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Juš Kocijan

Nova Gorica 2023



Modelling Dynamic Systems with Artificial Neural Networks and
Related Methods
Original title: Modeliranje dinamičnih sistemov z umetnimi nevronskimi mrežami in
sorodnimi metodami

Author: Juš Kocijan

Edition: English edition

Reviewers of original: Prof. Aleš Belič and Prof. Igor Škrjanc

English translation: Juš Kocijan

Proofreading: LINGULA, jezikovni center, d.o.o.

Text formatting and cover layout: Juš Kocijan

Publisher: University of Nova Gorica Press, Vipavska 13, SI-5000 Nova Gorica,
Slovenia

Publication year: 2023

ISBN: 978-961-7025-29-3 (PDF)

Published in PDF:

http://www.ung.si/sl/zalozba/

http://www.ung.si/en/publisher/

15 February 2023

Free e-publication.

Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v
Ljubljani
COBISS.SI-ID 140589315
ISBN 978-961-7025-29-3 (PDF)

This work is licensed under a Creative Commons Attribution-
Non-Commercial-ShareAlike 4.0 International License.

How to cite: Kocijan, J. (2023). Modelling Dynamic Systems with Artificial Neural
Networks and Related Methods. University of Nova Gorica Press.
https://www.ung.si/en/publisher/

http://www.ung.si/sl/zalozba/
http://www.ung.si/en/publisher/
https://www.ung.si/en/publisher/


Foreword

Modelling Dynamic Systems with Artificial Neural Networks and Related Methods can be used as a textbook for the
field it covers or as an introductory textbook for more advanced literature in the field.

It is intended for undergraduate students, especially at the postgraduate level, who have sufficient knowledge of dynamic
systems, as well as for professionals who wish to familiarise themselves with the concepts and views described.

The textbook is not intended to be a detailed theoretically based description of the subject but rather an overview of
the identification of dynamic systems with neural networks and related methods from the perspective of systems theory
and, in particular, its application. The work is intended to inform the reader about the views on this subject, which
are related but treated very differently in different research fields.

I used the material for the textbook as a basis for lectures at the Faculty of Electrical Engineering of the University of
Ljubljana. I would like to thank Miro Štrubelj, who created many of the figures, Dr. Gregor Gregorčič, who allowed
me to use some of the pictures from his doctoral thesis, and all others who directly or indirectly influenced the creation
of this work.

Ljubljana, Autumn 2007 Juš Kocijan

Addendum 2023

The English-language version of the textbook was created in 2022 for English-speaking students. The textbook follows
its Slovenian original, except for some minor corrections and additions.

Ljubljana, Winter 2023 Juš Kocijan
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Chapter 1

Introduction to artificial neural networks

Artificial neural networks (ANNs) are a concept and
method for solving various problems that have been around
for more than half a century. In this textbook, we will
refer to them as ‘neural networks’. Their applications
are highly diverse, both in professional fields (engineer-
ing, computer science, natural sciences, social sciences,
etc.) and by problem domain (regression, classification,
clustering, etc.).

Neural networks are widely used for the experimental mod-
elling of dynamic systems, especially complex and nonlin-
ear systems, and consequently for the design of automatic
control systems. In this textbook, we will highlight par-
ticular problems in this area.

It is important to bear in mind that this is an introductory
overview that does not claim to be exhaustive but rather
gives insight into the most common use of neural networks
for the experimental modelling of nonlinear dynamic sys-
tems and some of the specific problems that arise in this
context.

Neural networks are classified as one of the most com-
monly used methods in computational intelligence. The
classification and the relationship to the methods of so-
called artificial intelligence go back to the beginnings of
neural networks. Artificial neural networks arose from the
idea of replacing a biological neuron, as shown in Figure
1.1, with an artificial neuron. In this way, they would form
the basic elements of an artificial brain.

This pattern of thinking was later surpassed by the re-
alisation that neural networks are nothing more than ba-
sic mathematical functions for approximating an arbitrary
nonlinear relation.

In the remainder of this chapter, a brief overview of the
evolution of neural networks is given. This is followed
by a classification of neural networks according to vari-
ous criteria. Next, we will describe two types of the most
commonly used neural networks: the multilayer percep-
tron and the radial basis-function network. We will then
describe how neural networks can be used to model dy-
namic systems.

Cell body

Axon

Synapses

Dendrites

Figure 1.1: Biological model of an artificial neuron

1.1 Short overview of the develop-
ment of the topic

In this subsection, we summarise the main milestones in
the development of artificial neural networks. The aim is
to illustrate the evolution of the perspectives that have
emerged with the developments. The overview is based
on [10] from a systems perspective. It is a holistic view of
the neural network and its properties in terms of inputs
and outputs.

1943 In this year, McCulloch and Pitts [12] presented
models of biological neurons, which were the basic
elements of circuits for solving computational prob-
lems. The idea was that they would replace the func-
tions of a biological neuron.

1949 Hebb, a psychologist by profession, published a book
[7] in which he described neuron learning as tuning
the weights of connections between units (i.e., neu-
rons). The various and much later developed rules
for parameterising the weights in neural networks,
which can be represented as units with connections,
are essentially derivatives of this method.
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Introduction to artificial neural networks

1959 Rosenblatt [21] described a single-layer neural net-
work consisting of elements which he called a ‘per-
ceptron’. Neural networks consisting of these ele-
ments, albeit in a modified form, are still among the
most commonly used neural networks today. The
basic elements of the neural network are the switch-
ing functions; as already mentioned, the network has
only one layer. This means that the input signal
from a particular input passes through only one layer
to the output neuron. This simple structure limits
the possibilities of the neural network.

1960 Widrow and Hoff [24] introduced a neural network
of linear elements called Adaline (ADAptive LINear
Element). This network can be represented electri-
cally as inputs weighted by resistors and connected
to a sumator. In principle, a neuron is a linear func-
tion, and the Adaline network approximates input-
output mapping by using a weighted sum of linear
functions. The authors also derived the first analyt-
ical method for determining the weights, which they
called the delta rule. This is essentially the least-
squares method for optimisation.

1963 Widrow and Smith [25] used the Adaline neural net-
work to stabilise an inverted pendulum.

1969 In their book ‘Perceptrons’ [13], Minsky and Papert
showed the limitations of (single-layer) perceptron
neural networks. They cannot be used, for example,
to separate the elements that are not linearly sepa-
rable. This means that a single-layer network can-
not be used to train to imitate the logical function
‘exclusive or’ (XOR). The authors have also demon-
strated that the limitations of single-layer networks
can be overcome with a two-layer network, but they
did not show how to set the weights of a multilayer
network.

The publication of [13] marked the end of the era of
single-layer neural networks; the results led to a gap
in research on neural networks.

1986 Rumelhart et al. [22] published a method for learn-
ing weights for a multi-level network. They called
this learning method ‘backpropagation’ because it
was interpreted as error propagation from the out-
puts of the neural network to the inputs. With this
work, they enabled the use of the multilayer percep-
tron for the classification of functions that are not
linearly separable or can represent an arbitrary non-
linearity. This finding led to a boom in the research
and use of artificial neural networks.

late 1980s Artificial neural networks began to be used
for automatic control, e.g., [20].

1990 Narendra and Parthasarathy [14] used neural net-
works to identify and control dynamic systems.

1995 Sjoeberg et al. showed [23] that neural networks
can be viewed from a systems perspective as iden-

tification using nonlinear regression. They thus re-
moved the artificial intelligence aspect from neural
networks. These and similar methods were renamed
‘methods of computational intelligence’ to avoid un-
necessary misunderstandings.

after 2010 Deep learning greatly extends the capabili-
ties of neural networks, especially in speech, image,
object recognition, and beyond.

1.2 About artificial neural networks

The basic building block of a neural network is a neuron.
It is described by a function

yi = f(
∑
j

wijxj + θi), (1.1)

where xj are the inputs of the neuron, weighted by the val-
ues of wij are weighted and together with the bias values
θi and the activation function f(·) determine the outputs
of the neuron yi. The artificial neuron is shown in Figure
1.2.

. .

. .

. .

Bias

Output
y

x

x

x

1

1

11

12

1n

2

n

w

w

w

f(.)S

qi

Inputs

Figure 1.2: Representation of the basic element of a neural
network - a neuron

This formal form of the neuron was defined by McCulloch
and Pitts [12], and the form has essentially remained un-
changed to the present day. The activation function can
have different forms. Similarly, neurons can be connected
in different ways. Neural networks have evolved in many
directions and are classified in different ways. The most
common classification criteria are the training, the topol-
ogy, or the purpose of the neural networks.

Training of neural networks

The parameters of a neural network are usually under-
stood to be the weights and biases that must be deter-
mined by an optimisation procedure. This parameterisa-
tion is called learning or training. There are three types

2



1.2 About artificial neural networks

of learning or training: supervised learning, unsupervised
learning and reinforcement learning.

Supervised learning starts with a set of input data and
a target set of output data, and according to the chosen
cost function, a neural network is trained to map between
the given input and output data. The first methods were
developed for single-layer neural networks. These are the
perceptron learning rule (Hebb’s rule)[7]:

∆wij = γyixj ,

where ∆wij is the weight change and γ is a constant that
determines the learning rate, and the delta rule (Widrow-
Hoff rule)[24]:

∆wij = γx(di − yi)xj ,

where (di − yi) is the difference between the desired value
and the actual output value. This rule essentially turns
out to be the least squares method of optimisation.

The oldest training method for multilayer networks is the
backpropagation method. This is essentially the Delta
rule, generalised for nonlinear problems. A closer look at
the method shows that it is a first-order gradient optimi-
sation method, specifically the steepest descent method.
Backpropagation is used to calculate the gradient of the
cost function. This is applicable to all types of nonlinear
systems but differs in computational complexity depend-
ing on the system. To improve its weaknesses, which are
mainly slow convergence and the possibility that the op-
timisation becomes stuck in a local minimum, some im-
proved versions have been developed, such as [10]:

• learning with momentum and

• variable learning rate.

First-order gradient methods are known to be inefficient;
Newton optimisation methods, which belong to second-
order gradient methods, are often used to solve nonlinear
optimisation problems. Among the most commonly used
are the Newton optimisation methods with

• Gauss-Newton modification and

• Levenberg-Marquardt modification.

Self-organised neural networks, unlike supervised networks,
use unsupervised learning. Self-organised networks are
trained from input data only. They are mainly used in
pattern recognition for clustering, vector quantisation and
dimensionality reduction. A typical example is the Koho-
nen network, which is also called the Self-Organising Map
(SOM) [6].

Reinforcement learning is an approach to dynamic pro-
gramming for training the neural network used as a feed-
back controller. This means that it has a specific applica-
tion. The learning consists of two phases: parameter es-
timation and parameter evaluation. It is shown schemat-
ically in Figure 1.3.

Critic

Reinforcement

learning

controller
System

Reinforcement signal

Figure 1.3: Reinforcement learning schematic

As new optimisation methods are developed, they are also
used for neural network learning. Stochastic optimisation
methods, such as searching for parameters and structures
using evolutionary methods (genetic algorithms and ge-
netic programming), are also popular.

Recently, deep learning [2] has been developed and has
become a very popular training method.

Topology of neural networks

According to their topology, neural networks are divided
into those with complete connectivity, local connectivity.
and layer-wise connectivity. For example, the Hopfield
neural network is a neural network with perfect connec-
tivity.

The Hopfield neural network has a switching activation
function or a linear function with saturation. Its charac-
teristic feature is a feedback loop from outputs to inputs.
It is called ‘associative memory’ and is mainly interest-
ing from a theoretical point of view. It is less useful in
practice. Boltzmann machines are a derivative.

Boltzmann machines are Hopfield networks with hidden
layers. Their parameters (i.e., the weights) are determined
using a stochastic rule of weight variation, called ‘simu-
lated annealing’.

An example of a neural network with local connectivity
is the Kohonen neural network. It is also an example of
a network that is mainly used for data clustering. Its
main feature is that it maintains topological connectivity
(mapping) between data.

An example of a neural network with multilayer mapping
and connectivity is the multilayer perceptron, which will
be discussed in greater detail later.

Another possible division is into feedforward and recur-
rent neural networks (Figure 1.4). This division is based
on the direction of the signal or data flow through the net-
work. Feedforward networks mainly have direct flow from

3



Introduction to artificial neural networks

Figure 1.4: Example of recurrent network topology

input to output, while recurrent networks have full and
local connectivity. Recurrent networks differ from feedfor-
ward networks, where signals flow exclusively from input
to output, in that recurrent networks also contain feedback
loops from the outputs.

Purpose of neural networks

Neural networks can be divided coarsely or finely accord-
ing to their purpose. At a coarser level, neural networks
can be divided into those for classification and those for
regression.

Classification is a process in which the data are sorted
into a finite number of sets. This means that mapping
is done in a quantised output space. Regression is a pro-
cess in which the output values can take on any value.
In regression, an input-output mapping is performed in a
continuous output space.

In this textbook, the focus is on using neural networks
and similar approaches to model dynamic systems and us-
ing these models to design automatic control. Therefore,
classification and special neural networks will not be dis-
cussed. The focus will be exclusively on regression, This
means that supervised learning of mainly feedforward net-
works will be examined.

Main properties of neural networks

A neural network is a nonlinear mapping from the input
space Rn to the output space Rm of the data.

f : Rn ⇒ Rm (1.2)

with input-output data pairs (x, y) such that y = f(x).
Neural networks are universal approximators [8]. This
means that there is always a neural network with the
appropriate dimensions that approximates the nonlinear
objective function with arbitrary accuracy.

It is often interpreted from the literature that neural net-
works have the ability to learn from examples. This essen-
tially means that the parameters of the network are de-
termined by optimisation with respect to the chosen cost
function, for example:

E(k) =
1

2

n∑
j=1

(dj(k)− yj(k))
2 (1.3)

and with the chosen optimisation algorithm (learning rule).

The neural network that learns in this way can use the
learned association for prediction, which is often inter-
preted as the ability to generalise.

There is no single definition of neural networks. There are
only common properties that unite the different models.
These common properties of neural networks are:

• a structure that consists of a large number of simple
elements connected to each other,

• they usually have a variable topology, which means
that the connections change or the values of the
weights on the connections change or the number
of elements in the network changes,

• the structure allows for parallel processing of infor-
mation,

• the information is processed according to the latent
(i.e., internal) states of the network and the inputs
to the network.

There are many other common properties that distinguish
neural networks from each other:

• the methodology of the processes,

• the types of networks,

• the learning rules,

• the application domains, and

• other features.

Artificial neural networks today

Neural networks have long ceased to be merely an area of
research. They have been a magnet for research since 1985.
Figure 1.5 shows the number of publications in the area
of dynamic-systems control over the last century. Since
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Figure 1.5: The growth of the number of publications -
artificial neural networks for control (Source: G.W. Ng:
Application of Neural Networks to Adaptive Control of
Nonlinear Systems)[16]

then, the number of publications has continued to increase.
Moreover, it is a technology that is currently used in many
applications.

Domains and applications of neural networks include:

• aviation (autopilot, fault detection, etc.),

• automotive systems (automatic steering, etc.),

• banking (document recognition, etc.),

• electronics (steering, pattern recognition, etc.),

• language (recognition, etc.),

• manufacturing ( guidance, prediction, etc.),

• medicine (signal analysis, etc.),

• accounting (various analyses, etc.),

• robotics ( guidance, sensing, etc.),

• telecommunications (data compression, etc.),

• transportation (diagnostic systems, etc.),

• military industry (signal processing (radar, sonar,
etc.),

• entertainment industry (animation, special effects,
etc.),

• insurance (value optimisation, etc.),

• other.

Have artificial neural networks fulfilled the expectations
that the researchers had in the initial phase of develop-
ment?

In the early days, researchers were mainly interested in
understanding how biological systems work with the help
of mathematical models. There was a very strong con-
nection between biological research and the research of
artificial neural networks. Expectations were high. The
neural network was supposed to be the beginning of the
artificial intelligence. As we have already said, it turned
out not to be so. On the one hand, it was a disappoint-
ment, but on the other, a new technology that is very well
suited for efficient methodologies for nonlinear mappings
had arrived.

One of the areas where neural networks are very useful is
the modelling of dynamic systems and their use for auto-
matic control. The main application of neural networks is
the identification of nonlinear dynamic systems, but there
are also implementations in automatic control. We have
devoted a separate chapter to this.

The extensive literature on neural networks is also followed
by software that can be used to work with neural networks.
One of the better-known programs for system identifica-
tion is based on the Matlab software package (e.g., [15]
and [17]).

1.3 Multilayer perceptron

A multilayer perceptron, shown schematically in Figure
1.6, is described by the following equation.

Input
layer

Hidden
layer

Output
layer

Inputs Outputs

Weighted
links

Neuron

Figure 1.6: Multilayer perceptron

yi = fi(
∑
j

wijfn(
∑
k

wjkfm(
∑
l

wklxl+w
1
0l)+w

2
0k)+w

3
0j).

(1.4)
It is called multilayer because it consists of at least one
hidden layer (the activation functions fn, fm) and an out-
put layer fi. The multilayer perceptron is a universal ap-
proximator [8], which is true if it has one or more hidden
layers.

5



Introduction to artificial neural networks
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0

Figure 1.7: Two examples of activation functions

The most common activation functions (examples in Fig-
ure 1.7) are:

• sigmoid,

• hyperbolic tangent,

• linear,

• Gaussian,

• signum function.

The activation function in the hidden layer is often the
sigmoid function.

f(I) =
1

1 + e−aI
, (1.5)

where a, I ∈ R, while the most common output function
is linear (Figure 1.7).

The multilayer perceptron is a typical example of a for-
ward neural network used for regression. Let us look at
two examples of how we can approximate a nonlinear func-
tion by a multilayer perceptron.

Example of approximating a function of one vari-
able

We approximate the function

y = 30
[
100(x− 0.6)2(x− 0.1)(x− 0.8)− 5e−5x

+ 0.9 sin(20x+
π

4
)
]

(1.6)

where x is the input variable and y is the output variable,
by a multilayer perceptron with a hidden layer. The acti-
vation function of the hidden layer is a sigmoid function,
while the output is a linear function.

We approximate the function in several steps by first op-
timising the weights of the network with one neuron in
the hidden layer, then with two, and thus increasing the
number of neurons in the hidden layer until we reach

the desired approximation level. We use the Levenberg-
Marquardt modification of the Newtonian optimisation
method, or the Levenberg-Marquardt learning method for
training (i.e., optimisation). The results of the optimisa-
tion are shown in Figures 1.8 to 1.10. Finally, we obtain
a neural network with five neurons in the hidden layer.

0 0.2 0.4 0.6 0.8 1
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-100

-50

0
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200
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Identification results (1 neuron in the hidden layer)

original

NN model

Figure 1.8: A multilayer perceptron with a neuron in the
hidden layer

0 0.2 0.4 0.6 0.8 1

x

-150

-100

-50

0

50

100

150

200

y

Identification results (3 neurons in the hidden layer)

original

NN model

Figure 1.9: A multilayer perceptron with two neurons in
the hidden layer

Example of approximation of a function of two
variables

Let the function

z(x, y) = x cos(2x) + y sin(2y)− 0.75 (1.7)

where x and y are input variables and z is the output
variable and are approximated by a multilayer perceptron
with a hidden layer. Again, the activation function of the
hidden layer is a sigmoid function and that of the output
layer is a linear function. The structure of the hidden
layer again consists of one to five neurons. The results are
shown in Figures 1.11 to 1.13.

6



1.4 Radial basis-function network
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Figure 1.10: A multilayer perceptron with five neurons in
the hidden layer
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Figure 1.11: A multilayer perceptron with a neuron in the
hidden layer. (target area is dark grey, learned area is
white)
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Figure 1.12: A multilayer perceptron with two neurons in
the hidden layer. (target area is dark grey, learned area is
white)
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Figure 1.13: A multilayer perceptron with five neurons in
the hidden layer. (target area is dark grey, learned area is
white)

1.4 Radial basis-function network

The radial basis-function (RBF) is the second most com-
monly used neural network. The network contains non-
linear transformations of the input data, which (when
weighted) sum to form the output of the network, as shown
in Figure 1.14. The neural network in Figure 1.14 imple-

Hidden
layer

Inputs Outputs

Figure 1.14: Radial basis-function network

ments the approximation function f : Rn → R, which can
be generalised to multiple outputs, described mathemati-
cally as follows:

y = f(x) =

N∑
i=1

wigi(x, γi). (1.8)

The function g is called the basis function and in the case
of this neural network it is a radial function, meaning the
function where the output depends on a distance between
inputs r. Possible radial functions are:

• g(r) = r, a linear radial function,

7



Introduction to artificial neural networks

• g(r) = r2, a quadratic function,

• g(r) = exp(−r2

ρ2 ), a Gaussian function (Figure 1.15),

• g(r) = [1 + exp( r
2

ρ2 )
−1], logistic function,

• g(r) = r2 log(r), various spline functions,

• g(r) = (r2 + ρ2)
1
2 , polyquadratic function function,

• other radial functions.
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Figure 1.15: Gaussian basis function

For example, with multiple inputs, the Gaussian basis
function would look like this:

gi = exp

[
− 1

2

(
(x1 − γi1)

2

ρ2i1
+

(x2 − γi2)
2

ρ2i2
+ . . .

+
(xn − γin)

2

ρ2in

)]
, (1.9)

where xj ; j = 1, . . . , n are input data, γij ; j = 1, . . . , n are
centres of the radial function gi and ρij ; j = 1, . . . , n are
scaling factors of the radial function gi. Radial functions
often lie in N points of the input data (e.g., γγγi = xi i =
1 . . . n ≤ N). Alternatively, their position and choice of
radii ρρρi are part of the optimisation process or learning.
For an example of the distribution and an illustration of
how the radial function is constructed, see Figures 1.16
and 1.17.

An important property of radial basis-function networks
is their stability, which depends on the choice of radial ba-
sis functions. For example, since Gaussian basis functions
have the property of approaching zero as they move away
from the centre, this means that the output of the neural
network is also bounded whenever the weights have finite
values. This BIBO (bounded-input-bounded-output) sta-
bility is so important that the basis functions of RBF net-
works are mainly Gaussian functions. RBF networks are
also universal approximators [19].

Input

State

Equilibrium curve

Figure 1.16: Distribution of RBF network centres

y ( k + 1 )

y ( k ) u ( k )

ig

ix

Figure 1.17: Specific RBF corresponding to the given non-
linearity

Since the weights wi vary linearly with respect to the out-
put, it is not difficult to find their optimal values with
respect to the minimum squared error. The RBF network
contains additional parameters γγγi and ρρρi, whose values
are generally unknown. If we optimise the values of these
parameters in addition to the weights, the result is a non-
linear optimisation problem, like the optimisation of the
multilayer perceptron was. A successful optimisation ap-
proach in this case is the orthogonal least squares (OLS)
method.

