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Abstract 

Several methods have been suggested to estimate non-linear models with 
interaction terms in the presence of measurement error. Structural equation 
models eliminate measurement error bias, but require large samples. 
Ordinary least squares regression on summated scales, regression on factor 
scores and partial least squares are appropriate for small samples but do not 
correct measurement error bias. Two stage least squares regression does 
correct measurement error bias but the results strongly depend on the 
instrumental variable choice. This article discusses the old disattenuated 
regression method as an alternative for correcting measurement error in 
small samples. The method is extended to the case of interaction terms and 
is illustrated on a model that examines the interaction effect of innovation 
and style of use of budgets on business performance. Alternative reliability 
estimates that can be used to disattenuate the estimates are discussed. A 
comparison is made with the alternative methods. Methods that do not 
correct for measurement error bias perform very similarly and considerably 
worse than disattenuated regression. 

1 Introduction 

When an interaction effect between two continuous variables is present, the 
effect of one of the variables on the dependent one is different for different values 
of the other variable. If both variables are measured without error, a particular 
form of ordinary least squares (OLS) regression  (i.e. moderated regression 
analysis, a regression analysis including the product of the variables that interact 
as an additional variable) can be used to estimate and test interaction effects (Irwin 
and McClelland 2001; Jaccard et al. 1990).  
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 Interaction effects are relevant to a number of research problems in disciplines 
that use questionnaire data that are subject to measurement error. If variables are 
measured with error, OLS leads to biased estimates. This bias is usually negative 
and is hence referred to as measurement error attenuation bias. In this case it is 
common practice to use summated rating scales (SRS, Spector 1992) by averaging 
multiple indicators of each variable of interest, and then using these SRS as 
variables in the OLS regression model. However, attenuation bias is not eliminated 
completely because the SRS are not perfectly reliable, even if they are more reliable than 
single items. Thus, OLS on SRS is only useful for predictive purposes, not for theory 
building or testing.  

This distinction between prediction and testing will be very relevant throughout this 
article. For estimating the parameters of a model according to a theory, absence of bias is a 
key requirement. In this case, measurement error correction is necessary because the 
parameters that are theoretically of interest are those that relate error-free variables. 
However, when the aim of the researcher is merely to predict the observed dependent 
variable from the available (i.e. observed with error) explanatory variables, then the 
relevant relation is that among variables containing errors. In this case it turns out that the 
biased parameter estimates yield optimal predictions in the sense of being unbiased 
estimates of the conditional expectation of the dependent variable given the observed (i.e. 
with error) values of the explanatory variables. 

Many methods for modelling variables measured with error have been 
suggested in the literature. Among the most widely used are structural equation 
models (SEM), two-stage least squares regression (TSLS), partial least squares 
(PLS) and ordinary least squares regression on factor scores (FSR). However, 
these methods either rely on large samples, depend on an arbitrary choice of 
instrumental variables, or do not properly correct measurement error bias.  

SEM can in principle be used to eliminate attenuation bias (Bollen, 1989; 
Goldberger and Duncan, 1973; Raykov and Marcoulides, 2000). In recent years, 
different developments have been proposed to examine interaction effects using 
this approach following a seminal paper by Kenny and Judd (1984). Kenny and 
Judd’s approach requires each latent variable to relate to at least two indicators 
and implies the formation of one or more interaction indicators based on the 
products of the main effect indicators (Batista-Foguet et al., 2004a, 2004b; González 
et al., in press; Jackard and Wan, 1995; Jöreskog, 2000; Jöreskog and Yang, 1996; 
Marsh et al., 2004; Moulder and Algina, 2002; Ping, 1995; Saris et al., in press). For 
instance, if item1 and item2 are indicators of the first variable and item3 and item4 
of the second, the possible interaction indicators would be item1×item3, 
item1×item4, item2×item3 and item2×item4. Except those of Batista-Foguet et al. 
(2004a) and Marsh et al. (2004), SEM approaches have a great degree of complexity, 
requiring non-linear constraints. More importantly, with sample sizes below 100 or 
200, SEM are hardly applicable because the properties of estimators and tests are 
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asymptotic (Cortina et al., 2001; Schumacker and Marcoulides, 1998; Boomsma 
and Hoogland, 2001). 

