
Informatica27 (2003) 225–233 225

Modelling Legal Acts by Means of Expert Systems, ECA Rules and High-level
Petri Nets

Boštjan Beřcič
Institute for Legal Informatics, 1000 Ljubljana, Slovenia
E-mail: bostjan.bercic@ipri-zavod.si

Keywords: expert systems, petri nets, legal informatics

Received:May 7, 2002

Modelling of legal acts often felt short of expectations because it didn’t take into account legal theory.
This paper proposes a different approach to modelling that is based on the theory of law. Legal theory
(structure, hierarchy and types of legal rules) is considered a fundament and then interpreted with expert
systems, high-level Petri nets and ECA rules. In particular, none of these methods alone is sufficiently
strong to capture the semantics of legal rules. Put together, they represent a powerful means to overcome
some difficulties legal modelers have encountered in the past. This paper takes into account procedural and
substantive aspects of law, as well as factual and deontic ones. Methodology is presented alongside with
notation and examples to clarify the idea.

1 Introduction

Modelers of legal procedures in the past often came from
the field of informatics and had little knowledge of legal
theory. They applied same techniques and methodologies
to legal procedures as they would to business (or indeed
any other) processes. Whereas this might work in certain
cases, it certainly comes at a price: legal procedures are
sui generisand not every legal rule can be expressed with
business process methodology. There are complexities and
peculiarities inherent to legal matter which can hardly be
modelled by means of business processes.

For one thing, legal norms contain normative (deontic)
and factual elements. Most modelers in the past focused
their work on factual elements only. They made little or no
reference to normative elements such as rights and duties.

Second, their approach was directed either at substan-
tive or procedural law, but rarely at both. Substantive law
defines contents of legal subject’s rights and duties whereas
procedural law defines procedures in which these rights and
duties can be enforced in case legal subjects do not act in
conformance with them.

Modelers dealt in the past mostly with procedural law,
which can be modelled with state machines, workflow
methods etc. Very often, one of these techniques was used
to represent procedural part of legal rules as one can in gen-
eral apply knowledge of (any kind of) processes to legal
procedures.

On the other hand, modelers have often encountered
problems with substantive legal norms. Technology of
choice for substantive legal rules are expert systems. There
are many legal expert systems shells available (such as
Wysh, ICaR etc.) but general purpose expert system shells
can be used as well. Legal rules are written in knowledge
base, usually in form of PROLOG rules.

Some of these approaches are summarized bellow. They
have been partial at least in some respect because none of
them joined all (legal) elements under one hood.

Holt and Meldman (Meldman J.A., Holt A.W. (1971),
Meldman J.A. (1978)) used Petri nets to model Federal
Rules of Civil Procedure. They modelled only procedural
rules and took into account only factual elements.

Sergot et al.(Sergot M.J., Sadri F., Kowalski R.A., Kri-
waczek F., Hammond P., Cory H.T. (1986)) used PROLOG
rules to express British Nationality Act (rules governing
acquirement of British citizenship). These are substantive
rules, but no mention is made of deontic elements (for ex-
ample, what does itmeanto be a British citizen in terms of
rights and duties).

Lee et al.(Lee R.M., Bons R.W.H., Wrigley C.D., Wa-
genaar R. W. (1995)) used special kind of high-level Petri
nets, called documentary Petri nets, to express procedu-
ral rules. Documentary Petri nets are high-level Petri nets
augmented with deontic operators expressing obligations
(duties) and rights (permissions) and special documentary
places holding documents. Thus, they came a step closer in
embedding factual and normative (deontic) contents within
procedural framework. Separately, Lee et al. (Lee R. M.,
Ryu Y.U. (1994)) also considered deontic expert systems,
with deontic operators augmented first-order logic (PRO-
LOG knowledge base), but they have not integrated it in a
single framework.

Burg and Van de Riet (Burg J.F.M., Van de Riet R.P.
(1994)) devised a modelling technique called COLOR X.
It can model procedural aspects of (deontic) rules with use
of linguistics. They went a step further in introducing lin-
guistic elements to modelling. Now, a fact is not merely
a fact but a sentence in natural language which can be
stripped down to words. Meaning of a word can be fully
interpreted as every word can have its own existence. This

226 Informatica27 (2003) 225–233 B. Beřcič

technique is object-oriented and could form basis for legal
ontology building if extended a little bit further. Technique
prescribes dynamic (CEM) as well as static (CSOM) model
of events and objects. This technique can model not just
legal domains but, because of its root in linguistics, any
domain expressed in natural language. So, COLOR X can
represent factual as well as deontic elements, but it focuses
on procedural aspects. Substantive knowledge is left out.

