n, any sufficiently large induced subgraph of the Kneser graph KG(n, k)
has the same chromatic number and circular chromatic number. In particular, giving a
partial answer to a question posed by Lih and Liu [24], we present a threshold n(k, s)
such that for any n ≥ n(k, s), the chromatic number and circular chromatic number of
KGs(n, k) are equal.
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2 Chromatic number of stable Kneser graphs
As it is mentioned in the previous section, the chromatic number of s-stable Kneser graph
KGs(n, k) is determined provided that k and s ≥ 4 are fixed and n is large enough [22] or
s is even [12]. In this section, we first present a generalization of Theorem A. Using this
generalization, for any even s, we prove that any proper coloring of s-stable Kneser graph
KGs(n, k) contains a large colorful complete bipartite subgraph, which immediately gives
solutions to the chromatic number of s-stable Kneser graphs KGs(n, k). Also, this result
concludes that the circular chromatic number of s-stable Kneser graph KGs(n, k) equals
to its chromatic number provided that n ≥ (s+ 2)k − 2 and both n and s are even.

Tucker’s lemma is a combinatorial counterpart of the Borsuk-Ulam theorem with sev-
eral useful applications, for instance, see [27, 28].

Lemma A (Tucker’s lemma [35]). Let λ : {−, 0,+}n \ {0} −→ {±1, . . . ,±m} be a map
satisfying the following properties:

• it is antipodal: λ(−X) = −λ(X) for each X ∈ {−, 0,+}n \ {0}, and

• it has no complementary edges: there are no X and Y in {−, 0,+}n \ {0} such that
X ⊆ Y and λ(X) = −λ(Y ).

Then m ≥ n.

There are several results concerning the existence of a large complete bipartite multi-
colored subgraph in any proper coloring of a graph G, see [4, 11, 32, 33, 34]. In what
follows, we present a similar type of result with a combinatorial proof. Note that since
there is a purely combinatorial proof [28] for Tucker’s lemma, any proof using Tucker’s
lemma with combinatorial approach can be considered as a purely combinatorial proof.

Theorem 2.1. Let H be a hypergraph and set t = max
{
|V (H)| − alt(H), |V (H)| −

salt(H) + 1
}

. For any proper coloring c : V (KG(H)) −→ [C], there exists a complete bi-
partite subgraph Kbt/2c,dt/2e of KG(H) whose vertices receive different colors and more-
over, these different colors occur alternating on the two parts of the bipartite graph with
respect to their natural order.

Proof. Let σ1, σ2 : [n] −→ V (H) be two bijections for which we have alt(H) = altσ1
(H)

and salt(H) = saltσ2
(H). Now, we shall proceed the proof with two different cases, t =

n−alt(H) and t = n−salt(H)+1. Assume that t = n−alt(H) (resp. t = n−salt(H)+1).
For simplicity of notation, by identifying the set V (H) and [n] via the bijection σ1 (resp.
σ2), we may assume that V (H) = [n]. For each X = (X+, X−) ∈ {−, 0,+}n \ {0},
define c(X)

def
= (c(X+), c(X−)) ∈ {−, 0,+}C to be a signed vector, where

c(X+)
def
=
{
c(e) : e ∈ E(H) and e ⊆ X+

}
and

c(X−)
def
=
{
c(e) : e ∈ E(H) and e ⊆ X−

}
.

For each X ∈ {−, 0,+}n \ {0}, define λ(X) as follows.

• If alt(X) ≤ altσ1
(H) (resp. alt(X) ≤ saltσ2

(H)), then define λ(X) = ± alt(X),
where the sign is positive if the first nonzero term of X is positive and is negative
otherwise.
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• If alt(X) ≥ altσ1(H) + 1 (resp. alt(X) ≥ saltσ2(H) + 1), then define λ(X) =
±(altσ1

(H)+alt(c(X))) (resp. λ(X) = ±(saltσ2
(H)+alt(c(X))−1)), where the

sign is positive if the first nonzero term of c(X) is positive and is negative otherwise.