Example of a function of two variables

Let the function

z(x, y) = sin(0.4x3 − 1.6y2 + 0.5) (1.10)

be approximated by an RBF network. We choose the
Gaussian function as the basis function. We optimise the
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1.5 Neural networks for modelling nonlinear dynamic systems

weights of the grid with a different number of basis func-
tions of width ρ = 0.1, which is increased until the ap-
proximation of the given function z(x, y) is sufficient. The
results are shown in Figures 1.18 to 1.21.
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Figure 1.18: The network with three radial basis func-
tions (the target surface is dark grey, the learned surface
is white)

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

xy

z

Figure 1.19: The network with five radial basis functions
(the target surface is dark grey, the learned surface is
white)

1.5 Neural networks for modelling
nonlinear dynamic systems

Neural networks, as described, are used to model static
nonlinear functions. We optimise their weights to obtain
the most appropriate relationship between the input and
output data. When new data is given as input, the net-
work representing the input/output mapping predicts the
corresponding output values.

In dynamic systems, nonlinearities result in an output
value that depends not only on the input value but also on
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Figure 1.20: The network with eleven radial basis func-
tions (the target surface is dark grey, the learned surface
is white)
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Figure 1.21: The network with thirty-one radial basis
functions (the target area is dark grey, the learned sur-
face is white)

the internal states of the system. Internal states are usu-
ally the past values of the input and output signals or their
derivatives (depending on whether it is a discrete-time or
a continuous-time system).

The usual representation of dynamic systems is that the
memory (or derivative) is implemented outside the approx-
imator of the static function, in the present case the neural
network. Consequently, we also bring in the delayed (or
differentiated) values of the inputs and outputs. In dy-
namic systems, we usually consider the input/output be-
haviour in terms of signals or time series of data, in con-
trast to static systems in which we deal with individual
input and output values. When using static approxima-
tors, whether neural networks or other related methods,
obtaining time sequences at the output means that the
approximator performs its prediction separately at each
time instant or step. This means that at the selected time

9



Introduction to artificial neural networks

instant k, the neural network is optimised to predict the
value of the dynamic system at the next time instant k+1
[3] given the values of the inputs consisting of the selected
number of delayed values and a current value of the input
signal u and the output signal y. This can be illustrated
by Equation (1.11)

ŷ(k + 1) = f(y(k), y(k − 1), . . . , u(k), . . .), (1.11)

whereˆdenotes the prediction and k is the number of sub-
sequent time instants. This is called one-step prediction.
We will discuss this in more detail in the following chap-
ters.

When the behaviour of a dynamic system is evaluated, it
is done through multi-step prediction or simulation, mean-
ing testing the behaviour of the network with the full sig-
nal, replacing the unknown output signal values with their
predictions. The idea of performing a simulation of a neu-
ral network describing a dynamic system is illustrated in
Figure 1.22 and can be represented by Equation (1.12)

ŷ(k + 1) = f(ŷ(k), ŷ(k − 1), . . . , u(k), . . .). (1.12)

Optimising a neural network involves the supervised learn-
ing of the feedforward network. However, the model of a
dynamic system illustrated by this neural network is actu-
ally a recurrent network because of the feedback connec-
tions.

z

z
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z

z
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.
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Identified model

u(k)

u(k-1)

u(k-n)

y(k)

y(k-1)

y(k-2)

y(k-n)

.

.

.

Figure 1.22: Block diagram of the simulation of the iden-
tified nonlinear dynamic system

Example of the approximation of a first-order dy-
namic system by an RBF network

A dynamic system can be described with the following
differential equation using the RBF network:

y(k + 1) = 0.2 tanh(y(k)) + sin(u(k)). (1.13)

The input and output signals used for learning the neural
network are each represented by 2207 samples. The dy-
namic system is modelled with a neural network contain-
ing 20 Gaussian basis functions with ρ = 0.3 randomly
distributed in a region where the values of the input and
output signals take place. You will learn more about how
to identify dynamic systems with a neural network in the
following chapters. Let us take a look at how the neu-
ral network models the nonlinearity of y(k + 1) at the
inputs y(k) and u(k). The results are shown in Figure
1.23. At first glance, the figure shown on the right in Fig-

Figure 1.23: The nonlinear dynamic system (left figure)
and its RBF network model (right figure) [6]

ure 1.23 appears very poor, but on closer inspection, it
turns out to be sufficient for the domain where the neural
network learning data was available. The example is very
illustrative and shows how important it is to be aware of
the limited possibilities of neural networks; it also shows
the complexity of identifying dynamic systems with neural
networks.
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Chapter 2

Identification of linear dynamic systems

2.1 Summary on linear system iden-
tification

The purpose of this chapter is to summarise the basics
of linear system identification in order to continue with
nonlinear system identification in the following chapter.
Details on the theory and practice of linear systems iden-
tification can be found, for example, in [2], [3], [4], among
others.

System identification is an experimental determination of
the temporal behaviour of a system based on measured
signals. The temporal behaviour is defined within a class
of mathematical models and represents the identified pro-
cess in such a way that the differences between the system
and its mathematical model are as small as possible.

The main task in system identification, which is a form
of experimental system analysis, is to find an appropriate
model structure that determines the class of models in
which the model is sought. Estimating the parameters of
this structure is the next step. A basic rule in system
identification is not to identify parts of the system that
are already known. Prior knowledge about the system,
whether it is physical knowledge or knowledge gained from
experiments, must be used. One of the classifications of
mathematical models by colour code is as follows:

• ‘white-box’ model, the theoretical model obtained
from the physical, chemical, etc. insight into the
processes in a system;

• ‘grey-box’ model, in which there is some prior knowl-
edge, which takes the form of

– the full or partial structure of the model, while
the parameters have to be estimated from mea-
surements;

– the knowledge of the combinations of measured
signals or their relationships that can be used
to support the modelling;

• ‘black-box’ model, by which the structure can be
identified and the parameters estimated from the
measured data, as there is no prior knowledge of the
process. The system model is identified only from

the input and output signals of the system (Figure
2.1).

model

input output

u(t) y(t)

Figure 2.1: A schematic representation of a dynamic sys-
tem with input and output signals

The theory and practice of identifying dynamic systems
is a combination of the results of scientific knowledge and
engineering practice. In addition to the technical litera-
ture, there is also a considerable amount of identification
software (e.g., [5]).

System identification methods can be classified in many
ways. Some of the classifications according to different
aspects include:

• Class of mathematical models:

– nonparametric models,

– parametric models.

• Class of signals used:

– continuous-time, discrete-time,

– deterministic, random, pseudo-random.

• Error between process and model:

– output error,

– input error,

– equation error or error-in-variables.

• Simultaneity of measurement and evaluation:

– offline,

– online.

• Data processing:

– nonrecursive,

13



Identification of linear dynamic systems

∗ direct,

∗ iterative,

– recursive.

• Structure of the models:

– linear models,

– nonlinear models.

The complete procedure for system identification is de-
scribed, in the literature (e.g., [2], [4]). The basic steps of
system identification can be summarised as follows:

1. identification of the purpose of the model,

2. collecting prior knowledge,

3. design of experiments,

4. carrying out experiments,

5. identification of the model, and

6. evaluation of the identified model.

The whole process is highly iterative and interactive. The
steps in which the purpose of the model, the data mea-
surements, and the model evaluation are verified are par-
ticularly important for the practice of engineering identi-
fication.

When we experimentally model (identify) a system, the
complexity of the problem strongly depends on whether
we approach it as a static (Equation (2.1)) or dynamic
(Equations (2.2) and (2.3)) system. The dynamics of the
system increases the complexity of the problem.

• Static system:

F [u(t), y(t)] = 0, (2.1)

where u(t) is input signal and y(t) is output signal.

• Dynamic system [3]:

F [t, u(t), u̇(t), ü(t), . . . , u(m)(t),

y(t), ẏ(t), ÿ(t), . . . , y(n)(t)] = 0, (2.2)

where u̇(t), ü(t), u(m)(t) are the first, the second, and
the m-th derivatives, respectively, of the continuous-
time input signal u(t) and ẏ(t), ÿ(t), y(n)(t) are the
first, the second and the n-th derivatives of the contin-
uous-time output signal y(t), respectively.

F [k, u(k), u(k − 1), u(k − 2), . . . , u(k −m),

y(k), y(k − 1), y(k − 2), . . . , y(k − n)] = 0,

where u(k−i); i = 1 . . .m are delayed samples of the
discrete-time input signal u, and y(k− i); i = 1 . . . n
are delayed samples of the discrete-time output sig-
nal y.

System identification methods are often classified accord-
ing to model classes:

• nonparametric and

• parametric models.

Nonparametric models are primarily models of linear sys-
tems. They describe the input/output behaviour of a pro-
cess in the form of value tables or curves. Typical repre-
sentatives are:

• frequency responses (Bode diagrams),

• weighting functions or impulse responses, step re-
sponses,

• Fourier analysis, frequency-response analysis, corre-
lation analysis, spectral analysis.

Parametric models are used to model both linear and non-
linear dynamic systems. These are models with explicitly
expressed parameters. Most often, they are models ex-
pressed in the form of:

• differential equations,

• difference equations,

• transfer functions,

• state-space equations.

In identifying a linear model of a system, the order of
the linear model must be known. This is determined by
the order of the equations describing the system and the
regressors. Regressors are the quantities on which the pre-
diction of the model depends functionally. The parame-
ters are estimated with optimisation, which uses the sum
of the squares of the response errors (the least-squares
method) as the cost function, although other criteria are
also used, for example, the maximum likelihood of the re-
sponses (maximum-likelihood method).

Linear systems can be represented by the following equa-
tion in the z-domain [2], [3], [4]:

A(z−1)y(z) =
B(z−1)

F (z−1)
u(z) +

C(z−1)

D(z−1)
v(z), (2.3)

where A,B,C,D, F are polynomials of the complex vari-
able z. y(z), u(z), v(z) are the transforms of the discrete-
time output signal y(k), the input signal u(k) and the noise
signal v(k). Depending on which regressors are chosen to
describe the system, some of these polynomials are equal
to 0 or 1.

The methods for system identification differ depending on
the regressors used and/or the optimisation cost function.
In the continuation, the least-squares method is adopted
for the optimisation:
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2.1 Summary on linear system identification

• finite-impulse-response (FIR) method (A = F =
D = 1, C = 0), i.e., the regressors are only delayed
input signals,

• autoregressive model with exogenous input (ARX)
(F = C = D = 1), i.e., the regressors are delayed
input and output signals,

• output-error method (OE) (A = C = D = 1), i.e.,
the regressors are delayed values of the input signal
and estimates of the output signal (predictions from
the past),

• autoregressive and moving average model with ex-
ogenous input (ARMAX) (F = D = 1), where the
regressors are delayed input, output and noise sig-
nals,

• the Box-Jenkins (BJ) method (A = 1), which has
delayed input signals as regressors, delayed output-
signal estimates, the prediction error, and the simu-
lation error (when the output estimates are used for
prediction),

• it is also possible to represent the linear system in
a state space [3] where the linear system is written
in the form : x(k) = Ax(k − 1) +Bu(k − 1), where
x(k) = [x1(k), . . . , xn(k)]

T is the vector of state vari-
ables, u is a vector of input variables and A,B are
matrices of constant elements,

• other possible regressors.

In addition to the methods described above, there are a
large number of variants. The methods described differ
mainly in the way they incorporate noise into the model.
Noise is unavoidable in real systems. Let us look at some
selected models of the second-order linear dynamic sys-
tems (Figures 2.2, 2.3 and 2.4):

• autoregressive model with exogenous input (ARX)

y(k) = a1y(k − 1) + a2y(k − 2)

+ b1u(k − 1) + b2u(k − 2)

+ v(k); (2.4)

u ( k ) y ( k )
y ( k )B ( z    )

A ( z    )

1

A ( z    )
v ( k )

- 1

- 1

- 1

Figure 2.2: Autoregressive model with exogenous input
(ARX)

• autoregressive and moving average model with ex-
ogenous input (ARMAX)

y(k) = a1y(k − 1) + a2y(k − 2)

+ b1u(k − 1) + b2u(k − 2)

+ v(k) + c1v(k − 1) + c2v(k − 2);

u ( k ) y ( k )
y ( k )B ( z    )

A ( z    )

C ( z    )
A ( z    )

v ( k )

- 1

- 1

- 1

- 1

Figure 2.3: Autoregressive and moving average model with
exogenous input (ARMAX)

• Output error model (OE)

y(k) = a1[y(k − 1)− v(k − 1)]

+ a2[y(k − 2)− v(k − 2)]

+ b1u(k − 1) + b2u(k − 2)

+ v(k). (2.5)

u ( k ) y ( k )
y ( k )B ( z    )

A ( z    )- 1

- 1

v ( k )

Figure 2.4: Output error model (OE)

Each of the methods also has its own recursive versions
for online identification [2], [3], [4].

Example of the ARX model identification

Let us look at a simple example of the ARX model identi-
fication of the first-order system. The system we want to
identify is described by the difference equation:

y(k) = 0.9512y(k − 1) + 0.09754u(k − 1) (2.6)

or the transfer function in the z-domain

H(z) =
0.09754z−1

1− 0.9512z−1
(2.7)

and is not disturbed by noise.
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It is a first-order system and the prediction depends on
a delayed value of the output and a delayed value of the
input. Thus, the two regressors are: y(k − 1), u(k − 1).
The structure of the model is given by the one-step-ahead
prediction equation, meaning that the prediction of values
based on known values of the regressors in the previous
time step:

y(k) = −a1y(k − 1) + b1u(k − 1). (2.8)

If we insert the sampled measured-signal values, we can
write Equation (2.8) in matrix form:

y = ΨΨΨθθθ y(2)
y(3)
...

 =

 −y(1) u(1)
−y(2) u(2)

...
...

[ a1
b1

]
(2.9)

It should be noted that the order of the rows can also be
permuted, as the best prediction is optimised based on the
individual values of the signal and not the whole signal.

The given system of equations is solved by the method of
least squares with the following analytical solution:

θ̂θθ = [ΨΨΨTΨΨΨ]−1ΨΨΨTy. (2.10)

The parameters have been optimised for one-step-ahead
prediction, as this is a property of model-based methods
with equation errors, but they must be validated with
a simulation (multi-step-ahead prediction) to see if the
model satisfactorily represents the dynamics of the sys-
tem.

Figures 2.5 and 2.6 present the data used and the result
of the parameter estimation.

Figure 2.5: Input and output signal (left images), covering
the area with the measured data (right images)

In this example, we have focused solely on the system
identification method. In the following example, we will
show the whole identification process.
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Figure 2.6: The plane showing the identified model and
identifying data

2.2 Mechatronic-system identifica-
tion example

The purpose of this example is to illustrate the complete
identification procedure for a linear dynamic system in
practice and to highlight the problems encountered in this
procedure.

Description of the mechatronic system

The dynamic process to be identified is an electromechani-
cal motor-generator laboratory assembly manufactured by
ELWE [1]. It is a device designed for experimental labo-
ratory work and training in control design. A schematic
representation of the device together with the data acqui-
sition equipment can be found in Figure 2.7.

A series-connected 100 W DC motor is mechanically cou-
pled to a series-connected DC generator. The load of the
generator is two 40 W (220 V) light bulbs. We are inter-
ested in the model of the system that has the voltage at
the terminals of the motor as system input u and the volt-
age of the speed transducer as system output y. In order
to control the system by a computer, there is a thyristor
converter at the input of the system. The speed sensor
outputs a voltage of 1 V at 1000 rpm, which is passed
through the measuring amplifier of the transducer. The
thyristor converter and the amplifier are part of the addi-
tional equipment of the motor-generator system from the
same manufacturer.

A PCI -20000 converter, manufactured by Burr-Brown,
contains, among other things, digital-to-analogue and
analogue-to-digital converters required for the acquisition
and injection of signals for system identification. The
block diagram of the general measurement system for sys-
tem identification is shown in Figure 2.8. The measured
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Figure 2.7: Motor-generator laboratory setup
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Digital filter
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PC computer

Sample-and-Hold

Figure 2.8: Measuring-system schematic

steady-state system characteristics are shown in Figure
2.9.

While the static model describes only the gain between
the input and output signals in steady state, the dynamic
model describes not only the gain in steady state, but also
transient phenomena of the output variables that occur
when the input variable changes and causes the output
variable to change.

The speed of rotation of the system depends on the elec-
tric current through the bulbs, which varies greatly when
the bulbs are ignited. This can be observed in the static
characteristic curve (Figure 2.9) as a voltage drop. The
operating point at which the linearised model is operated
is 8.5 V. The steady-state characteristic must be measured
in order to linearise the static process, which, as can be
seen from Figure 2.9, is not necessary in the present case,

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

Static characteristic

U [V]

Y
[V

]

Figure 2.9: Measured static characteristic

as the steady-state characteristic is quite linear around the
operating point of interest (8.5 V). To model the system
over the entire operating range, it would be necessary to
create a nonlinear model or settle for a linear model of low
accuracy. Note that in reality linear systems do not exist
or are extremely rare. To identify an unstable system, it
would have to be done it in a slightly different way [4].

Sampling time, input signal, preprocessing

Input signal selection

Different identification methods require different input sig-
nals. Common to all methods is that the input signals
must sufficiently excite the system. This means that the
input signals must contain a sufficient number of frequency
components in the range of interest. This can be achieved
by a large number of different experiments or by the vari-
ability of a single input signal. A good model is obtained
only in the part of the frequency range that is excited by
the input signal. There are many suitable and less suit-
able input signals. It is not sufficient to use only one form
of the signal. An input signal must be constructed from
signals that each excite a different frequency range. Note
that the choice of input signal is of paramount importance
to the identification process. Usually, the response of the
process to several input signals is recorded and then the
most appropriate combination of input signal and response
is selected.

In our example, we have chosen a pseudo-random binary
signal (PRBS) as the input signal. This signal is an ap-
proximation of white noise.

White noise [2] is a signal with statistically independent
values whose power spectral density is equal to a constant.
It is therefore quite suitable for system excitation because
it excites over the entire frequency range. However, it is
practically infeasible because its mean power is infinite [2].
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Identification of linear dynamic systems

The white-noise approximation with PRBS is easy to con-
struct and has a limited amplitude at high power density.
The PRBS has amplitude +a and −a. Sign changes oc-
cur only in discrete time instants kλ, k = 1, 2, . . ., where
λ is the length of the time interval, also called duty cycle.
The position of the zeros of the spectrum depends on the
duty cycle λ. Therefore, λ is determined by the frequency
range of interest for system identification (i.e., the esti-
mated system dynamics). The frequency range of interest
is iteratively identified until it is determined that the input
signal excites the entire frequency range of interest.

The choice of the amplitude a of the input signal should be
a compromise between the largest possible value due to the
signal-to-noise ratio on the one hand and the safety and
economy of operation and nonlinearity of the system on
the other. In the present example, nonlinearity is a highly
influential factor, as can be seen from the static character-
istics (Figure 2.9). We have chosen the amplitude a = ±1
V around the operating current (8.5 V) because we want
to remain in the range that is as linear as possible.

If the choice of the input signal is restricted by various
factors (e.g., limited experimental possibilities), we can at
least determine in which frequency range the given input
signal excites the system and consequently in which fre-
quency range our model is valid.

To validate the model, we have chosen a sequence of rect-
angular pulses with a duration of 1 second and an ampli-
tude of ±1, which satisfactorily excites the process in a
somewhat narrower frequency range.

Choice of sampling time

The rule of thumb for choosing the sampling time [2] is
that it should be 10 % of the settling time of the system
in response to a step signal. The step response with an
amplitude of 1 V in the selected linear range is shown in
Figure 2.10. Using the figure, we can determine the set-
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Figure 2.10: Response to step change

tling time, which in our example is ≈ 0.2 s, and from here
we choose the sampling time Ts = 0.02 s. The sampling
time determines the frequency range in which the signal
can be observed (Shannon’s theorem):

fmax =
1

2Ts
= 25Hz

ωmax = 2πfmax = 157rad/s. (2.11)

The PRBS input signal was generated with a digital reg-
ister of seven bits and, since we chose a duty cycle of
λ = 5Ts = 0.1 s, we obtain 635 samples. The total mea-
surement time was therefore 12.7 s. The first zero of the
power spectrum of the input signal was at ω = 62.8 rad/s.
The most useful subrange is up to the frequency at which
the magnitude of the power spectrum drops to half of its
low frequency value, which in our case is at 31.4 rad/s,
because only in this frequency subrange is the system to
be modelled satisfactorily excited.

The input signal and its magnitude spectrum density (i.e.,
the magnitude spectrum of the aperiodic signal) is shown
in Figure 2.11. The magnitude density spectrum of the

0 2 4 6 8 10 12 14
-2

-1

0

1

2

time [s]

P BS signalR input in operating point

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

f quencyre [rad/s]

Magnitude spectrum

Figure 2.11: Input signal and its magnitude spectrum den-
sity

input signal does not contain the component at 0 rad/s
in Figure 2.11 because the DC component (ω = 0) has
been eliminated. This will be discussed later. We did not
choose just one input signal. The signal described was cho-
sen from ten signals with similar properties (PRBS signals
with different lengths and duty cycles, (i.e., with different
magnitude spectrum densities)) for which we made mea-
surements and selected the most appropriate one based on
model validation. The number of samples should be large,
because the larger the number of samples, the better the
result of the system identification. An offset voltage was
added to the input signal generated with a computer so
that its average value corresponds to an operating current
of 8.5 V. The response of the system at the operating point
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(i.e., without the DC component) is shown in Figure 2.12.
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Figure 2.12: Response and its magnitude spectrum density

An analogue filter can be implemented upstream of the
analogue-to-digital converter (Figure 2.8) and prevent fre-
quency aliasing [2]. In the present example, this was done
using a high-quality measurement amplifier that has a
frequency characteristic of a low-pass filter. Due to the
large bandwidth of the amplifier, the aliasing effect was
not completely eliminated. However, this residual effect
cannot be separated from the disturbance noise.

Before the identification process, the recorded signals
should be processed accordingly. We need to remove the
DC component from the signals that is due to operation at
the operating point. It leads to a jump in the amplitude
density spectra in Figures 2.11 and 2.12. Also, if neces-
sary, the effects of the noise must be reduced, especially
in the estimation of the parameters (this will be discussed
later), to avoid biased results. This can be done by fil-
tering, but care must be taken with the properties of the
chosen system identification method. We will therefore
turn to the question of filtering once we have selected the
identification method.

