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Abstract

The Hamilton-Waterloo problem asks for a decomposition of the complete graph of
order v into r copies of a 2-factor F1 and s copies of a 2-factor F2 such that r+s =

⌊
v−1
2

⌋
.

If F1 consists of m-cycles and F2 consists of n cycles, we say that a solution to (m,n)-
HWP(v; r, s) exists. The goal is to find a decomposition for every possible pair (r, s). In
this paper, we show that for odd x and y, there is a solution to (2kx, y)-HWP(vm; r, s) if
gcd(x, y) ≥ 3, m ≥ 3, and both x and y divide v, except possibly when 1 ∈ {r, s}.
Keywords: 2-factorizations, Hamilton-Waterloo problem, Oberwolfach problem, cycle decomposi-
tion, resolvable decompositions.

Math. Subj. Class.: 05C51, 05C70

1 Introduction
The Oberwolfach problem asks for a decomposition of the complete graph Kv into v−1

2
copies of a 2-factor F . To achieve this decomposition, v needs to be odd, because the
vertices must have even degree. The problem with v even asks for a decomposition of Kv

into v−2
2 copies of a 2-factor F , and one copy of a 1-factor. The uniform Oberwolfach

problem (all cycles of the 2-factor have the same size) has been completely solved by
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Alspach and Haggkvist [1] and Alspach, Schellenberg, Stinson and Wagner [2]. The non-
uniform Oberwolfach problem has been studied as well, and a survey of results up to 2006
can be found in [8]. Furthermore, one can refer to [6, 7, 9, 23, 24] for more recent results.

In [19] Liu first worked on the generalization of the Oberwolfach problem to equipartite
graphs. He was seeking to decompose the complete equipartite graphK(m:n) with n partite
sets of size m each into (n−1)m

2 copies of a 2-factor F . For such a decomposition to exist
(n − 1)m has to be even. In [14] Hoffman and Holliday worked on the equipartite gener-
alization of the Oberwolfach problem when (n− 1)m is odd, decomposing into (n−1)m−1

2
copies of a 2-factor F , and one copy of a 1-factor. The uniform Oberwolfach problem over
equipartite graphs has since been completely solved by Liu [20] and Hoffman and Holliday
[14]. For the non-uniform case, Bryant, Danziger and Pettersson [7] completely solved the
case when the 2-factor is bipartite. In particular, Liu showed the following.

Theorem 1.1 ([20]). For m ≥ 3 and u ≥ 2, K(h:u) has a resolvable Cm-factorization if
and only if hu is divisible by m, h(u − 1) is even, m is even if u = 2, and (h, u,m) 6∈
{(2, 3, 3), (6, 3, 3), (2, 6, 3), (6, 2, 6)}.

The Hamilton-Waterloo problem is a variation of the Oberwolfach problem, in which
we consider two 2-factors, F1 and F2. It asks for a factorization of Kv when v is odd or
Kv − I (I is a 1-factor) when v is even into r copies of F1 and s copies of F2 such that
r+s =

⌊
v−1
2

⌋
, where F1 and F2 are two 2-regular graphs on v vertices. Most of the results

for the Hamilton-Waterloo problem are uniform, meaning F1 consists of cycles of size m
(Cm-factors), and F2 consists of cycles of size n (Cn-factors). If there is a decomposition
of Kv into r Cm-factors and s Cn-factors we say that a solution to (m,n)-HWP(v; r, s)
exists. The case where both m and n are odd positive integers and v is odd is almost
completely solved by [11, 12]; and if m and n are both even, then the problem again is
almost completely solved (see [5, 6]). However, if m and n are of differing parities, then
we only have partial results. Most of the work has been done in the case where one of the
cycle sizes is constant. The case of (m,n) = (3, 4) is solved in [4, 13, 21, 25]. Other
cases which have been studied include (m,n) = (3, v) [18], (m,n) = (3, 3x) [3], and
(m,n) = (4, n) [16, 21] .

In this paper, we consider the case of m and n being of different parity. This case
has gained attention recently, where it has been shown that the necessary conditions are
sufficient for a solution to (m,n)-HWP(v; r, s) to exist whenever m | n, v > 6n > 36m,
and s ≥ 3 [10]. We provide a complementary result to this in our main theorem, which
covers cases in which m - n and solves a major portion of the problem.