This paper proposes a different approach. Our mod-
els are based on legal theory. First, legal structures (le-
gal acts, legal rules, hierarchy of legal rules and acts etc.)
are taken into account and interpreted with different infor-
mation technologies and notations. High-level Petri nets
are used to represent procedural aspects of legal rules. Ex-
pert system knowledge base is used to represent substan-
tive legal rules. Factual elements of legal rules are mapped
to Petri net transitions and deontic elements to Petri net
places. Petri net transitions are extended with ECA rules
in order to be able to express factual and deontic pre- and
post-conditions.

2 Legal Rules

2.1 Structure of Legal Rules

Legal rules are composed of three (optionally four) compo-
nents: the norm addressee (norm subject), deontic modal-
ity, object of a norm (contents) and optionally norm
conditions (Kralingen van R. (1997),Breuker J.,Valente
A.,Winkels R. (1997),Visser P.R.S.,Bench-Capon J.M.
(1997)).

Norm addressee is a subject addressed by the norm. Usu-
ally certain act or behavior is required from him.

There are two principle deontic modalities: obligation
O and permissionP which correspond to legal duties and
legal rights. Every norm either prescribes or permits some
behavior.

Object or theme of a norm is an act or behavior required
from or allowed to norm subjects. Object of a norm is
norm’s contents. It prescribes what is allowed to do and
what should be done.

Condition of a norm is norm’s hypothesis. It describes
state of affairs which must be satisfied in order for the norm
to apply. Some norms have conditional part, some don’t.
Those that don’t are unconditional. Conditional norms turn
into unconditional ones once the condition is fulfilled.

We can write this succintly as:

F1(X) ⇒ P (F2(X)) (1)

where:

– X is norm subject

– F1(X) is norm condition

– P (. . .) is deontic modality and

– F2(X) is object of a norm

If we take a closer look, we discover that there is a differ-
ence between norm’s condition and norm’s consequence.
Norm’s condition isalwayssome state of affairs (legally
relevant state of the world) and norm’s consequence isal-
wayssome deontic modality (defined on yet another, pre-
scribed state of affairs), either obligation or permission.

2.2 States of Affairs

States of affairs are important elements of legal rules. They
define legally relevant states of the world, i.e. states of the
world that are of interest to legal order.

Legal rules feature states of affairs in both conditional
and prescriptive part. States of affairs describe under which
circumstances legal rules are applicable (rule condition)
and what behavior is required or allowed. We can find them
both in

F1(X) (2)

and in

P (F2(X)) (3)

States of affairs are often subject to different methods of
legal exegesis.

2.3 Rights and Duties

Rights and duties (permissions and obligations) form pre-
scriptive part of legal rules. They are deontic modalities
and they cannot stand alone. They come in two flavors:O
andP and they arealwaysdefined on some state of affairs.

O(F1(X)) (4)

P (F2(X)) (5)

In the first case (equation 4) person X is required to bring
about state of affairsF1.

In the second case (equation 5) person X is allowed to
bring about state of affairsF1.

Rights and duties can be of two types:ought-to-doand
ought-to-be(tun-sollenandsein-sollen). Ought-to-do op-
erators have subjects that they address whereas ought-to-be
don’t. This paper will deal only with first type operators.

2.4 Formal notation

So far, all components of legal rules have been formally
defined . But rules are often interconnected. If legal rule is
not obeyed there is usually another one that specifies what
legal order should do in order to preserve rule conformity.
This rule is called sanction.

This can be written as:

hypothesis ⇒ duty (6)

secundary hypothesis ⇒ secundary duty (7)

MODELLING LEGAL ACTS BY. . . Informatica27 (2003) 225–233 227

or, in common terms as:

hypothesis ⇒ duty (8)

duty ∧ violation of duty ⇒ sanction (9)

On general, if one denotes state of affairs with F(factual)
and normative contents with N, one gets the following
structure of legal rules:

F1 ⇒ N1

N1 ∧ F2 ⇒ N2

N2 ∧ F3 ⇒ N3 (10)

Keyword here is structure. Legal rules don’t stand alone.
They are intertwined with each other in legal order. One
rule’s consequence may be another one’s condition. If all
rules from one legal system are put together in this manner,
we obtainlegal orderin force.

