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0  INTRODUCTION

The mold making industry is project driven, and 
as such it has to cope with the characteristics of an 
individual production process. One of the major 
sources of risk in project management is the inaccurate 
forecast of project costs, demand, and other impacts 
[1]. In the mold production process it is crucial to 
minimize uncertainty in the early project estimation 
phase. The estimation phase is commonly a human 
expert driven activity which is sensitive to the expert’s 
bias. This bias can lead to an underestimation of 
project resources when the estimator is overconfident, 
or to over-estimation of project resources when the 
estimator does not have sufficient confidence that all 
aspects of the project can be properly covered. Both 
scenarios have a negative impact on future business. 
In the case of underestimation, the project will bring 
economic loss, and in the case of overestimation, it 
will most likely be assigned to a competitive supplier. 
The estimator’s key competence is to properly collect 
and evaluate all significant information for making the 
project estimation successful. The contradiction  lies 
in the fact that the estimator should spend minimal 
time necessary on estimation activity since usually 
less than 10% of all offers turn into orders in the mold 
making industry, as stated in [2] to [4]. 

Estimations in the mold manufacturing business 
still rely heavily on intuitive methods, which are 
subjective and prone to reliability and repeatability 
problems. A solution for these problems is addressed 
in this article, with the development of a supported 
expert driven project estimation process.

In the project estimation process the volume 
of manufacturing hours represents one of the most 

important pieces of information. It reflects the 
majority of costs in the final project price, and it most 
significantly shapes the project schedule. The research 
objective is to develop an ANN-supported, expert 
driven project estimation process to improve the 
estimation of the volume of manufacturing hours in 
the mold production. In addition to the development of 
a reliable estimation model, it is also very important to 
properly position the supporting model in the expert 
driven estimation process. Therefore, in addition to 
model building, the problem of proper position of the 
supporting model will be addressed in the paper. 

Following these aims, first an overview of 
estimation process is given. Then, the solution for the 
problem of proper placement of an estimation support 
model is addressed. Furthermore, the proposed 
ANN-based model for estimation of the volume of 
manufacturing hours is presented. Finally, the results 
of ANN modelling are presented and discussed. 

1  THE PROJECT ESTIMATION PROCESS

A major challenge of the project estimation process 
in general is to achieve sufficient project estimation 
reliability within minimal time consumption for this 
operation. Estimation reliability is directly related 
to the amount and quality of the data available at 
the moment the estimation process takes place. 
As shown in Fig. 1, the availability of data differs 
during different project stages. As we move along 
the timeline of the project the availability of data 
increases. Consequently, estimation uncertainty 
and risks decrease, so more accurate and reliable 
results can be expected. Estimation methods differ in 
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accordance with the project stage in which they are 
used [3], [5] and [6] and are divided into:
• intuitive,
• analogical,
• parametric,
• analytical.

Intuitive estimation methods are based on the 
human expert’s prior knowledge and experience. A 
major downside of these methods is that results are 
very susceptible to many different subjective factors. 
So, the results obtained face problems regarding 
reliability and repeatability. These problems can be 
reduced to a certain extent by applying methods that 
use more than one estimator or estimation method [7]. 
A major benefit of these methods is moderate time 
consumption. They are usually applied in early project 
stages.

Analogical estimation methods are based on 
finding successful projects with similar characteristics 
like the one being estimated. On the basis of detected 
similarities corresponding values are assigned to the 
estimated project. These methods become applicable 
when the basic product shape is defined. They are also 
considered as conditionally reliable methods since the 
relations between similarities are usually estimated by 
an expert [7]. Their main strengths are transparency of 
gained results and the ability to achieve the solution 
rapidly. These methods strongly rely on the database 
of previous projects, and become unreliable if proper 
mapping of similar characteristics cannot be obtained.

Parametric estimation methods are used to make 
estimations on the basis of parameters that are able 
to directly translate the properties of the product or 
project into an estimated value. These methods are 
built on the databases of past projects. Estimations 
are obtained by collecting input parameters and 
processing those to formulate a proper estimation 
impact. These methods are usually seen as ‘black 
box’ solutions. A major challenge is in defining a 
proper set of input parameters. These methods offer 
both speed and sufficient reliability if used properly. 
By keeping the database of a past project open and 
adding the data of new projects, this model gains 
the ability of adaptation and learning, which comes 
forward significantly when used properly with ANN 
platforms. Parametric methods are prone to use both 
parametric (e.g. multiple regression-model) and non-
parametric models (e.g. ANN model), which were all 
found to give acceptable estimates.