Theorem 1.2. Let x, y, v, k and m be positive integers such that:

(i) v,m ≥ 3,

(ii) x, y are odd,

(iii) gcd(x, y) ≥ 3,

(iv) x and y divide v,

(v) 4k divides v.

Then there exists a solution to (2kx, y)-HWP(vm; r, s) for every pair r, s with r + s =
b(vm− 1)/2c, r, s 6= 1.
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2 Preliminaries
The complete cyclic multipartite graph C(x:n) is the graph with n partite sets of size x,
where two vertices (g, i) and (h, j) are neighbors if and only if i − j = ±1 (mod n),
with subtraction being done modulo n. The directed complete cyclic multipartite graph
−→
C (x:n) is the graph with n parts of size x, with arcs of the form

(
(g, i), (h, i+1)

)
for every

0 ≤ g, h ≤ x− 1, 0 ≤ i ≤ n− 1.
One of the main tools in [17] is a Lemma that combines decompositions of C(x:k)

to obtain decompositions of K(v:m). We present a version of the Lemma for uniform
decompositions, as those are the focus of this manuscript.

Lemma 2.1 ([17]). Let m, x, y, and v be positive integers. Let s1, . . . , sm−1
2

be non-
negative integers. Suppose the following conditions are satisfied:

• There exists a decomposition of Km into Cn-factors.

• For every 1 ≤ t ≤ m−1
2 there exists a decomposition of C(v:n) into st Cxn-factors

and rt Cyn-factors.

Let

s =

(m−1)
2∑
t=1

st and r =

(m−1)
2∑
t=1

rt.

Then there exists a decomposition of K(v:m) into s Cxn-factors and r Cyn-factors.

In order to decompose
−→
C (x:n), x and n odd, into Cn-factors and Cxn-factors, the au-

thors of [17] labeled the vertices by Zx × {0, . . . , n − 1}. They build a 2-factor F by
providing n permutations of G. The ith permutation is used to connect vertices in column
i− 1 to vertices in column i, in particular the n-th permutation is used to connect vertices
in column n− 1 to vertices in column 0. It must be said that these permutations were used
implicitly in [17], as no permutation language was used for this part of the construction.

Notice that in general, if the columns are labeled by an abelian group G, f is the ith
permutation and g ∈ G, in the 2-factor F , vertex (g, i− 1) is connected to vertex (f(g), i).
Let F be the composition of all n permutations of the 2-factor F , such that (F(g), 0) is
the vertex at which we finish if we start at vertex (g, 0) and move through F until we reach
column 0 again. In the constructions in [17], G is abelian, and g − F(g) depends only on
F and not on g. If this is the case, the length of the cycles of F is n times the order of the
element g −F(g).

Lemma 2.2. Assume F is a 2-factor built with the permutation F , and g −F(g) depends
only on F . If q is the order of g −F(g), then F is a

−→
C qn-factor of

−→
C (xy4k:n).

As we will need to use the permutations of Zx, we will introduce them. For α ∈ Zx, let
fα be the permutation that adds α to every element of Zx, i.e. fα(g) = g+α. Let H(α, β)
be the 2-factor made with the following permutations:

• fα from column i− 1 to column i if 1 ≤ i ≤ n− 3/2;

• f−α from column i− 1 to column i if n− 3/2 + 1 ≤ i ≤ n− 3;

• fα from column n− 3 to column n− 2;
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• f−2α from column n− 2 to column n− 1 (this is a permutation because x is odd);

• fβ from column n− 1 to column 0.

In [17] the first n− 3 permutations were different, but the end result was the same. Notice
that F(g) = g − α + β. For every r ∈ {0, 1, 2, . . . , x − 3, x − 2, x}, the authors of [17]
gave permutations φ of Zx that satisfied:

(a) φ(α) = α for r elements of Zx;

(b) gcd(α− φ(α), x) = 1 for the remaining x− r elements of Zx.

Then, the decomposition of
−→
C (x:n) was given by the 2-factors H(α, φ(α)), α ∈ Zx.

In order for such a decomposition to work, for every α, β ∈ Zx the permutations fα, fβ
needed to satisfy fα = fβ if and only if α = β, as otherwise some arcs would be repeated
in the factor H(α, φ(α)) and the factor H(β, φ(β)).