Notice here the strict alternation of factual and deontic
elements. According to legal theory, legal rules can have
factual antecedent and factual consequence (e.g. legal defi-
nition) or even deontic antecedent and deontic consequence
(another legal definition, e.g.: having one right means that
you have another one, too). But legal rules can never have
deontic antecedent and factual consequence (what should
be is not the case by mere fact that it should be).

If we use our previous notation, we can now write legal
order as:

F1(X) ⇒ P (F2(X))
P (F2(X)) ∧ F2(X) ⇒ O(F3(X))

O(F3(X)) ∧ ¬F3(X) ⇒ O(F4(X))
... (11)

2.5 Types of Legal Rules

2.5.1 Substantive vs. Procedural Rules

Substantive rules express contents of rights and duties that
address legal subjects. They prescribe how legal subjects
are to act in order to achieve desired results and what dif-
ferent states of affairs imply in terms of normative conse-
quences.

Procedural rules, on the other hand, express procedural
aspects of law enforcement. They prescribe procedures in
which substantive rules can be enforced. Procedural rules
govern legal processes such as criminal procedure and civil
procedure which seek to remedy breaches (civil law) and
crimes (penal law) committed by subjects of legal norms.

2.5.2 Legal Rules vs. Legal Definitions

Legal rules prescribe behavior that is required from norm
addressees. Legal rules have conditional part and pre-
scribed part. Conditional part contains description of states

of affairs to which norm applies. Consequential part pre-
scribes deontic modality (right,duty) and act, which is to
be (duty) or is allowed to be (right) performed by the norm
subject. Unconditional legal rules contains only second
part. It is of constitutive importance for legal rules to con-
tain normative (deontic) contents.

F ⇒ N (12)

Legal definitions, by contrast, do not prescribe any be-
havior but rather define some legal term. Legal defini-
tions do not contain hypothetical (conditional) part which
would describe when to apply the norm, nor do they con-
tain normative elements which would say what behavior
is required. Rather, legal definitions apply to legal terms
themselves (not states of affairs) and further clarify their
meaning (e.g. somebody falling under provisions of cer-
tain law means that . . .).

F ⇔ F1 ∧ . . . Fn (13)

Legal definitions can apply to legal terms which con-
tain states of affairs and legal terms which contain deontic
modalities.

2.5.3 Rules of Conduct vs. Rules of Competence

There is an important difference between rules of conduct,
which describe what is permitted to do or must be done
by the norm addressees in terms of factual behavior and
rules of competence which describe what powers (liabil-
ities) norm subjects have in respect to creating new legal
rules.

Most rules are rules of conduct. They prescribe required
behavior from norm subjects.

Rules of competence, on the other hand, empower or
oblige norm subjects to create new legal rules. A legal
subject can be empowered to create new normative con-
tents (rights and duties, e.g. legislator who passes laws or
contractor who creates new obligations). Legal subject can
also be obliged to create new rules (e.g. if you apply for
citizenship, under some conditions, public administration
office has to issue it)(Allen L.E. (1997)).

2.5.4 Monotonic vs. Nonmonotonic Rules

Monotonicity is defined with respect to temporal aspects of
legal rules.

Monotonic rules are those that hold regardless of the
event (events) that triggered them (e.g. once somebody is
dead, his heirs are entitled to heritage).

Nonmonotonic rules are those, whose validity constantly
depends on validity of the triggering conditions (e.g. when
you get sick you can apply for remedies from your health
care insurance policy, but you have no right to do so while
healthy).

Monotonicity of rules has to do with repeatability of
norm’s conditional part. If states of affairs that describe

228 Informatica27 (2003) 225–233 B. Beřcič

conditional part can vary over time, then we have non-
monotonic rule. If, on contrary, it is a one-time event, then
we have monotonic rule.

The same applies for truth values of legal definitions.
Nonmonotonic conditions can hold over intervals of time
and change (e.g. marital status can change several times in
one’s lifetime).

Some procedural rules are typically monotonic while
some substantive rules are typically nonomonotonic.