We can identify nonparametric models for which we do
not need to make any assumptions about the structure
of the model in advance other than linearity, or we can
identify parametric models where we need to determine
the structure. In system identification, these modelling
methods complement each other and, as we will see in
our example, we can derive the information for structure
identification from one model to another. Nonparametric
models can also be used to evaluate parametric models.

Model-structure selection

The choice of model structure is very important in system
identification because parameter estimation methods can

only identify parameter values. The choice of the model
of the system depends on the purpose of the model. In
our example, we want a linear parametric model that will
be used for system simulation as accurately as possible
around the operating point. If the model has a large or-
der, it describes the dynamics better, but it is also more
complex and has poles and zeros that converge.

We have chosen from among the methods described in
[2], which have already been mentioned here. In identi-
fying linear systems, we have to decide on the order of
the model. A first estimate of the model order can be
obtained by analysing the information matrix or by iden-
tifying a nonparametric model: the frequency response.

The information matrix [2] can be used as follows. The
value of the determinant of the information matrix is
det( [Ψ

ΨΨTΨΨΨ]−1

N ), where ΨΨΨTΨΨΨ is the information matrix, ΨΨΨ
is the matrix of regression vectors and N is the number of
regression vectors in the matrix ΨΨΨ. The determinant of the
information matrix makes a value drop in the order of the
information matrix with respect to the order of the model,
which already describes the system sufficiently well. The
values of the determinant of the information matrix in
our example were: for the first-order model 0.3194, for
the second-order model 0.0012, for the third-order model
4.6501 ·10−7, for the fourth-order model 1.4037 ·10−10 and
so on. The greatest loss of value is between the second and
third-order models. The identified system is therefore of
the second order.

The second way to determine the order of the model is
to use a nonparametric system identification [2]. Since we
have chosen an aperiodic input signal, we can determine
the frequency response with several methods: Fourier anal-
ysis, correlation analysis, or spectral analysis. All meth-
ods should generally give the same results. All require
an aperiodic input signal, while correlation analysis re-
quires white noise as an input signal. As mentioned ear-
lier, PRBS is an approximation of white noise.

Fourier analysis is an otherwise straightforward method,
but it is very sensitive to noise. Fourier transforms are
calculated using a discrete or fast Fourier transform.

The frequency response can also be calculated using spec-
tral analysis. Like Fourier analysis, spectral analysis gives
very poor results in the presence of noise. The variance
of the correlation function estimates at large shifts in τ
is large. The solution to both problems is smoothing, for
example, with the Hamming window [2].

Smoothing is a filtering method with variable weights (i.e.,
frequency or time window) that can be used to remove
noise. We have to be very careful in choosing the width of
the smoothing window, as it has to be narrow compared
to the measurement time and wide enough to preserve the
essential information. The details of the smoothing can
be found in [2]. Figure 2.13 shows the magnitude and
phase frequency response in the frequency range of inter-
est without smoothing, obtained by Fourier analysis. The
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response would be the same if the spectral analysis were
performed without smoothing. Also, Figure 2.13 shows
both responses of the spectral analysis: without smooth-
ing and with smoothing using the Hamming window of 35
samples.
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Figure 2.13: Magnitude and phase response without
smoothing (dashed curve) and with smoothing (full curve)

Note that smoothing can blur peaks in the frequency re-
sponse. Nevertheless, the resulting frequency response is
satisfactory for obtaining an initial estimate of the order of
the system. Using the frequency response shown in Figure
2.13, we used the slope of the magnitude response and the
phase response to confirm that the system can be mod-
elled as a second-order system. The slope of the phase
response can also be used to estimate the dead time.

When determining the order of the system model, we must
be aware that it is an iterative process and that a final
decision can only be made in the validation phase. The
order of the system determined thus far can only be used
as an initial value.

The selection of dead time, except when dealing with a
first-order system, can be relatively tricky. A practical
approach to this problem is to estimate the parameters at
different dead times and take the result where the model
fits the data best. In our example, we arrived at a dead
time of 0.04 s using the procedure described above. The re-
sulting dead time was checked against the phase response.

The selection of the parameter-estimation method de-
pends not only on the system to be identified, but also
on the form of the disturbance or noise. We always have
to identify several models. With the validation procedure,
we test the models and decide which model fits best. It is
very difficult to determine in advance which of the meth-
ods should be used for parameter estimation. We usually
test several methods and decide again after validating the
models. We have chosen one of the methods described in
the relevant literature [2, 4].

In our case, we chose the simplest model (i.e., the nonre-
cursive ARX model), which was optimised using the least-
squares method. This method gives biased results, apart
from a special form of noise filter. The bias can only be
reduced by a suitable filtering, which is found iteratively.
Such methods are similar to other methods for parame-
ter estimation in terms of bias (generalised least squares,
maximum likelihood).

The least-squares method is essentially about calculating
the solution to a given system of equations. When esti-
mating the parameters of an unknown system disturbed
by noise, we minimise the square of the difference between
the output of the system to be identified and the model.

The equation of the perturbed process in the z-domain is

y(z) =
B(z−1)

A(z−1)
z−du(z) + n(z), (2.12)

where A(z−1) is the denominator of the transfer function
in the z-domain, B(z−1) - the denominator of the transfer
function in the z-domain, y - output signal, u - input signal
and n - noise,

correspondingly in the time domain

y(k) = a1y(k − 1)− a2y(k − 2)− . . .− any(k − n)

+ b1u(k − d− 1) + . . .+ bnu(k − d− n)

+ a1n(k − 1)− a2n(k − 2)− . . .− ann(k − n).

(2.13)

The vector notation of Equation (2.13) is

y(k) = ψψψT (k)θθθ, (2.14)

where
θθθ = [a1, . . . , an, b1, . . . , bn] (2.15)

is a vector of the parameters to be estimated. The solu-
tion of the least-squares problem, the derivation, and the
conditions are described in detail in [2], is

θ̂θθ = [ΨΨΨTΨΨΨ]−1ΨΨΨTy, (2.16)

where y is the output signal vector and ΨΨΨ is the matrix
consisting of vectors ψψψ for the corresponding element val-
ues of vector y.

Filtering is a method that can be used to obtain results
that are as unbiased as possible. The process described
by Equation (2.12), can also be written as follows.

A(z−1)y(z) = B(z−1)z−du(z) +A(z−1)n(z). (2.17)

The least-squares method gives unbiased results, when
A(z−1)n(z) = v(z) is a white noise, i.e., if we get n(z)
from v(z) via the filter 1

A(z−1) . This condition is often not

met in practice, and it was not met in the present exam-
ple, so noise filtering is required. If we decide to filter,
we must filter the input and output signals with the same
filter.
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2.2 Mechatronic-system identification example

We divide Equation (2.17) by the filter F (z−1) and obtain

A(z−1)
y(z)

F (z−1)
= B(z−1)z−d u(z)

F (z−1)
+
A(z−1)

F (z−1)
n(z).

(2.18)
Unbiased identification results when the error of Equa-
tion (2.18) (i.e., its last part) is white noise.

Suppose n(z) is white noise. In this case, we obtain unbi-
ased results when A(z−1) = F (z−1). This means that we
filter signals with an unknown denominator of the transfer
function yet to be identified.

In practice, of course, n(z) is not white noise. However, it
can approximate white noise filtered by 1

A(z−1) . Therefore,

we use a form of filter (e.g., the Butterworth filter), which
must be such that the last part of Equation (2.18) is as
close as possible to white noise, which is iteratively checked
by evaluating the results.

Following the procedure described above, we have identi-
fied models of different orders. After validation, the steps
of which are described in the following section, we chose a
second-order model. This model had two options, which
we will consider below in order to select the most suitable
one for our purpose.

If we do not filter the input and output signal, the transfer
function of the model is

Ĝpn(z) =
0.0281z−1 + 0.0165z−2

1− 1.6379z−1 + 0.6890z−2
z−2. (2.19)

This is a second-order transfer function in the z-domain
with stable poles and phase nonminimum zeros and an
additional delay of two samples (i.e., 0.04 seconds).

After an iterative procedure in which the input and output
signals were filtered with 1

A(z−1) , we obtained a second-

order model given by the transfer function

Ĝpf (z) =
0.0554z−1 − 0.00215z−2

1− 1.743z−1 + 0.7816z−2
z−2. (2.20)

Validation is used for model selection. The main elements
of validation are described in the following section.

Model validation

The part of the system identification procedure that indi-
cates how good the model is and what needs to be changed
(order, method, input signal, sampling time) is the most
important part of the procedure. This is the validation of
the model, or the evaluation of the model. It is carried
out iteratively. In validation, we take into account our
observations and judgement and do not just rely on the
partial results that the computer provides. Which model
of the system we choose depends not only on the fulfil-
ment of the requirements, but also on the purpose of the
model. To test the validity of the model, we will use sev-
eral different procedures. We will show the results of the
validation for the selected models (2.19) and (2.20).

Prediction-error test

In the least-squares method, the prediction error should
be zero. The following tests are available:

• The mean of the error signal e(t) should have normal
distribution with zero mean. From the left parts of
Figures 2.14 and 2.15, we see that the error satis-
fies this test but does so better for the model with
filtered signals.
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Figure 2.14: Prediction error e(k) between the responses
of the transfer function Ĝpn and the system used for iden-
tification (left image), and the distribution of the error
signal e(k) (right figure)
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Figure 2.15: Prediction error e(k) between the responses
of the transfer function Ĝpf and the system used for iden-
tification (left image), and the distribution of of the error
signal e(k) (right figure)

• The distribution of the error signal e(k) must be
normal with zero mean. This can be seen from the
right-hand parts of Figures 2.14 and 2.15.

• The error signal e(k) must be independent of the
past inputs (ϕeu(τ) = 0) for τ < 0. For open loop
operation, the error must be independent of all in-
puts. Figures 2.16 and 2.17 show the curves of the
correlation between the error and the input signal,
and we see that their value is small everywhere.

• The autocovariance function of the prediction-error
signal e(k) must be a delta impulse. From Figures
2.18 and 2.19, we see that the the autocovariance
function has its highest value exactly at shift (or de-
lay) τ=0 and is small at the other shifts. From this,
we can deduce a similarity with the delta impulse.
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Figure 2.16: Cross-correlation between the error e(k) and
the input signal u(k) for transfer function Ĝpn
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Figure 2.17: Cross-correlation between the error e(k) and
the input signal u(k) for transfer function Ĝpf
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Figure 2.18: Autocorrelation function of the prediction-
error signal e(k) for transfer function Ĝpn
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Figure 2.19: Autocorrelation function of the prediction-
error signal e(k) for transfer function Ĝpf

For all the above tests, we can see from the figures that
both transfer functions satisfy the conditions, but the trans-
fer function obtained from filtered signals is better.

Consistency of input/output behaviour

The model is validated by testing how it responds to input

signals for which the system response is known. There are
two possibilities:

• The validation is done with the data we used to iden-
tify the model. This is called verification.

• The validation is performed with the data we did not
use to identify the model, but which was collected at
the same working point. This is called validation or
cross-validation. This type of validation tells much
more about the validity of the model than validation
with data that has been used to identify it.

Figures 2.20 and 2.21 show the input-output response re-
sults for both data sets for the two transfer functions se-
lected. Figure 2.20 shows a comparison of the time re-
sponses of the two models to the input signal used for iden-
tification and the error between the measured response
and the simulated response of the model Ĝpn and between
the measured response and the simulated response of the
model Ĝpf for the data we used for identification. Fig-
ure 2.21 shows a comparison of the time responses of the
two models to a sequence of rectangular pulses and error
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Figure 2.20: Identification signal: upper figure – the mea-
sured system response (dotted curve), the model simula-
tion response Ĝpn (dashed curve), the model simulation

response Ĝpf (solid curve); bottom figure – simulation-

response error of Ĝpn (dotted curve), simulation-response

error of Ĝpf (dashed curve).

between measurements and the simulated response of the
model Ĝpn and between the measurements and the sim-

ulated response of the model Ĝpf for data not used for
identification. From the figures, it can be seen that the
model errors of Ĝpf are on average smaller than for the

model Ĝpn.

From the responses in Figures 2.20 and 2.21, it can be
seen that the transfer function identified from the filtered
signals better describes the behaviour of the process.
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Frequency consistency

The consistency between the frequency response obtained
from the Fourier analysis and the frequency response of the
transfer function Ĝpf is shown in Figure 2.22. The time
responses must be accompanied by a fit of the frequency
response and vice versa.
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Figure 2.22: Test of the frequency response of the trans-
fer function Ĝpf (response Ĝpf - solid curve, frequency
response for comparison - dashed curve)

In Figure 2.22, it can be seen that the negative magnitude
of the phase angle increases with frequency. This is due to
the dead time, which is also consistent with a model that
has a delay of 0.04 seconds.

Parameter meaningfulness, model reduction, co-
variance matrix, parameter errors, model utility

The meaningfulness of the discrete-time model of the
continuous-time system can be tested by considering the
number of poles on the negative real axis in the z- domain.
The number of poles must not be odd. In our example,
there are no poles on the negative real axis. Furthermore,
a model must agree with the identified system in terms of
stability.

The standard deviation of the estimated parameters is de-
termined as the square root of the diagonal elements of
the covariance matrix of the parameter error [2]. This is
a quantitative measure of the confidence in the parameter
estimates. The greater the covariance, the greater the de-
viations, and the lower the reliability and validity of the
model.

The covariance matrix is expressed as

cov[θ̂θθ − θθθ] = σ2
eE{[ΨΨΨTΨΨΨ]−1}, (2.21)

where σ2
e is the variance of the error of the model [2]. The

standard deviations of the individual parameters of the
transfer function Ĝpn are as follows:

a1 = −1.6379;σ = 0.0117;

a2 = 0.6890;σ = 0.0112;

b1 = 0.0281;σ = 0.0013;

b2 = 0.0165;σ = 0.0017;

and for the transfer function Ĝpf , the standard deviations
are derived:

a1 = −1.7430;σ = 0.0040;

a2 = 0.7817;σ = 0.0035;

b1 = 0.0555;σ = 0.0013;

b2 = 0.0022;σ = 0.0017.

It can be observed that the standard deviations of the
model parameters obtained from the filtered signals are
generally smaller than in the case of the model obtained
from unfiltered signals. From all the estimation results
shown, it can be concluded that the model obtained from
the filtered signals more accurately describes the behaviour
of the system we have identified.

We know that we cannot derive the position of the poles
in the continuous-time domain from the position of the
poles in the discrete-time domain. Zeros at infinity of the
s-domain normally transfer to poles on the negative real
axis, or at least near the zero coordinate of the z-domain.
From all of this, we might conclude that a continuous-
time system that we are identifying, assuming that it is
of second order, has no finite zeros. This is confirmed by
Figure 2.22, which shows that the amplitude response at
high frequencies has a slope of 40 dB/decade. The identi-
fied second-order model has a finite zero, so its response at
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high frequencies does not optimally match the frequency
response. If we repeat the identification procedure with a
discrete-time model, it has a zero at z = 0, we obtain the
following model

Ĝp(z) =
0.04019z−1

1− 1.7040z−1 + 0.7494z−2
z−2. (2.22)

The resulting frequency response (Figure 2.23) shows very
good agreement. The agreement with the simulation re-
sponse (Figure 2.24) is not perfect but sufficient for most
control implementations.
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Figure 2.23: Part of the measured system response
(dashed curve) and the model simulation response Ĝp
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Figure 2.24: The test of frequency behaviour of the Ĝp

transfer function (response Ĝp - solid curve, frequency re-
sponse for comparison - dashed curve)

If we want more accurate information about the model, es-
pecially about its behaviour at high frequencies, we would
need to perform additional experiments or repeat the iden-
tification procedure. The required accuracy of the model
primarily depends on the purpose of the model. This as-
sessment depends on the user’s judgement. Models can be
used for a variety of purposes, such as designing control
algorithms, simplifying complex systems, designing simu-
lators, designing fault diagnosis algorithms, and similar.
In our example, we have demonstrated the identification
process from a practical point of view and obtained a linear
model describing the dynamics of the mechatronic system
around the operating point. After its validation, the iden-
tified model is sufficiently accurate for the design of control
systems as well as for the simulation of the dynamics of
the mechatronic system, taking into account the standard
deviations of the parameters, as well as other purposes.
The final validation of the model would be through its ap-
plication for the design of control algorithms or for use as
a simulator.
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Chapter 3

Identification of nonlinear dynamic
systems

3.1 General information on the iden-
tification of nonlinear systems

As mentioned in Chapter 1, researchers in the 1990s came
to the realisation that training neural networks to behave
like nonlinear dynamic systems was, in fact, nonlinear sys-
tem identification. With this understanding, it was possi-
ble to incorporate and take into account knowledge from
system theory and practise [2]. In this chapter, we will
look at the basic guidelines for the identification of non-
linear dynamic systems as given by [4].

The main problem in system identification, as mentioned
in the previous section, is to find a suitable model struc-
ture that can be used to describe the behaviour of a non-
linear system sufficiently well. Estimating the parameter
values for the chosen structure is a minor problem in most
cases. The basic rule we must always follow is that we
do not identify parts of the system that we already know.
This means that we have to use the knowledge about the
system that we already have.

Model colour coding is also used for nonlinear systems.
This coding denotes the background knowledge used for
modelling: the model is a white box in theoretical mod-
elling, a black box in system identification, and a grey box
if the modelling is one of the various combinations of the
two.

Commonly used experimental models of nonlinear dynamic
systems are artificial neural networks, fuzzy models or net-
works of local models, models based on Gaussian process
models, wavelet models, and many other models [3].

If the problem of system identification is approached in
a standard statistical way, it is also necessary to further
harmonise the terminology. Neural networks and other
similar methods have also been given their own terminol-
ogy to be used. Some of the most commonly used terms
and their equivalents are as follows.

• Terms (systems theory term = neural network or
machine learning term):

– estimate, identify = learn, train,

– validate = generalise,

– model structure = network,

– estimation data, identification data = learning
set, training set,

– validation data = generalisation set, test set,

– overfitting = overtraining.

Practical aspects of the identification of nonlinear
systems

The identification procedure must not and cannot be fully
automated as it involves too many subjective decisions.
For a successful procedure, not only knowledge about the
identification procedure is necessary but also suitable soft-
ware (e.g., [6], [7]) and, above all, input and output data
that contain sufficient information about the dynamic be-
haviour of the system to be identified.

The identification of nonlinear dynamic systems is a much
more comprehensive problem than the identification of lin-
ear dynamic systems. The notion of nonlinearity encom-
passes an infinite variety of different forms of nonlinearity
and experience with one type of nonlinear dynamic system
is generally not applicable to other types. It is therefore
advisable to gain practical experience of modelling a se-
lected nonlinear process by simulating similar examples
with a computer. This is one way to use prior knowledge
of the system to be identified.

The problem of identifying nonlinear systems can be de-
scribed as follows. The individual samples of the output
signals of the system to be modelled can be represented
as a function of the delayed samples of the input signal u
and the output signal y disturbed by noise:

y(k) = g(y(k−1), y(k−2), . . . , u(k−1), u(k−2), . . .)+n(k),
(3.1)

where k is the consecutive number of the sample defining
a time instant. System identification means finding the
function g(·)

ŷ(k|θθθ) = g(ψψψ(k), θθθ), (3.2)
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Identification of nonlinear dynamic systems

whereas:

ψψψ(k)= ψψψ(u(k − 1), u(k − 2), . . . , y(k − 1), y(k − 2), . . .)
the vector of regressors also regression vector,

θθθ the vector of parameters, and

ŷ the output of the model.

The problem can be divided into two subproblems:

• selection of regressors ψψψ(k), and

• selection of the nonlinear mapping g(ψψψ).

Regressors

If the structure is linear, the system is described in the
following form

A(z−1)y(z) =
B(z−1)

F (z−1)
u(z) +

C(z−1)

D(z−1)
v(z), (3.3)

which can be written simply as

ŷ(k) = ψψψT (k)θθθ. (3.4)

As described in the previous chapter, models of linear sys-
tems differ according to the regressors.

Similarly, the models for nonlinear systems are named ac-
cording to the different regressors ψψψ used to represent the
nonlinearity

ŷ(k) = g(ψψψ(k), θθθ). (3.5)

Regressors ψψψ in different nonlinear models:

• nonlinear finite impulse response (NFIR) model,
which means that the regressors only take delayed
input signals (u(k − i));

• nonlinear autoregressive model with exogenous in-
put (NARX), which means that the regressors are
delayed input and output signals (u(k− i), y(k− i));

• nonlinear output error model (NOE), which means
that the regressors take delayed values of the input
signal and estimates of the output signal (the pre-
dictions from the past)past) (u(k − i), ŷ(k − i));

• nonlinear autoregressive and moving average model
with exogenous input (NARMAX), for which the re-
gressors are delayed input, output and noise signals
signals (u(k−i), y(k−i), ε(k−i) = y(k−i)−ŷ(k−i));

• nonlinear Box-Jenkins (NBJ) model that has de-
layed input signals as regressors, delayed output sig-
nal estimates, the prediction error and the simu-
lation error (if the output estimates were used for
prediction) (u(k − i), ŷ(k − i), ε(k − i), εu(k − i) =
y(k − i)− ŷu(k − i));

• it is also possible to represent the nonlinear system
in state space written in the form: x(k) = F(x(k −
1)u(k − 1));

• other possible regressors.

Linear mappings

Nonlinear mappings are often represented as a weighted
sum of k basis functions gk(ψψψ):

g(ψψψ(k), θθθ) =
∑
k

αkgk(ψψψ), (3.6)

although, as will be seen later, other forms of representa-
tion are possible when modelling with Gaussian processes.

For example, a well-known scalar example of a weighted
sum representation is the evolution of a function with a
Fourier series. Typical examples of nonlinear mappings
that are represented by a weighted sum are

• wavelets,

• nearest neighbours,

• B-splines,

• ARTIFICIAL NEURAL NETWORKS,

– multilayer perceptron,

– radial basis-function networks,

– others,

• FUZZY MODELS.

Let us look at the notations of some well-known basic func-
tions:

• neural network with sigmoidal activation function

gk(ψψψ) = σ(βkψψψ + γk),

where β is the dilation factor and γ is the translation
factor;

• radial basis-function network

gk(ψψψ) = r(βk(ψψψ − γk));

• fuzzy model

gk(ψψψ) =
∑
j

αj(
∏
k

µA(βk(ψψψ − γk)));

• recurrent network,

ψψψ(k) = g(ψψψ(k − i), θθθ)

• and many others.
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3.1 General information on the identification of nonlinear systems

Structure identification

First, we start with the systematic selection of regressors,
from the simplest possible combination to the more com-
plex ones:

• u(k) - static nonlinearity,

• u(k − i) - NFIR,

• u(k − i), y(k − i) - NARX,

• other.

