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Augmented marked graphs possess some structural characteristics desirable for modelling shared 
resource systems such as manufacturing systems. However, there are only a few known properties on 
augmented marked graphs, and these known properties are mainly on liveness and reversibility. In this 
paper, the properties of augmented marked graphs are reviewed extensively. Siphon-based and cycle-
based characterisations for liveness and reversibility as well as transformation-based characterisations 
for boundedness and conservativeness are proposed. Pretty simple conditions and procedures are then 
derived for checking the liveness, reversibility, boundedness and conservativeness of augmented marked 
graphs. The dining philosopher problem is used for illustration. 
Povzetek: Opisane so lastnosti grafov za predstavitev sistemov z deljenimi viri. 

 

1 Introduction 
Augmented marked graphs were first introduced by Chu 
and Xie [1]. They are not well known as compared to 
other sub-classes of Petri nets such as free-choice nets [2], 
and the properties of augmented marked graphs are not 
studied extensively. However, augmented marked graphs 
possess a structure which is desirable for modelling 
shared resources, and for this reason, they are often used 
in modelling shared resource systems, such as 
manufacturing systems [1, 3, 4, 5, 6, 7]. 

In the literature, the studies of augmented marked 
graphs mainly focus on deadlock-freeness, liveness and 
reversibility. Based on mathematical programming, Chu 
and Xie proposed a necessary and sufficient condition of 
live and reversible augmented marked graphs, which 
checks the existence of potential deadlocks [1]. However, 
this involves analysis on the flow of tokens during 
execution and the checking cannot be simply made by 
looking into the structure. Chu and Xie also proposed a 
siphon-based characterisation for live and reversible 
augmented marked graphs but it provides a sufficient 
condition only. The boundedness and conservativeness of 
augmented marked graphs were not investigated. 

There are other studies of augmented marked graphs, 
which are mainly on the property-preserving synthesis or 
composition of augmented marked graphs. Jeng proposed 
a synthesis method of process nets for manufacturing 
system design [4, 5]. (Note : Process nets broadly cover 
augmented marked graphs.) Based on siphons and the 
firability of transitions, sufficient conditions for liveness 
and reversibility are derived. Huang also investigated the 
composition of augmented marked graphs via common 
resource places, so that some essential properties such as 
liveness, boundedness and reversibility can be preserved 
under certain conditions [6]. 

In our previous works on augmented marked graphs, 
we proposed new characterisations for live and reversible 
augmented marked graphs as well as the synthesis of 
augmented marked graphs for system design [7, 8, 9, 10, 
11]. This paper extends our previous works with a focus 
on the properties of augmented marked graphs. It reports 
the following two contributions. 

First, we propose a number of characterisations for 
live and reversible augmented marked graphs, based on 
siphons and cycles. In particular, a new property called 
R-inclusion property is introduced to characterise the 
siphon-trap property of augmented marked graphs. With 
this property, a pretty simple necessary and sufficient 
condition for live and reversible augmented marked 
graphs is then proposed. Second, for analysis of the 
boundedness and conservativeness of augmented marked 
graphs, a R-transform is introduced to transform an 
augmented marked graph into marked graphs. With the 
R-transform, a pretty simple necessary and sufficient 
condition for bounded and conservative augmented 
marked graphs is proposed. These characterisations will 
be illustrated using the dining philosopher problem. 

The rest of this paper is organised as follows. 
Following this introduction, Section 2 provides the 
preliminaries to be used in this paper. Section 3 briefly 
introduces augmented marked graphs. Section 4 focus on 
liveness and reversibility of augmented marked graphs, 
where siphon-based and cycle-based characterisations are 
proposed. Section 5 then focus on boundedness and 
conservativeness of augmented marked graphs, where 
transformation-based characterisations are proposed. 
Section 6 illustrates these characterisations using the 
dining philosopher example. Finally, Section 7 concludes 
our results. 

It should be noted that, in this paper, proofs of the 
proposed properties are shown in the appendix. 



86 Informatica 32 (2008) 85–94 K.S. Cheung  
 

2 Preliminary 
This section provides the preliminaries to be used in this 
paper for those readers who are not familiar with Petri 
nets [12, 13, 14, 15]. 

A place-transition net (PT-net) is a directed graph 
consisting of two sorts of nodes called places and 
transitions, such that no arcs connect two nodes of the 
same sort. Graphically, a place is denoted by a circle, a 
transition by a box, and an arc by a directed line. A Petri 
net is a PT-net with tokens assigned to its places, and the 
token distribution is denoted by a marking. 

A Petri net is usually used to represent a discrete 
system, where the places denote conditions, the 
transitions denote events and the arcs between places and 
transitions denote the relationship between conditions 
and events. 

Definition 1. A place-transition net (PT-net) is a 4-
tuple N = 〈 P, T, F, W 〉, where P is a set of places, T is a 
set of transitions, F ⊆ (P × T) ∪ (T × P) is a flow relation 
and W : F → { 1, 2, ... } is a weight function. N is said to 
be ordinary if and only if the range of W is { 1 }. 

An ordinary PT-net is usually written as 〈 P, T, F 〉. 
In the rest of this paper, unless specified otherwise, all 
PT-nets refer to ordinary PT-nets. 

Definition 2. Let N = 〈 P, T, F, W 〉 be a PT-net. For 
any x ∈ (P ∪ T), •x = { y | (y, x) ∈ F } and x• = { y | (x, 
y) ∈ F } are called the pre-set and post-set of x, 
respectively. 

For clarity in presentation, the pre-set and post-set of 
a set of places or transitions X = { x1, x2, ..., xn } can be 
written as •X and X• respectively, where •X = •x1 ∪ •x2 ∪ 
... ∪ •xn and X• = x1

• ∪ x2
• ∪ ... ∪ xn

•. 
Definition 3. For a PT-net N = 〈 P, T, F, W 〉, a path 

is a sequence of places and transitions ρ = 〈 x1, x2, ..., xn 
〉, such that (xi, xi+1) ∈ F for i = 1, 2, ..., n-1. ρ is said to 
be elementary if and only if it contains no duplicate 
places or transitions. 

