Vector Space Representation of Movies and Music Albums
Using Node Embedding Methods

Vid Kersi¢!
YUniversity of Maribor, Faculty of Electrical Engineering and Computer Science

Koroska cesta 46, 2000 Maribor
E-mail: vid.kersic@um.si

Abstract

The performance of machine learning methods improves
every year. While commonly used machine learning meth-
ods that process data in vector form can efficiently per-
form many tasks, non-Euclidean data structures like
graphs are often present in different real-world problems.
Therefore, in recent years, machine learning methods for
node embedding, which transform nodes of graphs into
vector space, have gained a lot of traction. In this paper,
we conduct an analysis of movies and music albums to
explore their usage in recommender systems. We con-
struct graphs from Wikipedia articles by following the
contained hyperlinks. Different node embedding meth-
ods are used to embed nodes of the obtained graphs in a
vector space, which allows us to analyze them more effi-
ciently, focusing on visualization, similarity (recommen-
dations), and classification of movies and albums into
genres. We achieved a classification accuracy of 88.5%
for movies and 89.3% for albums.

1 Introduction

Machine learning has made great strides in recent years,
successfully performing various tasks like classification,
regression, and clustering [1]. Although entirely differ-
ent machine learning methods are used for the mentioned
tasks, they have a similar input data structure, which is a
one-dimensional, two-dimensional, or high-dimensional
vector [2]. But nowadays, many scientific fields like so-
cial networks deal with non-Euclidean data structures like
graphs [2]. For that reason, machine learning methods for
node embedding, which transform nodes of graphs into
vector space, are becoming very popular.

Node embedding methods have been successfully
used to increase the effectiveness of recommender sys-
tems. Embedding nodes of graphs constructed from Wiki-
pedia articles improved the ability to find similar histori-
cal figures, perform a recommendation of articles to edi-
tors of Wikipedia, and classify books into genres [3, 4, 5].
In this paper, we use node embedding methods to ana-
lyze movies and music albums and explore their usability
in recommender systems, e.g. movie and music album
recommendation. We construct a graph from Wikipedia
articles by following the available hyperlinks and then us-
ing machine learning methods for node embedding on the
obtained graphs analyze movies and albums, focusing on

ERK'2020, Portoroz, 460-463 460

visualization, similarity (recommendations), and classifi-
cation of movies and albums into genres.

In the next sections, we review different machine
learning methods for node embedding, describe the data
collection and graph construction process, and present the
results of the analysis of movies and music albums.

2 Node Embedding

A graph is a data structure defined as G = (V, E), where
V is a set of nodes, and F is a set of edges. Node embed-
ding is defined as:

f:V R4 (D)

where d is the dimension of vector space. Node v; € V' is
transformed into vector z; € R?%. The objective of node
embedding is to preserve the relations between the nodes
and the structure of the graph. Over the past few years,
many machine learning methods for the vector embed-
ding of graph nodes have been introduced. In this section,
we review the methods that were used in this analysis.

The first widely used node embedding methods were
shallow embedding methods, where a single matrix Z €
R4*IVI represents the embedding of all nodes (i-th col-
umn is vector z;) [6]. One of the most popular shal-
low embedding methods is Deepwalk [7]. DeepWalk is
a random-walk based method that uses the Skip-gram
model to learn node embedding. Skip-gram is trained on
the generated random walks in an unsupervised manner.
Its objective is to embed a pair of nodes that are close to
each other (inside the sliding window) in random walks
to also be close in the vector space, where the similar-
ity between vectors is measured using the inner product.
The probability of node v; appearing close to node v; is
defined by the softmax function:

T
eZi Zj

p(vjlv:) = T)
ka ev ei ok
During training, Skip-gram attempts to minimize the

following cost function:

> —log (p(v;|vi)), 3)

(vi Vs JED

E:

where D is the training set of pairs of nodes from the gen-
erated random walks. Since the normalization factor in

softmax is expensive to calculate, DeepWalk uses hierar-
chical softmax [7]. Another popular random-walk based
method is node2vec, which differs slightly from Deep-
Walk in the process of generating random walks and the
calculation of the normalizing factor [8]. Random walks
are generated in a biased way, using the hyperparameters
p and g. While p determines the likelihood of the walk re-
turning to the previous node, ¢ determines the likelihood
of going further away from the last node. Therefore, ran-
dom walks can be biased towards a breadth-first search
(BFS) and depth-first search (DFS) of a graph. Instead
of hierarchical softmax, node2vec employs negative sam-
pling [8].