When determining the order of the model or the number
of sample delays, it is useful to know Takens’ theorem
(its form for excited systems can be found in [9]), which
states how a model of a continuous dynamic system can be
reconstructed from sampled input and output signals. The
sufficient condition for the reconstruction of the system is:

n > 2p, (3.7)

where n is the order of the discrete model and p is the
order of the original continuous system. In practice, it
turns out that, depending on the system, a lower order
model is often sufficient:

p ≤ n ≤ 2p+ 1. (3.8)

Once we have chosen the model order and the regressors,
we start choosing the basis functions. There are different
ways of choosing, both objective and subjective. There
are no concrete rules because the basis functions we have
listed are capable of representing the nonlinearity with
any degree of accuracy. Some directions that might be
considered are [4]:

• Radial basis functions are chosen when dealing with
a small number of regressors (e.g., wavelets for a
maximum of 3 regressors),

• ridge basis functions are chosen when we are deal-
ing with a larger number of regressors (e.g., sigmoid
neural networks),

• fuzzy models are used when a priori heuristic knowl-
edge is available.

The cross-validation procedure is used to select the dif-
ferent structural elements. Cross-validation is a method
from statistics for evaluating models in which the data are
divided into at least two parts. The basic form of cross-
validation is k-fold cross-validation. We usually use k − 1
parts for training and the remaining part for validation.
The training and validation data must cross-over in suc-
cessive rounds.

If we choose basis functions and thus a nonlinear model
structure, we must also estimate their parameters, which

are usually the weights of the individual basis functions
and, depending on the structure chosen, some other pa-
rameters. This can be done with any known and suitable
deterministic or stochastic optimisation method. Among
the deterministic methods, the Gauss-Newton algorithms
are known to be efficient, while the first-order gradient
methods are generally time-consuming. It is possible to
estimate the parameters offline or with the so-called recur-
sive identification online. The optimisation criteria usually
depend on the model error.

Model error

The optimisation criteria are different. They depend on
the purpose of the model and the optimisation method.
The cost function used to write the optimisation criterion
is expressed as a quantitative measure of the quality of
the model. We usually want to achieve the smallest value
of the cost function, which is usually a function of the
error of the model. A commonly used example is the cost
function that depends on the square of the model error:

V̄ (θθθ) = E ∥ y(k)− g(ψψψ(k), θθθ) ∥2

= σ2
n + E ∥ g0(ψψψ(k))− g(ψψψ(k), θθθ) ∥2,

where g0(ψψψ(k)) is the original system and σ2
n is the vari-

ance of the noise.

When optimising the model with respect to the error square,
there are generally three possible sources of error that af-
fect the quality of the model:

• noise,

• bias, which can be represented as follows

V = E ∥ g0(ψψψ(k))− g(ψψψ(k), θ̂θθ(m))) ∥2,

where θ̂θθ(m) is a vector of estimated values is the
parameter with the chosen length m,

• is the variance of the parameter values depending on
the variance of the measurement noise σ2

n

V ≈ σ2
n

dim {θθθ}
N

.

The quality of the identified model depends on the infor-
mation content of the measured input/output data. The
variance of the parameter values and the bias are corre-
lated as shown in Figure 3.1.

Tips for carrying out identification

Given the complexity of the problem of identifying nonlin-
ear dynamic systems, it is difficult to suggest a fixed pro-
cedure. In general, the procedure follows the same steps
as for the identification of linear systems, which were de-
scribed in the previous section. However, we can give some
tips that may increase efficiency.
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Identification of nonlinear dynamic systems

Performance

# parameters

Variance
Bias

Figure 3.1: Bias-variance relationship

1. Look at the measured input/output data. From this
you can deduce whether the system is strongly non-
linear and which ‘time constants’ (using the techni-
cal term for linear systems) it has.

2. Try simple things first, i.e., simple structures and
dimensions of models: linear models first and a small
number of regressors, basis functions and parameters
for the estimation.

3. Determine the physical background of the dynamic
process, as this can give you an idea for the choice
of regressors.

4. Divide the data into those for identification and those
for model validation. In the machine learning litera-
ture, the division of data subsets is referred to in dif-
ferent ways, although the purpose is the same. The
data for identification are split into data for param-
eter estimation in nonlinear identification and data
for monitoring performance in cross-validation. The
parameter estimation data in machine learning are
called ‘training data’ and the performance monitor-
ing data are called ‘validation data’, while the data
used to validate the final model are called ‘test data’.
It should be noted that this division is also found in
the literature describing system identification.

5. Normalise the data (transform the different data
types into one size class) and set the mean of the
data equal to 0.

6. Monitor the bias/variance ratio throughout the op-
timisation by cross-validation, indicating an unwise
increase in the number of parameters.

7. When modelling a system with a neural network, use
regularisation. It is described, for example, in [4].

8. Investigate the efficiency characteristics of the num-
ber of parameters, as the model should be as simple
as possible but not too simple.

9. When choosing the sampling time, the same rule
as for linear systems should apply, even though it
is much more difficult to follow: the sampling time
should be chosen in such a way that it captures the
entire dynamics of the system to be modelled.

10. If you have an input signal to choose from, choose
one that has an input/output data distribution and
an amplitude distribution that is as rich as possi-
ble in the range of operation that is limited by the
physical constraints of the process. An example of
the distribution is shown in Figures 3.2 and 3.3.
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Figure 3.2: Example of input/output data distribution

signal amplitudes
-2 -1 0 1 2 3

0

20

40

60

80

100

120

Figure 3.3: Example of the amplitude distribution of the
input signal
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3.1 General information on the identification of nonlinear systems

Model validation

Model verification and validation is, as already stated, one
of the most important steps in modelling. The nonlin-
earity of dynamic systems does not make the validation
process any easier.

As seen and described by Equation (3.2), modelling is
mainly for one-step prediction. The dynamic model sys-
tem is most suitable for its purpose when it allows pre-
dictions over longer horizons and simulations. A typical
example of such a purpose is the use of the model for con-
trol design or system performance evaluation. This means
that the model has to be evaluated for one-step-ahead pre-
diction, but also for simulation.

• One-step-ahead prediction:

ŷ(k + 1) = g(y(k), y(k − 1), . . . , u(k), u(k − 1), . . .).

• Simulation:

ŷ(k + 1) = g(ŷ(k), ŷ(k − 1), . . . , u(k), u(k − 1), . . .).

How the model is simulated is shown in Figure 1.22 in
Chapter 1.

The analysis of the consistency of the input/output be-
haviour with the one-step-ahead prediction and simula-
tion (Figure 3.4) is usually performed on the data used
for identification and on the data intended for validation
(test data).
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Figure 3.4: Test of consistency of input/output behaviour

In addition to the consistency test of input/output be-
haviour, various statistical tests can be used, also for non-
linear systems. These include different correlations to test
whether the prediction or simulation error is independent
of all input and output signals. An example is testing
the simulation error with auto- and cross-correlation and
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Figure 3.5: Test of prediction error
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Figure 3.6: Histogram of prediction errors

analysing the histogram of identification and validation
error (examples in Figures 3.5 and 3.6).

Other forms of statistical tests are estimates of the average
prediction error. These include estimating the error with
various criterion functions, such as the mean square or the
Akaike criterion function. For more details on estimators
with statistical tests, see [5].

Model reduction or pruning [5] is also part of validation.
An example of a neural network after pruning can be found
in Figure 3.7. The procedures for reduction depend on
the structure and the modelling method. More on these
procedures can be found in the literature describing the
individual procedures (e.g., specific neural networks) and
in various software. We will not go into detail about these
procedures; more details can be found in, for example, [1].

The most important test of the dynamic model, regardless
of its structure and whatever the method of modelling, is
always to test the model in terms of its purpose. The
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Network after having pruned weights

1

2

3

4

Figure 3.7: Example of a pruned artificial neural network
structure

model is good enough if it is useful for the purpose for
which it was developed.

This was only an overview of modelling. Better insight can
be found in the literature that describes neural network
identification in more detail (e.g., [5]).

Example of identification of nonlinear autoregres-
sive model with exogenous input (NARX)

We will illustrate the identification process with an ex-
ample of a first-order dynamic nonlinear system with an
artificial neural network. The mathematical model of the
process is described by the following nonlinear differential
equation:

y(k) = y(k − 1)− 0.5 tanh(y(k − 1) + u3(k − 1)), (3.9)

where u is the input and y is the output of the system.
This is one of the discrete-time equivalents of the continuous-
time system

ẏ = − tanh(y + u3) (3.10)

for a sampling time of 0.5 s.

Since this is a first order system, the nonlinearity can be
represented graphically in three dimensions (Figure 3.8).
The system was excited with a random signal with variable
amplitude in the range between -1.2 and +1.2. The iden-
tification signal and the response of the system are shown
in Figure 3.9. The validation signal must be different from
the identification signal so that we can be certain that the
model fits. A randomly varying signal in the same am-
plitude range as the identification signal is chosen. The
input signal for validation and the system response are
shown in Figure 3.10. It is common for a signal to be
divided into the identification part (the training and val-
idation set) and the validation part (the test set). The
length of the signals can be arbitrary, but it is useful to

Figure 3.8: 3D-representation of the nonlinearity of the
system
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Figure 3.9: Identification signal and response of the system
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Figure 3.10: Signal for validation and system response

have a longer identification signal to contain as much in-
formation as possible about the dynamic behaviour of the
process.
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3.1 General information on the identification of nonlinear systems

The histograms of the amplitude distributions of the se-
lected input signals are shown in Figure 3.11. It can be
seen that the amplitude distribution in the whole selected
region is not perfect, but the signal for identification has
a better amplitude distribution. How the identification
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Figure 3.11: Histogram of amplitude distributions of input
signals for identification and validation

input/output data are distributed according to the non-
linearity of the process is shown in Figure 3.12. For a
denser distribution of samples, more samples are needed,
which also means a longer signal. It is very important
to check what input/output data are available for iden-
tification and validation so that what can be achieved by
model identification can be estimated. If there are no data
for identification, the model cannot learn the system be-
haviour.

Figure 3.12: Input/output data distribution according to
nonlinearity of the system to be identified

In the next step, we will select the structure of the neural
network and the regressors and estimate the parameters
of the network.

For the system identification we used the software
NNSYSID Toolbox for Matlab [7]. We chose a neural
network with a multilayer perceptron, but we could have
chosen any other neural network or model that is a univer-
sal approximator or can adequately represent this system.
The regressors chosen were y(k − 1) and u(k − 1). The
structure selected was the NARX and the least-squares

optimisation method, respectively. Following the cross-
validation procedure, we chose a neural network with one
hidden layer and five neurons in it. The structure of the
network is shown schematically in Figure 3.13.

1

2

Figure 3.13: Network structure

The parameters (weights) of the network were determined
using the Levenberg-Marquardt method, which we chose
because of its high efficiency in nonlinear optimisation
problems. The parameter values described by Equation
(1.4) can be fitted with a hidden layer matrix/vectorW1 =
[wjk|w0k] and the matrix/vector of the output layer W2 =
[wij |w0j ]. When the optimisation was complete (i.e., the
error was so small that the weights no longer changed no-
ticeably), we obtained the following results:

W1 =


−0.5588 −2.0621 −1.9530
0.5155 0.0499 −0.8670
−1.5149 0.3190 0.4768
0.3366 −1.2029 1.8379
0.8411 1.3841 1.7123

 ,

W2 =[
1.2054 1.7784 0.0810 1.1704 1.4048 −0.0580

]
.

The weight matrix W2 has one more element than there
are connections between the hidden and output layers, be-
cause it contains the values for the output offset or bias in
the last position w0j .

Let us take a look at the model validation that must be
performed in the identification process every time we re-
ceive a new model and want to evaluate its quality of fit.
We run the identification process until the model is good
enough for its final purpose. We will only show the results
for the final selected model. In our case, the model served
to illustrate the identification process.

Figure 3.14 shows how the neural network represents the
nonlinearity of the system based on the identification data.
The prediction error between the nonlinearity of the sys-
tem and the nonlinearity of the model (also called residu-
als) can be seen in Figure 3.15.
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Figure 3.14: One-step-ahead prediction: system (left),
model (right)

Figure 3.15: Validation of prediction error

If the model structure is suitable, the model response af-
ter optimisation differs from the process response only by
white noise. The amplitude distribution of the prediction
error for the validation signal, which should be normal, is
shown in Figure 3.16. It can be interpreted as a rather
narrow Gaussian curve. Another statistical tool that can
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Figure 3.16: Distribution of model prediction error on val-
idation signal

be used to check the statistical properties of the predic-
tion error is the autocorrelation of the error (Figure 3.17),

which confirms the previous observation, and the cross-
correlation between the prediction error and the input sig-
nal (Figure 3.18), which shows a low correlation between
the error and the input signal.
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Figure 3.17: Prediction-error autocorrelation
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Figure 3.18: Cross-correlation of the prediction error with
the input signal

One of the more informative steps is usually a qualitative
or visual check of the input/output behaviour by compar-
ing the responses of the system and model simulation with
the validation signal. In Figure 3.19, which shows such a
comparison, there is a clear correspondence between the
two responses. Our goal of illustrating the identification
process of a nonlinear process was satisfactorily achieved
with the obtained model, so we completed the highly iter-
ative process.
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Figure 3.19: Consistency of input/output behaviour on
validation signal

3.2 Example of the identification
of a pH-neutralisation process

In the illustrative example in the previous section, we
demonstrated the procedure for identifying the system.
The demonstration was much easier because we identi-
fied a first order system by which the nonlinearity can be
shown graphically. For higher order systems, this type of
evaluation is more difficult. In the case of the identifica-
tion of the pH neutralisation process, we will demonstrate
the identification of a higher order system on a simulated
system that reflects a realistic chemical process.

A simplified schematic of the pH-neutralisation process,
which is often used in the literature as a benchmark for
various modelling and design methods, is shown in Fig-
ure 3.20. The purpose of this process is to chemically
neutralise the input fluid. The process has three input
flows: acid (Q1), input liquid (Q2) and base (Q3), which
are mixed in a vessel T1. Before mixing, the acid enters
the vessel T2, which gives the system additional dynamics.
The flow of the acid and base is controlled by automatic
control valves, while the incoming liquid is measured only
by a flow meter, in particular a rotameter. The measured
output variable is the acidity, meaning the pH (pH) of the
mixture. Since the pH sensor is located at the outlet of
the tank T1, there is also some dead time in measuring
the acidity. In this example, the input to the process is
the flow rate of the base, not the flow rate of the input
liquid. A more detailed description of the process can be
found in [8].

A theoretical dynamic model of the pH neutralisation pro-
cess was derived from chemical equilibrium equations. The
derived model also includes the dynamics of the sensors
and valves as well as the dynamics of the hydraulics of the
outlet flow. The modelling assumed ideal mixing of the
liquids, their constant density, and the complete solubility
of the ions. The theoretical model of the pH neutralisa-

tion of the chemical process is described by the system of
Equations (3.12) and the data given in Table 3.1. Instead
of performing the measurements on the inaccessible pro-
cess, we used the simulated data to identify a surrogate
model. The theoretical model used contains several non-
linearities, including the implicitly calculated and strongly
nonlinear titration curve, which is a typical element of all
pH-neutralisation processes.
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Figure 3.20: Schematic of the pH-neutralisation process

ẋ = f(x) + g(x)Q3 + p(x)Q2

c(x, y) = 0

(3.11)

f(x) =

[
q1

A1x3
(Wa1 − x1)

q1
A1x3

(Wb1 − x2)

1

A1
(q1 − Cv4(h1 + z)n)

]T
g(x) =

[
1

A1x3
(Wa3 − x1)

1

A1x3
(Wb3 − x2)

1

A1

]T
p(x) =

[
1

A1x3
(Wa2 − x1)

1

A1x3
(Wb2 − x2)

1

A1

]T
c(x, y) = 0 = x1 + 10y−14 − 10−y

+x2
1 + 2 · 10y−pK2

1 + 10pK1−y + 10y−pK2

pH = y (3.12)

Figure 3.21 shows the simulation scheme for the pH neu-
tralisation process. The nonlinearity of the process can
also be shown by plotting the responses of the system to
the same input signal in different operating regions. One
such example is a sequence of rectangular pulses with in-
creasing amplitude. The response of our nonlinear system
to this input signal is shown in Figure 3.23. The selected
identification signal, the validation signal, and the system
responses to it are shown in Figure 3.24. A comparison
of the signals in Figure 3.24 and the amplitude distribu-
tions in Figures 3.25 and 3.26 shows that the identification
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Identification of nonlinear dynamic systems

Table 3.1: Parameters of the pH-neutralisation process at
the operating point [8]

|q2|=0.03 M NaHCO3 q2=0.55 ml/s
|q3|=0.003 M NaOH, q3=15.6 ml/s
0.0005 M NaHCO3 q1e=16.6 ml/s

A1=207 cm2 q4=32.8 ml/s
A2=42 cm2 Wa1=3 · 10−3 M
z=11.5 cm Wb1=0 M
p=0.607 Wa2=-0.03 M

Ka1 = 4, 47 · 107 Wb2=0,03 M
Ka2 = 5.62 · 10−11 Wa3 = 3.05 · 103 M
Kw = 1.00 · 1014 Wb3 = 5.00 · 105 M

∆t=15 s h1=14 cm
∆tc=1 s h2=3 cm
τpH=15 s Wa4 = 4.32 · 10−4 M
τh=15 s Wb4 = 5.28 · 10−4 M
τv=6 s pH=7.0
θ=10 s
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Figure 3.21: Simulink simulation scheme of the pH-
neutralisation process

signal is more dynamic and has a richer distribution of
amplitudes. This also generally means that the response
to the identification signal contains a greater amount of
information about the dynamics of the chemical process.

As in the illustrative example in the previous section, we
used the same software and selected the multilayer per-
ceptron neural network for model identification.

Using an iterative procedure, we identified the regressors
that yielded the best model according to the cost func-
tion and with the most favourable relationship between
the quality of the model and the smaller number of re-
gressors that determines the complexity of the model. We
chose a model with the following regressors: y(k−1), y(k−
2), y(k− 3), y(k− 4), u(k− 1), u(k− 2), u(k− 3), u(k− 4).

For the structure, we chose the NARX model structure
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Figure 3.22: Input signal to demonstrate the nonlinearity
of the system
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Figure 3.23: Response of the nonlinear system (Ts = 25
sec)
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3.2 Example of the identification of a pH-neutralisation process
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Figure 3.25: Histogram of input signal amplitudes for
identification
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Figure 3.26: Histogram of input signal amplitudes for val-
idation

and a hidden layer with 10 neurons using cross-validation.
Note that the number of hidden layers (usually one for a
so-called shallow network), the number of neurons, and the
regressors are not chosen sequentially, but simultaneously.
This is a cyclical process (i.e., cross-validation) in which
the individual elements are changed and the cost function
is validated: for the NARX model, this is the sum of the
squares of the error between the process response and the
model response. The parameters were optimised using
the Levenberg-Marquardt method. After completing the
optimisation, we also used the pruning method built into
the software to remove superfluous weights, of which there
were very few. A schematic of the network structure is
shown in Figure 3.27.

Figures 3.28 and 3.29 show the autocorrelation of the pre-
diction error (residuals) between the process and model re-
sponses to the signal for validation and the cross-correlation
between the prediction error of the responses and the input
signal. In particular, the model is evaluated by simulation
even if it is essentially identified for one-step prediction.
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Figure 3.27: Network structure

By simulating the system and model responses to the val-
idation signal in Figure 3.30, we can confirm what has al-
ready been done by the statistical tools in Figures 3.28 and
3.29. We have succeeded in approximating the dynamic
behaviour of the pH neutralisation process relatively well
with a neural network.
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Figure 3.28: Output error autocorrelation
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Figure 3.29: Cross-correlation of input signal and output
error
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Figure 3.30: Consistency of input-output behaviour on
validation signal
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Chapter 4

Control with artificial neural networks

4.1 Neural networks in control sys-
tems

Neural networks are, at their core, experimentally-derived
mappings from input data to output data, from which the
physical or other backgrounds of these mappings are not
apparent. As already noted, they are representatives of
black-box models. You should also bear this in mind when
considering their role in the development of the automatic
control of dynamic systems. Their role is multifaceted,
although not as much as the role of theoretical models of
dynamic systems. Neural networks are used as models of
whole systems or only subsystems, as substitutes for cer-
tain nonlinearities, for control, as a model of the controller
or the inverse of the system, and similar [5].

A systematic breakdown of the various uses of neural net-
works in the design and implementation of automatic con-
trol systems can be found in a review article [1], which also
contains references to literature describing various appli-
cations. We will not go into detail but only list the applica-
tions described in [1]. The breakdown of the applications
is shown in Figure 4.1.

The applications are divided into the use of neural net-
works as a tool for control design and as part of a con-
troller.

Neural network only as a tool

The roles of the neural network are:

• Neural network as a modelling aid:

– is based on an indirect target;

∗ neural network identifies unknown parts in
the model (Figure 4.2),

· for control with feedback linearisation
(Figure 4.3),

· for control with instantaneous lineari-
sation ( Figure 4.4),

∗ neural network predicts the controlled vari-
able,

· neural network model for controllers that
do not need a process model but only
a prediction of the controlled variable,

– based on the control objective;

∗ neural network is a model of the controlled
variable (Figure 4.5),

∗ neural network is a model of the reference
system,

∗ neural network is the model of cost func-
tion or performance index,

· neural network helps to optimise con-
ventional controllers,

• neural network as a supervisory aid:

– signal combinations;

• neural network as a control implementation tool:

– neural network maps unknowns in the controller;

∗ variable controller parameters modelled by
a neural network,

∗ control with inverse model of part of the
process,

∗ predictive control (the neural network pro-
vides a model of the system to be con-
trolled),

– the neural network represents the solution of
the implicit control law (Figure 4.6);

∗ the neural network replaces the solving of
computationally intensive operations (e.g.,
solving the Riccati equation).

Neural network as controller

The roles of the neural network are:

• learning neural network based on u:

– neural network mimics human operator;

∗ mapping the actions of the human opera-
tor,

– neural network mimics other controller;
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Figure 4.1: Classification of artificial-neural-network
(ANN) uses in control [1]

∗ mapping the characteristics of conventional
controllers (Figure 4.7),

– neural network uses open loop data (Figure 4.8);

∗ adaptive control with the inverse model,

• learning based on the control goal:

– learning a neural network by simulation on a
model;

– learning on a plant;

∗ learning based on the gradient of the cost
function (numerical, analytical),

∗ learning without cost-function gradient
(search algorithms).
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Figure 4.2: Neural network identifies unknown parts in
the model [1]
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Frequently used control methods

In the literature review describing the use of neural net-
works to control dynamic systems, we note that the most
commonly encountered applications are:

• various forms of predictive control (which are quite
useful in engineering practice), and

• various forms of adaptive control (which are some-
what less accepted in engineering practice).