Definition 4. For a PT-net N = 〈 P, T, F, W 〉, a 
sequence of places 〈 p1, p2, ..., pn 〉 is called a cycle if and 
only if there exists a set of transitions { t1, t2, ..., tn }, such 
that 〈 p1, t1, p2, t2, ..., pn, tn 〉 forms an elementary path and 
(tn, p1) ∈ F. 

Definition 5. For a PT-net N = 〈 P, T, F, W 〉, a 
marking is a function M : P → { 0, 1, 2, ...}, where M(p) 
is the number of tokens in p. (N, M0) represents N with 
an initial marking M0. 

Semantically, a marking represents the state of a 
Petri net. The initial marking specifically represents the 
initial state of a Petri net. A transition is enabled and can 
be fired at a state (marking) where all the places in its 
pre-set hold tokens. On firing the transition, tokens will 
be moved from the places in its pre-set to the places in its 
post-set. The firing of a transition is formally defined as 
follows. 

Definition 6. For a PT-net (N, M0), a transition t is 
said to be enabled at a marking M if and only if ∀ p ∈ •t : 
M(p) ≥ W(p,t). On firing t, M is changed to M' such that 
∀ p ∈ P : M'(p) = M(p) - W(p,t) + W(t,p). In notation, M 
[N,t〉 M' or M [t〉 M'. 

Definition 7. For a PT-net (N, M0), a sequence of 
transitions σ = 〈 t1, t2, ..., tn 〉 is called a firing sequence if 
and only if M0 [t1〉 ... [tn〉 Mn. In notation, M0 [N,σ〉 Mn or 
M0 [σ〉 Mn. 

Definition 8. For a PT-net (N, M0), a marking M is 
said to be reachable if and only if there exists a firing 
sequence σ such that M0 [σ〉 M. In notation, M0 [N,∗〉 M 
or M0 [∗〉 M. [N, M0〉 or [M0〉 represents the set of all 
reachable markings of (N, M0). 

The structure of a PT-net can be represented by a 
matrix called incidence matrix. 

Definition 9. Let N = 〈 P, T, F, W 〉 be a PT-net, 
where P = { p1, p2, ..., pm } and T = { t1, t2, ..., tn }. The 
incidence matrix of N is an m × n matrix V whose typical 
entry vij = W(pi,tj) - W(tj,pi) represents the change in 
number of tokens in pi after firing tj once, for i = 1, 2, ..., 
m and j = 1, 2, ..., n. 

Liveness, boundedness, safeness, reversibility and 
conservativeness are best known properties of Petri nets. 
Liveness implies freeness of deadlocks. Boundedness 
and safeness imply freeness of capacity overflow. 
Reversibility refers to the capability of being reinitialised 
from any reachable states. Conservativeness is a special 
form of boundedness. 

Definition 10. For a PT-net (N, M0), a transition t is 
said to be live if and only if ∀ M ∈ [M0〉, ∃ M' : M [∗〉 M' 
[t〉. (N, M0) is said to be live if and only if every 
transition is live. 

Definition 11. For a PT-net (N, M0), a place p is said 
to be k-bounded if and only if ∀ M ∈ [M0〉 : M(p) ≤ k, 
where k is a positive integer. (N, M0) is said to be 
bounded if and only if every place is k-bounded, and safe 
if and only if every place is 1-bounded. 

Definition 12. A PT-net (N, M0) is said to be 
reversible if and only if ∀ M ∈ [M0〉 : M [∗〉 M0. 

Definition 13. For a PT-net N = 〈 P, T, F, W 〉, a 
place invariant is a |P|-vector α ≥ 0 such that αV = 0, 
where V is the incidence matrix of N. 

Definition 14. A PT-net is said to be conservative if 
and only if there exists a place invariant α > 0. 

Figure 1 shows an ordinary PT-net which is live, 
bounded, safe, reversible and conservative. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A live, bounded, safe, reversible and 
conservative PT-net. 

 
Property 1. A PT-net (N, M0) is bounded if it is 

conservative [14, 15]. 
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Definition 15. For a PT-net N, a set of places S is 
called a siphon if and only if •S ⊆ S•. S is said to be 
minimal if and only if there does not exist another siphon 
S' in N such that S' ⊂ S. 

Definition 16. For a PT-net, a set of places T is 
called a trap if and only if T• ⊆ •T. 

Definition 17. A PT-net (N, M0) is said to satisfy the 
siphon-trap property if and only if every siphon contains 
a marked trap (or every minimal siphon contains a 
marked trap). 

A well known sub-class of Petri nets, marked graphs 
possess many special properties pertaining to its liveness, 
boundedness and reversibility. 

Definition 18. A marked graph is an ordinary PT-net 
N = 〈 P, T, F, W 〉 such that ∀ p ∈ P : |•p| = |p•| = 1. 

Property 2. A marked graph (N, M0) is live if and 
only if every cycle is marked by M0 [13, 14]. 

Property 3. A live marked graph (N, M0) is bounded 
if and only if every place belongs to a cycle marked by 
M0 [13, 14]. 

Property 4. A live and bounded marked graph is 
reversible [13, 14]. 

Property 5. For a marked graph, the corresponding 
place vector of a cycle is a place invariant [13, 14]. 

Figure 2 shows a marked graph which is live, 
bounded, safe and reversible. Places 〈 p1, p3, p6, p7, p4 〉 
form a cycle. The place vector is a place invariant. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: A live, bounded, safe and reversible 
marked graph. 

3 Augmented marked graphs 
Augmented marked graphs were first introduced by Chu 
and Xie [1]. This section briefly describes augmented 
marked graphs. 

Definition 19. An augmented marked graph (N, M0; 
R) is a PT-net (N, M0) with a specific subset of places R, 
such that : (a) Every place in R is marked by M0. (b) The 
net (N', M0') obtained from (N, M0; R) by removing the 
places in R and their associated arcs is a marked graph. 
(c) For each r ∈ R, there exist kr ≥ 1 pairs of transitions 
Dr = { 〈ts1, th1〉, 〈ts2, th2〉, ..., 〈tskr, thkr〉 }, such that r• = { ts1, 
ts2, ..., tskr } ⊆ T and •r = { th1, th2, ..., thkr } ⊆ T and that, 
for each 〈tsi, thi〉 ∈ Dr, there exists in (N', M0') an 
elementary path ρri connecting tsi to thi. (d) In (N', M0'), 
every cycle is marked and no ρri is marked. 