3 Expert Systems

Expert systems contain expert system shell and knowledge
base. Knowledge base is used as an input to inference
mechanism, which resides in expert system shell and in-
fers consequences. Knowledge base can be expressed in
PROLOG in form of Horn clauses (clauses with implicit
existential quantifier)(Bratko I. (2001)):

Φ : −Ψ1, . . . , Ψn (14)

Φ : −Ψ1; . . . ; Ψn (15)

These PROLOG clauses can be conveniently expressed
in more familiar form:

Φ ⇐ Ψ1 ∧ . . . ∧Ψn (16)

Φ ⇐ Ψ1 ∨ . . . ∨Ψn (17)

Expert systems lend themselves to express nonmono-
tonic rules (rules whose truth values change over time be-
cause of changing states of affairs). Expert system can be
interrogated by user in every moment about truth values of
consequences of rules in knowledge base. If rule’s condi-
tions are satisfied, system infers its consequences.

Expert systems have been mostly used in substantitve
law. They can be used in legal definitions:

F ⇔ F1 ∧ · · ·Fn (18)

where:

– F is complex state of affairs

– F1, . . . , Fn are elementary states of affairs

and in legal rules as well:

N ⇐ F1 ∧ · · ·Fn (19)

where:

– N is norm object (of normative type)

– F1, . . . , Fn are norm conditions (of factual type)

For the most part, this paper will refer to expert sys-
tems’ knowledge base for expressing factual elements of
legal rules (states of affairs). Although deontic elements
could be expressed as well (and sometimes they will be), it
is probably better to have a clear delineation on the level of
implementation between states of affairs and their deontic
consequences. Deontic consequences will be expressed by
means of places in Petri Nets.

4 ECA Rules

ECA rules have general form (Dittrich K.R., Gatziu S.
(1993)):

on<event>
if <condition>
do<action>

ECA rules stem from active database community and
are today most widely used in active database research and
event-driven programming.

Event detector detects events, checks whether conditions
hold and if they do, fires corresponding action.

Events in ECA rules can be of simple and composite
types; composite types can be, for example, expressed with
rules in knowledge base. The same holds for conditions
which are typically expressed as boolean combination of
simple conditions read from some database (or knowledge
base). ECA rules can thus be easily integrated with expert
system’s knowledge base.

ECA rules will be used to express various elements of
states of affairs. States of affairs typically contain either
some state or event or both. Event part of ECA rules will
be used to specify events of some complex state of affairs
and condition part of ECA rules will be used to express
some static state of affairs. Example will clarify this:

If somebody wants to enter into a contract, he must per-
form some action (e.g. sign a contract). But in order for the
contract to be valid, contactor must have competence to en-
ter into it. Competence to sign a contract is static part and
signing a contract active part of the state of affairs which
must be fulfilled in order for the contract to be valid. Thus,
we map signing a contract into event part and legal compe-
tence into condition part of ECA rule. Both should be there
if the event is to trigger some consequences. Note that this
paragraph doesn’t deal with deontic consequences of these
acts, which is left for later when Petri nets are considered).

Finally, the action part (which is optional) may express
some change in the state of affairs (for example, if you
marry someone, your marital status changes to married).

4.1 Events

Events can be primitive or composite events. Composite
events are made up of primitive ones with the use of op-
erators (disjunction, sequence,conjunction,periodicity) of
event algebra (Gatziu S. (1993),Chakravarthy S., Mishra

MODELLING LEGAL ACTS BY. . . Informatica27 (2003) 225–233 229

D. (1991)) . Event algebra itself could be specified with
Petri nets or with rules in knowledge base (boolean opera-
tors plus attribute for time). This paper implements it with
knowledge base in order to have expert systems cover all
factual elements.

4.2 Conditions

Conditions express conditions which must hold in order
for the event to fire. Conditions can be any combination
of first-order predicate logic statements. They are imple-
mented with expert systems, as well.

4.3 Actions

Actions are an optional part of an ECA rule in our interpre-
tation. They can express an update or change in the state of
affairs. Actions always refer to state of affairs (matters of
fact), never to deontic modalities (rights and duties). Petri
net markings take care of the latter.

5 High-level Petri Nets

A HLP-net is a structure HLPN =
(P ; T ; CT ; C;Pre; Post;M0) (Billington J. (1997))
where:

– P is a finite set of elements called Places,

– T is a finite set of elements called Transitions, which
are disjoint from P(P ∩ T = ∅),

– CT = {N,F} is a non-empty finite set of types (of
places and transitions), where N denotes normative
type and F denotes factual type

– C C : P ∪ T → CT is a function used to type places
and determine transition modes, such thatC(P) =
N,C(T) = F ,

– Pre is a pre mappingPre(p,t) : C(t) → N |C(p)|,

– Post ia s post mappingPost(p,t) : C(t) → N |C(p)|,

– M0 is an initial marking of the net.