Because of their applicability, especially for various black-
box models, we will examine predictive control in more
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-Riccati eq. in LQR
-PDEs in non-LQR
-optimal control
-receding-horizon control
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Figure 4.6: The neural network solves implicit control law
[1]
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detail in the next subsection, in particular at how neural
networks can be used in predictive control.

4.2 Predictive control

Basic concept of predictive control

The description of the basic concept is taken from [4].
Model-Based Predictive Control (MPC, MBPC) is one of
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the few advanced control methods that have gained ac-
ceptance in industrial practice, especially in the field of
process control. The reasons for this can be found in the
simple and easy-to-understand principle of the method,
with the simple integration of constraints on the control
and controlled variables, the simple design and tuning of
both univariable and multivariable control for linear and
nonlinear systems. Predictive control is based on the ex-
plicit use of a process model to predict the future output
of the process. The control signal is based on minimis-
ing a cost function of the difference between the predicted
output and the reference trajectory for a given horizon in
the future. The field of predictive control includes many
different algorithms with similar control principles and dif-
ferent models and minimisation mechanisms of cost func-
tions derived from a model (e.g., Model Algorithmic Con-
trol (MAC), Dynamic Matrix Control (DMC), Generalised
Predictive Control (GPC), Predictive Functional Control
(PFC), Unified Predictive Control (UPC), etc.). The gen-
eral notation when using nonlinear models is Nonlinear
Model-based Predictive Control (NMPC).

Regarding the control design, the main advantages of us-
ing predictive control methods are the following:

• it is suitable for the control of systems with more
complex dynamics,

• it is suitable for systems possessing dead time or
minimum phase,

• its general concept allows the control of both uni-
variable and multivariable processes,

• it allows feedforward compensation of measurable
disturbances,

• captures system constraints in the design process,

• can incorporate size constraints and rate of change
constraints,

• considerable freedom in design, with design param-
eters considered as control specifications,

• a predictive controller can form the control signal in
advance if the future setpoint curve is known,

• the methods do not include explicit signal derivation
so that measurement noise does not cause problems,

• the methods do not contain explicit integration so
that there is no problem of integral wind-up,

• the principle is easy to understand.

The two main disadvantages of using predictive methods
are:

• a good model of the system to be controlled is nec-
essary because the quality of the control depends
directly on the quality of the model,

• the computational complexity of the methods can
become problematic when controlling faster systems.

The basic principles of predictive control are reflected in
the following steps (Figure 4.9):

u

y

w

r

k k+N k+N1 u k+N2

past present future

Figure 4.9: Basic concept of predictive control. w - set-
point trajectory, r - reference trajectory, u - control signal,
ŷ - model response, N1, N2 - start and end of prediction
horizon, Nu - control horizon

• Prediction of the output signal of the system based
on the system model.
At each time instant k, we calculate the trajectory
of the output signal y(k+j) for the horizon in the fu-
ture j = (N1, . . . , N2). N1 and N2 denote the lower
and upper values of the prediction horizon, which
determines the coincidence horizon within which we
want the output signal to conform to the prescribed
behaviour. The predicted values of the output sig-
nal of the system, expressed in terms of the system
model, denoted ŷ(k + j | k), represent the j-step
prediction of the model. The predicted values de-
pend on the future control scenario u(k+ j | k); j =
0, . . . , Nu−1, which we want to use from time instant
k onwards.

• Creation of a reference trajectory.
By defining a reference trajectory r(k + j | k); j =
N1, . . . , N2, we determine the desired time course of
the system from the current value y(k) to the given
setpoint value w(k).

• Determination of future control signal.
The vector of the future control signal u(k + j |
k); j = 0, . . . , Nu − 1;Nu ≤ N2 is calculated by
minimising the corresponding cost function by which
we minimise the error between the r(k + j | k) and
ŷ(k+j | k). The determination of the future signal is
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4.2 Predictive control

based on the application of the open loop optimality
criterion in a certain interval in the future.

• Use of the first element of the control signal vector
to control the system. Only the first element u(k | k)
of the optimal vector of the control signal u(k + j |
k); j = 0, . . . , Nu − 1 is used.

At the next time instant, when we have a new measure-
ment of system output, we repeat the whole process. This
principle is called ‘the receding-horizon strategy’. Many
different solutions are proposed for each step, which makes
the different predictive control methods different from each
other.

The basic scheme of a closed-loop predictive control sys-
tem is shown in Figure 4.10. While the basic model may
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Figure 4.10: Common concept of proposed predictive con-
trol principles

already include a model of measurable disturbances, the
feedback loop is incorporated into the algorithm to elim-
inate one-step-ahead model prediction errors, due to un-
modeled dynamics and other (nonmeasurable) disturbances
in the system. The error is expressed as the difference be-
tween the system output and the model output at the time
of sampling:

e(k) = y(k)− ŷ(k). (4.1)

When predicting the future output of a system, the error
e(k) is added to the model prediction ŷ(k+ j | k), for each
j = N1, . . . , N2. Assuming a constant error e(k) for the
entire prediction horizon, we compensate for the errors of
the steady-state model and the constant disturbances in
the system. The prediction algorithm is based on the de-
viations between the model output and the measurements
and estimates the future effects of unmeasurable distur-
bances acting on the process. Ideally, the model matches
the process and no disturbances are present. In this case,
the feedback loop is not functional and the control is an
example of open-loop optimal control.

To predict the output of the system, the use of the sys-
tem model is essential. It can be used to calculate the
prediction of the output signal several steps into the fu-
ture. In principle, we can use any linear or nonlinear
model. This includes both theoretical and experimen-
tal models. Examples of such models of systems include
neural networks, fuzzy models, Gaussian-process models,
among others. The models used are usually, but not ex-
clusively, written in the discrete-time domain.

Different predictive algorithms with a nonlinear model can
be divided according to the way the nonlinear control
problem is solved:

• The direct nonlinear approach writes the control
problem in the form of a nonlinear programming
problem and solves it using iterative optimisation
methods. This approach follows directly from the
idea of using a nonlinear model in prediction. How-
ever, due to the solution of the nonconvex optimisa-
tion problem with additional constraints, it is com-
putationally intensive.

• The linearisation approach is more complex due to
the simplification of the optimisation problem and
the use of linear predictive control algorithms for
the linearised system. The linearisation methods
used are feedback linearisation or inverse nonlinear
mapping, online model linearisation at the operating
point, using a set of local linear models, and some
other methods.

All predictive design methods assume knowledge of the
trajectory of the setpoint signal in the future, but this
assumption is not always met. Usually, we specify how
the system output approaches the setpoint signal, which
is determined by forming the reference trajectory r(k+ j |
k); j = N1, . . . , N2. The reference trajectory can be con-
sidered as the internal reference of the predictive con-
troller, which determines the desired closed-loop behaviour
and from which the vector of the future control signal is
determined. When forming a reference trajectory in rela-
tion to the knowledge of the setpoint signal, two situations
are distinguished:

1. The setpoint signal w(k + j) is known in advance
for all j = 1, . . . , N2 . Due to the principle of pre-
dictive control, which predicts future behaviour, the
predictive controller initiates the appropriate control
action before the setpoint signal changes. This com-
pensates for dead times and large time delays in the
system. In robotic systems, tracking systems, batch
processes, and similar, the setpoint signal may be
known in advance.

2. The setpoint signal w(k+j) is not known in advance.
As the best possible prediction of the setpoint signal,
we take its current value w(k + j) = w(k).

Given the starting point of the reference trajectory, we
distinguish two situations:

1. We use the current measured value of the output
signal r(k) = y(k). In this way, we introduce an ad-
ditional feedback loop into the system, the effect of
which on the overall closed-loop system is difficult to
evaluate because it is not the result of optimising the
cost function. In some cases, it may even destabilise
the control loop.
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2. We use the current value of the reference trajectory
r(k).

The open-loop-optimal calculation of the system’s response
at a certain interval in the future is the main feature of pre-
dictive control. In this respect, there are similarities with
the linear-quadratic (LQ) controller [4], but the LQ con-
troller uses an infinitely long prediction horizon. Choosing
the appropriate cost function is the first step in deter-
mining the vector of the future control signal u(k + j |
k); j = 0, . . . , Nu − 1. Here we tend to choose the cost
functions that are easy to compute and whose minimum
can be found analytically or by optimisation algorithms.
Since the desired behaviour of the system in the future is
determined by the reference trajectory, the logical choice
of the cost function is the difference between the predicted
response of the system and the reference trajectory, for ex-
ample:

J =

N2∑
j=N1

(r(k + j)− ŷ(k + j))2. (4.2)

The parameters N1 and N2 determine the fitting hori-
zon in which we want the predicted output of the system
to match the reference trajectory as closely as possible.
By increasing the parameter N1, we omit the influence
of control errors in the near future, especially for phase-
minimal or dead-time systems, resulting in a more steady
and smoother control. The extended form of the cost func-
tion is described by equation:

J =

N2∑
j=N1

αj(r(k + j)− ŷ(k + j))2. (4.3)

Weight vector ααα = [αN1
, . . . , αN2

] can be used to further
influence the significance of the errors at each time instant
in the prediction horizon. It is also common to include a
measure of the variation in the control signal in the cost
function. Through this measure, we seek to reduce the
variation of the control signal by the cost of increasing the
deviation between the predicted output of the system and
the reference trajectory:

J =

N2∑
j=N1

(r(k+ j)− ŷ(k+ j))2+
Nu∑
j=0

β(∆u(k+ j))2. (4.4)

The above cost function contains the vector of changes
in the control signal u(k). In many methods, we use the
optimal vector of variations of the control signal ∆u(k +
j | k); j = 0, . . . , Nu − 1 instead of the absolute values
u(k + j|k); j = 0, . . . , Nu − 1.

The predicted future signal ŷ(k + j|k); j = 1, . . . , N2 de-
pends on the predicted vector of the control signal in the
future u(k + j|k); j = 0, . . . , Nu − 1;Nu ≤ N2. In gen-
eral, the elements of the vector are arbitrary and inde-
pendent of each other, which increases the computational
complexity and also the time consumption of the optimisa-
tion enormously by increasing Nu. The control signal can
also become rich in unwanted high-frequency components

as a result. In practice, we always choose to structure the
vector of the control signal by introducing relationships
between the elements of the vector. Such a decision also
increases the robustness of the predictive control. Due to
the principle of the receding horizon and the use of only
the first element of the vector of the control signal, the
actual control signal is not limited by the introduction
of structuring. The most commonly used techniques for
structuring the control signal [4] are:

• The introduction of a control horizon after the tran-
sient response assumes a constant control signal as-
suming a constant setpoint signal in the future. Con-
trol horizon Nu;Nu ≤ N2 represents the time from
which the control signal will remain constant. This
reduces the number of optimisation variables, specif-
ically the elements of the vector of the control signal.
The simplest and most frequently used value in prac-
tice is Nu = 1, which also provides good results with
a varying setpoint signal.

• The clustering technique assuming Nu = N2 divides
the entire prediction horizon into a fixed number of
segments within which it assumes a constant control
signal.

• The basis function representation algorithm struc-
tures the control signal as a linear combination of
independent, predetermined basis functions (linear,
polynomial, etc.). The choice of basis functions de-
pends on the system and the setpoint signal. The
calculation of the control signal is thus reduced to
the calculation of the selected parameters of the ba-
sis functions.

After selecting the form of the cost function and the struc-
ture of the vector of the future input signal, control de-
sign is followed by the determination of the values of the
elements of this vector. The solution is found by deter-
mining the minimum of the convex optimisation problem
when linear models are used, without using constraints.
The solution can often be determined analytically, mean-
ing that the output of the process depends linearly on the
past values of the inputs and outputs of the system, or by
one-step optimisation methods, for example, the method
of least squares. Imposing constraints on the minimisation
of the cost function using linear models requires finding the
minimum of the cost function using iterative optimisation
algorithms. The optimisation problem remains convex in
this case. The use of nonlinear models usually results in
the optimisation problem not being convex; consequently,
time-consuming and costly iterative algorithms have to be
used. Convergence to the true solution is no longer guar-
anteed within the prescribed time or number of optimi-
sation iterations. The additional inclusion of constraints
for system variables in the chosen optimisation algorithm
can even lead to the minimum of the cost function being
indeterminate with respect to the constraints (e.g., in the
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4.2 Predictive control

case of unpredictably large disturbances). Both possibil-
ities are unacceptable for the implementation of nonlin-
ear predictive control in real systems. Several approaches
have been proposed in the literature when such a situa-
tion occurs [4]. Such optimisation methods, for example,
interior point methods [4], are concerned with taking into
account time constraints and constraints on the result in
each optimisation step and providing at least an approxi-
mate solution. If necessary, the optimisation process may
be terminated prematurely due to time constraints or the
optimisation process may not find a solution to the opti-
misation problem.

An interesting possibility is to use ‘soft’ constraints, by
which we assume that the constraints represent limits that
should not be exceeded. Using the structure of the cost
function, we introduce a mechanism that allows this to be
done in an emergency. To do this, it is necessary to define
two sets of constraints:

1. constraints imposed for physical, safety and similar
reasons (e.g., the range and rate of change of the
control variable are limited by the actuator used)
and must not be softened,

2. other constraints that may be softened (e.g., in the
cases in which we may violate the limits that define
acceptable product quality).

Soft constraints are implemented by adding an additional
soft constraint function to the criterion used, which is not
zero only in the case where the constraints are violated.
In this way, the optimisation algorithm only violates con-
straints when an emergency situation occurs (e.g., in the
case of unforeseen large disturbances [4]).

Again, only the first element u(k|k) of the optimal vector
of the control signal u(k + j|k); j = 0, . . . , Nu − 1 is al-
ways implemented. Due to the receding horizon strategy
and the finite length of the prediction, the response of the
control system generally does not correspond to the opti-
mal open-loop response based on which the optimal vector
of the control signal was determined.

Illustrative example of control with a pre-
dictive controller

The following is an example of control with a predictive
controller that uses a neural network for prediction.

The controller is defined for a system mathematically de-
scribed by the nonlinear difference equation (3.10):

y(k) = y(k − 1)− 0.5 tanh(y(k − 1) + u3(k − 1)),

where u is the input and y is the output of the system.
The design process can be summarised in three steps:

Step 1 - identification of the system in the operating re-
gion region: Since this is the same system that we
have already identified in Chapter 3, here only the
most important features are summarised:

• regressors: y(k − 1), u(k − 1),

• structure: NARX model,

• a hidden layer with five neurons, multilayer per-
ceptron,

• Levenberg-Marquardt optimisation method.

Model validation was also shown in Chapter 3. This
time, we only consider the contour plot of the one-
step ahead error predictions in Figure 4.11, which
shows the operating range in which the model is use-
ful.

Residuals
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Figure 4.11: Response-error-validation (one-step-ahead
prediction)

Step 2 - Design of a predictive control:

• We have selected Predictive Functional Control
(PFC) as one of the simplest forms of MPC [4].
A feature of most PFC methods is the reduction
of the prediction horizon to a few points. In the
case of a single point, the prediction horizon
(also called the coincidence horizon) is called
the coincidence point. A more detailed descrip-
tion of the method used PFC can be found, for
example, in [4] and [3].

• The PFC cost function we use is:

J = min
U(k)

[r(k + P )− ŷ(k + P )]
2
. (4.5)

• As random points of coincidence, we have ex-
perimentally determined the value of eight sam-
ples in advance. The reference trajectory was
chosen so that the value of the control signal ap-
proaches the reference value exponentially with
a time constant of 10 samples.
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Control with artificial neural networks

• Some important properties to consider when
developing a predictive control:

– Computational complexity,

– Robustness of closed-loop control to differ-
ences between the controlled system and
its model,

– consideration of the constraints of the dif-
ferent variables we are dealing with.

Step 3 - Evaluation of the designed control system: the
response of the closed-loop control system and the
corresponding control signal are shown in Figure 4.12.
From this, it can be seen that the predictive con-
trol agrees with the reference curve trajectory, as
long as the closed-loop system operates in the range
in which the model describes the controlled system
well. However, at the last step change, the closed-
loop system falls outside the range of the good de-
scription of the model, resulting in a response that
does not correspond to the specified requirements.
This can be avoided by constraining the control to
the range restricted to the range in which the model
is sufficient.
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Closed-loop response (full line) and set-point (dotted line)
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Figure 4.12: Response of predictive control based on neu-
ral network model
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Chapter 5

Local-model networks and blended
multiple-model systems

‘Multiple-model systems’ is a common term for various
modelling and control design methods for nonlinear sys-
tems composed of less complex subsystems. They are
called different names depending on the field of research
from which they originate. The best-known multiple-model
systems are fuzzy Takagi-Sugeno models, blended multiple-
model systems, multiple-model switching systems, Markov
mixtures of experts, among others. An overview of multiple-
model modelling systems can be found in [15], and some
later developments in the special issue of a journal dedi-
cated to the topic [7].

Since we have dealt with neural networks in the previ-
ous chapters, let us now start from the point of view of
neural networks, from which can look at multiple-model
systems as networks of local models, which we will tenta-
tively describe in the following chapter. The description
is the same for other forms of multiple-model systems.

Hierarchical networks

As we have seen, neural networks can be divided into
those with a ridge structure and those with a radial struc-
ture. A typical representative of a neural network with a
ridge structure is the multilayer perceptron (Figure 5.1),
in which the nonlinearity of the modelled system is ap-
proximated by a ridge basis function:

zi = fi

 m∑
j=1

wijxj + w0j

 , (5.1)

where xj is the j
th input, wij is the weight at node ij, w0j

is the bias for the jth input, fi is a ridge basis function for
the ith output, zi is the i

th output.

Representative for neural networks with radial structures
are radial basis-function networks (Figure 5.2), where the
nonlinear hyperplane of the modelled system is approx-
imated by differently weighted basis-function centres γ,
specifically by points scattered over the space of the re-
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Figure 5.1: Multilayer perceptron

gressors:

zi = exp

−1

2

m∑
j=1

(xj − γij)
2

ρ2ij

 , (5.2)

where ρij is the scaling factor of the radial function.
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Figure 5.2: Radial basis-function networks

These centres are more or less evenly distributed across
the area of interest (Figure 1.16). They are typically also
located in the operating points of the nonlinear system,
where there usually is a lot of measurement data available
to identify the system.

Local-model networks and blended multiple-model
systems

The centres of the radial basis functions are usually se-
lected as the individual points defined by the input re-
gressors, which are the centres of the measured data sets.
These data sets can be replaced by local models obtained
from these data. In this way, the amount of data for
modelling can be significantly reduced without sacrificing
information content. Instead of weighing the data cen-
tres to obtain the best fit of the modelled nonlinearity,
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Local-model networks and blended multiple-model systems

we weigh the local sub-models and combine them into a
global model of the modelled nonlinearity. This structure
is called a ‘Local-Model Network’ (LMN). We optimise the
parameters, usually the weights, in a similar way to other
neural networks. Local models, which can be obtained in
any way, are combined in different ways to form a global
model. We can weigh the outputs of the individual local
models or, if the local models have the same structure,
we can weigh the parameters of the local models into a
single structure. The simple principle of a network with
local-model network is shown in Figure 5.3.

Model
no. 1

Model
no. 2

Model
no. N

Supervisor/
scheduler

Weight

Weight

Weight

Input

Output

Figure 5.3: A principle of local-model network with
weights on local-model outputs

Dynamic systems

If the described principle works well for describing static
systems, care must be taken when modelling dynamic sys-
tems.

A typical approach for both modelling and designing the
control of dynamic systems is the so-called ‘divide and
conquer’ approach. This means that the problem (a non-
linear dynamic system being modelled or the global non-
linear controller being designed) is usually divided into
linear subproblems, because linear methods are well estab-
lished. We then solve the individual linear subproblems,
which are valid only in a small domain, and combine them
into a global nonlinear solution. Figure 5.4 shows a possi-
ble implementation of control based on a network of local
models.

Linearisation of the nonlinear system is the core of the
modelling method described. The usual type of linearisa-
tion is the first-order Taylor expansion around the oper-
ating point or identification around this point. We should
be aware that such an approach is only valid in the neigh-
bourhood of the chosen operating point.

The standard method for modelling with local-model net-
works is to treat linearised models around a representa-
tive number of equilibrium points. The equilibrium points

Controller 1

Controller 2

Controller N

Weighting
function

Model 1

Plant

Model 2

Model N

Controller bank

+
+

-

Model bank

y
u y

ref

Figure 5.4: Block diagram illustrating a closed-loop adap-
tive controller in the form of blended local controllers
whose parameters vary according to the variation of the
local system models

(Figure 5.5) are those to which the nonlinear dynamic sys-
tem tends. In the time domain, these points often repre-
sent constant equilibrium states where a nonlinear system
can settle itself. The operating points are usually, but not

State

Input

Equilibrium
curve

Figure 5.5: Model of a nonlinear system as a family of
linear systems; linearisations only in equilibrium points

necessarily, the equilibrium points.

The question arises as to how we divide the entire nonlin-
ear domain of a nonlinear system into subdomains. There
are several possibilities. They are systematically described
in [15], and a description of the solutions can also be found
in [2], [18], [14].

One possible approach is to evenly divide the domain of
action or nonlinearity being modelled. This is useful for
problems of lower complexity and is illustrated in Figures
5.6 and 5.7.

It is also possible to divide the workspace into work sub-
spaces according to the operating regimes of the nonlinear
system. This is particularly useful when modelling, for
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Local-model networks and blended multiple-model systems
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Figure 5.6: Modelling a nonlinear dynamic system with
uniformly distributed local linear models

Operating space

Operating point

y(k+1)

y(k)

u(k)

Figure 5.7: Modelling a nonlinear dynamic system with
uniform distributed local linear models - detail from Fig-
ure 5.6

example, an industrial system that has different operating
regimes and shows different dynamic behaviours in each
of them. Again, this approach is only useful for a limited
number of applications and is illustrated in Figures 5.8
and 5.9.

Various ways of modelling local-model networks are de-
scribed in addition to the publications already mentioned
in [1], [4] with the software described in [5], the control
applications in [6], [17], [19] and many others.

Topics of interest

When linearising a nonlinear system ẋ = F(x,u), where
x is the vector of system states and u is the vector of
inputs, with the Taylor expansion at the operating point

State

Input

Equilibrium
curve

Figure 5.8: Division of the operating region of a nonlin-
ear system into operating sub-regions according to similar
operating characteristics

Operating
regime 2

Operating
regime 4

Operating
regime 3

Operating
regime 1

Figure 5.9: Alternative partition of the operational region
of the nonlinear system

(x0,u0) from a known nonlinear system, one does not ob-
tain a linear system but an affine system that is linear in
parameters.