Figure 3 shows a typical augmented marked graph 
(N, M0; R), where R = { r1, r2 }. For r1, Dr1 = { 〈t1, t11〉, 
〈t3, t9〉 }. For r2, Dr2 = { 〈t2, t11〉, 〈t4, t10〉 }. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: An augmented marked graph. 
 
Augmented marked graphs possesses a number of 

special properties pertaining to liveness, boundedness, 
reversibility and conservativeness. In the following 
sections, these properties are thoroughly investigated. 

4 Liveness and reversibility 
This section focus on the liveness and reversibility of 
augmented marked graphs. After reporting several 
known properties, some siphon-based and cycle-based 
characterisations for live and reversible augmented 
marked graphs are proposed. 

Property 6. An augmented marked graph is live if 
and only if it does not contain any potential deadlock [1]. 
(Note : A potential deadlock is a siphon which would 
eventually become empty.) 

Property 7. An augmented marked graph is 
reversible if it is live [1]. 

Property 8. An augmented marked graph is live and 
reversible if and only if every minimal siphon would 
never become empty. 

Property 9. An augmented marked graph (N, M0; R) 
is live and reversible if every minimal siphon, which 
contains at least one place of R, contains a marked trap 
[1]. 

For the augmented marked graph (N, M0; R) shown 
in Figure 3, the minimal siphons are : { p1, p5, p8 }, { r1, 
p2, p4, p6, p7, p9 }, { r1, p2, p4, p6, p7, p10 }, { r2, p3, p5, p6, 
p8, p9 } and { r2, p3, p5, p6, p8, p10 }. Each of these 
minimal siphons contains a marked trap, and would 
never become empty. (N, M0; R) is live and reversible. 

The places and transitions generated by cycles are 
defined as follows. 

Definition 20. For a PT-net N, ΩN is defined as the 
set of all cycles in N. 

Definition 21. Let N be a PT-net. For a subset of 
cycles Y ⊆ ΩN, P[Y] is defined as the set of places in Y, 
and T[Y] = •P[Y] ∩ P[Y]• is defined as the set of 
transitions generated by Y. 
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For clarity in presentation, P[{γ}] and T[{γ}] can be 
written as P[γ] and T[γ], to denote the set of places in a 
cycle γ and the set of transitions generated by γ, 
respectively. 

Definition 22. For a PT-net N, an elementary path ρ 
= 〈 x1, x2, ..., xn 〉 is said to be conflict-free if and only if, 
for any transition xi in ρ, j ≠ (i -1) ⇒ xj ∉ •xi. 

Property 10. Let S be a minimal siphon of a PT-net. 
For any p, p' ∈ S, there exists in S a conflict-free path 
from p to p' [16]. 

Property 11. For a minimal siphon S of an 
augmented marked graph (N, M0; R), there exists a set of 
cycles Y ⊆ ΩN such that P[Y] = S. 

Property 12. Every cycle in an augmented marked 
graph is marked. 

Property 13. Every siphon in an augmented marked 
graph is marked. 

Property 14. Let (N, M0; R) be an augmented 
marked graph. For every r ∈ R, there exists a minimal 
siphon which contains only one marked place r. 

Consider the augmented marked graph (N, M0; R) 
shown in Figure 3. Every minimal siphon is covered by 
cycles. Consider a minimal siphon S1 = { r1, p2, p4, p6, p7, 
p9 }. There exists a set of cycles Y1 = { γ11, γ12 }, where 
γ11 = 〈 r1, p4, p7 〉 and γ12 = 〈 r1, p2, p6, p9 〉, such that S1 = 
P[Y1]. Consider another minimal siphon S2 = { r2, p3, p5, 
p6, p8, p10 }. There exists a set of cycles Y2 = { γ21, γ22 }, 
where γ21 = 〈 r2, p5, p8 〉 and γ22 = 〈 r2, p3, p6, p10 〉, such 
that S2 = P[Y2]. For S1, r1 ∈ R is the only one marked 
place. Also, for S2, r2 ∈ R is the only one marked place. 

For an augmented marked graph, minimal siphons 
can be classified into R-siphons and NR-siphons. Based 
on R-siphons and NR-siphons, some characterisations for 
augmented marked graphs are proposed. 

Definition 23. For an augmented marked graph (N, 
M0; R), a minimal siphon is called a R-siphon if and only 
if it contains at least one place in R. 

Definition 24. For an augmented marked graph (N, 
M0; R), a minimal siphon is called a NR-siphon if and 
only if it does not contain any place in R. 

Definition 25. Let N be a PT-net. For a set of places 
Q in N, ΩN[Q] is defined as the set of cycles that contains 
at least one place in Q. 

For clarity in presentation, ΩN[{p}] can be written as 
ΩN[p] to denote the set of cycles that contains a place p. 

Property 15. For an augmented marked graph (N, 
M0; R), a R-siphon is covered by a set of cycles Y ⊆ 
ΩN[R]. 

Figure 4 shows another augmented marked graph (N, 
M0; R), where R = { r1, r2 }. There are five minimal 
siphons, namely, S1 = { r1, p3, p4, p7, p8 }, S2 = { r1, p3, p5, 
p7, p8 }, S3 = { r2, p2, p4, p6, p8, p9, p10 }, S4 = { r2, p2, p5, 
p6, p8, p9, p10 } and S5 = { p1, p3, p7 }. S1, S2, S3 and S4 
are R-siphon as they contain at least one place in R. S5 is 
a NR-siphon which does not contain any place in R. For 
(N, M0; R), every R-siphon is covered by a set of cycles 
in ΩN[R]. For example, S1 = { r1, p3, p4, p7, p8 } is 
covered by a set of cycles Y1 = { γ11, γ12 } ⊆ ΩN[R], 
where γ11 = 〈 r1, p3, p7 〉 and γ12 = 〈 r1, p4, p8 〉. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Another augmented marked graph. 
 
Property 16. Let S be a R-siphon of an augmented 

marked graph (N, M0; R). For every t ∈ (S• \ •S), there 
does not exist any s ∈ (S \ R) such that t ∈ s•. 

Property 17. For an augmented marked graph (N, 
M0; R), a NR-siphon contains itself as a marked trap and 
would never become empty. 