HLPN lend themselves to express procedural law.
They can be data(place) or transition driven. Data driven

Petri nets fire transition whenever its preconditions are met
(all input places contain tokens). Event driven Petri nets
fire transition whenever its preconditions are metandevent
associated with it has occured.

Event driven Petri nets will be used in this paper because
states of affairs will be mapped to events in Petri net tran-
sitions.

Petri nets are most appropriate for procedural rules
(which contain implicit timeline). Sometimes they can be
used for substantive rules as well.

They are also appropriate for monotonic rules, i.e. rules
which don’t change their truth values over time. Their truth

space is monotonically increasing (once you file a com-
plaint it will always be that you have filed it)

Petri net places and transitions are interpreted as follows.

5.1 Places

Places hold deontic contents (rights, duties). They are the
only elements in whole structure that do so. Rights and du-
ties are not expressed within knowledge base in this paper.
Rather, they are all gathered at one place (consider imple-
mentation issues).

5.2 Transitions

Transitions hold events and are always of factual nature.
They contain events that change rights and duties. In accor-
dance with Petri net semantics, whenever event fires and its
preconditions hold, postcondition hold after the event and
preconditions stop to hold (e.g. if you have certain right
and choose to exercise it, you lose that right (precondition)
and possibly get another one (postcondition).

Transition events can be simple, composite or empty.
Composite events are made up of simple events. Some-
times transitions can synchronize: if one fires, the others
fire, too. This happens if one event is mapped onto many
transitions.

Transitions in HLPN can fire in different modes. Some
priority function must be defined over modes, just as some
priority function must be defined over ordinary transitions
if they happen to be enabled at the same time. We say that
they are in conflict.

5.3 Step Semantics

Step semantics determines in detail what effect firing
of a transition has. It prescribes detailed sequence of
steps taken by the system in order to arrive at desired
state (determination of enabled transitions and modes,
retrieval of relevant data, updates to net marking,etc.)

Check which transitions are enabled in what
modes. For each transition and for each mode do:

1. resolve mode and transition priority

2. check whether transition contains event or
null event

(a) if it contains event, check whether event
has happened and if so: fire

(b) if it contains null event: fire

3. withdraw tokens from appropriate input
places

4. put tokens into appropriate output places

230 Informatica27 (2003) 225–233 B. Beřcič

6 Petri Nets, Expert Systems and
ECA Rules Integrated

Now we can make use of all three components in one in-
tegrated structure. HLPN will be taken as a starting point.
Then, ECA rules will be mapped onto transitions, making
them event/condition/action transitions. Event, condition
and action parts of ECA rules will be furthermore mapped
into expert system knowledge base rules that will be pro-
cessed via expert system’s shell inference mechanism. This
will enable the expression of complex events, conditions
and actions.

A HLP-net is a structure HLPN =
(P ; T ; CT ; C;Pre; Post;M0) where

– P is a finite set of elements called Places

– T is a finite set of elements called Transitions disjoint
from P(P ∩ T = ∅)

– CT = {N,F} is a non-empty finite set of types (of
places and transitions), where N denotes normative
type and F denotes factual type

– Γ is a mappingΓ : T → {E, Co, A}
– C C : P ∪ E ∪ Co ∪ A → CT is a function

used to type places and transitions such thatC(P) =
N,C(E), C(Co), C(A) = F

– Pre is a pre mappingPre(p,t) : C(t) → N |C(p)|

– Post ia s post mappingPost(p,t) : C(t) → N |C(p)|

– M0 is an initial marking of the net

– ∆ is a mapping∆ : E → Φ : −Φ1, . . . , Φn

– Λ is a mappingΛ : C → Ψ : −Ψ1, . . . , Ψn

– Σ is a mappingΣ : A → Ω : −Ω1, . . . , Ωn

High-level Petri net defines the global structure of the
legal model. It contains places and transition. Places are
of two (deontic) types: rights P and duties O. Transitions
can fire in different modes and they contain states of affairs.
Just as places and transitions strictly alternate in Petri net,
so do factual and deontic elements in legal order. States of
affairs trigger normative contents (rights and duties). It is
nevervice versa

Transitions represent states of affair. States of affair can
be simple or composite. They can also be proper states or
events.

This semantics is captured by ECA rules. Events part
represent (potentially composite) active components of
states of affairs and conditions represent (potentially com-
posite) proper states of affairs. Action part permits rules to
issue actions such as update on states of affairs.