Analytical estimation methods are usually 
applicable in the later stages of the product life 
cycle, when both product data and manufacturing 
technology are defined in details. The estimation 
is made on a detailed breakdown of the complete 
process into elementary tasks [8]. For every task the 
relations between inputs and corresponding outputs 
are analytically determined. These methods are 
usually rigid and relations between parameters are not 
easily modified. They do not have adaptation ability 
[8]. Gained results give the most accurate estimations. 

IDEA/PRODUCT 
DEFINITION 

CONCEPT
PRODUCT
DESIGN

ENGINEERING 
DESIGN

TESTING and
PROTOTYPING

INDUSTRIA-
LIZATION*

SERIAL 
PRODUCTION

EXPLOITATION

Intuitive methods

Analogical methods

Parametric methods

Analytical methods

Data definition/availability
Estimation reliability, Time consumption for calculation

Risk 
Uncertainty

* Manufacturing technology definition

Fig. 1.  Estimation methods applicable in different stages of the project
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Their major downsides are time consumption and 
limited applicability in the early project stages.

A review of significant, recently published 
literature and articles dealing with estimation methods 
is presented in Table 1. They are sorted with regard 
to the used estimation method. The table also defines 
the industry for which research was done and what 
problem they were trying to solve. 

From the literature it is evident that the majority 
of research activities, related to the problems of 
project estimation, are focused on defining estimation 
models that should be able to define the link between 
geometric characteristics of the product and price/cost 
of the product/project. By focusing on these economic 
values, the estimating process is contaminated 

with influences that do not possess technical and 
technological characteristics of the manufacturing 
process. These are actually influences of the market, 
reflecting request and demand, and have very little to 
do with technological issues.

Articles which are the most significant for this 
research are related to product complexity [9] to 
[11], and the implementation of ANN in the mold 
production estimation process [9] and [12]. All these 
approaches give quite accurate estimates only when 
used for very specific types of products. 

The above mentioned articles offer the solution 
of the complex estimation process by using a single 
estimation model, taking into account all its limitations 
and benefits. The idea presented in this article is to 

Table 1.  Literature overview

METHOD SOURCE
METHOD SUB-TYPE (ANN, 
Regression, Case-Based 

Reasoning, etc.)

INDUSTRY 
(Mold-making, Construction, etc.)

PROBLEM SOLVING

AN
AL

O
- 

GI
CA

L [2] Fonseca et al.
Retrieval of similar data from 
database

Mold Making / Tools for injection 
molding

Assisting mold quotation 

[3] Duverlie and Castelain Case-based Reasoning Product Design Cost estimation
[13] Wang et al. Case-based Reasoning Mold Making Mold cost estimation 

PA
RA

M
ET

RI
C

[5] Ficko et al. Case-based Reasoning
Mold Making / Tools  for Sheet Metal 
Forming

Manufacturing costs estimation 
for stamping tools

[6] Farineau et al. Regression model Product Design Cost estimation

[9] Raviwongse and Allada ANN Mold Making Mold complexity computation

[12] Che ANN Mold Making  and Injection molding
Product and mold cost 
estimation

[14] Cavalier et al. Regression model, ANN Automotive Production cost estimation
[15] Farineau et al. Regression model Product Design Cost estimation
[16] Elhag and Boussabine Regression model, ANN Construction/Buildings Tender price estimation

[17] Verlinden et al. Regression model, ANN
Sheet metal parts cost 
estimation

[19][18] Kim et al.
Regression model, ANN, Case-
based Reasoning

Construction/Buildings Construction costs

AN
AL

YT
IC

AL

[4] Denkena et al. Rule-based Mold Making / Tools for die casting Die cost calculation
[10] Fagade and Kazmer Mold Making and Injection molding Lead time estimation
[11] Fagade and Kazmer Mold Making and Injection molding Lead time estimation

[19] Chan et al.
Mold Making / Tools for injection 
molding / Toy industry

Mold cost estimation

[20] Denkena et al. Accessibility Analysis
Mold Making/ Tools for injection 
molding  and die casting