Property 18. An augmented marked graph (N, M0; 
R) is live and reversible if and only if no R-siphons 
eventually become empty. 

Property 19. An augmented marked graph (N, M0; 
R) satisfies the siphon-trap property if and only if every 
R-siphon contains a marked trap. 

Consider the augmented marked graph (N, M0; R) 
shown in Figure 4. Every R-siphon contains a marked 
trap. Each of the R-siphons S1 = { r1, p3, p4, p7, p8 }, S2 = 
{ r1, p3, p5, p7, p8 }, S3 = { r2, p2, p4, p6, p8, p9, p10 } and S4 
= { r2, p2, p5, p6, p8, p9, p10 } contains a marked trap and 
would never become empty. (N, M0; R) is live and 
reversible. 

Property 20. (characterisation of Property 9) An 
augmented marked graph (N, M0; R) is live and 
reversible if every R-siphon contains a marked trap. 

Property 18 provides a simple necessary and 
sufficient condition for live and reversible augmented 
marked graphs. With Properties 18 and 20, we can 
determine if an augmented marked graph is live and 
reversible based on R-siphons. Besides, Property 15 
provides a characterisation for R-siphons so that R-
siphons can be identified by finding cycles in ΩN[R]. We 
may now derive a strategy for checking the liveness and 
reversibility of an augmented marked graph (N, M0; R) : 

(a) Find all R-siphons based on ΩN[R]. 
(b) Check if every R-siphon contains a marked trap. 

If yes, report (N, M0; R) is live and reversible. Otherwise, 
go to (c). 

(c) For each R-siphon which does not contain any 
marked trap, check if it would never become empty. If 
yes, report (N, M0; R) is live and reversible. Otherwise, 
report (N, M0; R) is neither live nor reversible. 
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In the following, conflict-free cycles are introduced. 
Based on conflict-free cycles, a new property called R-
inclusion is proposed. It is then used for characterising 
liveness and reversibility of augmented marked graphs. 

Definition 26. For a PT-net N, a set of cycles Y ⊆ 
ΩN is said to be conflict-free if and only if, for any q, q' 
∈ P[Y], there exists in P[Y] a conflict-free path from q to 
q'. 

Figure 5 shows a PT-net N. Consider three cycles γ1, 
γ2, γ3 ∈ ΩN[p3], where γ1 = 〈 p3, p2, p7 〉, γ2 = 〈 p3, p4 〉 and 
γ3 = 〈 p3, p1, p6, p10, p8 〉. The set of cycles Y1 = { γ1, γ2 } 
is conflict-free because for any q, q' ∈ P[Y1], there exists 
in P[Y1] a conflict-free path from q to q'. The set of 
cycles Y2 = { γ2, γ3 } is not conflict-free. We have p4, p8 
∈ P[Y2]. p4 is connected to p8 via only one path ρ = 〈 p4, 
t5, p3, t1, p1, t3, p6, t6, p10, t9, p8 〉 in Y2, and ρ is not 
conflict-free because p4, p8 ∈ •t5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: A PT-net for illustration of conflict-free cycles. 
 
Property 21. Let S be a minimal siphon of an 

augmented marked graph (N, M0; R), and Y ⊆ ΩN be a 
set of cycles such that S = P[Y]. Then, Y is conflict-free. 

For the augmented marked graph shown in Figure 3, 
{ r1, p2, p4, p6, p7, p9 } is a minimal siphon covered by a 
set of cycles { 〈 r1, p4, p7 〉, 〈 r1, p2, p6, p9 〉 } which is 
conflict free. { r2, p3, p5, p6, p8, p10 } is another minimal 
siphon covered by a set of cycles { 〈 r2, p5, p8 〉, 〈 r2, p3, 
p6, p10 〉 } which is conflict-free. For the augmented 
marked graph shown in Figure 4, { r1, p3, p4, p7, p8 } is a 
minimal siphon covered by a set of cycles { 〈 r1, p3, p7 〉,  
〈 r1, p4, p8 〉 } which is conflict free. { r1, p3, p5, p7, p8 } is 
another minimal siphon covered by a set of cycles { 〈 r1, 
p3, p7 〉, 〈 r1, p5, p8 〉 } which is conflict free. 

Definition 27. Let (N, M0; R) be an augmented 
marked graph. A place r ∈ R is said to satisfy the R-
inclusion if and only if, for any set of cycles Y ⊆ ΩN[R] 
such that Y is conflict-free, •r ⊆ T[Y] ⇒ r• ⊆ T[Y]. 

Figure 6 shows an augmented marked graph (N, M0; 
R), where R = { r1, r2 }. Consider r1. For any set of cycles 
Y1 ⊆ ΩN[R] such that Y1 is conflict-free, •r1 ⊆ T[Y1] ⇒ 
r1
• ⊆ T[Y1]. Next, consider r2. For any set of cycles Y2 ⊆ 

ΩN[R] such that Y2 is conflict-free, •r2 ⊆ T[Y2] ⇒ r2
• ⊆ 

T[Y]. Both r1 and r2 satisfy the R-inclusion. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: An augmented marked graph for illustration of 
R-inclusion. 

 
Figure 7 shows another augmented marked graph (N, 

M0; R). For r1 ∈ R, there exists a set of cycles Y1 = { γ11, 
γ12 } ⊆ ΩN[R], where γ11 = 〈 r1, p5 〉 and γ12 = 〈 r1, p5, r2, 
p6 〉. •r1 = { t5, t6 } ⊆ T[Y1] = { t3, t4, t5, t6 } but r1

• = { t2, 
t3 } ⊄ T[Y1]. For r2 ∈ R, there exists a set of cycles Y2 = 
{ γ21, γ22 } ⊆ ΩN[R], where γ21 = 〈 r2, p6 〉 and γ22 = 〈 r2, 
p6, r1, p5 〉. •r2 = { t5, t6 } ⊆ T[Y2] = { t3, t4, t5, t6 } but r2

• = 
{ t1, t4 } ⊄ T[Y2]. Both r1 and r2 do not satisfy the R-
inclusion property. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Another augmented marked graph for 

illustration of R-inclusion. 
 
Property 22. For an augmented marked graph (N, 

M0; R), a R-siphon S contains itself as a marked trap if 
every place r ∈ R in S satisfies the R-inclusion property. 