The requirement of large samples is particularly relevant when cases are not 
individuals but organisations. For instance, in management research, sampling 
units may be firms and respondents may be top managers who are limited in 
number. Consequently, and despite the cautions regarding minimum sample sizes 
(Medsker et al., 1994), often business studies (Abernethy and Vagnoni, 2004; 
Bisbe and Otley, 2004; Chalos and Poon, 2000; Chenhall, 2004; Chong and 
Chong, 2002) report findings based on small samples (i.e. less than 100 data 
points).  

TSLS regression (Koopmans and Hood, 1953; see Johnston, 1972 for an 
introduction; Bollen, 1996 for its application to measurement error correction and 
Bollen and Paxton, 1998 for its use in interaction models) also eliminates the 
measurement error bias. In this method, one indicator is selected as regressor and the others 
as instrumental variables. Instrumental variables may be any variables that are highly 
correlated with the regressor measured with error but uncorrelated with the disturbance 
term. The other indicators of the explanatory variable can be used as instrumental variables 
if their measurement error is uncorrelated with the measurement error of the regressor and 
with the disturbance of the dependent variable. In the case of product indicators, this will 
be fulfilled only if instrumental product indicators do not include products of the same 
items that are multiplied in the indicator that is in the regression equation. In the above 
example, if item1, item3 and item1×item3 are used as indicators, the valid instruments are 
item2, item4 and item2×item4. A drawback of the TSLS method and of any limited 
information method is that the estimates will usually change depending on which 
indicators are chosen as regressors and which as instruments. If all model assumptions hold 
and the sample size is large, differences should be small, but not otherwise (Bollen and 
Paxton, 1998; Jöreskog and Sörbom, 1989). In particular, the assumption of 
uncorrelatedness between the measurement errors of the instruments and the disturbance is 
crucial in this respect (Saris et al., in press). 

PLS (Chin, 1998; Chin and Newsted, 1999; Fornell and Cha, 1994; Wold, 
1975) does not rely on large samples but fails to correct measurement error bias properly. 
PLS constitutes a rather complex procedure that is in fact not so far from OLS on SRS, 
from which it differs by the fact that the weights of the indicators are not equal but 
computed from the optimization of certain criteria. On the positive side, PLS shares with 
OLS regression the property of providing optimal predictions and can successfully be 
applied for predictive purposes or whenever the aim of the analysis is exploratory, the 
theory is weak, or the number of variables is too large for formal modelling (Jöreskog and 
Wold, 1982). Wold (1982) introduced the term “soft modelling” to refer to these situations. 
However, on the negative side, and in the same way as OLS on SRS, PLS has the 
limitation that it does not eliminate measurement error bias, as it is consistent only under 
perfect reliability or with an infinite number of items per dimension (Dijkstra, 1983; 
Fornell and Cha, 1994; Hulland, 1999; O’Loughlin and Coenders, 2004; Wold, 1982). 
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Therefore, and despite its potential usefulness for prediction with small samples, PLS is not 
adequate when theory is well developed and the researcher’s purpose is the estimation of 
population parameters related to the theory, for which the lack of bias is a key requirement. 

In FSR (e.g. Hair et al., 1998), separate factor analysis models (e.g. Kim and Mueller, 
1978a, 1978b) are fitted for each dimension, factor scores are saved and used as variables 
in an OLS regression. It is similar to PLS in that it computes composite scores from a 
weighted sum of the indicators and in that it does not correct for measurement error bias. 
The weights of the items used to compute the factor scores do differ from PLS, but not to a 
large extent. Anyway, changing the weights of the indicators is reported to have a minor 
impact (McDonald, 1996). The simpler uniform weights that are used in OLS on SRS have 
the advantage over both FSR and PLS that they are fixed instead of being sample 
dependent, and thus are more suitable for comparative research. 

In this article we concentrate on a very simple method for correcting the effects of 
measurement error in the estimation of grounded theoretical models including interaction 
terms with small sample sizes. The long known disattenuated regression (DR) on SRS 
(Lord and Novick, 1968) is discussed in this article as an alternative to OLS, SEM, TSLS, 
PLS and FSR that is unbiased while being very little demanding, both in terms of statistical 
expertise and of sample size. In short, this method estimates the reliability of the SRS, uses 
this information to compute the variances of the SRS that would have been obtained in the 
absence of measurement error, and substitutes these variances in the covariance matrix 
from which OLS estimates are computed. An extension of DR is developed for the case of 
interaction effects. Obtaining a good reliability estimate is of course a crucial issue. Two 
reliability estimates are discussed: α (Cronbach, 1951) and Ω (Heise and Bohrnstedt, 
1970). α can be obtained from the covariances among items while Ω requires estimating a 
factor analysis model, but Ω is based on less stringent assumptions. The estimation of the 
reliability of interaction terms cannot be done by just using the α and Ω formulae, but a 
suitable method is developed in this article. 