Manufacturing cost calculation

[21] Chin and Wong Decision Tables Mold Making Mold cost estimation

[22] Fagade and Kazmer
Boothroyd-Dewurst
Dixon-Poli

Mold Making 
Product and mold cost 
estimation

[23] Fagade and Kazmer Mold Making  and Injection molding
Product and mold cost 
estimation

[24] Nagahanumaiah et al.
Tools for injection molding and die 
casting

Die or mold cost estimation

[25] Navodnik and Kopčič Mold Making Mold cost estimation

[26] Menges et al.
Mold Making Tools for injection 
molding  and die casting

Mold cost estimation 

[27] Kazmer Mold Making Mold Making Mold cost estimation 
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develop an ANN supported project estimation process, 
which combines benefits from both intuitive methods 
and ANN estimation models. 

2  ANN-SUPPORTED ESTIMATION PROCESS

In general, expert estimations can represent a very 
broad solution space (see Fig. 2). This is mainly 
due to limited information availability; expert’s 
limited capability of simultaneously processing 
multiple information; and the expert’s bias. By using 
a supported expert estimation process the solution 
space gets narrower and the risk of underestimating or 
overestimating minimizes.

Fig. 2.  Expert estimation solution space

The estimation process in the mold making 
business most commonly relies on human intuitive 
methods [5], or a combination of intuitive and 
analogical estimation methods. Mold makers put 
major emphasis on retrieving accurate project 
estimation with minimal time consumption, because 
a large number of quotations have to be processed 
in order to achieve sufficient order load. The reason 
for that lies in a very moderate success rate of all 
submitted offers. In order to achieve a sufficient level 
of result credibility, the estimation process has to be 
systematically approached. With this aim, a detailed 
step-by-step, expert driven, and ANN-supported 
estimation approach has been developed as shown 
schematically in Fig. 3. The complete estimation 
process consists of several phases:
• Input data retrieval (IDR);
• Conceptual design and Product manufacturability 

verification (CDPMV);
• Resource estimation phase (REP);
• Economic calculation phase (ECP).

In IDR phase all input data necessary for 
completing the estimation is collected and evaluated. 
Having all the prescribed input data (a 3D CAD model 

of product, a part drawing, and technical requirements 
for mold design) at disposal is a necessary condition 
for moving to the next phase. 

In the CDPMV phase an expert defines the basic 
mold concept, starting with: proper part orientation; 
undercut area definition; basic mold dimension 
definition; and mold subsystems definition. To support 
his/her decisions in this phase the expert usually uses 
set of design rules, decision trees, and a past mold 
design database. In the CDPMV phase the expert also 
verifies product manufacturability for the prescribed 
manufacturing technology, in this case injection 
molding. For this step commercial CEA software is 
available. 

In the REP phase an expert is faced with 
estimation of proper resources for a complete project. 
This is a crucial phase of the estimation process. To 
formulate estimation in this phase the expert usually 
relies on information from a mold material database, 
a post-calculation database, and a manufacturing 
technology database. The REP phase is followed by 
the ECP phase in which the estimation is translated 
into corresponding financial values. 

In the REP phase experts usually use intuitive 
estimation methods, which have the aforementioned 
reliability disadvantages. To minimize the problem 
regarding the reliability of the estimation results it is 
proposed to place estimation supporting model.  The 
position of the supporting model in the estimation 
process shown in Fig. 2 is denoted in red colour. 
The estimation support can be achieved by different 
modelling methods like regression, ANN, support 
vector machines, etc. By applying the estimation 
supporting model the unsupported estimation process 
is upgraded to a supported estimation process (see 
Fig. 2).

In this article the focus is on the most influential 
factor in the project estimation process – the volume 
of manufacturing hours (VMH). VMH is defined by:

 VMH t t t
P OP

l m u= + +( )∑∑ ,  (1)

and represents the total of all machining hours spent 
to complete all parts (P) of the mold. Only the hours 
when machines are actually occupied are taken 
into account. This means that at each operation 
(OP) machining time (tm), the loading time (tl) and 
unloading time (tu) are taken into account. 