Property 23. An augmented marked graph (N, M0; 
R) satisfies the siphon-trap property if and only if every 
place r ∈ R satisfies the R-inclusion property. 

Property 24. An augmented marked graph (N, M0; 
R) is live and reversible if every place r ∈ R satisfies the 
R-inclusion property. 

Consider the augmented marked graph (N, M0; R) 
shown in Figure 6. We have R = { r1, r2 }, where both r1 
and r2 satisfy the R-inclusion property. Any R-siphon, 
such as { r1, p3, p4 } or { r2, p5, p6 }, contains itself as a 
marked trap. (N, M0; R) satisfies the siphon-trap 
property, and is live and reversible. 

Property 24 provides a cycle-based condition for live 
and reversible augmented marked graphs. We need to 
check the R-inclusion property which involves finding 
cycles and checking their pre-sets and post-sets. 
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Based on Properties 15, 18, 20, 22 and 24, we revise 
the strategy for checking the liveness and reversibility of 
an augmented marked graph (N, M0; R) with the use of 
the R-inclusion property, as follows. 

(a) Check if every r ∈ R satisfies the R-inclusion 
property. If yes, report (N, M0; R) is live and reversible. 
Otherwise go to (b). 

(b) Let R' ⊆ R be the set of places which do not 
satisfy the R-inclusion property. Based on ΩN[R'], find 
all R-siphons which contain at least one place in R'. 

(c) For each R-siphon identified in (b), check if it 
contains a marked trap. If yes, report (N, M0; R) is live 
and reversible. Otherwise, go to (d). 

(d) For each R-siphon identified in (b) that does not 
contain any marked trap, check if it would never become 
empty. If yes, report (N, M0; R) is live and reversible. 
Otherwise, report (N, M0; R) is neither live nor 
reversible. 

5 Boundedness and conservativeness 
This section focus on the boundedness and 
conservativeness of augmented marked graphs, which are 
less studied in the literature. Some transform-based 
characterisations for bounded and conservative 
augmented marked graphs are proposed. 

In the following, we introduce a new transformation 
called R-transform for augmented marked graphs. It 
simply transforms an augmented marked graphs (N, M0; 
R) into a number of marked graphs by replacing each 
place in R by a set of places. 

Property 25. Let (N, M0; R) be an augmented 
marked graph to be transformed into (N', M0') as follows. 
For each place r ∈ R, where Dr = { 〈ts1, th1〉, 〈ts2, th2〉, ..., 
〈tskr, thkr〉 }, replace r with a set of places { p1, p2, ..., pkr }, 
such that M0'[pi] = M0[r] and pi

• = { tsi } and •pi = { thi } 
for i = 1, 2, ..., kr. Then, (N', M0') is a marked graph. 

Definition 28. Let (N, M0; R) be an augmented 
marked graph. The marked graph (N', M0') transformed 
from (N, M0; R) as stated in Property 25 is called the R-
transform of (N, M0; R). 

Property 26. The R-transform of an augmented 
marked graph is live. 

Figure 8 shows an augmented marked graph. Figure 
9 shows its R-transform, where r is replaced by { q1, q2 }. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: An augmented marked graph for illustration 
of R-transform. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: The R-transform of the augmented marked 
graph shown in figure 8. 

 
Property 27. Let (N', M0') be the R-transform of an 

augmented marked graph (N, M0; R), where r ∈ R is 
replaced by a set of places Q = { q1, q2, ..., qk }, and P0 be 
the set of marked places in N'. Then, for each qi in N', 
there exists a place invariant αi of N' such that αi[qi] = 1 
and αi[s] = 0 for any place s ∈ P0 \ {qi}. 

Property 28. Let (N, M0; R) be an augmented 
marked graph, where R = { r1, r2, ..., rn }. Let (N', M0') be 
the R-transform of (N, M0; R), where each ri is replaced 
by a set of places Qi, for i = 1, 2, ..., n. If every place in 
(N', M0') belongs to a cycle, then there exists a place 
invariant α of N' such that α > 0 and α[q1] = α[q2] = ... = 
α[qk] for each Qi = { q1, q2, ..., qk }. 

Consider the R-transform (N', M0') shown in Figure 
9. It is a live marked graph. For q1, there exists a place 
invariant α1, such that α1[q1] = 1 and α1[q2] = α1[p1] = 
α1[p2] = 0. For q2, there also exists a place invariant α2, 
such that α2[q2] = 1 and α2[q1] = α2[p1] = α2[p2] = 0. In 
(N', M0'), every place belongs to a cycle. There also 
exists a place invariant α > 0, where α[q1] = α[q2]. 

Based on R-transform, a necessary and sufficient 
condition for bounded and conservative augmented 
marked graphs is proposed. 

Property 29. Let (N', M0') be the R-transform of an 
augmented marked graph (N, M0; R). (N, M0; R) is 
bounded and conservative if and only if every place in 
(N', M0') belongs to a cycle. 

With Properties 29, we derive the following strategy 
for checking the boundedness and conservativeness of an 
augmented marked graph (N, M0; R) : 

(a) Create the R-transform (N', M0') of (N, M0; R). 
(b) For each place p in (N', M0'), check if there 

exists a cycle that contains p. If yes, report (N, M0; R) is 
bounded and conservative. Otherwise, report (N, M0; R) 
is neither bounded nor conservative. 

Property 30. Let (N', M0') be the R-transform of an 
augmented marked graph (N, M0; R). (N, M0; R) is 
bounded and conservative if and only if (N', M0') is 
bounded. 

Consider the augmented marked graph (N, M0; R) 
shown in Figure 8, and the R-transform (N', M0') of (N, 
M0; R) in Figure 9. Every place in (N', M0') belongs to a 
cycle. (N, M0; R) is bounded and conservative. (N', M0') 
is also bounded and conservative. 
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Figure 10 shows an augmented marked graph (N, 
M0; R), and Figure 11 shows the R-transform (N', M0') of 
(N, M0; R). For (N', M0'), p3 does not belong to any 
cycle. Also, p8 does not belong to any cycle. (N, M0; R) 
is neither bounded nor conservative. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Another augmented marked graph for 

illustration of R-transform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: The R-transform of the augmented marked 
graph shown in figure 10. 