One can simply check that λ satisfies the conditions of Lemma A. Consequently, there
should be an X ∈ {−, 0,+}n \ {0} such that |λ(X)| = λ(X) ≥ n. Clearly, we should
have alt(X) ≥ altσ1

(H) + 1 (resp. alt(X) ≥ saltσ2
(H) + 1). Therefore, the definition of

λ(X) implies that alt(c(X)) ≥ n− altσ1
(H) (resp. alt(c(X)) ≥ n− saltσ2

(H) + 1). Let
Z = (Z+, Z−) ⊆ c(X) be a signed vector such that alt(Z) = |Z| = t, as alt(c(X)) ≥ t.
Note that if Z+ ∪ Z− = {i1, i2, . . . , it}, where 1 ≤ i1 < · · · < it ≤ C, then we should
have Z+ = {ij : j ∈ [t] is odd} and Z− = {ij : j ∈ [t] is even}. For an j ∈ [t], if j is
odd (resp. even), then according to the definition of c(X), there is an edge e ∈ E(H) such
that e ⊆ X+ (resp. e ⊆ X−) with c(e) = ij . Note that the induced subgraph of KG(H)
on the vertices {e1, . . . , et} contains the desired complete bipartite graph.

Note that the complete bipartite graph whose existence is guaranteed by Theorem 2.1
is not necessarily an induced subgraph. Also, it is worth mentioning that we here used
Tucker’s lemma though, in case t = |V (H)| − alt(H), the previous theorem was proved
in [4] by use of Ky Fan’s lemma [14].

Let n, k, and s be positive integers, where n ≥ sk and s is even. It is not difficult to see
that if n is large enough (with respect to s and k), then any 2-stable ( s2 (k − 1) + 1)-subset
of [n] contains an s-stable k-subset of [n]. In the following two lemmas, we shall prove
that n ≥ (s+ 2)k − 2 would be sufficient for this observation.

Lemma 2.2. Let s be an even positive integer and let n = 2s+ 2. If S is a 2-stable subset
of [n] of cardinality s

2 + 1, then there are a, a′ ∈ S such that a− a′ ∈ {s, s+ 1, s+ 2}.

Proof. Without loss of generality, we may assume that 1 ∈ S and 2s+2 6∈ S. If s+1 ∈ S,
then there is nothing to prove. Therefore, let s + 1 6∈ S. For 1 ≤ i ≤ s

2 , define Bi =
{2i − 1, 2i, 2i + s, 2i + s + 1}. Therefore, for some i, 1 ≤ i ≤ s

2 , |Bi ∩ S| = 2. Let
a, a′ ∈ Bi ∩ S , since S is 2-stable, we have a− a′ ∈ {s, s+ 1, s+ 2}.

Lemma 2.3. Let k and n be two positive integers and let s be an even positive integer,
where n ≥ (s + 2)k − 2. If S is a 2-stable subset of [n] of cardinality s

2 (k − 1) + 1, then
there is an s-stable k-subset of S. In particular, salt

(
[n],

(
n
k

)
s

)
= s(k − 1) + 1.

Proof. First note that for given k and s, if the statement is true for some n ≥ k(s+ 2)− 2,
then it is true for all integers n′ ≥ n. Therefore it is enough to prove the lemma for n =
k(s+ 2)− 2.

We use induction on k to prove the lemma. The validity of the lemma when k = 1 is
trivial and when k = 2 it was shown in Lemma 2.2. Thus, we may assume that k ≥ 3.

If for each i ∈ S, we have {i + s, i + s + 1, i + s + 2} ∩ S 6= ∅ (where addition is
modulo n), then we can greedily find an s-stable k-subset, and there is nothing to prove.
Otherwise, without loss of generality, assume that n− s− 1 ∈ S and n− 1, n, 1 6∈ S.

Set A
n−s−1

= {n − s − 1, n − s, . . . , n}. Note that since n − 1, n 6∈ S, we have
|An−s−1 ∩ S| = s

2 − β, for some 0 ≤ β ≤ s
2 . Now, consider [n] \A

n−s−1
and S \A

n−s−1
.