To support the estimation of the VMH, the 
ANN-based model is used, which is described in the 
following section. 
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Fig. 3.  The systematic, expert driven project estimation process supported by ANN
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3 ARTIFICIAL NEURAL NETWORK MODEL

ANNs are recognized as universal function 
approximators and can be efficiently used to model 
high dimensional and nonlinear relations [14]. 
They represent a valid alternative, especially when 
relationships are not known in either parametric or 
in an analytical form. This is an empirical model that 
learns from past examples and generalizes the solution 
for new cases. 

In our case, the purpose of ANN is to generate 
mapping from selected input data into a corresponding 
estimation of the VMH, based on learning by using 
empirical data without any prior knowledge of the 
mapping function. The ANN output retrieved from 
the model is categorized as an evaluation indicator for 
the expert to confirm their estimation or to re-evaluate 
and correct it accordingly.

The methodology for the implementation of 
an ANN-based estimation of the VMH consists of 
three major phases: input variable definition; ANN 
architecture definition and training; and model 
validation, as shown in Fig. 4. After ANN architecture 
and input variables are optimized, and the ANN model 
performance is approved by an expert, it is ready for 
implementation as a support in the estimation process 
as presented in Fig. 3.

Fig. 4.  General ANN-based estimation model creation

2.1  Input Variable Definition

When implementing an ANN model for the VMH 
estimation one of the most vital steps is to define an 
appropriate set of input variables that are presumably 
related to the VMH. In our case the VMH is mostly 
influenced by (see Fig. 5):
• micro and macro part geometry and quality 

requirements (MMPGQR), prescribed with a 3D 

CAD model, part drawing, and special technical 
requirements [28],

• technical requirements for the injection mold 
(TRFIM) that define the environment in which 
the mold will operate in serial production 
(molding facility),

• mold design principles/rules (MDP/R).
Production environment characteristics in 

which mold manufacturing takes place (mold shop 
equipment, organization, technology utilization, 
corporate culture, etc.) can also be used as ANN input 
variables. However, these characteristics are more 
applicable for estimations used in later project stages, 
when mold design is already completed. In the case 
when a cumulative variable like the VMH is observed, 
it can be presumed, that the production environment 
influence is already captured within the expected 
ANN output. These are the outputs that are collected 
through the samples described in Section 2.3.

When the selection of ANN input variables was 
considered an expert opinion was taken into account. 
Based on this, 22 input variables were used of which 
11 describe the MMPGOR, five describe the TRFIM, 
and six describe the MDP/R characteristics. Names 
and the corresponding variable value type are shown 
in Table 2. 

Fig. 5.  Dominant factors defining ANN inputs

2.2  ANN Architecture Definition 

To model a multivariable relation between the 22 
selected input variables and the corresponding VMH 
value a multi-layer feed-forward network is used. 
For ANN training a Levenberg-Marquard learning 
rule is applied. It is a method which is fast and most 
appropriate for training moderate-sized, feed-forward 
neural networks [29]. 
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As a performance function for feed-forward 
networks a mean square error (MSE), has been used, 
which defines the average squared difference between 
the network outputs and the target VMH Outputs.

The initial ANN architecture is shown in Fig. 6. 
In addition to the 22 units in the input layer it consists 
of 10 neurons with a sigmoid activation function in 
the hidden layer, and a single output neuron with 
a linear activation function. The ANN structure is 
implemented in a MATLAB environment.

Fig. 6.  ANN initial architecture

2.3  Validation of the ANN Model  

Training and validation of ANN model relies on the 
large amount of samples comprised of ANN input and 
the corresponding target output data. Obtaining a large 
number of samples in an individual production, such 
as mold manufacturing, represents a certain obstacle, 
because companies hold this information as internal 
know-how. In our case 105 samples were obtained 
from a mid-sized mold shop. The samples were taken 
from automotive industry projects where the injection 
mold typically holds mirrored part geometry. These 
are usually referred as 1+1 cavity molds (see Fig. 7). 
By narrowing the research to a certain type of molds, 

Table 2.  ANN Input and output variables with corresponding value type, and encoding

INPUTS Encoding INPUTS Encoding
Part envelope length 
[mm]

LP

M
M

PG
QR

Real Value Ejection EJ

TR
FI

M

0=Simple/ Single stroke
1=Multiple strokes

Part envelope width  
[mm]

WP Real Value Injection system IS -1=Cold runner system
0=Combined system
1=Hot runner system

Part envelope height 
[mm]