6 The dining philosopher problem 
This section illustrates the properties of augmented 

marked graphs obtained in the previous sections using 
the dining philosopher problem. 

 
The dining philosopher problem (version 1) : 

 
Six philosophers (H1, H2, H3, H4, H5 and H6) are 

sitting around a circular table for dinner. They are either 
meditating or eating the food placed at the centre of the 
table. There are six pieces of chopsticks (C1, C2, C3, C4, 
C5 and C6) shared by them for getting the food to eat, as 
shown in Figure 12. For one to get the food to eat, both 
the chopstick at the right hand side and the chopstick at 
the left hand side must be available. The philosopher 
then grasps both chopsticks simultaneously and then 
takes the food to eat. Afterwards, the chopsticks are 
released and returned to their original positions 
simultaneously. 

Figure 13 shows the augmented marked graph (N, 
M0; R) which represents the dining philosopher problem 
(version 1). 

 
 
 
 
 
 
 
 
 
 
 

Figure 12: The dinning philosopher problem. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 : The dining philosopher problem (version 1). 
 

Semantic meaning for places and transitions 

p11 H1 is meditating. 
p12 H1 has got C1 and C2 and takes the food. 
p21 H2 is meditating. 
p22 H2 has got C2 and C3 and takes the food. 
p31 H3 is meditating. 
p32 H3 has got C3 and C4 and takes the food. 
p41 H4 is meditating. 
p42 H4 has got C4 and C5 and takes the food. 
p51 H5 is meditating. 
p52 H5 has got C5 and C6 and takes the food. 
p61 H6 is meditating. 
p62 H6 has got C6 and C1 and takes the food. 
r1 C1 is available for pick. 
r2 C2 is available for pick. 
r3 C3 is available for pick. 
r4 C4 is available for pick. 
r5 C5 is available for pick. 
r6 C6 is available for pick. 
t11 H1 takes the action to grasp C1 and C2. 
t12 H1 takes the action to return C1 and C2. 
t21 H1 takes the action to grasp C2 and C3. 
t22 H1 takes the action to return C2 and C3. 
t31 H1 takes the action to grasp C3 and C4. 
t32 H1 takes the action to return C3 and C4. 
t41 H1 takes the action to grasp C4 and C5. 
t42 H1 takes the action to return C4 and C5. 
t51 H1 takes the action to grasp C5 and C6. 
t52 H1 takes the action to return C5 and C6. 
t61 H1 takes the action to grasp C6 and C1. 
t62 H1 takes the action to return C6 and C1. 
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For (N, M0; R), every R-siphons contains a marked 
trap and would never become empty. Every place in its 
R-transform belongs to a cycle. Based on the results 
obtained in Sections 4 and 5, (N, M0; R) is live, bounded, 
reversible and conservative. 

 
The dining philosopher problem (version 2) : 

 
The Dining Philosopher Problem is revised. For one 

to get the food to eat, he or she first grasps the chopstick 
at the right hand side if available, then grasps the 
chopstick at the left hand side if available, and then takes 
the food to eat. Afterwards, the chopsticks are released 
and returned to their original positions simultaneously. 

Figure 14 shows the augmented marked graph (N, 
M0; R) which represents the dining philosopher problem 
(version 2). The set of places {r1, p13, r2, p23, r3, p33, r4, 
p43, r5, p53, r6, p63} is a R-siphon which would become 
empty after firing the sequence of transitions 〈t11, t12, t13, 
t14, t15, t16〉. Deadlock would occur after firing 〈t11, t12, t13, 
t14, t15, t16〉. Based on the results obtained in Section 4, 
(N, M0; R) is neither live nor reversible. On the other 
hand, for the R-transform of (N, M0; R), every place 
belongs to a cycle. Based on the results obtained in 
Section 5, (N, M0; R) is bounded and conservative. 

7 Conclusion 
In the past decade, augmented marked graphs have 
evolved into a sub-class of Petri nets for modelling 
shared resource systems. One major reason is that 
augmented marked graphs possess a structure which is 
desirable for modelling shared resources. However, the 
properties of augmented marked graphs are not 
extensively studied. 

In this paper, a number of new characterisations for 
live and reversible augmented marked graphs are 
proposed. In particulars, some of these characterisations 
are based on cycles, instead of siphons. Besides, a R-
transform is introduced. Based on the R-transform, a 
number of new characterisations for bounded and 
conservative augmented marked graphs are proposed. 
Consolidating these results, pretty simple conditions and 
procedures for checking the liveness, reversibility, 
boundedness and conservativeness of augmented marked 
graphs are derived. These have been illustrated using the 
dining philosopher problem. 

Augmented marked graphs are often used for 
modelling shared-resource systems wherein the system 
analyst need to achieve the system design objectives on 
two folds. On one hand, the resources are scarce and 
should be maximally shared. On the other hand, the 
system should be carefully designed so that erroneous 
situations, such as deadlock and capacity overflow, due 
to sharing of resources should be avoided. For a shared-
resource system modelled as an augmented marked 
graph, essential properties such as liveness, reversibility, 
boundedness and conservativeness can be effectively 
analysed with the new characterisations for augmented 
marked graphs. These contribute to ensuring the design 
correctness of shared resource systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 : The dining philosopher problem (version 2). 
 