Set ṅ = n − (s + 2) and Ṡ = S \ A
n−s−1

. Note that [ṅ] and [n] \ A
n−s−1

are equal and
since 1 6∈ S, Ṡ is a 2-stable subset of [ṅ] of cardinality s

2 (k − 2) + β + 1.
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Define the s-subset B of [ṅ] by

B
def
= {n− 2s− 1, n− 2s, . . . , n− s− 2}.

By induction, we may consider the following two cases:

(i) There is an s-stable (k − 1)-subset of Ṡ, say Ḋ, which has no element of B. In this
case, it is readily verified that D = Ḋ ∪ {n − s − 1} is an s-stable k-subset of [n],
completing the proof in this case.

(ii) There are at least β + 1 s-stable (k − 1)-subsets of Ṡ, say Ḋ1, Ḋ2, . . . , Ḋβ+1, such
that each Ḋi has exactly one distinct element of B, say bi.

Now, consider the 2-stable subset {b1, b2, . . . , bβ+1} ∪ (S ∩ A
n−s−1

), by Lemma 2.2,
there exist two elements a, b such that a− b ∈ {s, s+ 1, s+ 2}. Since n− 1, n 6∈ S, both
a, b are not in A

n−s−1
. Hence, we may assume that a ∈ A

n−s−1
and b = bi for some i,

1 ≤ i ≤ β + 1. Let d be the smallest element of Ḋi. Since Ḋi is an s-stable (k − 1)-
subset of [ṅ], therefore we have s ≤ b − d ≤ ṅ − s = n − (2s + 2). On the other hand,
s ≤ a − b ≤ s + 2. Therefore, 2s ≤ a − d ≤ n − s. Therefore, Ḋi ∪ {a} is an s-stable
k-subset of [n] as desired.

Note that for an X ∈ {−, 0,+}n \ {0} with alt(X) ≥ s(k − 1) + 2, both X+ and
X− contain 2-stable subsets of size at least s

2 (k − 1) + 1, which implies that both X+

and X− contain s-stable subsets of size at least k. This concludes that salt
(
[n],

(
n
k

)
s

)
=

s(k − 1) + 1.

We remind the reader that Meunier [30] showed that KGs(n, k) has a proper coloring
with n− s(k−1) colors. Note that if we setH = ([n],

(
[n]
k

)
s
), then KG(H) = KGs(n, k).

Clearly, using these observations, Lemma 2.3, and Theorem 2.1, we have the next theorem.

Theorem 2.4. Let k and n be two positive integers and let s be an even positive integer,
where n ≥ (s + 2)k − 2. Any properly colored KGs(n, k) contains a complete bipartite
subgraph Kbt/2c,dt/2e, where t = n − s(k − 1) such that all vertices of this subgraph
receive different colors and these different colors occur alternating on the two parts of the
bipartite graph with respect to their natural order. In particular, we have χ(KGs(n, k)) =
n− s(k − 1).

Let r be a positive integer. For an r-coloring c of a given graph G, a cycle C =
v1, v2, . . . , vm, v1 is called tight if for each i ∈ [m], we have c(vi+1) = c(vi)+1 (mod r).
It is known [36] that χc(G) = r if and only if the graph G is r-colorable and every r-
coloring of G contains a tight cycle. In view of this result, to prove the next theorem, it
suffices to show that any proper (n − s(k − 1))-coloring of KGs(n, k) contains a tight
cycle.

Theorem 2.5. Let n, k, and s be positive integers, where n and s are even and n ≥
(s+ 2)k − 2. Then, we have

χc(KGs(n, k)) = n− s(k − 1).