Transitions are mapped to ECA rules, which are triples
{E, Co, A}. All members of triple are of factual type.
They contain events that trigger the transition, conditions

which implement guard function as to when transition is
allowed to fire and action which can be set off as a conse-
quence of firing of transition.

Composition of events, conditions and actions in ECA
rule is done by means of expert system rules.

Composite event can be described in usual knowledge
base manner. Composite event name is head of the knowl-
edge base rule, simple events which constitute composite
events are its tail, coupled with corresponding boolean op-
erators.

The same goes for conditions. Conditions are rules in
knowledge base. Rule name (condition name) is head of
the rule and represents consequence, whereas tail contains
simple conditions.

Each time that system has to check whether certain event
or condition is fulfilled (for example in order to fire a
transition, the system asks user whether this or that has
happened), it calls expert system knowledge base. Each
ECA rule contains rule head, which is matched against rule
head in knowledge base. Head is than expanded with rule
body (tail) which in turn contains heads of other rules in
knowledge base. This process continues iteratively until
list contains only elementary facts that can be matched ei-
ther against present knowledge base or (in case of absence)
required from the user.

After all required elementary facts have been retrieved,
rule can be evaluated to be either true or false (alternatively
we could have any type of function, not just booleans,
which would operate on supplied data). If both event part
is true (composite event has happened) and condition part
is true (required conditions hold), the transition can fire.

Firing a transition means subtracting tokens from its in-
put places and putting them in its output places. This can be
done after the event and when the condition part has been
evaluated to be true. Also, at the same time, action part of
ECA rule fires.

In legal semantics presented in this paper firing of tran-
sition means, that a legal event has happened (e.g. a per-
son has committed an act), with all its normative precondi-
tions (places) present (e.g. right of a person to commit that
act) and with all its factual conditions present (e.g. per-
son’s competence to commit that act). Consequences are
twofold: normative and factual. Normative consequences
are new rights and duties which result out of act of a person
committing that act (e.g. contractual obligations arise from
signing the contract). Sometimes factual consequences
arise as well (e.g. date of the contract is set). Normative
consequences are represented by tokens in PN places, fac-
tual consequences are written as facts in knowledge base.

Thus, this methodology delimits very neatly the norma-
tive and factual contents of legal acts. Deontic elements
all lie in PN places, while factual elements are all stored in
knowledge base and are invoked via ECA rules from PN
transitions.

MODELLING LEGAL ACTS BY. . . Informatica27 (2003) 225–233 231

Figure 1: Mappings

6.1 Step Semantics

Step semantics can be now defined anew. Transitions are
mapped to ECA rules and these are in turn mapped to ex-
pert system queries. Step semantics has to take into ac-
count possible composite nature of events, conditions and
actions.

Check which transitions are enabled in what modes.For
each transition and for each mode do:

1. resolve mode and transition priority

2. check whether transition contains simple event, com-
plex event or null event

(a) if it contains simple event, check whether event
has happened and if so go to the condition part

(b) if it contains complex event call ES inference
machine

i. infer simple events from a complex one

ii. for each simple event:check it against the
database or ask user

iii. evaluate truth function of a complex event;
if it evaluates to true:go to the condition
part

(c) if it contains null event: go to the condition part

3. check whether condition is simple, complex or empty

(a) if the condition is simple and is satisfied: fire

(b) if the condition is complex than call ES infer-
ence machine

i. infer simple conditions from a complex
one

ii. for each simple condition: check it against
the database or ask user

iii. evaluate truth function of complex condi-
tion; if it evaluates to true:fire

(c) if the condition is empty:fire

4. withdraw tokens from appropriate input places

5. put tokens into appropriate output places

6. set off appropriate action from action part of ECA rule

7 Examples

A real world example can now be presented that is based
on this model. We will take first few chapters of Federal
Rules of Civil Procedure and try to express them in our
model. We take this example because it requires modelling
of both procedural and substantive law. Also, these rules
have already been modelled in (Meldman J.A., Holt A.W.
(1971) and Meldman J.A. (1978)).

Procedure begins with plaintiff filing a complaint.
Rule 3 Commencement of action A civil action is com-

menced by filling a complaint with the court
Then, court issues summons.
Rule 4 Process Upon filing of the complaint the clerk

shall forthwith issue a summons and deliver it for service
to the marshal or to a person specially appointed to serve
it.