The DR procedure will be illustrated on an example of Bisbe and Otley (2004), 
who estimated and tested the moderating effects of an interactive use of budgets 
on the impact of innovation on performance using OLS on SRS. The results 
obtained under OLS and DR regression will be compared to those obtained with 
TSLS, FSR and PLS. The results of applying SEM on the same data, although not 
very reliable due to the small sample size, can be found in Batista-Foguet et al. 
(2004b). 

This article is structured as follows. First we present the DR method. Then we 
summarize the model of Bisbe and Otley (2004) and the data collection mode and 
measurement instruments used. Then, the DR method is extended to the interaction 
effect case. Next we provide the results of the different analyses and sizeable 
differences emerge between DR and the methods that do not correct attenuation bias (PLS, 
OLS and FSR), and sizeable differences appear within the TSLS method depending on the 
instrumental variable choice. Based on these results, some recommendations are given to 
applied researchers facing small samples. 
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2 Disattenuated regression on summated rating scales 

SRS are often used when an unobservable concept, assumed to be unidimensional, 
is measured by multiple indicators. A SRS is computed as either the sum or the 
average of these indicators (in this article we assume, without loss of generality, 
that they are averaged; for summated items Equations 2.1 and 2.2 will change 
somewhat). This has a threefold purpose: 1) properly defining a composite 
construct by combining observable variables; 2) increasing measurement reliability  
by averaging out random errors of measurement from single indicators and 3) 
increasing parsimony as only equations relating the composites (of which there are 
fewer than variables) are needed.  

Unfortunately, if OLS regression is estimated on the SRS, measurement error 
correction is not complete. It has long been known that a sum or an average of 
several measures is more reliable than just one measure (Simpson, 1755). 
However, this average is only perfectly reliable when the number of items 
approaches infinity or the reliability of all items approaches one. As a result, the 
OLS estimates of regression coefficients will still suffer from attenuation bias.  

DR is a simple method for solving measurement error bias in the estimation of well-
grounded theoretical models when sample sizes are small. DR is a method whose 
foundations were laid long ago (Spearman, 1904) and which, for large samples, 
became superseded by more modern alternatives such as 2SLS and SEM and thus 
stopped being used. 

The first step in a DR is to estimate the reliability of the SRS. Reliability is 
defined as 1 minus the percentage of variance of the SRS that corresponds to 
random measurement error. So, the product of the total variance of the SRS and 
reliability yields the so-called true variance. A disattenuated regression proceeds 
as an OLS regression in which true variances are substituted for total variances. 
Any OLS regression software that accepts covariance matrices as means of data 
input as well as any SEM software can thus perform a disattenuated regression.  

Reliability of an SRS is usually computed as Cronbach’s α (Cronbach, 1951) 
on the assumption that items are at least tau-equivalent (e.g. Bollen, 1989: 215-
216). This assumption implies that all items are an unweighed sum of the true 
score plus a random error term. These random error terms are assumed not to 
contain any systematic component (the items thus measure the true score and only 
one true score), and to be mutually uncorrelated. An observed consequence of tau-
equivalence is that all covariances among all pairs of items are equal (the opposite 
does not hold, i.e. covariances may be equal and yet items may not be tau-
equivalent). Cronbach’s α is a very popular measure and its computation is 
performed by most commercial software packages as: 
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where p is the number of items, var(itemj) the variance of the j th item and 
var(SRS) the variance of the SRS constructed as the average of the items. 

If the tau-equivalence assumption is fulfilled, then the disattenuated regression 
estimates obtained in this way are consistent. Otherwise, α is biased (Cortina, 
1993; Novick and Lewis, 1967; Raykov, 1997), and, unlike what is usually 
understood, this bias can be both positive and negative in sign (Raykov, 2001). 
Unfortunately, empirical studies do not usually perform any test of the tau-
equivalence assumption when applying α. 