Proof. For simplicity of notation, we set t = n−s(k−1). In view of the former discussion,
to prove the assertion, let c be a proper t-coloring of KGs(n, k). Consider the complete
bipartite subgraph Kt/2,t/2 of KGs(n, k), whose existence is ensured by Theorem 2.4.
Clearly, this subgraph contains a tight cycle, which completes the proof.
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The original proof of Lovász of Kneser’s conjecture is rather long and complicated
[26]. Bárány [9], using Gale’s lemma [15], presented a short proof of this result. For
n > 2k, Gale [15] proved that the set [n] can be identified with a subset of Sn−2k in
such a way that any open hemisphere contains at least one k-subset of [n] (a vertex of
KG(n, k)). Schrijver [31] generalized Gale’s lemma to 2-stable k-subsets of [n]. He also
used this generalization to prove that χ (SG(n, k)) = n − 2k + 2. For an interesting
proof of Gale’s lemma, see [16]. Moreover, the present first author and Hajiabolhassan [7]
generalized Gale’s lemma. For any hypergraph H = (V,E), they introduce a lower bound
for the maximum possible value of m for which there is a subset X of Sm and a suitable
identification of V with X such that any open hemisphere of Sm contains an edge of
H. The next lemma can be obtained directly from this result. However, for the sake of
completeness, we prove it here with a different approach.

Lemma 2.6. Let k and n be two positive integers and let s be an even positive integer,
where n ≥ (s + 2)k − 2. There exists an n-subset X of Sn−s(k−1)−2 and a suitable
identification betweenX and [n] such that every open hemisphere of Sn−s(k−1)−2 contains
an s-stable k-subset of [n].

Proof. Set p = s
2 (k − 1) + 1. In view of the generalization of Gale’s lemma by Schri-

jver [31], there exists an n-subset X of Sn−2p and an identification of X with [n] such that
any open hemisphere of Sn−2p contains a 2-stable p-subset of [n]. Now, by Lemma 2.3,
any 2-stable p-subset contains an s-stable k-subset. This implies that any open hemisphere
of Sn−s(k−1)−2 contains an s-stable k-subset of [n] as desired.

Simonyi and Tardos [34], using the Tucker-Bacon lemma (Lemma B), proved that if the
chromatic number of a graph G equals to a topological lower bound for chromatic number,
then for any optimal coloring of G with colors [C] and for any partition L ]M of [C],
there is a multi-colored complete bipartite subgraph K|L|,|M | of G such that all colors in
L are assigned to the vertices of one side of K|L|,|M | and all colors in M are assigned to
the vertices of the other side. These kinds of results are known as Kl,m type theorems,
see [32, 34].

Lemma B (Tucker-Bacon lemma). Let U1, U2, . . . , Ud+2 be open subsets of the d-sphere
Sd such that for any 1 ≤ i ≤ d+ 2, Ui ∩−Ui = ∅ and also, U1 ∪ · · · ∪Ud+2 = Sd. Then
for any partition A ∪ B = {1, 2, . . . , d + 2} for which A 6= ∅ and B 6= ∅, there is an
x ∈ Sd such that x ∈ ∩i∈AUi and −x ∈ ∩j∈BUj .

In what follows, similar to the Simonyi-Tardos result, using the Tucker-Bacon lemma,
we prove a Kl,m type theorem for s-stable Kneser graphs provided that n is large and s is
even.

Theorem 2.7. Let n, k, and s be positive integers, where s is even and n ≥ (s+ 2)k − 2.
Also, let c be a proper coloring of KGs(n, k) with colors {1, 2, . . . , n − s(k − 1)} and
assume that A and B form a partition of {1, 2, . . . , n − s(k − 1)}. Then there exists a
complete bipartite subgraph Kl,m of KGs(n, k) with parts L and M such that |L| = l =
|A|, |M | = m = |B| and the vertices in L and M receive different colors from A and B,
respectively.

Proof. By Lemma 2.6, we can identify [n] with a subset of Sn−s(k−1)−2 such that ev-
ery open hemisphere of Sn−s(k−1)−2 contains an s-stable k-subset of [n]. For 1 ≤ i ≤



168 Ars Math. Contemp. 15 (2018) 161–172

n− s(k − 1), define

Ui
def
=
{
x ∈ Sn−s(k−1)−2 : H(x) contains a vertex with color i

}
.