Shallow embedding methods have some limitations,
like the inability to capture non-linearity in a graph struc-
ture [6]. Methods based on deep autoencoders like SDNE
(Structural Deep Network Embedding) were introduced
to solve the non-linearity problem [9]. Deep autoencoders
consist of two deep neural networks - an encoder and a
decoder. The encoder transforms input data into the em-
bedding, while the decoder tries to reconstruct the input
data from the embedding. SDNE is a semi-supervised
deep model that attempts to preserve the graph’s local and
global structure using first-order and second-order prox-
imities. First-order proximity describes the local struc-
ture and aims to produce similar embeddings for directly
connected nodes. Second-order proximity describes the
global structure and seeks to embed nodes with similar
neighborhood structures closer to one another in the vec-
tor space. The loss functions of proximities and regular-
ization define the loss function of SDNE:

n

List =« Z sij |z — Zj||§

ij*l

£2nd - Z ||

»Cmi:c = »Clst + LQnd + 7£regv

4
i — 8§ ®b||2 @

where s; is the neighborhood vector of node v; (s;; €
s; > 0 if edge between nodes v; and v; exists) and §; is
the reconstructed neighborhood vector. The values o, b;,
and +y are hyperparameters.

3 Data Collection and Graph Construction

The analysis of movies and music albums is done on the
graphs constructed from Wikipedia articles and hyper-
links. Because we did not find any publicly available
dataset containing movies and albums with hyperlinks to
their Wikipedia articles, we created the dataset ourselves
using web scraping. We extracted the list of movies from
the website TheNumbers, where we chose five genres and
100 movies per genre: superhero, kids fiction, horror,
musical, and fantasy [10]. A similar procedure was re-
peated for albums. We extracted the list from the website
DigitalDreamDoor and also chose five genres (100 al-
bums per genre): country, rap, metal, rock, and electronic
[11]. To obtain Wikipedia articles of movies and albums,
we wrote a custom script. Because some movies and al-

461

bums do not have Wikipedia articles, we had to check the
lists manually. Table 1 shows the number of movies and
albums per genre after data cleansing.

Table 1: The number of movies and albums per genre after data
cleansing.

Genre | Movies | Albums
Genre 1 100 93
Genre 2 100 100
Genre 3 100 100
Genre 4 93 86
Genre 5 92 99

Total 485 478

From the lists of movies and albums, we constructed
the graphs by following hyperlinks in the articles. We
created two graphs: one for movies and one for albums.
Nodes in graphs are Wikipedia articles, and edges are
hyperlinks between articles. Both graphs are undirected
and unweighted. We only included hyperlinks from sec-
tions of the articles, which in our opinion best charac-
terize movies and albums. The hyperlinks selection is
one of the most critical steps because wrongly selected
hyperlinks can connect completely different movies and
albums (e.g. hyperlinks to film studios). We constructed
graphs by running DFS with depth limited to 2 from ev-
ery movie and album from the list. All of the discovered
Wikipedia articles, not only those describing movies and
albums, were added to the graphs. The constructed graph
for movies consists of 3,216 nodes and 7,520 edges, while
the graph for albums consists of 3,601 nodes and 9,289
edges. Figure 1 shows the graph for movies.

Figure 1: The constructed graph for movies. The colors of the
nodes represent genres of movies: superhero (blue), kids fiction
(green), horror (brown), musical (turquoise), and fantasy (pink).
White nodes represent other Wikipedia articles.

4 Results

We compared the embeddings produced by four methods:
DeepWalk, node2vec-BFS, node2vec-DFS, and SDNE.

The dimension of the node embedding was set to 128.
The hyperparameters of the methods were tuned using a
random and grid search. We generated 25 random walks
from every node in random walk-based methods. For
DeepWalk, we used window size 5 for movies and 15
for albums, and walk length 80 for movies and 60 for al-
bums. For node2vec-BFS, we used p=0.5, ¢=2.0, window
size 10 for movies and 15 for albums, and walk length
80 for both movies and albums. For node2vec-DFS, we
used p=2.0, ¢=0.5, window size 15 for both movies and
albums, and walk length 80 for both movies and albums.
For SDNE, we used =107 and =150 for both movies
and albums. The deep neural networks of SDNE con-
sisted of two layers (3216-128 and 128-3216) for movies
and three layers (3601-512-128 and 128-512-3601) for
albums.