Semantic meaning for places and transitions 

p11 H1 is meditating. 
p12 H1 has got C1 and prepares to pick C2. 
p13 H1 has got C1 and C2 and takes the food. 
p21 H2 is meditating. 
p22 H2 has got C2 and prepares to pick C3. 
p23 H2 has got C2 and C3 and takes the food. 
p31 H3 is meditating. 
p32 H3 has got C3 and prepares to pick C4. 
p33 H3 has got C3 and C4 and takes the food. 
p41 H4 is meditating. 
p42 H4 has got C4 and prepares to pick C5. 
p43 H4 has got C4 and C5 and takes the food. 
p51 H5 is meditating. 
p52 H5 has got C5 and prepares to pick C6. 
p53 H5 has got C5 and C6 and takes the food. 
p61 H6 is meditating. 
p62 H6 has got C6 and prepares to pick C1. 
p63 H6 has got C6 and C1 and takes the food. 
r1 C1 is available for pick. 
r2 C2 is available for pick. 
r3 C3 is available for pick. 
r4 C4 is available for pick. 
r5 C5 is available for pick. 
r6 C6 is available for pick. 
t11 H1 takes the action to grasp C1. 
t12 H1 takes the action to grasp C2. 
t13 H1 takes the action to return C1 and C2. 
t21 H2 takes the action to grasp C2. 
t22 H2 takes the action to grasp C3. 
t23 H2 takes the action to return C2 and C3. 
t31 H3 takes the action to grasp C3. 
t32 H3 takes the action to grasp C4. 
t33 H3 takes the action to return C3 and C4. 
t41 H4 takes the action to grasp C4. 
t42 H4 takes the action to grasp C5. 
t43 H4 takes the action to return C4 and C5. 
t51 H5 takes the action to grasp C5. 
t52 H5 takes the action to grasp C6. 
t53 H5 takes the action to return C5 and C6. 
t61 H6 takes the action to grasp C6. 
t62 H6 takes the action to grasp C1. 
t63 H6 takes the action to return C6 and C1. 
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Appendix 
For clarify in presentation, proofs of the proposed 
properties for augmented marked graphs are shown in 
this appendix as follows. 

Proof of Property 8. (⇐) For an augmented marked 
graph, if every minimal siphon would never become 
empty, every siphon which contains at least one minimal 
siphon would never become empty. It follows from 
Properties 6 and 7 that the augmented marked graph is 
live and reversible. (⇒) It follows from Property 6 that 
every siphon (and hence, every minimal siphon) would 
never become empty. 

Proof of Property 11. Let S = { p1, p2, ..., pn }. For 
each pi, by definition of augmented marked graphs that 
•pi ≠ ∅. Then, there exists pj ∈ S, where pj ≠ pi, such that 
(pj

• ∩ •pi) ≠ ∅. Since S is a minimal siphon, according to 
Property 10, pi connects to pj via a conflict-free path in S. 
Since pj connects to pi, this forms a cycle γi in S, where pi 
∈ P[γi] ⊆ S. Let Y = { γ1, γ2, ..., γn }. We have P[Y] = 
P[γ1] ∪ P[γ2] ∪ ... ∪ P[γn] ⊆ S. On the other hand, S ⊆ 
(P[γ1] ∪ P[γ2] ∪ ... ∪ P[γn]) = P[Y] because S = { p1, p2, 
..., pn }. Hence, P[Y] = S. 

Proof of Property 12. (by contradiction) Let (N, M0; 
R) be an augmented marked graph. Suppose there exists 
a cycle γ in (N, M0; R), such that γ is not marked. γ does 
not contain any place in R, and also exists in the net (N', 
M0') obtained from (N, M0; R) after removing the places 
in R and their associated arcs. However, by definition of 
augmented marked graphs, γ is marked. 

Proof of Property 13. For an augmented marked 
graph, according to Properties 11 and 12, every minimal 
siphon contains cycles and is marked. Hence, every 
siphon, which contains at least one minimal siphon, is 
marked. 

Proof of Property 14. Let Dr = { 〈ts1, th1〉, 〈ts2, th2〉, 
..., 〈tsn, thn〉 }, where r• = { ts1, ts2, ..., tsn } and •r = { th1, th2, 
..., thn }. For each 〈tsi, thi〉 ∈ Dr, tsi connects to thi via an 
elementary path ρi which is not marked. Let S = P1 ∪ P2 
∪ ... ∪ Pn ∪ { r }, where Pi is the set of places in ρi. We 
have •Pi ⊆ (Pi

• ∪ r•) because, for each p ∈ Pi, | •p | = | p• | 
= 1. Then, (•P1 ∪ •P2 ∪ ... ∪ •Pn) ⊆ (P1

• ∪ P2
• ∪ ... ∪ Pn

• 
∪ r•). Besides, •r = { th1, th2, ..., thn } ⊆ (P1

• ∪ P2
• ∪ ... ∪ 

Pn
•). Hence, •S = (•P1 ∪ •P2 ∪ ... ∪ •Pn ∪ •r) ⊆ (P1

• ∪ P2
• 

∪ ... ∪ Pn
• ∪ r•) = S•. Therefore, S is a siphon in which r 

is the only one marked place. Let S' be a minimal siphon 
in S. According to Property 13, S' is marked. Since r is 
the only one marked place in S, r is also the only one 
marked place in S'. 

Proof of Property 15. (By contradiction) Let S be a 
R-siphon. According to Property 11, S is covered by 
cycles. Suppose there exists a cycle γ in S, such that γ ∉ 
ΩN[R]. By definition of augmented marked graphs, for 
any p ∈ P[γ], | •p | = | p• | = 1. Hence, •P[γ] = P[γ]•, and 
P[γ] is a siphon. Since there exists a place r ∈ R such that 
r ∈ S but r ∉ P[γ], we have P[γ] ⊂ S. However, since S is 
a minimal siphon, there does not exists any siphon S' = 
P[γ] ⊂ S. 
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Proof of Property 16. (by contradiction) Suppose 
there exists s ∈ (S \ R) such that t ∈ s•. By definition of 
augmented marked graphs, | •s | = | s• | = 1. S is covered 
by cycles in accordance with Property 15. Hence, t is the 
one and only one transition in s•, where t ∈ T[Y] = (S• ∩ 
•S). This however contradicts t ∈ (S• \ •S). 

Proof of Property 17. Let S be a NR-siphon. 
According to Property 13, S is marked. By definition of 
augmented marked graphs that, for any s ∈ S, | •s | = | s• | 
= 1. Then, •S = S• and S is also a trap. Hence, S contains 
itself as a marked trap and would never become empty. 

Proof of Property 18. (⇐) According to Property 
17, a NR-siphon would never become empty. Given that 
no R-siphons (and hence, no minimal siphon) eventually 
become empty, according to Property 8, (N, M0; R) is 
live and reversible. (⇒) It follows from Property 6 that 
no R-siphons eventually become empty. 

Proof of Property 19. (⇐) According to Property 
17, a NR-siphon contains a marked trap. Given that every 
R-siphon contains a marked trap, every minimal siphon 
contains a marked trap. (⇒) Since R-siphons are minimal 
siphons, every R-siphon contains a marked trap. 