One can see that each Ui is an open set, U1, U2, . . . , Un−s(k−1) covers Sn−s(k−1)−2 and
also none of them contains a pair of antipodal points. Thus, the Tucker-Bacon lemma
implies that there is an x ∈ Sn−s(k−1)−2 such that x ∈ ∩i∈AUi and −x ∈ ∩j∈BUj .
Therefore, in view of the definition of Ui’s, for each i ∈ A (resp. j ∈ B), there is an s-
stable k-subset Li (resp. Mj) of [n] such that c(Li) = i and Li ⊆ H(x) (resp. c(Mj) = j
and Mj ⊆ H(−x)). Note that since H(x)∩H(−x) = ∅, for each i ∈ A and j ∈ B, Li is
adjacent to Mj in KGs(n, k), which completes the proof.

We would like to mention that the idea of our proof is close to the Bárány’s proof of
Kneser conjecture [9].

3 Circular coloring of induced subgraphs of Kneser graphs
The concept of free coloring of graphs was introduced in [1] by the present first author
and Hajiabolhassan as a tool for studying the circular chromatic number of graphs. Indeed,
they proved that if the free chromatic number of a graph G is at least twice of its chromatic
number, then χ(G) = χc(G).

An independent set in a graph G is called a free independent set if it can be extended to
at least two distinct maximal independent sets in G. Clearly, one can see that an indepen-
dent set F inG is a free independent set if and only if there exists an edge uv ∈ E(G) such
that (N(u)∪N(v))∩F = ∅. The maximum possible size of a free independent set inG is
denoted by ᾱ(G). Furthermore, a vertex of a graphG is contained in a free independent set
if and only if the graph obtained by deleting the closed neighborhood of this vertex has at
least one edge (for more details, see [1]). As a natural extension of the chromatic number,
we can define the free chromatic number of graphs as follows.

Definition 3.1. The free chromatic number of a graph G, denote φ(G), is the minimum
size of a partition of V (G) into free independent sets. If G does not have such a partition,
then we set φ(G) =∞.

The next lemma plays a key role in the rest of the paper.

Lemma C ([1, Lemma 2]). Let G be a graph such that χc(G) = n
d with gcd(n, d) = 1. If

d ≥ 2, or equivalently, if χc(G) 6= χ(G), then φ(G) ≤ 2χ(G)− 1.

Let G be a graph with at least one free independent set. By definition, we have φ(G) ≥
|V (G)|/ᾱ(G). It was proved by Hilton and Milner [20] that if T is an independent set of
KG(n, k) of size at least (

n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 2,

then ⋂
A∈T

A = {i},
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for some i ∈ [n]. By using this result of Hilton and Milner, it was proved by Hajiabolhassan
and Zhu in [17] that if n ≥ 2k2(k − 1), then χc(KG(n, k)) = χ(KG(n, k)). This result
was improved in [1] by proving that we have χc(KG(n, k)) = χ(KG(n, k)) for n ≥
2k2(k − 1) − 2k + 3. It was also showed in [17] that there is a threshold n(k) such that
for n ≥ n(k), we have χc(SG(n, k)) = χ(SG(n, k)). This gave a positive answer to
a question of Lih and Liu [24]. Lih and Liu [24] also posed the question of what is the
smallest value of n(k). They proved that n(k) ≥ 2k+ 2. One should note that in [17] only
the existence of the threshold n(k) is ensured and the authors did not present any upper
bound for it.

Using the Hilton-Milner theorem, one can simply see that, for n > 2k, the size of any
free independent set in the Kneser graph KG(n, k) is at most

(
n−1
k−1
)
−
(
n−k−1
k−1

)
≤ k

(
n−2
k−2
)
,

see [1]. In view of this observation, we generalize the result by Hajiabolhassan and Zhu [17]
to the following theorem.

Theorem 3.2. Let n and k be two positive integers, where n ≥ 2k2(k − 1). Let H be an
induced subgraph of KG(n, k) with at least 2k2(k−1)

n

(
n
k

)
vertices. Then H has the same

chromatic number and circular chromatic number.