A myriad of alternative estimates of reliability that are based on more relaxed 
assumptions is available. Among them, one of the simplest is Heise and 
Bohrnstedt’s Ω (Heise and Bohrnstedt, 1970). In order to estimate Ω, a 
unidimensional factor analysis model must be fitted to the items in each 
dimension. The estimates of the model will include the so-called communalities or 
percentages of true score variance in each item. Reliability is estimated as:  
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where hj is the communality of the j th item. A factor analysis model requires p 

(number of items) to be equal or larger than three. 
This measure assumes that items are congeneric. This assumption implies that 

all items are a weighted sum of the true score plus a random error term, which 
makes it possible for the contribution of the true score to the different items to be 
different. As before, these random error terms are assumed not to contain any 
systematic component and to be mutually uncorrelated. An observed consequence 
of congeneric measurement when the number of items is equal to or larger than 
four is that the unidimensional factor analysis model fits the inter-item 
correlations well (the opposite does not hold, i.e. the one-factor model may 
perfectly fit the correlations and yet items may not be congeneric; See Coenders et 
al., 2006 and Saris et al., in press for large sample tests of congeneric 
measurement). If the model is estimated by maximum likelihood, most commercial 
software packages will produce a χ2 test of the fit of the model to the correlations. 
Otherwise, the residual correlations may be examined one by one to check that 
they are all small. 
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In this article we use the two simple approaches described to estimate 
reliability of an SRS in order to perform a DR, and we compare their results to 
OLS, TSLS, PLS and FSR using Bisbe and Otley’s (2004) data. First we present 
Bisbe and Otley’s conceptual framework and specify a regression model with 
interaction effects and errors in the variables and show how α and Ω have to be 
used to estimate a DR in the presence of interaction effects. 

3 Conceptual framework 

The management literature has long considered innovation to be one of the major 
determinants of long-term organizational performance in contemporary 
environments (e.g. Clark and Fujimoto, 1991; Kanter, 2001). Most empirical 
studies (e.g. Capon et al. 1992; de Moerloose, 2000) have shown a positive 
relationship between innovation and performance. Another determinant of 
business performance is the use of management control systems (MCS). Simons 
(1991, 1995) states that, when used interactively, MCS focus on strategic 
uncertainties and become a recurring forum and agenda for a continuous and 
challenging debate in which top managers are involved. 

Following Simons’ framework, it can be expected that, by orientating the 
contents and the adequacy of the innovation initiatives, an interactive use of MCS 
will positively influence the success of innovation initiatives and, consequently, 
will enhance their impact on performance.  Thus, the relationship between 
innovation and performance will be affected by the extent to which MCS are used 
interactively, suggesting a moderated causal relationship in which an interaction 
effect is present (See Bisbe and Otley, 2004, for details). 

 
 
 
 

 
 
 
 
 
 

 

Figure 1: Conceptual framework. 

Drawing on Simons’ framework (Simons 1990, 1991, 1995), Bisbe and Otley 
(2004) estimate and test the model in Figure 1 that includes the aforementioned 
interaction effect (arrow C). Besides, Figure 1 includes the main effects of both 
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innovation and interactive use of MCS on performance (arrows A and B). 
Following Irwin and McClelland (2001), all main effects of the variables that 
interact must be introduced in the interaction model (even if they are expected to 
be theoretically irrelevant) in order to obtain meaningful estimates of the 
interaction effect. 

4 Data collection and instruments 

Data were gathered through the administration of a written questionnaire to a 
sample of Chief Executive Officers of medium-sized, mature manufacturing firms 
with headquarters located in Catalonia, Spain (Bisbe and Otley, 2004). Mature 
medium-sized firms were defined as those with an annual turnover of between 18 
and 180 million euro, with between 200 and 2000 employees and founded at least 
ten years before the survey was administered. Exploitation of the Dun and 
Bradstreet/CIDEM 2000 database (referring to 1998) resulted in 120 firms 
fulfilling the screening criteria.  

Once revised after pilot tests, questionnaires were distributed and traced 
following Dillmann’s (2000) guidelines. Out of the 120 questionnaires distributed, 
58 were returned, all of which were complete. This compares well with the 
response rate of similar studies. Cases where the executives reported not to have 
been in their current position for at least three years (n=18) were excluded. The 
resulting useable sample size was n=40. The measurement instruments used for 
each of the variables in Figure 1 are described next. 