Many events have been collected under one umbrella
here: issue summons, deliver summons, and serve defen-
dant with summons. System calls knowledge base and re-
trieves body ofsummonrule, which consists of three sim-
ple events: issue summons, deliver summons, serve the de-
fendant. System matches these events with those written
in the knowledge base and eventually asks user about them
(is it the case that ...). Note that this is the event part of the
ECA rule. Condition part is empty (null). We also have ac-
tion part here, which sets latest respond time within which
defendant must answer or else be confronted with default
judgement.

As a consequence of this, defendant now has the right to
answer with pleading, counterclaim, motion or default.

Rule 7 Pleadings allowed There shall be a complaint and
an answer;[which may or may not contain a counterclaim,
and a reply to a counterclaim.] No other pleadings shall
be allowed...

Rule 12 Defenses: by pleading or motion A defendant
shall serve his answer within 20 days after the service of
the summons and complaint upon him...

Rule 55 Default When a party against whom a judgment
for affirmative relief is sought has failed to plead or oth-
erwise defend as provided by these rules...the clerk shall
enter his default.

232 Informatica27 (2003) 225–233 B. Beřcič

defendant defaults (no

answer within respond time)

defendant responds

with motion / valid reasons

plaintiff files complaint

with clerk

O(court, issue summons)

(court, issue summons / null / set latest

respond time)

P(defendant, plead,

counterclaim, motion,

default)

defendant pleads defendant responds

with counterclaim

valid reasons :-

lack of jurisdiction over the subject matter or

lack of jurisdiction over the person or

improper venue or

insufficiency of process or

insufficiency of service of process or

failure to state a claim upon which relief can be granted .

O(court, issue

default judgement)

defendant responds

with motion / no valid

reasons

issue summons :-

issue summons and

deliver summons and

serve defendant,

set latest respond time

{

lastest respond time =

date + 20 days

}

O(court, dismiss

 motion)

O(court, dismiss

 action)

O(court, serve plaintiff

 with counterclaim)

O(court, hear

the parties)

Figure 2: Civil Procedure

If he chooses to plead, court proceeds with action. If
he responds with counterclaim, court then serves plaintiff
with counterclaim. If he defaults (doesn’t answer in latest
respond time,which the system has set before), court issues
default judgement against him.

If he answers with motion, everything depends on valid-
ity of reasons for motion.

Rule 12b ... Every defense, in law or fact, to a claim for
relief in any pleading, whether a claim, or counterclaim,...
shall be asserted in the responsive pleading thereto... ex-
cept that the following defenses may at the option of the
pleader be made by motion: (1) lack of jurisdiction over the
subject matter, (2) lack of jurisdiction over the person, (3)
improper venue, (4) insufficiency of service of process, (6)
failure to state a claim upon which relief can be granted...

These are conditions. System searches the knowledge
base forvalid reasons for motionand retrieves: lack of
jurisdiction over subject matter, lack of jurisdiction over
persons, improper venue, insufficiency of process, insuffi-
ciency of service of process, failure to state a claim upon
which relief can be granted. Any of these reasons (condi-
tions) make court dismiss action. If none of them is satis-
fied, court dismisses motion.

Here, the procedure goes on, of course. Model could be
extended further, but we stop here because it serves demon-
stration purposes.

8 Conclusions

This paper has shown how high-level Petri nets, expert sys-
tems and ECA rules can be combined to represent seman-
tics of legal rules. Different aspects of legal rules can be
covered: factual, deontic, procedural and substantive. All
of these are put into one picture.

Purpose of this paper is to show how semantics of legal
rules can be mapped to different technologies and notations
and how they can work together. This methodology has
been applied to a few examples. Federal Rules of Civil
Procedure, presented in this paper, is one of them. Both
factual and deontic, procedural and substantive rules were
covered in it.

Model could be extended further; one obvious way is
to include linguistic elements as a micro structure (macro
structure being Petri net). For example, if one wants to
operate with finer elements than rights and duties (com-
ponents like norm subjects, norm objects, prescribed be-
haviors) they must be interpreted individually. One way of
doing this is by parsing text of legal rule and obtaining in-
dividual words or atoms like legal subjects, legal objects
etc.). Then, not only facts, but single words also, could be
subjects of queries and rules of expert systems (e.g. what
is the meaning of worddue in legal expressiondue dilli-
gence?).