Proof. Obviously, the assertion holds for k = 1. So, let k ≥ 2. Assume that H is an
induced subgraph of KG(n, k) with at least 2k2(k−1)

n

(
n
k

)
vertices. According to Lemma C,

it is enough to show that φ(H) ≥ 2χ(H). To this end, note that

φ(H) ≥ |V (H)|
ᾱ(H)

≥ |V (H)|
ᾱ(KG(n, k))

≥
2k2(k−1)

n

(
n
k

)
k
(
n−2
k−2
)

≥ 2k2(k − 1)n(n− 1)

nk2(k − 1)
,

therefore φ(H) ≥ 2n− 2 > 2χ(KG(n, k)) ≥ 2χ(H) as desired.

In the rest of this section, we will return to the study of s-stable Kneser graphs from
Section 2, KGs(n, k), but this time we consider KGs(n, k) as an induced subgraph of
KG(n, k). We focus on the chromatic number and the circular chromatic number of the s-
stable Kneser graph KGs(n, k). As a special case of the previous theorem, we introduce a
threshold n(k, s) such that for any n ≥ n(k, s), we have χ(KGs(n, k)) = χc(KGs(n, k)).
In this regard, we first need to count the number of vertices of KGs(n, k).

LetNi be the number of vertices of KGs(n, k) containing i. It is obvious thatNi = Nj
for all i, j ∈ [n]. Also, let A = {x1, . . . , xk} be a vertex of KGs(n, k), where 1 = x1 <
x2 < · · · < xk ≤ n. Define yi = xi+1 − xi for all 1 ≤ i ≤ k − 1 and yk = n − xk + 1.
Since A ∈ V (KGs(n, k)) and 1 ∈ A, we have yi ≥ s for all i ∈ [k]. Also, since
y1 + y2 + · · · + yk = n, any vertex A of KGs(n, k) with 1 ∈ A leads us to a solution of
the following system:

Z1 + Z2 + · · ·+ Zk = n
Zi ≥ s for each i ∈ [n]
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and vise versa. Note that the number of solutions of the preceding system is
(
n−k(s−1)−1

k−1
)
.

Consequently, for each i ∈ [n], we have Ni = N1 =
(
n−k(s−1)−1

k−1
)

for all i ∈ [n]. By an
easy double counting, one can see that

|V (KGs(n, k))| = 1

k

n∑
i=1

Ni =
n

k

(
n− k(s− 1)− 1

k − 1

)
.

Theorem 3.3. If n ≥ 2k2(k−1)+(s−1)k(k−1)+1, then χc(KGs(n, k)) = χ(KGs(n, k)).

Proof. LetX be the number of (k−1)-subsetsB of the set [n−1] such thatB∩[(s−1)k] 6=
∅, i.e.,

X = # {B : B ⊆ [n− 1] and B ∩ [(s− 1)k] 6= ∅} .

Obviously, we have
(
n−1
k−1
)

=
(
n−(s−1)k−1

k−1
)

+ X . On the other hand, one can check that
X ≤ (s− 1)k

(
n−2
k−2
)
, which implies the following inequalities:

|V (KGs(n, k))| =
n

k

(
n− k(s− 1)− 1

k − 1

)
≥ n

k

(
n− 1

k − 1
− (s− 1)k

)(
n− 2

k − 2

)
≥ n

k(k − 1)
(n− 1− (s− 1)k(k − 1))

(
n− 2

k − 2

)
.

Clearly, the previous inequalities lead us to the following:

φ(KGs(n, k)) ≥ |V (KGs(n, k))|
ᾱ(KGs(n, k))

≥
n

k(k−1) (n− 1− (s− 1)k(k − 1))
(
n−2
k−2
)

k
(
n−2
k−2
)

≥ n

k2(k − 1)
(n− 1− (s− 1)k(k − 1)) .

Consequently, we have φ(KGs(n, k)) ≥ 2n ≥ 2(n−s(k−1)) provided that n ≥ 2k2(k−
1) + (s− 1)k(k − 1) + 1. Considering Lemma C, the proof is completed.

Note that for s = 2, the previous theorem gives an upper bound for the smallest value
of the threshold n(k), giving a partial answer to the question posed by Lih and Liu [24].
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