The interactive use of MCS (η1) was defined based on Simons´ (1990, 1995, 
2000) work in terms of the patterns of attention posed by top managers and 
considering budgets as type of MCS. Using Simons´ framework, and developing 
the instruments suggested by Abernethy and Brownell (1999) and Davila (2000), 
Bisbe and Otley (2004) developed a 3-item instrument in a 1 to 7 scale containing: 

item 1) Degree to which information from the control system is discussed 
face-to-face merely on an exception basis.  

item 2) Extent to which it demands frequent and regular attention from the 
top manager. 

item 3) Extent to which it demands frequent and regular attention from 
operating managers at all levels of the organization. 

 
Product innovation (η2) was understood from an output perspective and was 
defined as the development and launching of products that are in some respect 
unique and distinctive from existing products. It referred to innovative behaviour 
during the last three years in relative terms, in comparison with the industry 
average. The measure of product innovation used in Bisbe and Otley (2004) was 
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drawn from instruments used by Capon et al. (1992), Thomson and Abernethy 
(1998) and Scott and Tiesen (1999) and contained 3 items on a 1 to 7 scale: 

item 4) Rate of introduction of new products. 
item 5) Tendency of firms to pioneer. 
item 6) Part of the product portfolio corresponding to recently launched 

products. 
 

Performance (η4) was defined as the degree of goal attainment along several 
dimensions, including both financial and non-financial aspects, during the three 
years previous to the administration of the questionnaire. An instrument for the 
evaluation of strategic business unit effectiveness (Chenhall and Langfield-Smith, 
1998; Chong and Chong, 1997; Govindarajan 1984, 1988; Govindarajan and 
Gupta, 1985; Gupta and Govindarajan, 1984) was adapted by Bisbe and Otley 
(2004), who used eight questions related to both financial (sales growth rate, 
revenue growth rate, return on investment, profit/sales ratio) and customer 
perspectives (customer satisfaction, customer retention, customer acquisition and 
increase in market share). A single item (item7) was constructed from the 
assessments of the firm’s performance on those eight aspects weighted according 
to their perceived importance by respondents themselves.  

5 The regression model with interaction effects and 
measurement errors 

The model is composed of two parts, one relating the variables, called structural 
part, and one containing measurement error, called measurement part. The 
relationships of the structural part in Figure 1 are formalized in Equation 5.1. For 
simplicity we do not use a different notation for endogenous and exogenous 
variables: 
 
 η4= β41η1+β42 η2 +β43 η3 +ζ4 (5.1) 
 
where: 

- η1 is the interactive use of budgets corrected for measurement error, 
centred with zero mean. 

- η2 is innovation corrected for measurement error, centred with zero mean. 
- η3 = η1η2 is the interaction term corrected for measurement error, referred 

to the mean-centred η1 and η2 centred again after computing the product. 
As in moderated regression analysis (Irwin and Mclelland, 2001; Jaccard et 
al., 1990) the interaction is constructed as the product of both variables that 
interact. 
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- η4 is performance corrected for measurement error, centred with zero 
mean. 

- ζ4 is a disturbance term, with zero expectation and uncorrelated with η1, 
and η2.  

 
The β43 interaction term implies that the effect of the interactive use of 

budgets on performance depends on the innovation level or that the effect of 
innovation on performance depends on the level of interactive budget use. For 
instance, the effect of η1 of η4 conditional on a given value of η2 is β41+β43η2. 
Thus, the interpretation of the main effects β41 and β42 is that occurring when the 
value of the other variable is zero (if η1 and η2 are mean centred, for the mean 
value of the other variable). Standardization of the η variables cannot be 
performed as it would prevent η3 from being equal to the product of η1 and η2. 
This implies that standardized parameter estimates have no interpretation (Jaccard 
et al., 1990).  

As regards the measurement part, for each variable the same measurement 
equation is assumed: 
 yj = ηj + ej     where j=1,...,4 (5.2) 
where: 

- y1 and y2 are not items but centred SRS of the interactive use of budgets 
and innovation. 

- y3=y1y2 is the centred product of centred SRS used for the interaction term. 
- y4=item7, the single weighted item measuring performance.  
- ej are measurement errors with zero expectation.  
- e1, e2, e4, η1, η2 and ζ4 are assumed to be mutually independent, not just 

uncorrelated.   
 