HP Real Value Cavity material,
Injection side

MC,IS 0=Non Hardened or Pre-Hardened 
1=Hardened steel 

Part surface area  
[mm2]

SP Real Value Cavity material, 
Ejection side

MC,ES 0=Non Hardened or Pre- Hardened
1=Hardened steel 

Part volume  
[mm3]

VP Real Value Overall dimensional 
tolerance 
requirements of the 
part

DTP 0=Class 4 (<0.5), Class 5 (<1), 
     Class 6 (>1)
1=Class 3 (<0.1), Class 2 
(<0.05), 
     Class 1 (<0.01)

Nominal part thickness 
[mm]

TP Real Value Mold length [mm] LM

M
DP

/R

Real Value

Part material MP -1= Semi-crystalline
1=Amorphous 

Mold width [mm] WM Real Value

Envelope volume [mm3] VE Real Value Mold height [mm] HM Real Value
Part complexity /Cavity 
detail

CXP -1=Simple/ Low detail
0=Moderately complex 
1=Complex/ High detail

Parting line/surface 
complexity 

CXPL -1=Simple / Flat
0=Moderately complex (Smoothly 
shaped, Small steps)
1=Free-form (Complex, non-
tangential  surfaces, big steps)

Surface finish,
Injection side

SFIS 0=Polished with sandpaper, Fine 
EDM, Fine milled/ Machined, etc. 
1/2=High polished
1=High polished-Class A 
surfaces

Number of sliders per 
cavity, Ejection side

NS,ES Real Value

Surface finish,
Ejection side

SFES 0=Polished with sandpaper, Fine 
EDM, Fine milled/ Machined, etc. 
1/2=High polished
1=High polished-Class A 
surfaces

Number of lifter cores 
per cavity, Ejection 
side

NLC,ES Real Value

OUTPUTS
Volume of 
manufacturing hours

VMH Real Value
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improved results are expected, and a narrower and 
denser decision space is achieved.

In order to overcome the obstacle of a restricted 
number of samples in ANN performance validation 
a multifold cross-validation procedure was used. 
For this purpose, a set of 105 input samples was 
randomized and divided into five subsets, each 
containing 21 samples. For each training the assigned 
subset was selected as a testing subset. The remaining 
four subsets were used for training. For statistical 
relevance of the ANN performance the ANN training 
and testing with the defined subsets was repeated five 
times. An average value of the output error was used 
as a measure of ANN performance for assigned testing 
and training subsets. 

Fig. 7.  Example of typical injection mold for automotive industry 
holding geometry for mirrored parts (left and right side of the 

vehicle)

Through an iteration process the number of 
neurons in the hidden layer was optimized, keeping 
in mind the fundamental ANN rules of minimizing 
the output error and keeping the network small. The 
final ANN architecture consists of four neurons in 
the hidden layer with a sigmoid activation function 
and one neuron with a linear activation function in 
the output layer. As ANN inputs in our case all 22 
variables presented in Table 2 were used.

3  ANN MODEL ESTIMATION RESULTS

An example of the comparison between network 
outputs and target outputs is shown in Fig. 8. 

From the figure a low scatter and an acceptable 
correlation between the target value and corresponding 
estimation of the VMH with a correlation coefficient 

0.92545 is evident. Although this result is very 
encouraging, it is also very deceptive. 

To further analyze the ANN model performance, 
additional indicators are used. ANN model 
performance was characterized by relative percentage 
error (RPE) and mean absolute percentage error 
(MAPE) of the estimated VMH defined by Eqs. (2) 
and (3): 

 RPE
y t
t
i i

i

=
−

⋅100,  (2)

 MAPE
N

y t
t
i i

ii

N

=
−

=
∑1

1
.  (3)

Fig. 8.  Scatter plot of network outputs vs. target outputs

In the Eqs. (2) and (3) ti and yi denote target 
and by ANN estimated value of the VMH and N 
denotes the number of input samples. From the 
above defined errors (Eqs. (2) and (3)) the MAPE 
is used for statistical characterisation of ANN 
performance, whereas the RPE has an additional 
practical interpretation as negative and positive RPE 
correspond to underestimation and overestimation of 
VMH, respectively. While overestimation represents 
either profit or in the worst case, a non-competitive 
offer, underestimation means very dangerous non-
profitability of the project.