In this analysis, we only kept the embeddings of Wiki-
pedia articles for movies and albums from the lists. We
reduced the dimensionality of embeddings from 128 to 2
using principal component analysis (PCA) for visualiza-
tion. Figure 2 shows the closest vector embeddings to the
superhero movie The Dark Knight. Figure 3 shows the
embeddings of all movies and albums colored by their
genre.

Hellboy

Batman Man of Steel
____Hellboy II: The Golden Army
Batman Forever Batmasupeginan IV: Thé Quest for Peace
Watchmen Aquaman
Batman Returns SUpﬁ%‘apwlce League
Shazam! -
The RlRt antern

The Dark Knight Rises

Catwoman
Deadpool

Figure 2: The closest vector embeddings to the superhero movie
The Dark Knight produced by the method node2vec-DFS. All
visualized movies are superhero movies, and many are from the
Batman film series.

20 . 15 [
a) g b Q)
15 A 10 l)m'é,"t‘-..
10 Rt B R
o 8-

os puCAs e . of ¥ : > ¢ o8
.]

ol e et rte wn Lt %" Jeas Sl it e

O
E e

. Tle o 20 o
"'3' 3

Y 0s 10 15 20 -0 -05 00 0s 10 15

Figure 3: The embeddings of movies (a) and albums (b) pro-
duced by the method node2vec-DFS. Colors of the visualized
vector embeddings represent genres (movies: superhero (vi-
olet), kids fiction (blue), horror (turquoise), musical (green),
fantasy (yellow); albums: country (violet), rap (blue), metal
(turquoise), rock (green), electronic (yellow)). Almost all
movies and albums within the same genre have similar vector
embeddings. Many musicals, fantasy, and kids fiction movies
overlap. The reason is that many kids fiction movies are also
fantasy movies, and they contain similar hyperlinks as fantasy
movies. Some electronic, rock, and metal albums also overlap.

462

Cosine similarity was used to calculate the similarity
between vector embeddings:

ZiTZj

cos(0) 2il]2,] 3)

The similarity between vectors is used for recommend-
ing movies and music albums. Table 2 shows the five
most similar movies to the superhero movie X-Men: Dark
Phoenix, and Table 3 shows the five most similar albums
to the rap album Escape. SDNE embeds similar movies
and albums much closer in a vector space than node2vec-
DFS. However, because the graphs contain all articles
from Wikipedia, the movie (album) articles can be far
apart from each other. Because SDNE uses first and
second-order proximities as similarity measurements, it
fails to embed well articles that do not have a lot of simi-
larity with others and are further away. On the other hand,
random walk-based methods can explore a deeper part of
the graphs.

Table 2: The top five most similar movies to the superhero
movie X-Men: Dark Phoenix using cosine similarity as a sim-
ilarity measurement between embeddings. For SDNE, all
movies are from the same film series, while for node2vec-DFS
the last one is not, but is still a superhero movie from the same
film studio.

Method Movie Cos. sim.
X-Men: Days of Future Past 0.852
X-Men: The Last Stand 0.815
node2vec-DFS X-Men 2 0.787
X-Men: First Class 0.785
Avengers: Endgame 0.759
X-Men: Days of Future Past 0.929
X-Men: First Class 0.922
SDNE X-Men 2 0.904
X-Men: The Last Stand 0.904
X-Men: Apocalypse 0.878

Table 3: The top five most similar albums to the rap album Es-
cape using cosine similarity as a similarity measurement be-
tween embeddings. In this case, SDNE generates similar em-
beddings for entirely different albums, while in the case of
node2vec-DFS, all albums are from the same genre.

Method Album Cos. sim.
Raising Hell 0.621
How Ya Like Me Now 0.587
node2vec-DFS King of Rock 0.583
Run-D.M.C. 0.566
The Low End Theory 0.501
Ride the Lightning 0.728
Mantronix: The Album 0.723
SDNE Demon Days 0.722
Black Sabbath 0.712
Post 0.709

Multiclass logistic regression (one-vs-all) with 10-fold
cross-validation was used for classification into genres.
We evaluated classification performance using accuracy,
precision, recall, and F1 score. Table 4 shows the clas-
sification accuracy of different methods. All methods

achieve high classification accuracy for movies, while
SDNE fails for albums. Because node2vec-BFS and
SDNE achieve lower classification accuracy for albums,
we concluded that album articles are more distant from
each other than movie articles. Tables 5 and 6 show de-
tailed classification results for movies and albums using
node2vec-DFS. We achieved F1 scores higher than 0.75
for all genres.

Table 4: Classification accuracy for movies and albums. The
method node2vec-DFS achieved the highest classification ac-
curacy - 88.5% for movies and 89.3% for albums.