Then, in [17], decompositions of
−→
C (x:n),

−→
C (y:n), and

−→
C (4:n) were combined using a

graph product and permutations of Zx×Zy×Z4 to decompose
−→
C (4xy:n). Instead of doing

so, we will use group products to label the vertices of
−→
C (4kxy:n), although we will make

use of permutations of the group product.
In Section 3, we give permutations of Z2k × Z2k , and show that they satisfy the neces-

sary conditions to be used for decompositions. In Section 4, we use multivariate bijections
to give decompositions of

−→
C (4kxy:n) into

−→
C 2kxk-factors and

−→
C yk-factors. Finally, in Sec-

tion 5, we use these decompositions to prove our main results.

3 The permutation fα(a, b) of Z2k × Z2k

Consider the group G = Z2k × Z2k , an element α = (α1, α2) and the function fα(a, b) =
(−b+ α1, a− b+ α2).

Lemma 3.1. fα is a permutation of G.

Proof. As |G| is finite, it is enough to prove that fα is an injective function.
Assume fα(a, b) = fα(c, d). Then

(−b+ α1, a− b+ α2) = (−d+ α1, c− d+ α2).

The equality −b+ α1 = −d+ α1 implies b = d. Using b = d, the equality a− b+ α2 =
c− d+ α2 implies a = c. Therefore, fα is a permutation of G.

Lemma 3.2. fβ(f2α(a, b)) = (a, b)− α+ β.

Proof. We will prove this lemma by computing fβ(f2α(a, b)).

fα(a, b) = (−b+ α1, a− b+ α2)

f2α(a, b) = f(−b+ α1, a− b+ α2)

= (−a+ b− α2 + α1,−b+ α1 − a+ b− α2 + α2)

= (−a+ b− α2 + α1, α1 − a)
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fβ(f
2
α(a, b)) = fβ(−a+ b− α2 + α1, α1 − a)

= (a− α1 + β1,−a+ b− α2 + α1 − α1 + a+ β2)

= (a− α1 + β1, b− α2 + β2)

= (a, b)− α+ β.

Letting β = α in Lemma 3.2 yields f3α(a, b) = (a, b).

Corollary 3.3. f3α(a, b) = (a, b).

As it was mentioned in Section 2, we need to show that if α 6= β, then fα(a, b) 6=
fβ(a, b) for every (a, b) ∈ Z2k × Z2k ; so that each arc is used exactly once. The statement
of the following lemma is an equivalent claim.

Lemma 3.4. fα(a, b) = fβ(a, b) for some (a, b) ∈ Z2k × Z2k if and only if α = β.

Proof. Assume fα(a, b) = fβ(a, b). Then

(−b+ α1, a− b+ α2) = (−b+ β1, a− b+ β2).

Hence, α1 = β1 and α2 = β2. Therefore α = β.

4 Decomposing
−→
C (4kxy:n) into

−→
C yn-factors and

−→
C x2kn-factors

Let G = Z2k × Z2k and label each column of
−→
C (4kxy:n) with the elements of the group

G× Zx × Zy .
Let R = G × Zx × Zy . For every λ ∈ R, let λ = (α, β, γ), with α ∈ G, β ∈ Zx and

γ ∈ Zy . For α ∈ G, let fα be defined as in Section 3. For β ∈ Zx let fβ be the permutation
of Zx defined by fβ(a) = a + β. Similarly, for γ ∈ Zy let fγ be the permutation of Zy
defined by fγ(a) = a + γ. Finally, for λ = (α, β, γ) ∈ R let fλ be the permutation of R
defined by fλ(a, b, c) = (fα(a), fβ(b), fγ(c)).

Let ϕ be a permutation of R, and for each λ ∈ G let H4kxy(λ, ϕ(λ)) be the 2-factor
formed with the following permutations:

1. fλ from column i to i+ 1 if 1 ≤ i ≤ n− 3/2;

2. f−1λ from column i to i+ 1 if n− 3/2 + 1 ≤ i ≤ n− 3;

3. fλ from column n− 2 to column n− 1;

4. f(α,−2β,−2γ) from column n− 1 to column n;

5. fϕ(α) from column n to column 1.

Notice that if you start in column 1 at vertex (a, b, c) the first time you reach column 1
again you reach vertex

(a, b, c)− (α, β, γ) + ϕ(α, β, γ) = (a, b, c)− λ+ ϕ(λ).