Proof of Property 20. For (N, M0; R), if every R-
siphon contains a marked trap, according to Property 19, 
the siphon-trap property is satisfied. Hence, every 
minimal siphon contains a marked trap and would never 
become empty. It then follows from Property 8 that (N, 
M0; R) is live and reversible. 

Proof of Property 21. Since S is a minimal siphon, 
according to Property 10, for any q, q' ∈ S = P[Y], there 
exists in S = P[Y] a conflict-free path from q to q'. 
Hence, Y is conflict free. 

Proof of Property 22. Let S = { p1, p2, ..., pn }. 
According to Property 13, S is marked. It follows from 
Properties 15 and 21 that there exists a set of cycles Y ⊆ 
ΩN[R], such that Y is conflict-free and P[Y] = S. Since S 
is a siphon, for each pi ∈ S, •pi ⊆ (•S ∩ S•) = (•P[Y] ∩ 
P[Y]•) = T[Y]. In case pi ∉ R, pi

• ⊆ T[Y] because | •pi | = 
| pi

• | = 1. In case pi ∈ R, given that pi satisfies the R-
inclusion property, pi

• ⊆ T[Y]. Every pi
• ⊆ T[Y] = (•P[Y] 

∩ P[Y]•) and pi
• ⊆ •P[Y] = •S. Since S• = (p1

• ∪ p2
• ∪ ... 

∪ pn
•) ⊆ •S, S is also a trap. 
Proof of Property 23. (⇐) It follows from 

Properties 19 and 22. (⇒ by contradiction) Suppose there 
exists r ∈ R, not satisfying the R-inclusion property. 
According to Property 14, there exists a R-siphon S, in 
which r is the only marked place. It follows from 
Properties 15 and 21 that there exists Y ⊆ ΩN[R], such 
that Y is conflict-free and S = P[Y]. According to 
Property 19, S contains a marked trap Q. Then, r ∈ Q and 
r• ⊆ (•Q ∩ Q•). Since S is a siphon, we have •r ⊆ (•S ∩ 
S•) = (•P[Y] ∩ P[Y]•) = T[Y]. However, as r does not 
satisfy the R-inclusion property, r• ⊄ T[Y] = (•P[Y] ∩ 
P[Y]•) = (•S ∩ S•), implying r• ⊄ (•Q ∩ Q•). 

Proof of Property 24. According to Property 23, (N, 
M0; R) satisfies the siphon-trap property. It follows from 
Property 20 that (N, M0; R) is live and reversible. 

Proof of Property 25. For each place p ∉ R in N, 
M0; R), | •p | = | p• | = 1. Each place r ∈ R is replaced by a 
set of places { p1, p2, ..., pkr }, where | •pi | = | pi

• | = 1 for 
i = 1, 2, ..., kr. Hence, for every place q in N', | •q | = | q• | 
= 1. (N', M0') is a marked graph. 

Proof of Property 26. Let (N', M0') be the R-
transform of an augmented marked graph (N, M0; R). As 
the transformation does not create cycles, cycles in (N', 
M0') exist in (N, M0; R). According to Property 12, 
cycles in (N, M0; R) are marked, and hence, cycles in (N', 
M0') are marked. Since (N', M0') is a marked graph, it 
follows from Property 2 that (N', M0') is live. 

Proof of Property 27. Let Dr = {〈ts1, th1〉, 〈ts2, th2〉, ..., 
〈tskr, thkr〉}. By definition of augmented marked graphs, 
for each 〈tsi, thi〉, there exists an unmarked path ρ = 〈ts1, 
..., th1〉 in (N, M0; R). Hence, ρ also exists as an unmarked 
path in (N', M0'), and ρ together with qi forms a cycle γi 
which is marked at qi only. Since (N', M0') is a marked 
graph, according to Property 5, the corresponding vector 
of γi is a place invariant αi of N'. Since qi is the only one 
marked place in γi, αi[qi] = 1 and αi[s] = 0 for any s ∈ P0 
\ {qi}. 

Proof of Property 28. Let P = { p1, p2, ..., pn } be the 
places in N', and P0 ⊆ P be those marked places. Since 
each pi belongs to a cycle γi and (N', M0') is a marked 
graph, according to Property 5, the corresponding vector 
of γi is a place invariant αi' of N'. Then, α' = α1' + α2' + ... 
+ αn' > 0 is a place invariant of N'. Consider Qi = { q1, q2, 
..., qk }. Let qm ∈ Qi such that α'[qm] ≥ α'[qj] for any qj ∈ 
Qi. For each qj, according to Property 27, there exists a 
place invariant αj' > 0 such that αj'[qj] = 1 and αj'[s] = 0 
for any s ∈ P0 \ {qj}. There also exists a place invariant 
α" = α' + hαj', where h ≥ 1, such that α"[qj] = α"[qm] and 
α"[s] = α'[s] for any s ∈ P0 \ {qj}. Therefore, there 
eventually exists a place invariant α of N' such that α[q1] 
= α[q2] = ... = α[qk]. 

Proof of Property 29. (⇐) Let R = { r1, r2, ..., rn }, 
where each ri is being replaced by a set of places Qi, for i 
= 1, 2, ..., n. Since every place in (N', M0') belongs to a 
cycle, according to Property 28, there exists a place 
invariant α' of N' such that α' > 0 and α'[q1] = α'[q2] = ... 
= α'[qk] for each Qi = { q1, q2, ..., qk }. Intuitively, there 
also exists a place invariants α of N such that α > 0 and 
α[ri] = α'[q1] = α'[q2] = ... = α'[qk] for each Qi. Hence, 
(N, M0; R) is conservative. According to Property 1, (N, 
M0; R) is also bounded. (⇒) Since (N, M0; R) is 
conservative, there exists a place invariant α of N such 
that α > 0. Consider each ri ∈ R which is being replaced 
by Qi = { q1, q2, ..., qk }. Intuitively, there also exists a 
place invariant α' of N' such that α' > 0 and α'[q1] = 
α'[q2] = ... = α'[qk] = α[ri] and α'[s] = α[s] for any s ∈ 
P'\Qi. Hence, (N', M0') is conservative. It follows from 
Property 1 that (N', M0') is also bounded. Since (N', M0') 
is a marked graph, according to Property 3, every place 
in (N', M0') belongs to a cycle. 

Proof of Property 30. It follows from Properties 3 
and 29. 