The decomposition of y3 as a function of the error-free component η3 and the 
error term e3 is more complicated as it involves the product of two variables. 
Following a similar procedure as Jöreskog and Yang (1996), if the above 
assumptions of mean centring and independence hold, the interaction term can be 
decomposed as: 
 
 y3=y1y2 =(η1+e1) × (η2+e2) = η1η2+ (η1e2+η2e1+e1e2)=η3 + e3 (5.3) 

 
with cov(e3 ,e1)=cov(e3 ,η1)=cov(e3 ,η2)=cov(e3 ,e2)=0. 
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6 Extension of DR to interaction effects. Steps of the 
analysis 

6.1 Computation of reliabilities and true variances of main 
effects 

 
Table 1 first shows the necessary information to calculate α and Ω for y1 and 

y2: the variances and covariances of the two sets of items, the variances of the SRS 
and the maximum likelihood communality estimates in two separate factor 
analysis models, as provided by a standard package such as SPSS 10.1. For 
instance, for Ω and the interactive use of budgets we have: 
  

840.0
125.29

)366.01(615.2)778.01(743.2)755.01(259.3
11 =

×
−×+−×+−×−=Ω   (6.1) 

 

The items measuring interactive use of budgets have markedly different 
covariances (the ratio of the smallest over the largest covariance is 1.6) and thus 
the application of Cronbach’s α is dubious in this particular case. This results in α 
and Ω being somewhat different for this dimension. All α’s and Ω’s are 
substantially different from 1, much too different for OLS to be appropriate. 

Table 1: Computation of α and Ω. 

Statistics for items in y1 (budget use) Statistics for items in y2 (Innovation) 
Variances and covariances Variances and covariances 

 item1 item2 item3  item4 item5 item6 
item1 3.259   item4 2.984   
item2 2.291 2.743  item5 1.994 3.208  
item3 1.535 1.429 2.615 item6 1.577 1.682 1.887 

var(y1)= 
var(SRS1) 

2.125   var(y2)= 
var(SRS2) 

2.065   

α1 0.824   α2 0.848   
 item1 item2 item3  item4 item5 item6 

communalities 
(hj) 

0.755 0.778 0.366 communalities 
(hj) 

0.626 0.663 0.705 

Ω1 0.840   Ω2 0.852   
 
To estimate the reliability of the single item y4=item7, a direct question about 

overall performance was also included in the questionnaire. This question might 
play the role of an external criterion. If both measurements (this single question 
and item7) are valid for performance (measure performance and only 
performance), their correlation is the geometric mean of the reliabilities of both. 
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The high value of this correlation at 0.73 makes validity a reasonable assumption. 
We take this figure as the reliability of the dependent variable y4. 

Once the reliability of yj is obtained, its product by the total variance of yj is 
the true score variance of yj or the variance of yj corrected for measurement error, 
that is, the estimate of the variance of ηj. For instance, for the interactive use of 
budgets and using Ω we would have: 

 
  var(η1)=Ω1×var(y1)=0.840×2.125=1.784 (6.2) 

 
Table 2 shows the covariance matrix of y1 to y4, the variances corrected for 

measurement error (covariances do not change), and the error variances. 
 

Table 2: Raw and corrected variances and covariances among dimensions. 

 raw variances and covariances among dimensions 
 y1 Y2 y3 y4 

y1 2.125    
y2 0.464 2.065   
y3 -0.286 -0.242 4.283  
y4 0.078 -0.604 -0.593 1.003 

 true variances (corrected for measurement error) 
 var(η1) var(η2) var(η3) var(η4) 

α 1.751 1.751 2.961 0.732 
Ω 1.784 1.759 3.035 0.732 

error variances 
 var(e1) var(e2) var(e3) var(e4) 

α 0.374 0.314 1.322 0.271 
Ω 0.340 0.306 1.248 0.271 

6.2  Computation of the true variance of the interaction effect 

The presence of interaction terms makes measurement error correction somewhat 
more complicated. One might think that the computation of the reliability of y3 
could be performed by selecting the 9 products of items item1×item4, 
item1×item5,..., item3×item6 as tau-equivalent or congeneric indicators of y3 and 
then estimating α or Ω in the usual way. However, these pairs of items overlap and 
thus can lead to correlated measurement errors. As an alternative, 3 non-
overlapping pairs could be used (e.g. item1×item4, item2×item5 and item3×item6) 
but then y3 would fail to be equal to y1y2, η3 would fail to be equal to η1η2 and 
thus could not be interpreted as a proper interaction term any more. 