ẋ = F(x,u) is linearised into
ẋ = F(x0,u0) +∇xF(x,u)(x− x0)+

∇uF(x,u)(u− u0) + higher order terms

A constant element defining the operating point of the sys-
tem (F(x0,u0)) means that the superposition condition is
not satisfied because the system is not linear, even if refor-
mulated to look linear. This constant element can be very
large, which means that the linearised model cannot be a
linear system with a small constant disturbance. When
we move from one working point to the next, the constant
element changes. This means that it is connected to the
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Local-model networks and blended multiple-model systems

dynamics of the system; therefore, it cannot be treated as
an external disturbance or even neglected.

This is just one of the problems that arise when modelling
nonlinear dynamic systems with a local-model network.

Another problem is the description of the dynamics of
a system in nonequilibrium regions [8],[16], which results
from the ‘tendency’ of states of stable dynamic systems to
converge to equilibrium regions. The system is thus only
briefly in regions away from the equilibrium curve (Figure
5.10) and only a small amount of data exists to describe
these regions. The problem would not be so great if the
systems could be arbitrarily excited in practice to obtain
information describing the entire operating region. How-
ever, due to the nature of the system and other constraints
on the excitation signal, the design of the experiment is
usually limited.

y ( k + 1 )

y ( k )

u ( k )

Figure 5.10: Switching from one local model to another

The next problem is to optimise the parameters that deter-
mine the selected dynamics to be described by the LMN.
Two approaches exist [16]:

• The first option is to describe the global dynamics
of the unknown system. In this case, we optimise
all the parameters of the local models that make up
the LMN jointly and at once using all the available
training data.

• Another option is to describe the local dynamics
by optimising the parameters of the individual local
models of the LMN. We use only the data describing
the relevant domain.

The optimisation process of the global dynamics usually
leads to a globally better description of the system, as
the free parameters of the local models of nonequilibrium
regions can be adjusted to increase the validity of the lo-
cal models over a wider range. The implication of better
global behaviour is the loss of information about the lo-
cal dynamics, since the parameters of the local models no

longer reflect it [8], [9], [16]. In contrast, if the local models
are optimised in the second way (i.e., locally), they repre-
sent the local dynamics and are thus more transparent and
useful for the analysis and design of the control system.
However, at the same time, local models are only valid for
the domain in which they have been identified, and this is
usually small. Consequently, some areas of system oper-
ation may remain unmodelled, leading to the problem of
modelling regions away from the equilibrium curve.

The problem of some regions not being modelled can also
be avoided by using a smaller vector of scheduling variables
[8]. Scheduling variables are those that determine the po-
sition of a local model in the nonlinear hyperspace. The
smaller the vector of scheduling variables or the shorter the
scheduling vector, the larger the range of validity of the
local models (Figure 5.11), but there is a problem with the
blending of the local models in areas ‘far’ from the equi-
librium curve. The blending can become uneven or even
discontinuous (Figures 5.12 and 5.13), which can also lead
to unstable control loops when used for control design [3].
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u ( k )

M
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y ( k ) u ( k )
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Figure 5.11: The interpretation of the vector of scheduling
variables

Figure 5.12: Original system [2]

5.1 Velocity-based linearisation

In the previous section, we mentioned that the Taylor
expansion is not an adequate method to obtain a suit-
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−5

0

5

−5

0

5
−3

−2

−1

0

1

2

3

u(k)y(k)

y
(k

+
1
)

−5

0

5

−5

0

5

−2

−1

0

1

u(k)y(k)

y
(k

+
1
)

Figure 5.13: Model with a reduced and complete vector of
scheduling variables [2]

able linear partial model. Better suited is its derivative:
velocity-based linearisation.

The velocity-based linearisation is a generalisation of the
usual linearisation around the operating point: the local
linear system belongs to each operating point of the whole
space of the operation of the nonlinear system (Figure
5.14) and not only to the equilibrium points. The theory
of velocity-based linearisation is discussed in [10] and [11],
and the demonstration software can be found in [13].

State

Input

Equilibrium
curve

Figure 5.14: Validity regions of local models

The velocity-based linearisation at any point, which may
be arbitrarily far from equilibrium given the value of the
scheduling vector, is equal to the velocity-based linearisa-
tion at one of the equilibrium points determined by the
same value of the scheduling vector. This fact is shown in
Figure 5.15.

Velocity-based linearisation

Let us look at how a known nonlinear system is described
by a velocity-based linearisation.

A nonlinear dynamic system is described by a system of
nonlinear differential equations

ẋ = F(x,u)

Input

State

Equilibrium
curve

Lines of
constant r

Figure 5.15: The effect of velocity-based linearisation out
of equilibrium

ẏ = G(x,u), (5.3)

where x ∈ Rn, u ∈ Rm, y is the vector of outputs, and
F,G are matrices of function dependences.

This system can equivalently be described in the form in
which the linear and nonlinear parts have been separated:

ẋ = Ax+Bu+ f(ρρρ)
y = Cx+Du+ g(ρρρ)
ρρρ = ρρρ(x,u), z ∇xρρρ, constants, (5.4)

where A,B,C,D are correspondingly large constant ma-
trices. The nonlinear functions f(·) and g(·) depend on the
vector of scheduling variables ρρρ = ρρρ(x,u) ∈ Rq, q ≤ m+n,
which expresses the nonlinear dependence of the dynamics
of the system on its state and input with constants ∇xρρρ,
∇uρρρ. When this system is differentiated, we obtain

ẋ = w
ẇ = (A+∇f(ρρρ)∇xρρρ)w + (B+∇f(ρρρ)∇uρρρ)u̇
ẏ = (C+∇g(ρρρ)∇xρρρ)w + (D+∇g(ρρρ)∇uρρρ)u̇.

If a result is ‘frozen’ at a value of the scheduling vector ρρρ1,
we obtain a form based on the velocity-based linearisation
at that particular point, which is a linear dynamic system:

ẋ = w
ẇ = (A+∇f(ρρρ1)∇xρρρ)w + (B+∇f(ρρρ1)∇uρρρ)u̇
ẏ = (C+∇g(ρρρ1)∇xρρρ)w + (D+∇g(ρρρ1)∇uρρρ)u̇.

The basic features of velocity-based linearisation can be
summarised in the following points:

• Velocity-based linearisation is associated with each
operating point (both equilibrium and nonequilib-
rium ).

55



Local-model networks and blended multiple-model systems

• The properties of the model obtained by velocity-
based linearisation are a completely accurate rep-
resentation of the properties of a nonlinear system
in the immediate vicinity of the relevant operating
point.

• The family of models obtained by velocity-based lin-
earisation around all operating points has no loss of
information with respect to the nonlinear dynamics
and is an alternative representation of the nonlinear
system.

Velocity-based linearisation addresses many of the short-
comings of ordinary linearisation theory around equilib-
rium points in terms of analysis and control design:

• it does not contain a constraint on the action around
equilibrium points;

• it provides a direct link between the solution ob-
tained in the form of a velocity-based linearisation
and the local solution of the nonlinear system;

• solutions obtained by velocity-based linearisation can
be composed into a global solution of the nonlinear
system;

• no prior knowledge of equilibrium points is required.

It should be noted that the method raises new problems,
such as the derivation of the input signal, but these are
relatively easy to solve in both analysis and system design.

Modelling example

Let us look at the velocity-based linearisation for a damped
pendulum [12] (Figure 5.16), which can be described by
the equation

θ̈ = Qθ̇ −Q sin θ + bF, (5.5)

where Q = 29.46 and b = 1.21, θ ∈ [0, π]. In a state
space of the form (5.4), where linear and nonlinear parts
are separated, the notation of the system is as follows:[

ẋ1
ẋ2

]
=

[
0 1
0 −Q

] [
x1
x2

]
+

[
0
b

]
u

+

[
0

−Q sin(x1)

]
y =

[
1 0

] [ x1
x2

]
, (5.6)

where the state x1 is θ, the state x2 is θ̇ and the input u
is F .

The system of equations presented in the form of a velocity-
based linearisation is as follows:[

ẋ1
ẋ2

]
=

[
w1

w2

]

0

p

p / 2

Q

Figure 5.16: Schematic of a pendulum

[
ẇ1

ẇ2

]
=

[
0 1

−Q cos(x1) −Q

] [
w1

w2

]
+

[
0
1

]
u̇

ẏ =
[
1 0

] [ w1

w2

]
. (5.7)

The linearisation, for example, at the point (x10 , x20 , u0)
is obtained by ‘freezing’ the equation at this point. In our
case, it is sufficient to insert only the value x10 into the
equation. In this way, we obtain from the system of equa-
tions (5.7) a completely linear system at the chosen point
and not an affine system as we would obtain using the
Taylor expansion on the system described with Equations
(5.6).

If we simulate the model in terms of a velocity-based lin-
earisation for analysis purposes, we need ẏ integrated, and
u̇ can be obtained via a filter that is the implementation
of the derivative. How we get rid of the derivative, which
mainly comes into play in control design, is discussed in
the next section. Figure 5.17 shows the correspondence
between the two system notations. The small discrepancy
is due to the approximation of the derivation and other
numerical reasons.

* * *

Velocity-based linearisation can also be applied to discrete-
time systems, although discretisation should not be used
for the derivatives and integrals required to implement
velocity-based linearisation, as the error is accumulated
by integrating the output signal.

Let us imagine a nonlinear dynamic system represented
by sampled data in the form of a discrete-time system:

x(k + 1) = F (x(k),u(k))

y(k) = G (x(k),u(k)) , (5.8)
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5.1 Velocity-based linearisation
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Figure 5.17: Response of the model and the pendulum,
which are very close, as shown in the bottom figure, which
illustrates the difference between the two responses

where the sampling time T is chosen small enough that
the description (5.8) captures all the nonlinear dynamics
of interest in the original system. We want to describe this
system by a linear model with variable parameters.

In order to be able to use a velocity-based linearisation, the
discrete-time system (5.8) is represented in the continuous-
time domain in terms of a delayed continuous-time signal
notation:

x(t+ T ) = F (x(t),u(t))

y(t) = G (x(t),u(t)) , (5.9)

where the values of the states x, outputs y and inputs u of
the discrete-time and continuous-time systems at sampling
times t = kT, k = 1, 2, . . ., are equal.

System (5.9) can be expressed in terms of an extended
local linear equivalence ELLE [10]:

x(t+ T ) = Ãx(t) + B̃u(t) + f(ρρρ),

y(t) = C̃x(t) + D̃u(t) + g(ρρρ), (5.10)

where x(t) ∈ Rn, u(t) ∈ Rm and Ã, B̃, C̃, D̃ are corre-
spondingly large constant matrices. The nonlinear func-
tions f(·) and g(·) depend on a vector of scheduling vari-
ables ρρρ = ρρρ(x(t),u(t)) ∈ Rq, q ≤ m + n, which expresses
the nonlinear dependence of the dynamics of the system
on its state and input with constant ∇xρρρ, ∇uρρρ [10].

The first equation of (5.10), relative to the operating point
(x,u) = (x0,u0), can be written using

δx(t) = x(t)− x0,

δu(t) = u(t)− u0,

as:

x(t+T ) = Ã (x0 + δx(t))+B̃ (u0 + δu(t))+ f(ρρρ). (5.11)

Assuming local linearity near the operating point (x0,u0)
follows:

x(t+ T )− x0 + x0 = Ãx0 + Ãδx(t) + B̃u0 + B̃δu(t)

+ f0 + fx0δx(t) + fu0δu(t),

(5.12)

δx(t+ T ) + x0 =
(
Ãx0 + B̃u0 + f0

)
+

(
Ã+ fx0

)
δx(t) +

(
B̃

+ fx0) δu(t),

(5.13)

δx(t+ T ) = (F0 − x0) +
(
Ã+ fx0

)
δx(t)

+
(
B̃+ fu0

)
δu(t), (5.14)

where F0 = F(x0,u0), f0 = f(x0,u0), fx0 = ∂f
∂x (x0,u0)

and fu0 = ∂f
∂u (x0,u0).

Differentiating Equation (5.14) over time, we obtain:

ẋ(t+ T ) =
(
Ã+ fx0

)
ẋ(t) +

(
B̃+ fu0

)
u̇(t)

(5.15)

ẋ(t+ T ) = A(ρρρ)ẋ(t) +B(ρρρ)u̇(t), (5.16)

where A(ρρρ) = (Ã + fx0) and B(ρρρ) = (B̃ + fu0). Under
the same conditions, the second equation of (5.10) can be
written as:

ẏ(t) = C(ρρρ)ẋ(t) +D(ρρρ)u̇(t), (5.17)

where C(ρρρ) = (C̃+ gx0) in D(ρρρ) = (D̃+ gu0),
z gx0 = ∂g

∂x (x0,u0) in gu0 = ∂g
∂u (x0,u0).

In the way described above, we can represent the opera-
tion of the system at any point defined by the vector of
scheduling variables ρρρ, with a vector of states x(t) and
input u(t). System (5.10) can thus be written:

ẋ(t+ T ) = A(ρρρ)ẋ(t) +B(ρρρ)u̇(t)
ẏ(t) = C(ρρρ)ẋ(t) +D(ρρρ)u̇(t),

where the matrices are

A(ρρρ) = Ã+
∂f

∂x
(x(t),u(t)),

B(ρρρ) = B̃+
∂f

∂u
(x(t),u(t)),

C(ρρρ) = C̃+
∂g

∂x
(x(t),u(t)),

D(ρρρ) = D̃+
∂g

∂u
(x(t),u(t)),

depending on the vector of scheduling variables ρρρ.

Let us consider an example of modelling a discrete-time
system with velocity-based linearisation.
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Local-model networks and blended multiple-model systems

Example of modelling a discrete-time system

We are interested in a velocity-based linearisation for a
nonlinear discrete-time system [17], described by the equa-
tion

y(k + 1) =
y(k)

1 + y2(k)
+ u(k)3 (5.18)

and with sampling time T = 1 s. In the state space, the
system (5.18) can be written as:

x(k + 1) =
x(k)

1 + x2(k)
+ u(k)3

y(k) = x(k). (5.19)

The representation of the system (5.19) in the continuous-
time domain is

x(t+ T ) =
x(t)

1 + x2(t)
+ u(t)3

y(t) = x(t), (5.20)

which is not an equivalent system but has the same re-
sponse at the moments of sampling. If we were to discre-
tise the system (5.20) with the sampling time T , we would
obtain the system (5.18).

The system (5.20) in the form of a velocity-based lineari-
sation is

ẋ(t+ T ) = (1− x(t)2)/(1 + x(t)2)2ẋ(t) + 3u(t)2u̇(t)
ẏ(t) = ẋ(t). (5.21)

Figure 5.18 shows the matching responses of the systems
(5.18) and (5.21). The difference between the responses of
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Figure 5.18: Response of the discrete-time system and the
continuous-time model in the velocity-based form

the two systems can be seen if observed carefully. The dif-
ference is due to the larger approximations, but it is much
smaller than if we tried to replace the derivatives and in-
tegrals of the velocity-based linearisation implementation
with discrete-time equivalents or an incremental discrete-
time model.

5.2 Blended multiple-model syste-
ms

The velocity-based linearisation method as described is a
useful tool for linearising nonlinear systems with an in-
finitely large family of linearised submodels. In practice,
we would also like to have a finite number of parame-
terised models. A velocity-based linearisation for when a
nonlinear system is modelled by blending a finite number
of linear submodels is described in detail in [12].

We select a small number of representative family mem-
bers and interpolate between them to replace the miss-
ing ones: the (approximate) finite parametrisation, which
is essentially a new form of blended multiple-model rep-
resentation. In contrast to the usual blended systems
(local-model network), velocity-based linearised systems
have the following advantages:

• they use linear local models - true linear, not affine;

• they establish a direct link between the dynamics
of the local models and the dynamics of the overall
blended system;

– the behaviour and properties of the whole sys-
tem are approximated locally by the behaviour
and properties of a weighted linear combination
of local models;

– better still, the behaviour of the whole system
is approximated locally by the weighted com-
bination of the behaviour and properties of the
local models.

Example of damped pendulum modelling

We will approximate a nonlinear system (5.5) and a family
of velocity-based linearised models by blending local mod-
els at angles 0, π/2 and π. We will use Gaussian weighting
functions denoted by µ, as in Figure 5.19.
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Figure 5.19: Weighting functions
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5.2 Blended multiple-model systems

The model based on the velocity-based linearisation at in-
termediate operating point of the approximated system is
obtained by blending the velocity-based linearised models
at the operating points corresponding to angles 0, π/2 and
π.

1.

ẋ = w
ẇ = (A+∇f(ρ1)∇xρ)w + (B+∇f(ρ1)∇uρ)u̇,

2.

ẋ = w
ẇ = (A+∇f(ρ2)∇xρ)w + (B+∇f(ρ2)∇uρ)u̇,

3.

ẋ = w
ẇ = (A+∇f(ρ3)∇xρ)w + (B+∇f(ρ3)∇uρ)u̇.

Weighted combination of solutions:

w̃ =

3∑
i=1

wiµi(ρ).

solution of weighted combination
= solution of velocity-based linearisation
≈ solution for the nonlinear system (localy

to the relevant operating point)

It is easy to see how few linearised systems (local models)
have been taken. Only three local models are sufficient to
cover the entire operating range [0, π]:

ẋ = w

ẇ =

3∑
i=1

[(A+∇f(ρi)∇xρ)w

+ (B+∇f(ρi)∇uρ)u̇]µi(ρ).

We can show that:

w̃ ≈ w, solution of weighted combination
≈ solution for the nonlinear system (locally)

This is a direct link between the dynamics of the local
models and the dynamics of the nonlinear blended system
and a consequence of the use of the velocity-based realisa-
tion and does not apply to the usual local-model networks.

The correspondence between the responses of the original
and the blended model is shown by Figures 5.20, 5.21, and
5.22.
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Figure 5.20: Fitting the nonlinearity of the blended model
(ẇ2) based on the velocity-based linearisation and the non-
linearity of the original system: full curve - nonlinear sys-
tem, dashed curve - blended model
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Figure 5.21: Response of a nonlinear system and the
blended model to a given input signal - the working range
is about π/4 rad, which is the most problematic range in
terms of blending
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Figure 5.22: The difference between the output of the non-
linear system and the blended model
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Local-model networks and blended multiple-model systems

Example of modelling a discrete-time system

The same procedure as in the previous example can be
used to model a discrete-time system. The system (5.18)
was approximated in its continuous form (5.20) with seven
uniformly distributed local models, which were blended
with Gaussian weighting functions.

The correspondence between the responses of the original
system and the blended model is shown in Figure 5.23.
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Figure 5.23: Response of a nonlinear discrete-time system
(5.18) and the response of the blended model (5.22)
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Chapter 6

Design of gain-scheduling control

The dynamic systems that surround us predominantly ex-
hibit nonlinear dynamics. Unfortunately, the methods for
their analysis and design are still relatively undeveloped.
In contrast, well-developed and well-known tools for lin-
ear dynamic systems exist. This means that the ‘divide
and conquer’ approach, in which a nonlinear problem is
divided into a series of linear problems, is attractive.

Gain-scheduling control [11] is a typical ‘divide and con-
quer’ control method used in many areas of automatic
control: from aeronautics to process engineering. The con-
ventional control design by gain scheduling consists of the
following steps:

1. the linearisation of a nonlinear system around a se-
lected number of equilibrium points;

2. the design of linear controllers for each of the linear
submodels;

3. the integration of the linear controllers into a global
nonlinear controller by scheduling the parameters or
signals of the controllers using scheduling variables.

A conventional gain-scheduling controller is limited to op-
erating near the equilibrium points. The scheduling vari-
ables used to schedule the parameters or signals of linear
controllers must be slow in conventional gain-scheduling
control. This means that their rate of change must be
slower than the rate of change of the output signal of
the closed-loop system. The theory supporting this very
widely used approach is relatively poorly developed. For
a more detailed consideration of this topic, see [9].

6.1 The design with velocity-based
linearisation

Velocity-based linearisation, which we described in the
previous chapter, solves a number of drawbacks of con-
ventional gain scheduling. In particular, it generalises the
control design by incorporating information about the dy-
namics of the system even at nonequilibrium points. As
mentioned in the previous chapter, this form of a model

is valid throughout the domain and is not limited to the
vicinity of the equilibrium points. This means that we
can also deal with fast and large-scale transitions between
distant operating regions of the system. Gain-scheduling-
control design based on a velocity-based linearisation looks
like this (Figure 6.1):

1. the development of the family of velocity-based lin-
earised local models for the nonlinear system;

2. the design of linear controllers for each of the linear
local models;

3. the integration of a nonlinear controller from a fam-
ily of velocity-based controllers designed in the pre-
vious step.

Nonlinear system to
be controlled

Realisation of nonlin
controller from family
of local controllers

.

Family of velocity
inearised models
ith suitable no. of

local models

l
w

Design of the family
of local controllers

Figure 6.1: The method of gain-scheduling control design
with velocity-based linearisation

The advantages of velocity-based linearisation for gain-
scheduling control are as follows.

• The gain-scheduling controller designed with velocity-
based linearisation works well even with large changes
in the setpoint and at large distances from the equi-
librium state.

• Such a controller does not require any of the signals
to change slowly. This means that it can also handle
the global inversion of the dynamics, which could be
described in a simplified way as the direct cancella-
tion of the poles and zeros of the controlled system
at the operating points.
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Design of gain-scheduling control

• The advantage of the design procedure is that the
knowledge of the design of linear systems can be
used.

For more details on velocity-based gain-scheduling con-
trol, see [6], [7], with the demonstration software at [10].
Examples of use are [2], [3], [4].

Implementation of controllers based on velocity-
based linearisation

The form of the system using velocity-based linearisation
(Figure 6.2) also contains an input-signal derivative in-
stead of the input signal itself and an output signal deriva-
tive instead of the output signal itself. The input signal
derivative is not desirable when implementing control, but
it can be avoided.

Figure 6.2: A system in the velocity-based linearisation
form

We can consider the fact that almost all controllers also
contain an integral part. In this case, the system can be
configured as shown in Figure 6.3.

Figure 6.3: Block diagrams showing input signal deriva-
tion bypass

Example of PI controller

Let us illustrate the implementation for bypassing the
signal derivation with a simple proportional-integral (PI)
controller:

K(s, ρ) = (K0(ρ) +
K1(ρ)

s
)

1

(s+ 50)
, (6.1)

where K(s, ρ) is the transfer function of the PI controller,
s is a complex variable, ρ is a scheduling variable, and
K0,K1 ∈ R are controller parameters. Figure 6.4 shows
the basic and undesirable form of implementation; Figure
6.5 shows how to avoid the derivative.

The implementation of the controller in the form of a sim-
ulation schematic of the package Matlab/Simulink for the
values K0 = 11 and K1 = 55 is shown in Figure 6.6.