Also, model could be made executable. A mapping

MODELLING LEGAL ACTS BY. . . Informatica27 (2003) 225–233 233

could be defined from the model to some programming lan-
guage data types or DB schema. Models would than be mi-
grated to this platform. Of course, a lot of implementation
issues would have to be solved. Linguistics, again, could
be of great help in determining atoms of such model.

Time aspects have only been very briefly touched in this
paper. Since time is ubiquitous in information systems,
model should be augmented with it. One way to do this
is with Time or Timed Petri nets, where time is attributed
to places or transitions or both.

Petri nets themselves could be replaced by more flexi-
ble structures. Petri nets semantics require strict alternation
of transitions and places. Some real-world legal situations
may escape this logic and we may very well find ourselves
in need of a more flexible semantics.

References

[18] Federal Rules of Civil Procedure (2001)
www.house.gov/judiciary/civil00.pdf

[18] Allen L.E. (1997) The Language of LEGAL RELA-
TIONS (LLR):Useful in a Legal Ontologist’s Toolkit?.
Proceedings of the First International Workshop on Le-
gal Ontologies LEGONT’97, Melbourne,Victoria, Aus-
tralia, p. 47-60.

[18] Bratko I. (2001), Prolog Programming for Artificial
Intelligence - 3rd edition, Addison-Wesley.

[18] Breuker J.,Valente A.,Winkels R. (1997) Legal On-
tologies: A Functional View. Proceedings of the
First International Workshop on Legal Ontologies
LEGONT’97, Melbourne,Victoria, Australia, p. 23-36.

[18] Burg J.F.M., Van de Riet R.P. (1994) Syntax, Seman-
tics and Pragmatics of COLOR-X Event Models Speci-
fying the Dynamics of Information and Communication
Systems.Technical Report IR-365, Vrije Universiteit,
Amsterdam, 1994

[18] Burg J.F.M., Van de Riet R.P. (1994) COLOR-X: Ob-
ject modelling profits from linguistics.Technical Report
IR-365, Vrije Universiteit, Amsterdam

[18] Chakravarthy S., Mishra D. (1991) Snoop: An
Expressive Event Specification Language For Ac-
tive Databases.Tech. Report UF-CIS-TR-93-007,
Gainesville, Florida.

[18] Dittrich K.R., Gatziu S. (1993) Time Issues in Active
Database Systems.Proceedings of International Work-
shop on an Infrastructure for Temporal Databases, Ar-
lington,Texas, p. 1-6.

[18] Fedorov S. (1991) ICaR project, - applying relational
data model and expert systems technology to represent
and use legal knowledge.Industrial Report ICAIL-99
Conference, 1991

[18] Gatziu S. (1993) Events in an Active Object-Oriented
Database System.Proceedings of the 1.st International
Workshop on Rules in Database Systems, Edinburg.

[18] Jonathan Billington (Editor) (1997) High-level Petri
Nets - Concepts, Definitions and Graphical Notation.
Committee Draft ISO/IEC 15909, October 2, 1997 Ver-
sion 3.4

[18] Kralingen van R. (1997) A Conceptual Frame-based
Ontology for the Law.Proceedings of the First Inter-
national Workshop on Legal Ontologies LEGONT’97,
Melbourne,Victoria, Australia, p. 15-22.

[18] Lee R. M., Ryu Y.U. (1994) DX: A Deontic Expert
System.Journal of Management Information Systems,
Vol. 12, No. 1, 1995, pp. 145-169.

[18] Lee R.M., Bons R.W.H., Wrigley C.D., Wagenaar R.
W. (1995) Modelling Inter-organizational Trade Proce-
dures Using Documentary Petri Nets.Proceedings of the
Hawaii International Conference on System Sciences
1995.

[18] Meldman J.A., Holt A.W. (1971) Petri Nets and Legal
System.Jurimetrics Journal 12/2 1971, ,p. 65-75.

[18] Meldman J.A. (1978) A Petri-Net Representation of
Civil Procedure.IDEA The Journal of Law and Tech-
nology 19/2 1978, , p. 123-148.

[18] Sergot M.J., Sadri F., Kowalski R.A., Kriwaczek F.,
Hammond P., Cory H.T. (1986) The British Nationality
Act as a logic program.Communications of the ACM
370, 1986

[18] Visser P.R.S.,Bench-Capon J.M. (1997) A Com-
parison of Two Legal Ontologies.Proceedings of
the First International Workshop on Legal Ontologies
LEGONT’97, Melbourne,Victoria, Australia, p. 37-46.