By using Equation 5.3 and some properties of variances of products of 
independent variables we can obtain an appropriate true variance for η3=η1η2: 
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 Var(η3)=var(y3)-var(e3)= 
 =var(y3)-var(η1)var(e2)-var(η2)var(e1)-var(e1)var(e2) (6.3)  
 
where var(ej) can be obtained as var(yj)-var(ηj). For instance, using the Ω 
approach, var(η3) in Table 2 is computed as: 
 
var(η3)=4.283-var(e3)= 4.283-1.784×0.306-1.759×0.340-0.340×0.306=3.035  (6.4) 
 

DR USING OMEGA 
OBSERVED VARIABLES 
Y1 Y2 Y3 Y4 
COVARIANCES 
 1.784    
 0.464  1.759   
-0.286 -0.242  3.035 
 0.078 -0.604 -0.593 0.732 
SAMPLE SIZE: 40 
RELATIONSHIPS 
Y4 = Y1 Y2 Y3 
END OF PROBLEM 

 

Figure 2: Sample SIMPLIS input file. 

7 Results 

The estimates and t-values for Equation 5.1 are displayed in Table 3 for OLS, DR 
using α, DR using Ω, PLS (using PLS-PC 1.8, with 30 jackknife resamples, the 
path weighting scheme, the outward measurement model, and item1×item4, 
item2×item5 and item3×item6 as interaction indicators), FSR (using SPSS 10.1, 
with maximum likelihood estimation and regression factor score computation) and 
TSLS (using SPSS 10.1). Even if raw estimates are the only ones that can be 
interpreted for models with interaction terms, PLS and FSR only compute 
standardized estimates and thus the latter have also been computed for OLS and 
DR for comparative purposes only. Since more than one TSLS estimate is possible 
depending on the instrumental variable choice, the maximum and minimum 
estimates across all possible choices are reported.  

The R2 obtained with methods that do not correct for attenuation (OLS, PLS 
and FSR) are very similar and much lower than those under DR. Both 
disattenuated regression variants provide similar R2. The TSLS R2 is strictly non 
comparable because this method corrects for measurement error in the explanatory 
variables only. What is most striking about this method is the huge difference in 
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the R2 that can be obtained depending on the instrument choice. The results 
obtained by Batista-Foguet et al. (2004b) using SEM on the same data closely 
resemble those of DR, in spite of the small sample size. 

The regression coefficients follow the same pattern. They are erratic for TSLS; 
lower and roughly similar for OLS, FSR and PLS; higher and roughly similar for 
both methods correcting for attenuation, though slightly higher for DR using α. 
Though in this case α and Ω have yielded similar estimates, this does not need to 
be the case under all circumstances, especially when there are strong departures 
from the tau-equivalence assumption. 
 

Table 3: Estimates under 6 approaches. 

 OLS on SRS DR on SRS (α) DR on SRS (Ω) 
parameter esti-

mate 
 t-

value 
stand. 
estim. 

esti-
mate 

 t-
value 

stand. 
estim. 

esti-
mate 

 t-
value 

stand. 
estim. 

β41 .088 0.9 .129 0.116 1.5 .179 0.114 1.5 .178 
β42 .330 3.4 .473 0.406 5.4 .629 0.403 5.3 .625 
β43 .151 2.3 .312 0.222 4.0 .447 0.217 3.8 .441 
R2 .295   0.528   0.520   
 PLS FSR TSLS 
parameter esti-

mate 
 t-

value 
stand. 
estim. 

esti-
mate 

 t-
value 

stand. 
estim. 

estimate 
range 

 t-value 
range 

β41 - 1.1 .207 - 1.1 .159 -.013/.289  -0.1/1.8 
β42 - 3.1 .498 - 3.2 .474 .226/.372  2.0/2.8 
β43 - 1.4 .269 - 1.9 .267 .051/.253  0.6/2.3 
R2 .309   .285   .011/.209   

 

The significance at the 5% level also varies across approaches in the case of 
the β43 parameter, which fails to be significant under some of the approaches that 
do not correct for measurement error attenuation and for some instrumental 
variable choices in the case of TSLS. In the analysis using disattenuated regression 
with the Ω reliability estimate (which is correct under the mildest assumptions), 
we find support for a positive interaction effect between interactive use of budgets 
and innovation on performance. Overall we can conclude that large biases can be 
encountered when correction for attenuation is omitted. 