Example of two differently implemented gain-sch-
eduling controllers

Let us consider the design of a controller in the velocity-
based form and in the conventional gain-scheduling form
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Figure 6.4: PI controller in velocity-based linearisation
form that cannot be implemented
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Figure 6.5: The final implementation of the PI controller
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Figure 6.6: An example of the controller implementation
of the controller K(s, ρ1) = (11+ 55

s )
1

(0.01s+1) in Simulink

for the control of the nonlinear system with input u and
output y:

ẏ = tanh(u− 10y) + 0.01(u− 10y). (6.2)

For both controllers, the nonlinearity of the controller pa-
rameters is the same, but they are implemented differently.
The simulation schematics are shown in Figure 6.7 and
the closed-loop responses are shown in Figure 6.8. From
the responses, it can be seen that the conventional gain-
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6.1 The design with velocity-based linearisation

scheduling control cannot keep up with large changes in
the setpoint signal.

1
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Figure 6.7: Simulink simulation schematic for the con-
troller in the conventional form (top), and in the velocity-
based form (bottom)
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Figure 6.8: Responses in closed loop with different control
implementations

* * *

Thus far, we have considered families of velocity-based lin-
earised models with an infinite number of links represent-
ing the modelled nonlinear system. In practice, we often
encounter the desire to approximate a nonlinear system by
a model consisting of a finite number of linear submodels.

Velocity-based linearisation also allows us to approximate
a model by interpolating a small number of linearised lo-
cal models. Furthermore, there is a direct relationship
between the solutions of these ‘local’ control problems
and the solution of the control problem for the nonlinear
blended system.

On this basis, we can design the gain-scheduling control
according to the following procedure:

• Design a linear controller for each of the linearisa-
tions of the nonlinear system, meaning for the local
models that are represented by a small number of
linear local models.

• Use the same type of blending functions as in the
approximated system model for blending the family
of controllers based on velocity-based linearisation.

• Provided that the blended system model for the con-
troller design is sufficiently accurate and the con-
troller is sufficiently robust, the family of controllers
is also suitable for the control of the system. This
condition applies to all design procedures using the
system model. It should be noted that for a success-
ful controller design, the system must be approxi-
mated by a larger number of models than a mini-
mum number of local models that satisfactorily de-
scribe the nonlinear dynamics. The reason for this
is that in the case of gain-scheduling we reproduce
the inverse dynamics of the process to some extent.

• Integration of a global nonlinear controller from the
designed family of local velocity-based controllers.

Summary of lessons on gain-scheduling design based on a
velocity-based linearisation:

• When we design a controller with gain scheduling,
we must make a nonlinear controller with a well-
defined family of local models obtained with velocity-
based linearisation, which is relatively straightfor-
ward.

• The derivation of noisy input signals is not required.

• We can obtain a nonlinear controller directly con-
nected to the family of linear controllers without the
need for additional parameter tuning.

• The family of velocity-based linearised system mod-
els has an infinite number of elements, but we often
want to work with a finite and smaller set of ele-
ments. We can design controllers for a small num-
ber of linearised system models and then mix them
with blending functions to create a global nonlinear
controller for the entire nonlinear system.

• When implementing controllers that are based on
velocity-based linearisation, care must be taken to
preserve the advantages obtained.

• Blending (i.e., interpolation) depends on the prop-
erties of the nonlinear system.

• Conventionally implemented blended controllers have
greater deviations from the desired behaviour with
increasing distance from the equilibrium points.
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Design of gain-scheduling control

• The direct relationship between properties of velocity-
based linearised models and properties of the blended
nonlinear model/controller greatly facilitates analy-
sis and design. This is a peculiarity of velocity-based
linearisation and does not apply to the usual forms
of systems with multiple models (local-model net-
works, fuzzy models, etc.).

• It should be borne in mind that the successful imple-
mentation of control depends on the correct choice of
the scheduling variable and the number of blending
functions.

6.2 Example of control design: a
single-segment robot manipu-
lator

The purpose of this example, described in more detail in
[1], is to illustrate the process of designing a control with
gain-scheduling based on the final number of linearised
submodels and to show the importance of correct imple-
mentation.

We illustrate the control design process and evaluate it
with a computer simulation using a single-segment robot
manipulator as an example. A segment of the robot ma-
nipulator is approximated by a homogeneous rod as shown
in Figure 6.9:

M = JΦ̈ +mg sinΦ
r

2
+ kvΦ̇

y = r(1− cosΦ), (6.3)

where y is the vertical deviation of the rod tip, Φ is the
angular deviation,M is the torque, J is the momentum,m
is the mass of the rod, g is the acceleration due to gravity,
r is the length of the rod, and kv is the viscous friction
coefficient.

This is a nonlinear system, which is unlikely to pose any
major problems for the design of the controller, regardless
of the design method used.

The design process is described in the following steps:

• The system is represented by 3 local models at 3
operating points, r = 0, 0.2 and 0.7, corresponding
to Φ = 0, 36 and 72 angular degrees.

• For the local models, we design local PI controllers
with the requirement that the closed-loop response
is free from overshoot and is the same over the entire
operating range.

• The local controllers are suitably blended into a non-
linear controller.

• Set the three blending functions in the form of a
Gaussian bell curve.

     

M  

F  
y

Figure 6.9: Schematic of a single-segment robot manipu-
lator

• The output variable y (i.e., the vertical deviation of
the rod tip) is the scheduling variable.

• A pole of the transfer function is added to attenuate
high-frequency noise and deviation and to facilitate
the implementation of the controller.

• We will compare two different designs of the blended
controller.

Conventional implementation of the gain-scheduling
controller

A conventional implementation of a blended controller with
output u, input e, states xc and blending functions µi

looks like this:

ẋci =
∑
i

Fi(xc, e)µi(ρ)ρ)ρ)

ui =
∑
i

Gi(xc, e)µi(ρρρ)

ρρρ(xc, e) = ∇xρρρxc +∇eρρρe, (6.4)

where normally

Fi(xc, e) = αi +Aixc +Bie, (6.5)

Gi(xc, e) = βi +Cixc +Die (6.6)

(6.7)

with the constants αi,Ai,Bi, βi,Ci,Di, which represents
the linearisation of the nonlinear system at an operating
point.

An example of a conventional implementation of a non-
linear PI controller is shown as a block diagram in Figure
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6.3 Example of the control design of a gas-liquid separator

6.10. The disadvantages of such an implementation can
be summarised in two observations:

• Predictable behaviour exists only near the equilib-
rium points.

• The scheduling variable must be changed slowly.
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Figure 6.10: Conventional design of a blended PI con-
troller

The scheduling variable is the output of the process y,
which means that the scheduling variable does not change
slowly. Implementation by blending control signals in-
stead of parameter blending has the following disadvan-
tages in addition to those already mentioned. The paral-
lel dynamic controllers can increase the order of the non-
linear controller proportionally to the number of active
controllers, which affects the dynamics of the closed loop.
The exception is when the local controllers have identical
poles when the controller parameters are blended, which
is the case in our example. Therefore, closed-loop systems
behave the same with conventionally implemented con-
trollers regardless of whether output signals of controllers
or controller parameters are blended.

Implementation of a gain-scheduling controller with
velocity-based linearisation

The implementation of blended controllers with velocity-
based linearisation proceeds as follows:

ẋc = wc

ẇc =

(∑
i

(ρρρ)

)
wc +

(∑
i

Biµi(ρρρ)

)
ė

u̇ =

(∑
i

Ciµi(ρρρ)

)
wwwc +

(∑
i

Diµi(ρρρ)

)
ė.

(6.8)

An example of a nonlinear PI controller in velocity-based
form is shown in the block diagram in Figure 6.11. The
disadvantage of the velocity-based linearisation implemen-
tation is that we have to be careful to implement it cor-
rectly.
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Figure 6.11: Implementation of blended controller with
velocity-based linearisation

The filter at the input of the controller, which we exploited
to avoid the derivative of the input signal, contains an
additional pole Ω to attenuate high frequencies, which also
limits the amount of noise in the signal.

A comparison of the closed-loop responses with differently
implemented controllers is shown in Figure 6.12. It is
clear that a closed-loop system with a conventionally im-
plemented controller does not behave as it should with
large changes in the setpoint, where the system quickly
transitions from one area of nonlinearity to another.
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Figure 6.12: Simulation results

6.3 Example of the control design
of a gas-liquid separator

The purpose of this example is to show a practically im-
plemented gain-scheduling control in a way that is close
to an engineer who normally designs process control. The
task was to design a pressure control for a semi-industrial
process plant for gas treatment in the process laboratory
of the Systems and Control Department at the Jožef Ste-
fan Institute. The schematic is shown in Figure 6.13. The
problem is described in more detail in [5]. The control
requirements are as follows:
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Design of gain-scheduling control

• The behaviour of the closed-loop response should
be as uniform as possible over the whole operating
range.

• The control should be implemented with programmable
logic controllers (PLCs) as typical representatives of
industrial control hardware.

• The chosen control algorithm should be understand-
able to an engineer who normally works with PLCs.

• For simplicity, gain scheduling should be done by
blending PI controllers and blending with triangular
weighting (membership)
functions.

• The control of the tank pressure must function with
different liquid levels in the tank in such a way that
the response is the same over the entire operating
range.

• We are solving a nonlinear problem because the dy-
namics of the system change when the liquid level
changes.
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Figure 6.13: The technological schematic of the gas-liquid
separator

The control structure is shown in Figure 6.14, from the
system-theory point of view by the block diagram in Fig-
ure 6.15, and from the implementation point of view by
the block diagram in Figure 6.16.

The design process was the same as described in the previ-
ous sections. Some features of this design can be described
as follows:

Ethernet

PLC Q PLC A

Plant

PC
Supervisory
computer

Data acquisition
and
preprocessing

Control
algorithm

Figure 6.14: Control system for the gas-liquid separator
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parameters Blending

Controller Plant
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Figure 6.15: Block diagram of closed loop
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Figure 6.16: Implementation diagram of a blended gain
scheduling controller for PLC

• We defined a suitable number of equilibrium points
in which we have placed the centres of the blend-
ing functions by finding a compromise between good
closed-loop behaviour (requiring as many functions
as possible) and simple implementation (requiring
as few functions as possible) due to the simplicity of
the hardware.

• Tuning of the local controllers at equilibrium points
was implemented with engineering tuning rules based
on the responses to very small steps of positive and
negative amplitude change around each equilibrium
point.

• The whole design process is iterative and interactive,
until the requirements are met. The design process
would have been easier if we had used a mathemat-
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ical model of the process, but that would have re-
quired additional effort and consequently cost in the
theoretical modelling of the plant, which is avoided
by engineers in practice whenever possible.

• Due to the physical background, the scheduling vari-
able was the height of the liquid, which is slower
than the closed-loop response of the gas pressure.
This means that the performance is not critical in
any case. In reality, we would have to work with a
vector of scheduling variables, but the analysis in [5]
shows that the vector of scheduling variables can be
simplified by one dominant variable: the fluid level
in the vessel.

The simulation results, shown in Figures 6.17 and 6.18,
show that the closed-loop system behaves differently with
upward and downward steps due to the nonlinearity of
the valve. Otherwise, we can conclude that we have a
satisfactory closed-loop response over the entire range of
interest with only three blended controllers.
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Figure 6.17: Simulation results

0 20 40 60 80 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Time [%]

P
re

s
s
u

re
[b

a
r]

0 20 40 60 80 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Time [%]

P
re

s
s
u

re
[b

a
r]

Figure 6.18: Simulation results - comparison of normalised
signals (all signals in one image): closed-loop response
with blended controller (left image), closed-loop response
with a single PI controller

The next step was to test the designed controller with a
PLC connected to a computer that simulated the dynam-
ics of the plant (Hardware-in-the-Loop (HIL) simulation),
as shown in Figure 6.19 The simulation results can be seen
in Figure 6.20.

Simulink

PC

PCI 20098C
Connection

board

D/A

A/D

PLC Q

Figure 6.19: Hardware-in-the-Loop-simulation implemen-
tation

Figure 6.20: Comparison of the closed loop responses at
the operating edge. The solid line represents the HIL re-
sponse and the dashed line represents the computer sim-
ulation response

Finally, the controller is evaluated at the plant. In Figure
6.21, we see that the controller controls the unit satisfac-
torily. The differences between the measured and simu-
lated behaviour can be seen in Figure 6.22. The difference
between the rise times of the measurements and the sim-
ulation is due to the fact that the mathematical model
we used for the simulation does not represent the dynam-
ics of the gas-liquid unit well enough. Regardless of the
observed discrepancies, it can be concluded that we were
able to achieve similar dynamic behaviour over the entire
operating range of the nonlinear system using a simple
algorithm and industrial hardware.
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Figure 6.21: Measurements of closed-loop response,
scheduling variable and control signal
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Figure 6.22: Close-up: comparison of the normalised sig-
nals between the measurements at the plant (upper image)
and the computer simulation (lower image)
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Chapter 7

Identification of nonlinear systems with
Gaussian processes

7.1 Gaussian Process

The Gaussian process is a stochastic process, also known
as a ‘random process’. A stochastic process is a gener-
alisation of a random variable to a domain of indepen-
dent variables. If the value of the random variable at each
point in this domain is distributed according to normal
(i.e., Gaussian) distribution, such a stochastic process is
called a Gaussian process (GP) [16]. Alternatively, if the
input to a stochastic process is a vector of independent
variables x, this process is Gaussian if the distribution of
the values of the function f(x) is Gaussian for each input
vector x.

The Gaussian-process model (abbreviated to ‘GP model’)
is usually referred to as a nonparametric probabilistic model
[23]. In this way, we allow a priori the description of
an unknown system with an infinite set of functions in-
stead of the usual restriction to a class of parameterised
functions (i.e., basis functions). In doing so, we assign a
higher probability to functions whose occurrence we con-
sider more likely in the description of the system (e.g.,
smooth, stationary, periodic).

The basics of modelling with a GP model are described
in [27] or the opening chapters in [23]; a more detailed
explanation can be found in [23, 22].

It should be noted that the input and output of the GP
model are not signals. As with other data-driven mod-
elling methods, the input to the model is a vector of sam-
pled values of independent variables x, and the output
of the GP model is a probability distribution of the out-
put f(x) for a given input vector. This follows from the
Bayesian modelling [20], which introduces the probability
aspect into the modelling. Let us look at the details of the
modelling with GP.

For any set N of input vectors xi, i = 1, . . . , N , the GP is
given by the vector of mean values of the
m = [m1(x1) . . .mN (xN )]T and the covariance matrix K,

K =

 K11 . . . K1N

...
. . .

...
KN1 . . . KNN

 , (7.1)

where:
mi(xi) = E[f(xi)] (7.2)

and the elements of the covariance matrix Kij are defined
as:

Kij = cov(f(xi), f(xj))

= E[(f(xi)−m(xi)(f(xj)−m(xj)], (7.3)

usually obtained by a covariance function C(xi,xj):

cov(f(xi), f(xj)) = C(xi,xj). (7.4)

If the distribution of a set of variables is Gaussian, the
distribution of any subset of the elements of that set is
also Gaussian, which is called the consistency condition.
This property is important for the performance of a GP
model when the elements of the covariance matrix of the
GP are obtained by a covariance function [23].

Covariance function

The value of the covariance function C(xi,xj) expresses
the correlation between the values of the outputs f(xi) and
f(xj) based on the values of the input vectors xi and xj .
The covariance function can be of arbitrary form if it forms
a nonnegative definite covariance matrix K for any set N
of input vectors xi, i = 1, . . . , N . The covariance functions
can be stationary (depending only on the distance between
the data), nonstationary, periodic, etc., and are given in
more detail in [23]. The covariance function defining the
form of the unknown function f(x) is usually not known
in advance but can be obtained from knowledge of the
general properties of the function f(x).

The most commonly used covariance function is the squared
exponential or Gaussian covariance function, which ex-
presses two general properties:

• smoothness, which indicates that the output of the
function being modelled changes relatively little when
the change in the input value is small. The corre-
lation is higher for two output values whose input
values are close to each other.
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• stationarity, where the covariance between two in-
put vectors depends only on their distance from each
other and not on their absolute position in the do-
main.

It is often used when there is no a priori knowledge about
the structure of the function to be modelled. Here, the co-
variance between two outputs yi = f(xi) and yj = f(xj):

CSE(xi,xj) = v1 exp

[
− 1

2

D∑
d=1

wd(x
d
i − xdj )

2

]
; (7.5)

D is the length of the input vector x or the number of
independent variables of the model. The parameters v1
and wd, d = 1, . . . , D of the covariance function are ar-
bitrary. They are defined as hyperparameters1 [22, 19]
to emphasise that these are parameters of an otherwise
nonparametric model 2, which determine the shape of the
unknown function f(x). The parameter v1 is the scaling
coefficient of the covariance, and the parameters wd reflect
the importance of each component of the input vector: the
larger the parameter wd, the more influential the change in
the component vector xd is on the value of the output. For
a given covariance function to form a positive definite co-
variance matrix, all parameters of the squared-exponential
covariance function must be greater than zero.

Modelling

The operation of the GP model is best illustrated by an
example. Suppose we want to describe a system

y = f(x) + v, (7.6)

where v is white Gaussian noise with mean 0 and variance
v0, v ∼ N (0, v0). Based on N input-output samples (i.e.,
pairs of vectors) (xi, yi) collected in the set D = {X,y},
we want to determine the unknown value of the output y∗

given the values of the input vector x∗. In the sequel, we
refer to the matrix X of dimension N ×D together with
the vector y of dimension N×1 as a training dataset, since
we use them to train or learn the GP model. A particular
input/output pair (xi, yi) from this dataset is also called
a ‘training data pair’ or ‘training point’. The pair (x∗, y∗)
is referred to as the test dataset or test input/output pair.

The training outputs yi, i = 1, . . . , N represent the values
of the random variables resulting from the Gaussian pro-
cess. We assume that the output of the system is smooth

1Neal [19] has shown that a forward neural network with a hidden
layer having an infinite number of neurons corresponds to a GP
model. Hyperparameters determine the distribution of the neural
network’s parameter values

2The model is nonparametric because in addition to the hyper-
parameters and the covariance function, we need information about
the behaviour of the function f(x) in the form of the input/output
data used in modelling

and the system is stationary and use the Gaussian co-
variance function (7.5) with parameters unknown at the
beginning, to form a covariance matrix K.

y ∼ N (0,K), where the elements of the covariance ma-
trix Kij = C(xi,xj) = CSE(xi,xj) + v0δij . CSE(xi,xj)
are the elements of the covariance matrix given by the co-
variance function (7.5) and v0δij describe the effect of the
noise at the output of the system, where δij is the Kro-
necker operator. Since we have assumed white noise, its
values are only correlated with themselves.

Since the (as yet unknown) output y∗ is an embodiment of
the same system as the training outputs y, we can write

[3]: yN+1 =
[

y
y∗

]
∼ N (0,KN+1). The joint covariance

matrix KN+1 of the vector yN+1 can be decomposed:

KN+1 =


 K

  k(x)


[
k(x)T

] [
k(x)

]

 . (7.7)

The matrix K is the covariance matrix of the training
data, k(x∗) is the vector of covariances between the train-
ing data and the test data, k(x∗) is the autocovariance of
the test data.

According to Bayes’ principle [20], the probability distri-
bution of the output y∗ can be divided into two parts: the
part that determines the probability of the learning out-
puts given the learning inputs (i.e., the marginal part):
p(y|X) ∼ N (0,K), and the conditional part that, given
the first part and the input x∗, predicts the probability
distribution of the output y∗. In formal terms, the calcula-
tion of the probability distribution of the output response
y∗ is as follows [16]:

p(y∗|x∗,y, XX) =

∫
p(y∗|x∗, θθθ,y,X)p(θθθ|y,X)dθθθ. (7.8)

Normally this integral is analytically intractable, but two
approximations [16] are available. The first, more com-
mon, is to approximate the integral using the most likely
values of the unknown hyperparameters θθθ:

p(y∗|x∗,y, XX) ≈ p(y∗|x∗, θθθ,y,X). (7.9)

We use those values of the hyperparameters θθθ, for which
the probability of training outputs y is greatest given the
values of the training inputs X and the covariance func-
tion C(., .). These are determined by searching for the
maximum marginal likelihood. To avoid constrained opti-
misation, we use the logarithm of the marginal likelihood
when maximising the marginal likelihood:

L(θθθ) = log(p(y|X, θθθ))

= −1

2
log(|K|)− 1

2
yTK−1y − N

2
log(2π),

(7.10)
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where θθθ is a vector of parameters, θθθ = [w1 . . . wD v1 v0]
T

andK covariance matrix for the training dataD. If the op-
timisation is performed with the conjugate-gradient method
or another gradient method, a further calculation requires
the derivation of the log likelihood after all hyperparame-
ters:

∂L(θθθ)
∂θi

= −1

2
Tr

(
K−1 ∂K

∂θi

)
+

1

2
yTK−1 ∂K

∂θi
K−1y. (7.11)

At each optimisation step, the inverse of the covariance
matrix K−1 must be calculated, which is computationally
challenging for large N .

The alternative to approximate the integral (7.8) is nu-
merical integration over the entire hyperparameter distri-
bution using the Markov Chain Monte Carlo method [16].

The method for determining the model hyperparameters
is the cross-validation method [23]. The values of the hy-
perparameters are searched as usual, except that we divide
the training data into k parts for k-fold cross-validation.
We use k − 1 parts for training and the remaining part
for validation. Repeat the process k times, each time with
different data for validation. An extreme example is leave-
one-out cross-validation (LOO cross-validation) with only
one data point for validation. The biggest problem with
this procedure is the computational complexity, as we have
to learn k models from [23].

Prediction

The joint distribution p(yN+1) is Gaussian. Therefore, the
conditional distribution is also Gaussian
p(y∗|x∗,y,X) = p(yN+1)

p(y|X) . By simplification [16, 27], the

predicted output of the system (7.6) is a Gaussian distri-
bution:

p(y∗|x∗,X,y) = N
(
µ(x∗), σ2(x∗)

)
(7.12)

with mean µ(x∗) and variance σ2(x∗):

µ(x∗) = k(x∗)TK−1y (7.13)

σ2(x∗) = k(x∗)− k(x∗)TK−1k(x∗), (7.14)

where k(x∗) = [C(x1,x
∗) . . . C(xN ,x

∗)] is the N × 1 co-
variance vector between the test data and the training
data mentioned above and k(x∗) = C(x∗,x∗) is the auto-
covariance of the test data. An illustration of the above
can be found in Figure 7.1.