Hence, we can apply Lemma 2.2 to obtain the length of the cycles in the 2-factor.
Let λ ∈ R. If λ−ϕ(λ) = (a, b, 0) with a ∈ ±{(1, 0), (0, 1), (1, 1)} and gcd(b, x) = 1,

then by Lemma 2.2 the 2-factor H4k(λ, ϕ(λ)) is a
−→
C 2kxn-factor. If λ − ϕ(λ) = (0, 0, c)

with gcd(c, y) = 1, Lemma 2.2 implies that H4k(λ, ϕ(λ)) is a
−→
C yn-factor.

Therefore, to obtain a decomposition of
−→
C (4kxy:n) into r

−→
C 2kxn-factors and s

−→
C yn-

factors, we need a permutation ϕ satisfying
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(A) λ − ϕ(λ) = (a, b, 0) with a ∈ ±{(1, 0), (0, 1), (1, 1)} and gcd(b, x) = 1 for r
elements λ ∈ R;

(B) λ− ϕ(λ) = (0, 0, c) with gcd(c, y) = 1 for s = 4kxy − r elements λ ∈ R.

In order to obtain the permutation ϕ, consider the subgroup 2G of G of index 4, and let

K = {(0, 0), (1, 0), (0, 1), (1, 1)}.

Notice that K is a set of representatives of the cosets of 2G in G. Let ε ∈ 2G, and let
φ be a permutation of G. If g, φ(g) ∈ ε + K, then either g = φ(g) or |g − φ(g)| = 2k

because g − φ(g) ∈ ±K. Hence, we can obtain ϕ by providing 4k−1 permutations ρε of
K × Zx × Zy satisfying

(A′) λ − ρε(λ) = (a, b, 0) with a ∈ ±{(1, 0), (0, 1), (1, 1)} and gcd(b, x) = 1 for rε
elements λ ∈ K × Zx × Zy;

(B′) λ−ρε(λ) = (0, 0, c) with gcd(c, y) = 1 for sε = 4xy−rε elements λ ∈ K×Zx×Zy;

having r =
∑
ε∈2G rε, and having ϕ act in each (ε+K) × Zx × Zy as ρε, i.e. if g =

(ε, c, d) + (µ, 0, 0), with µ ∈ K, ϕ(g) = (ε, c, d) + ρε(µ, c, d). Notice that if a ∈ K,
a ∈ ±{(1, 0), (0, 1), (1, 1)} if and only if a 6= (0, 0).

In [17], for every r ∈ {0, 2, 3, . . . , 4xy − 3, 4xy − 2, 4xy}, permutations φ of Z4 ×
Zx × Zy were given satisfying:

(A′′) λ−φ(λ) = (a, b, 0), with a 6= 0 and gcd(b, x) = 1 for r elements λ ∈ Z4×Zx×Zy;

(B′′) λ − φ(λ) = (0, 0, c), with gcd(c, y) = 1 for the remaining 4xy − r elements λ ∈
Z4 × Zx × Zy .

Let π : K → Z4 be a bijection such that π(0, 0) = 0, and let ψ : K × Zx × Zy →
Z4 × Zx × Zy be the bijection that fixes the coordinates of Zx and Zy , and that behaves
like π in the coordinate of K. Then if φε is a permutation of Z4 × Zx × Zy , satisfying
Conditions (A′′) and (B′′) with rε and sε, ρε = ψ−1φεψ is a permutation of K × Zx × Zy
satisfying Conditions (A′) and (B′) with rε and sε.

If we wanted either x = 1 or y = 1, we would need to change Conditions (A) and (B),
but it is easy to see that the necessary permutations to decompose

−→
C (4kxy:n) exist.

Therefore we have the following.

Lemma 4.1. Let r 6∈ {1, 4kxy − 1}, then there is a decomposition of
−→
C (4kxy:n) into r

−→
C 2kxn-factors and s = 4kxy − r Cyn-factors.

5 Main results
The complete solution to the uniform case of the Oberwolfach problem will be vital to the
proof of our main result.

Theorem 5.1 ([1, 2, 15, 22]). Kv can be decomposed into Cm-factors (and a 1-factor if v
is even) if and only if v ≡ 0 (mod m), (v,m) 6= (6, 3) and (v,m) 6= (12, 3).