8 Discussion 

As expected, in this article we have found substantial differences in estimates, t-
values and R2 depending on whether measurement error correction is applied or 
not, even if SRS are used. For large samples, the researcher can use efficient 
methods like SEM for performing this correction. For small samples this is not the 
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case, but researchers can resort to the classic DR technique, which can be extended 
to the interaction case. Other techniques that are sometimes believed to correct for 
measurement error attenuation (PLS and FSR) in fact do not. 

When DR has been applied in the past, it has traditionally been carried out 
with Cronbach’s α. The use of Heise and Bohrnstedt’s Ω is not substantially more 
complex and relies on milder assumptions and should thus be preferred on a 
general basis, even if, for our particular data set, results obtained for α and Ω were 
quite similar. 

The DR standard errors (and thus the t-values) can tend to slightly 
underestimate  uncertainty because α and Ω are treated as known, thus leading to 
the possibility of true null hypotheses being rejected. There have been many 
attempts to produce exact standard errors of disattenuated estimates (e.g. of 
correlations) but they rely either on complex simulations or on large-sample 
methods (Charles, 2005). Exact standard errors can be obtained with SEM and 
TSLS but only for large samples. PLS has been claimed to produce correct 
standard errors with resampling methods like the jackknife or the bootstrap. 
However, even if PLS itself does not require large sample sizes, resampling 
methods do (e.g. Efron and Tibshirani, 1993; LePage and Billard, 1992; Shao and 
Tu, 1995). Besides, since PLS does not correct measurement error bias, one may 
wonder what the use is for a correct standard error around a biased point estimate.  

PLS yielded point estimates and R2 which were very similar to those of the 
much simpler OLS. This finding is in accordance with that of McDonald (1996), 
who shows that merely changing the weights of the items used to compose the 
scale has a minor impact on the results. FSR results were also very similar to those 
obtained under PLS and OLS. In fact, PLS scores are very close to being principal 
components, which are considered by some as a special case of factor scores. In 
any case, in the context of models with interaction terms there is one respect in 
which OLS is superior to FSR and one respect in which FSR is superior to PLS. 
OLS makes it possible to compute unstandardized estimates which are the ones 
that can be interpreted for such models. PLS selects weights of the interaction 
indicators independently of those of the main effect indicators and thus η3 fails to 
be equal to η1η2, which compromises its interpretation as a proper interaction 
term. 

Nevertheless, it must be admitted that there has been growing interest in PLS 
(even if the technique dates back to the 1970’s, half of its applications reported in 
the Social Sciences Citation Index in November 2005 were published in 2001 or 
later). This is probably due to a mystification of the “soft modelling” term 
(McDonald, 1996). In fact, many of these applications of PLS are for non-
predictive purposes, for which the presence of bias is a fundamental drawback. 
Our particular application could not be further from a soft-modelling situation: our 
aim is parameter estimation, the number of variables is small, and theory is well 
grounded.  
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Summarizing, all these considerations enable us to make some 
recommendations for applied researchers. If the aim of the analysis is parameter 
estimation or theory testing, then lack of bias is a key requirement. In this 
situation, if sample size is large enough, SEM and TSLS will be the approaches of 
choice. For small sample sizes, disattenuated regression should be used. 
Reliability should best be estimated by Ω, as it relies on milder assumptions than 
α. Disattenuated regression can also be applied for regression models with only 
main effects (i.e. without interactions). The procedure is essentially the same but 
becomes much simpler as the computation of the true variance of interaction 
effects (section 6.2) is not needed.  

If the aim of the analysis is prediction, then the appropriate technique would 
be OLS regression using SRS, no matter what the sample size is. The resulting 
equations will yield optimal predictions of the dependent composite scores 
conditional on the explanatory composite scores, but parameter estimates will not 
reflect any population characteristic or relationship.  

Of course, a researcher may be interested in both estimation and prediction and 
perform two appropriate analyses on the same data. 
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