Interpretation

The GP model consists of the following parts:

• pairs of input/output training data (points)D, which
represent the the behaviour of the unknown system,
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Figure 7.1: An illustration of modelling with Gaussian
processes

• mean function, and

• covariance function C(., .) with known or optimised
hyperparameters θθθ, which indicate how the data D
are related.

Since the model GP requires information about the un-
known function in the form of the training inputs and
outputs even after training, the model is not parametric.
The hyperparameters only indicate via a covariance func-
tion how the learning information is used for prediction,
but they do not contain any information about the func-
tion/system to be described.

We can interpret the vector k(x∗)TK−1 in the expression
for the mean of the predicted output (7.13) as a vector
of weights that determines the weighting of each training
output yi in y according to the distance between the train-
ing vector and the test input vector. This linear predictor
can be understood as smoothing the information about
the unknown system (training data) contained in the GP
model. Alternatively, the prediction mean µ(x∗) can be
thought of as a linear combination of N basis functions,
centred on the training points: y∗ =

∑N
i=1 αi C(x

∗,xi).
The output of the system is a sample from the resulting
normal distribution (7.12).

The low variance σ2(x∗) of the predicted distribution of
the output means more confidence in the prediction and
vice versa. If we look at the expression for the vari-
ance, we see that it consists of two parts [23]. The term
k(x∗)TK−1k(x∗) is subtracted from the first part k(x∗),
which is the a priori GP variance. This represents the
reduction in the a priori variance of GP at x∗ due to the
training data and increases as the covariance between the
training and test data increases. Simply put, the test in-
put is ‘closer’ if it is already known as training data, which
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means that the GP model has a higher confidence in the
prediction. The variance also depends on the position of
the test input data relative to the training input data,
which is one of the main advantages of the GP model over
other models.

Comparison with other types of models

General about GP model properties

The GP model differs from most models in that it is non-
parametric. This is because the information about the
unknown system is described both by the training data D
itself contained in the model and by the (hyper)parameters
of the covariance function and the covariance function it-
self.

The advantages of the GP model are:

• a measure of uncertainty in the output prediction
given by the variance and depending on the mutual
covariance (position) of the training input vectors
and the test input vectors;

• the possibility to include different types of prior knowl-
edge, e.g., linear local models, hysteresis, prior knowl-
edge about noise, static properties, etc.;

• relative ease of use;

• a small number of hyperparameters that simultane-
ously express the influence of the individual input
components and noise.

In addition to these advantages, the GP model also has
the following disadvantages:

• the nonparametric nature of the GP model, which
limits the application methods;

• the high computational cost of training when the
unknown system is described by a large number of
training data.

The computational effort can be reduced in several ways.
One way is to cluster the training information, meaning
into local models. Another way is to speed up the training
by using a smaller subset of the training set (e.g., [24]) or
by approximating the inverse of the covariance matrix,
which is the most computationally intensive. These and
other methods are described in [21, 23] and the references
therein.

Comparison

Let us review the differences between the GP model and
other models obtained by experimental modelling.

The comparison with methods that first determine the
structure (e.g., by theoretical modelling) and then opti-
mise the parameters with any optimisation method is not
quite appropriate, as it is a comparison between grey-box
and black-box modelling methods.

It is easier to compare the GP model with neural networks
in the context of modelling. It turns out that neural net-
works have two major problems in addition to the problem
of determining a suitable structure:

• the lack of transparency: the structure of the neu-
ral network does not reflect the structure of the un-
known system, and

• the curse of dimensionality, which expresses itself
in two ways. As the dimension of the input space
increases:

– the demand for data increases exponentially with
dimension, and

– the number of building blocks (neurons) in a
neural network also increases,

resulting in higher computational complexity and a
higher probability of terminating the optimisation
at a local minimum.

The advantages of the GP model over neural networks
are an indicator of confidence in the prediction of the GP
model, better performance of the GP model with a smaller
number of data, and a reduction in the ‘curse of dimen-
sionality’. For more on the relationship between the GP
model and neural networks, see [10, 17, 19].

Fuzzy logic and local-model networks reduce the problems
described for neural networks, but in certain cases the GP
model has potential advantages over them. In particular,
when small or incomplete data sets for identification are
involved.

Models such as Support Vector Machines (SVMs) are closely
related to the GP model, as the methods use kernel func-
tions like the GP model, where kernel functions are called
covariance functions. The main advantage of the GPmodel
over these models is the confidence in the prediction of the
GP model and the use of conditional probability to deter-
mine the parameters. The disadvantage is the complexity
of the calculations. The Relevance Method Vector Ma-
chines (RVM) is a special form of the GP model [23].

The connection between GP models and some other mod-
els is described in more detail in [17, 23] and the references
therein.
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7.2 Identification of dynamic systems with GP

Example of identification of a static nonlin-
earity with GP

Let us illustrate the use of the GP model with an example.
We want to identify a nonlinear function f(x) as a function
of the independent variable x:

f(x) = 4x2 + x− 6 sin(x) + 1 + v (7.15)

in the interval x ∈ [0, 1.2]. The variance of the Gaussian
noise v at the output is σ2 = 0.0025. The nonlinear func-
tion is represented by eight unevenly spaced pairs of train-
ing data representing the input/output relation x/f(x).
The function and the training data can be seen in Fig-
ure 7.2.
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Figure 7.2: Nonlinear function

For the identification, we choose the squared-exponential
covariance function (7.5). Since there is only one input,
the function simplifies to:

C(xi, xj) = v1 exp

[
−1

2
w(xi − xj)

2

]
+ v0δij . (7.16)

The optimisation leads to three hyperparameters, which
have the following values v1 = 13.8, w = 4.2 and v0 =
0.0065. The identification results are shown in Figure 7.3.
It can be observed that the model poorly describes the
unknown function in a region not described by the train-
ing data (x > 1) and that the prediction in a region with
sparse data (i.e., described by only a few points), namely
x > 0.7. A good feature of the GP model is that it alerts
us to a less well-described region by an increased variance
in Figure 7.3, which is particularly visible for x > 1. It
is less noticeable because of the lower noise is the sec-
ond property of the GP model, specifically the smoothing
of the training information it contains, where the model
smooths the noise contained in the training data to predict
the new output.
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Figure 7.3: Output of model (solid curve) with uncertainty
(grey area) and training data (stars)

7.2 Identification of dynamic sys-
tems with GP

The following sections summarise the good features of the
GP model when used for the identification of dynamic
systems:

• the prediction is given in the form of a Gaussian
distribution, and the variance can be seen as a mea-
sure of confidence in the prediction; this depends on
the quality and location of the training data in the
domain;3

• the number of hyperparameters that have to be op-
timised in the identification is relatively small;

• the model is quite robust, as it works relatively well
even with a small amount of training data, e.g., in
the nonequilibrium region;

• it is possible to incorporate different types of prior
knowledge, such as knowledge about static features,
local models, etc.;

• the curse of dimensionality does not increase expo-
nentially with the amount of data but with the third
power [22];

• the model does not use scheduling variables nor is
it necessary to divide the operational domain into
sub-domains, as in local-model networks.

Of course, the GP model also has some disadvantages:

3The ‘confidence measure’ in the predicted output is not exclu-
sively the domain of GP models. How it can be determined for fuzzy
models is described, for example, in [14]. In general, it is a property
of Bayesian modelling
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Identification of nonlinear systems with Gaussian processes

• it is a nonparametric model and, as such, useless
when a parametric model is needed, for example, for
control design;

• it is computationally expensive to use the model in
the case of a large training dataset; this is especially
true for the hyperparameter-optimisation phase.

So, when should one use the GP model for the identifica-
tion of dynamic systems instead of basis-function identifi-
cation methods? It should be done when:

• the information about the system is available in the
form of input/output data;

• the available data is poor, contains a lot of noise,
measurement errors, missing and unevenly distributed
data;

• we need an indication of the uncertainty of the pre-
diction;

• we have a relatively small, but not too small, number
of data relative to the number of regressors.

Identification procedure

In this subsection, we will first outline the identification
procedure of dynamic systems with the GP modelling [2].
In system identification, the model is obtained from mea-
surements, but of course we can also use our prior knowl-
edge of the system if we have it. Roughly speaking, identi-
fication with the GP model consists of the following steps:

1. defining the purpose of the model;

2. GP model set-up;

3. design of the experiment using a priori knowledge or
a priori measurements;

4. experiment and signal preprocessing to obtain data
for training and validation;

5. training of the GP model, i.e., optimisation of the
hyperparameters; and

6. validation of the GP model.

At each of these steps, we can decide whether to proceed
to the next identification step or return to one of the pre-
vious ones. The whole identification procedure is rarely
done at once. It is usually an iterative procedure. Sys-
tem identification is complete when we decide, based on
validation, that the model is sufficient for its purpose.

In the following, we will first briefly outline the different
steps of the identification process. Most of the steps in the
identification procedure are the same as in other system

identification methods [15], which we described in Chap-
ter 3. We will highlight the steps of the identification
procedure that differ significantly from the same steps in
other types of models due to the characteristics of the GP
model.

Definition of the purpose of the model

The purpose of identification is to obtain a model of a
system. The model is not an end in itself, but it is to
be used for a specific task. This task defines the criteria
that the model must fulfil in order to be accepted as a
satisfactory model. We can use the model for simulation,
response prediction, control design, system analysis, fault
diagnosis, and other functions.

Model set-up

The next step in the identification process is to build the
model. We set up the GP model based on a priori knowl-
edge about the process, previous measurements, or valida-
tion results in the iterative system identification process.
The construction contains:

• the selection of an appropriate covariance function,

• the selection of regressors, and

• the decision whether to include prior knowledge.

The choice of regressors when modelling dynamic systems
simultaneously determines the order of the model.

The design of experiment

The next step in the identification process is the design of
the experiment, which is done on the basis of knowledge
about the process gained from prior knowledge or previous
measurements and according to the model setup.

The design process is similar to other methods in the fol-
lowing aspects:

1. the selection of inputs and outputs, taking care to
measure all influencing variables;

2. the selection of the appropriate sampling time;

3. the selection of an appropriate excitation signal so
that the process is described over the entire oper-
ating range of interest; this is a feature of the GP
model that the model interpolates well in the region
where we have training data and extrapolates poorly
everywhere else.

78



7.2 Identification of dynamic systems with GP

In designing the experiment, we need to consider con-
straints such as the following:

• disturbances of the measured signals;

• limitations of the input signal amplitude for physical
reasons, safety reasons and limitations of the actua-
tors;

• the limited time available to perform the identifica-
tion, e.g., when measuring in an industrial environ-
ment.

Experiment and data processing

The experiment is carried out as we planned it in the pre-
vious section. The result of the experiment is measured
input and output signals of the process that represent its
behaviour.

The input to GP is not the signals but the sampled val-
ues that determine the behaviour of the system at certain
values of the regressors. These samples are obtained by
sampling the input and output signals of the system being
modelled. The sampling time is determined in the design
phase of the experiment.

An example of a possible selection of input/output train-
ing pairs (with index i) for a system with input signal u
and output signal y, which we would like to describe, for
example, with a second-order NARX model:

• training output i: the output of the process at time
t = kT : yi = y(k);

• corresponding training input: xi = [y(k − 1) y(k −
2) u(k − 1) u(k − 2)],

where T is the sampling time of the input and output
signals. The test data is constructed in the same way as
the training data.

A good feature of the GP model is that the significance of
each regressor is reflected by the value of the corresponding
hyperparameter. This is called automatic relevance detec-
tion (ARD). For a squared exponential covariance function
(7.5), for example, the larger the value of the hyperparam-
eter wd, the more significant the corresponding regressor
d. This property can only be used if the resulting training
samples are normalised before being used for training, so
that the sample values of the individual regressors are in
the same size class.

In the case of missing regressor values in a given regression
vector, we can either replace these values, for example,
with the average of the previous and subsequent samples
or discard such a regression vector or replace it with an-
other one if we have enough data available.

Model training

Training a GP model is the same whether it is a model
that is static or one that describes dynamic systems with
the NARX model. During training, we optimise the hy-
perparameters θθθ. These are not known in advance but
must be determined from the training data.

Usually, the maximum-marginal-likelihood optimisation is
used because it is simple but gives good results. To de-
termine the most probable values of the hyperparameters,
we can generally use any of the optimisation methods. [5]

Since there is a possibility that the optimisation process
becomes stuck at the local minimum, we usually repeat the
training process several times for different initial values of
the hyperparameters and validate the resulting models.

Model validation

The purpose of validation is to check the fit of the math-
ematical model and the system under consideration [18].
Although validation is a highly important step in the iden-
tification process that provides information about how
good the resulting model is, it is often not given sufficient
attention.

The quality of a model can be measured in several ways,
the most important aspects being:

• model plausibility (model verification): here we are
interested in the consistency of the
model with prior knowledge;

• model falseness: here we are usually interested in
the match between the model’s and the system’s re-
sponses; and

• model purposiveness: here we check whether the
model is appropriate for the intended task.

An overview of validation methods can be found in [18, 8],
for example.

Very often, in addition to the one-step-ahead prediction of
the model, we use the results of the simulation, which are
compared to the behaviour of the system for validation.
We validate the NARX model as an output-error model.
In the next subsection, we describe the simulation of the
GP model.

Simulation of dynamic GP models

Because of its form, the GP model is used as an input/output
discrete-time dynamic model, often as the NARX model
[25]. At time instant k, the input vector xk contains the
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past values of the inputs to the system u and the outputs
of the system y:

xk = [y(k − 1) . . . y(k − L) y(k − 1) . . . u(k − L)]. (7.17)

In general, there are two possibilities for the realisation of
a multi-step prediction:

• direct method, by which we learn multiple models,
for each prediction horizon separately, or

• iterative method, by which we learn one model for
one-step-ahead prediction, which we repeat itera-
tively.

The problem with the direct method is that we have to
choose the prediction horizon in advance. If we change it,
we have to learn a new model. Another problem with this
method is that for strongly nonlinear systems and large
horizons, a large number of data must be available [5].
Since the simulation is a multi-step-ahead prediction for
an infinite horizon, the direct method is limited.

In contrast, the model for a one-step-ahead prediction can
be built relatively easily, and by iteratively feeding back
the output values, it is possible to obtain a model for any
desired prediction horizon [5]. This method is also used
in basis-function models, for example, in the simulation of
systems with neural networks.

The problem with the iterative simulation method is error
accumulation as we move forward in time. One possible
solution to the problem is to eliminate the systematic er-
ror that arises from successive one-step-ahead predictions
[26, 9]. However, using the GP model, there is also the
possibility that we do not eliminate the error, but use the
variance of the prediction for the evaluation of response
[5, 13].

Simulation procedure

Suppose we know the response history of the dynamic sys-
tem of order L up to step k. Then, at step k+1, we know
the complete input vector of the GP model:

xk+1 = [y(k) . . . y(k − L+ 1) u(k) . . . u(k − L+ 1)]
(7.18)

In step k + 2, the new input vector for the GP model is:

xk+2 = [y(k + 1) y(k) . . . y(k − L+ 2) u(k + 1) . . .

u(k − L+ 2)]. (7.19)

The problem here is that we do not know the value of
the output at time k + 1. We do something similar to
neural-network models; instead of the real value of the
output of the system y(k + 1), we use its estimated value
ŷ(k + 1) = f(xk), calculated with the GP model. This is
how we proceed in all further steps.

We have two simulation options:

• simulation without uncertainty propagation or the
‘naive’ method, with which, similar to neural net-
works, we only take the mean value of the the pre-
dicted value and

• simulation with uncertainty propagation, in which all
or part of the information about the predicted distri-
bution is used. The procedure is described in detail
in [5], and a shortened version is given in [13, 4].
Since we cannot calculate the exact distributions at
the output of the model, we must again resort to ap-
proximations. We have two possible approximations
[5, 17]:

– analytical approximation of the statistical mo-
ments of the output distribution, where the out-
put with non-Gaussian distribution is approxi-
mated by a Gaussian distribution with the same
mean and variance, which is called a statistical-
moments-matching method (Figure 7.9), and

– numerical Monte-Carlo method.
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Figure 7.4: Simulation schema for the identified GP model
of the dynamic process

So, when should one use the first or the second method?

The uncertainty propagation method provides a more ac-
curate measure of confidence in the prediction, but it is
more computationally intensive for both the analytical
and numerical approximations. In contrast, the method
without uncertainty propagation is fast and simple and
still provides a meaningful measure of confidence in the
prediction. Admittedly, this measure is too optimistic be-
cause the cumulative error from the previous steps is not
taken into account in the prediction variance.

Variance propagation not only leads to more accurate pre-
diction output, but also affects the mean of the predicted
distribution. Depending on the nonlinearity of the sys-
tem, these differences can be larger or smaller. Since both
the ‘naive’ and uncertainty-propagation simulations are
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7.2 Identification of dynamic systems with GP

approximations, we can only guess by how much the re-
sults of the latter are more accurate. However, the model
uncertainty needs to be validated.

The ‘naive’ method is therefore used when we are inter-
ested in speed and simplicity, and the uncertainty prop-
agation when we are interested in a more accurate level
of confidence in the prediction and the simulation time is
not too limited.

Example of identification of a dynamic sys-
tem

Let us illustrate the method described by identifying a
first-order nonlinear dynamical system (3.9), which we will
model as a first order model:

y(k + 1) = f(y(k), u(k)). (7.20)

The function f is a GP, and we have a regression vector
with two variables D = 2. This means that we use the
squared-exponential covariance function to identify the
hyperparameters v0, v1, w1, w2.

Input and output signals

The main characteristics of the selected input and output
signals are as follows:

• The input signal is defined in the range [-1.3, 1.3].

• The sampling time selected according to the system
dynamics is 0.5 s.

• Input signal for identification (as in Chapter 3):

– is generated by a random number generator,

– the amount of data determines the dimension
of the covariance matrix,

– the size of the covariance matrix determines the
computational load.

• input signal for validation (the same as in Chapter
3):

– generated by a random-number generator, but
with different sampling and amplitude in the
range [-1.2,1.2],

– a second validation signal with an amplitude
outside the identified region, namely in the range
[-1,3,1,5].

The response of the simulation to the input identification
signal is shown as follows in Figure 7.5, and a comparison
of the model prediction with that of the original system is
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Figure 7.5: Simulation response to identification signal
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shown in Figures 7.6 and 7.7. The analytical approxima-
tion with statistical moment matching was implemented
for the simulation.

The validation simulation is shown in Figures 7.8 to 7.11.

Responses can be quantitatively assessed using various
statistical measures. Particularly common are the mean
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Figure 7.8: Simulation response to the first validation sig-
nal

absolute error and especially the mean of the square of er-
ror, which is especially suitable for all methods for which
the least-squares method is used for optimisation. An ex-
ample of a statistical measure that takes the entire dis-
tribution into account is the logarithm of the error of the
prediction density (LD), which gives more weight to the
error of those predictions where the model with a lower
variance has a higher confidence in the prediction. For all
three, the lower the value, the better the model.

These statistical measures are summarised in the following
equations and results for our example:

AE =
i = 1

N

∑
|ŷi − yi| = 0.028,

SE =
i = 1

N

∑
(ŷi − yi)

2 = 0.0016,

LD =
1

2N

∑
i

(log(2π) + log(σ2
i ) +

(ŷi − yi)
2

σ2
i

) = −1.3842,

where: AE - average value of the absolute error
SE - mean value of the square of the error
LD - logarithm of the error of the predictive density

7.3 Example of the identification
of the pH-neutralisation pro-
cess

Let us consider another example of the identification of
the pH-neutralisation process (2.20) [10], which we will
model with a higher order model. We have already used
it to show the modelling of neural networks in Chapter 3.

Identification

We iteratively selected the following model:
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Figure 7.9: Simulation response to second validation signal
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• covariance function:

C(xp,xq) = v1 exp

[
−1

2

D∑
d=1

wd(x
p
d − xqd)

2

]
+ v0δpq.

• Regressors: y(k−1), ..., y(k−4), u(k−1), ..., u(k−4),
implying ten hyperparameters to be optimised.

• This implies a higher computational cost. In our
experience, it is about 110 times higher than for
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the first-order system, which depends on the amount
of data used or the data required to model such a
higher-order system.

• Optimisation method: conjugate gradients.

• Simulation with the statistical-moments-matching
method.

Model validation with simulation is shown in Figures 7.12
to 7.14. The values of the statistical measures are AE =
0.1494, SE = 0.0512 and LD = 27.87.
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In Figure 7.14, the areas with higher variance can be seen,
which means lower confidence in the prediction. This is
due to the model being validated with a signal that is dy-
namically very different from the signal we used to identify
it. This means that the model is excited outside or at the
edge of the region where it was identified. Therefore, we
validate the system with a signal that also excites the sys-
tem in the region where it was identified (Figures 7.15 and
7.16), which gives better validation results.

7.4 Control design

As explained earlier, the GP model is a nonparametric
probabilistic model. The control-design methods that can
use this type of model are more or less the same as those
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Figure 7.14: Simulation response to the validation signal
together with the tolerance band
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Figure 7.15: Validation with the second input signal
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Figure 7.16: Simulation-error autocorrelation

described for use with neural networks. We will illustrate
the case of predictive control using a GP model for a first-
order system (3.9) [11] and for the pH-neutralisation pro-
cess [12] in the same way as in Chapter 4.

We have the predictive functional control with the cost
function

J = min
U(k)

[r(k + P )− ŷ(k + P )]
2
.

The chosen prediction horizon is eight samples long and
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the control horizon is one sample. When optimising the
control signal, we could consider the amplitude and rate
constraints at the input, output, and states, but we only
considered the constraint on variance
var ŷ(k + P ) ≤ kv, which implicitly accounts for other
constraints. In the range where the system is constrained,
we cannot identify a good model or even any model at all,
which is indicated by the large value of the variance.

The results of the setpoint tracking of the first-order sys-
tem (3.9) without considering the constraints are shown in
Figures 7.17 and 7.18, and with the constraint in Figures
7.19 and 7.20.
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Figure 7.17: Closed-loop response - the unconstrained case
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Figure 7.18: Standard deviation

The same control principle was applied to the process of
pH neutralisation. The results of the setpoint tracking
without considering the constraint are shown in Figures
7.21 and 7.22, and with the constraint in Figures 7.23 and
7.24.

A simple conclusion that can be drawn from the results
shown is that predictive control can make sense of the
information about model uncertainty. Predictive control
does not allow the process to enter a region where the
prediction deviation is greater than a prescribed threshold,
and in this way it maintains the safety of the control.
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Figure 7.19: Closed-loop response: the case with the vari-
ance constraint at 0.132
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Figure 7.20: Standard deviation
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Figure 7.21: pH-process: closed-loop response – the un-
constrained case
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Figure 7.22: Standard deviation
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Figure 7.23: pH process: closed-loop response – the case
with variance constraint at 0.152
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Figure 7.24: Standard deviation
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