The RPE for each sample i is shown in Fig. 9 and 
the corresponding histogram is presented in Fig. 10. 
From Fig. 10 it is evident that the majority (89.5%) 
of the results predicted the VMH values have an 
RPE in a range between –25 and +25%.  However, 
the fact  that in 4.8% of the predicted VMH values 
the corresponding RPE is below –25% should not be 
overlooked. In the most extreme case underestimation 
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shows RPE –38.1%. An estimator should keep in 
mind the level of underestimation that can be expected 
from using ANN model.

The results of the ANN model performance 
for a particular validation subset are shown in Table 
3. In addition to RPE and MAPE, the minimum and 
maximum ANN output of the VMH are also given, 
indicating the ANN output range. The overall network 
output based on performed cross-validation using five 
subsets yields a MAPE 0.133. These results show that 
additional instruction should be implemented in order 
to apply the results gained from the ANN model in the 
estimation process. 

Fig. 10.  RPE sample histogram and cumulative distribution

For an expert it is important to have sufficient 
confidence in estimations given by the ANN model. 

For this purpose, the RPE shown in Fig. 9 was 
reshaped in histogram form and the corresponding 
cumulative function as shown in Fig. 10.

Fig. 11.  RPE sample histogram and cumulative distribution using 
15% safety factor

The RPE sample histogram gives better 
information regarding ANN model behaviour. The 
information gained from this diagram is the basis 
for proposing a practical safety-factor approach. The 
goal of this approach is to give an expert the guidance 
on interpretation and how to use the ANN network 
estimations in order to shape the conservative decision 
in real life application. For the purpose of practical 
safety-factor approach, the 80/20 Pareto principle 
was applied. From the cumulative distribution it 
can be seen that 20% of all outputs have an RPE of 
–15% or less. This gives a basis for defining safety-

Fig. 9.  RPE for each sample

Table 3.  Network output indicators

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 NETWORK

Output range [VMH]
min 384 289 229 453 303 229
max 1407 1209 1283 1604 2006 2006

MAPE Mean absolute percentage error 0.085 0.124 0.192 0.123 0.140 0.133

RPE Relative percentage error [%]
max 21.9 20.9 34.1 26.2 29.2 34.1
min –22.9 –23.5 –38.1 –24.6 –24.4 –38.1
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factor approach. To achieve the 15% safety factor on 
the gained ANN model output, we artificially shift 
the obtained histogram into overestimating interval. 
It can be can expected that by applying this factor 
approximately 20% of all cases will fall in a safer 
underestimation interval, as shown in Fig 11. 

To achieve even more conservative decisions a 
higher, 25% safety factor is advised. In this case it can 
be expected that only around 4.8% of all cases will 
fall in an underestimation interval. 

4  CONCLUSIONS

This paper proposes an implementation of the ANN 
based model that can be used as expert support 
in the project estimation process. The proposed 
supported project estimation process defines a bridge 
between expert-driven intuitive models and data-
driven models. As an example, an ANN model to 
estimate VMH is considered. The results show that 
the presented ANN model fulfils the requirements of 
relevancy, simplicity, and reliability. A major benefit 
of ANN is the ability to model multivariable relations, 
but on the other hand the model showed in some cases 
output deviations that should not be neglected in real-
life application of the model. 

By implementing a safety-factor approach, 
guidance is given to the expert on how to handle 
network output in order to decrease the probability 
of unwanted project underestimation, and to achieve 
acceptable confidence of estimation, respectively. 

The following benefits can be expected by 
applying proposed supported estimation approach:
• lowered risk of underestimating the complexity 

of the project,
• embedded repeatability and stability in the 

decision making process,
• improvement in expert estimation reliability,
• a significantly shorter estimation process,
• allowing an enterprise to foresee sufficient 

manufacturing resources in the early project 
stage,

• by adapting input data specific to the estimator’s 
environment this model can be applied in any 
mold shop,

• it can be used as a learning assistant for novice 
estimators.
The major limitation of the proposed model-

based, supported project estimation process is a limited 
number of samples. In addition, the assumption that 
by implementing a limited number of parameters the 
information is incomplete from a wider perspective 
cannot be neglected. As a result, in decision making 

processes, experts frequently rely on information 
that is incomplete. To overcome this obstacle, future 
research activities will consider implementation and 
development of a specially tailored expert elicitation 
model.
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