Method | Movies | Albums
DeepWalk | 0.885 0.887
node2vec-BFS 0.882 0.867
node2vec-DFS 0.885 0.893
SDNE | 0.854 0.662

Table 5: Detailed classification results for movies using the
method node2vec-DFS. The worst classified movie genres were
kids fiction and fantasy, which can also be seen on the node em-
bedding visualization.

Genre | Precision | Recall F1
superhero 0.973 0.954 | 0.964
kids fiction 0.811 0.856 | 0.833
horror 0.942 0.948 | 0.945
musical 0.890 0.884 | 0.887
fantasy 0.806 0.774 | 0.789

Table 6: Detailed classification results for albums using the
method node2vec-DFS. The worst classified album genres were
rock and electronic, while the other three genres had an F1 score
higher than 0.92.

Genre | Precision | Recall F1
country 0.903 0.942 | 0.922
rap 0.937 0.950 | 0.943
metal 0.957 0.928 | 0.942
rock 0.796 0.781 | 0.788
electronic 0.861 0.853 | 0.857

5 Conclusion

In this paper, we used node embedding methods on the
graphs constructed from Wikipedia articles to analyze
movies and music albums, and explored their usability
in recommender systems, focusing on visualization, sim-
ilarity (recommendations), and classification into genres.
We compared embeddings produced by four node em-
bedding methods. The node2vec-DFS method achieved
the best classification accuracy for both movies and al-
bums: 88.5% for movies and 89.3% for albums. While all

463

methods achieve high classification accuracy for movies,
SDNE fails for albums. We have shown that calculat-
ing similarities between vectors produced by node em-
bedding methods can be used for recommending movies
and albums.

In the future, the analysis can be expanded in sev-
eral ways. The nodes of the graphs can be extended with
features, and different neighborhood aggregation meth-
ods (e.g. a graph convolutional network) can be used to
produce node embeddings. An analysis of less extensive
Wikipedia articles, which do not contain as many hyper-
links as movie and album articles, can also be performed.

6 Acknowledgements

This paper is closely related to my bachelor’s thesis. I
want to thank associate professor Damjan Strnad and as-
sistant Stefan Kohek for their guidance and assistance.

References

[1] G. Rebala, A. Ravi, and S. Churiwala: An Introduction to
Machine Learning. Cham: Springer International Publish-
ing, 2019.

[2] M. M. Bronstein, J. Bruna, Y. Lecun, A. Szlam, and P. Van-
dergheynst: Geometric Deep Learning: Going beyond Eu-
clidean data, IEEE Signal Processing Magazine, vol. 34,
no. 4. Institute of Electrical and Electronics Engineers Inc.,
pp- 18-42, 01-Jul-2017, doi: 10.1109/MSP.2017.2693418.

[3] Y. Chen, B. Perozzi, and S. Skiena: Vector-based similarity
measurements for historical figures, Inf. Syst., vol. 64, pp.
163-174, Mar. 2017, doi: 10.1016/}.is.2016.07.001.

[4] O. Moskalenko: Convolutional Graph Embeddings for ar-
ticle recommendation in Wikipedia, 2019.

[5] Building a Recommendation System Using
Neural Network Embeddings. [Online]. Avail-
able: https://towardsdatascience.com/building-

a-recommendation-system-using-neural-network-
embeddings-1ef92e5c¢80c9. [Accessed: 19-Jun-2020].

[6] W.L. Hamilton, R. Ying, and J. Leskovec: Representation
Learning on Graphs: Methods and Applications, Sep. 2017,
arXiv: 1709.05584.

[7]1 B. Perozzi, R. Al-Rfou, and S. Skiena: Deepwalk: Online
learning of social representations, in Proceedings of the
20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 2014, pp. 701-710.

[8] A. Grover and J. Leskovec: node2vec: Scalable Feature
Learning for Networks, Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. Data Min., vol. 13-17-Augu, pp. 855-864,
Jul. 2016.

[9] D. Wang, P. Cui, and W. Zhu: Structural Deep Net-
work Embedding, in Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2016, vol. 13-17-Augu, pp. 1225-1234, doi:
10.1145/2939672.2939753.

[10] The Numbers - Where Data and the Movie Business Meet.
[Online]. Available: https://www.the-numbers.com/. [Ac-
cessed: 19-Jun-2020].

[11] DigitalDreamDoor.com - Greatest Music,
Movie, and Book lists. [Online]. Available:
https://digitaldreamdoor.com/. [Accessed: 19-Jun-2020].