We now apply the results from Section 4 to produce the following important result for
the uniform equipartite version of the Hamilton-Waterloo problem where the two factor
types consist of cycle sizes of distinct parities.
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Theorem 5.2. Let x, y, z, v,m, k be positive integers v,m, k ≥ 3 satisfying the following:

(i) v,m ≥ 3,

(ii) k ≥ 2,

(iii) x, y, z odd,

(iv) z ≥ 3,

(v) gcd(x, y) = 1,

(vi) vm ≡ 0 (mod 4kxyz), v ≡ 0 (mod 4kxy),

(vii) v(m−1)
4kxy

is even,

(viii)
(

v
4kxy

,m, z
)
6∈ {(2, 3, 3), (6, 3, 3), (2, 6, 3), (6, 2, 6)},

then there is a decomposition of K(v:m) into r C2kxz-factors and s Cyz-factors, for any
s, r 6= 1.

Proof. Let v1 = v/4kxy. Consider K(v1:m). Item (vi) ensures that z divides v1m; and
items (vii), (i), and (viii) give us v1(m− 1) is even, m 6= 2, and(

v

4kxy
,m, z

)
6∈ {(2, 3, 3), (6, 3, 3), (2, 6, 3), (6, 2, 6)}.

Thus by Theorem 1.1 there is a decomposition of K(v1:m) into Cz-factors.
Replace each vertex in a ∈ K(v1:m) by 4kxy vertices (a, b), with 0 ≤ b ≤ 4kxy − 1,

having an edge between (a1, b1) and (a2, b2) if and only if there was an edge between a1
and a2. This yields K(v:m). Even more, each Cz-factor becomes a copy of v1mz C(4kxy:z).
By Lemma 4.1, we have that each v1m

z C(4kxy:z) can be decomposed into rp C2kxz-factors
and sp Cyz-factors as long as rp, sp 6= 1. Choosing sp such that

∑
p sp = s and sp, rp 6= 1,

provides a decomposition of K(v:m) into r C2kxz-factors and s Cyz-factors by Lemma 2.1.

The next lemma, given in [17] shows how to find solutions to the Hamilton-Waterloo
problems by combining solutions for the problem on complete graphs and solutions for the
problem on equipartite graphs.

Lemma 5.3 ([17]). Let m and v be positive integers. Let F1 and F2 be two 2-factors on
vm vertices. Suppose the following conditions are satisfied:

• There exists a decomposition of K(v:m) into sα copies of F1 and rα copies of F2.

• There exists a decomposition of mKv into sβ copies of F1 and rβ copies of F2.

Then there exists a decomposition of Kvm into s = sα + sβ copies of F1 and r = rα + rβ
copies of F2.

We are now in a position to provide a proof of the main theorem.

Theorem 5.4. Let x, y, v, k and m be positive integers such that:

(i) v,m ≥ 3,

(ii) x, y are odd,



532 Ars Math. Contemp. 17 (2019) 525–533

(iii) gcd(x, y) ≥ 3,

(iv) x and y divide v,

(v) 4k divides v.

Then there exists a solution to (2kx, y)-HWP(vm; r, s) for every pair r, s with r + s =
b(vm− 1)/2c, r, s 6= 1.

Proof. Let r and s be positive integers with r + s = b(vm− 1)/2c and r, s 6= 1. Write
r = rα + rβ and s = sα + sβ , where rα, rβ , sα, sβ are positive integers that satisfy
rα, sα 6= 1, rα+sα = v(m−1)/2, rβ+sβ = b(v − 1)/2c, and rβ , sβ ∈ {0, b(v − 1)/2c}.

Start by decomposing Kvm into K(v:m) ⊕ mKv . Let z = gcd(x, y), x1 = x/z,
y1 = y/z. By Theorem 5.2 there is a decomposition of K(v:m) into rα C2kx1z-factors and
sα Cy1z-factors. This is a decomposition ofK(v:m) into rα C2kx-factors and sα Cy-factors.
By Theorem 5.1 there is a decomposition of mKv into rβ C2kx-factors and sβ Cy-factors.
Lemma 5.3 shows that all of this together yields a decomposition of Kvm into r Cx-factors
and s Cy-factors.
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