
604 Acta Chim. Slov. 2010, 57, 604–608

Zupan: Extended Connectivity in Directed Graphs

Short communication

Extended Connectivity in Directed Graphs

Jure Zupan

National Institute of Chemistry, Ljubljana, Hajdrihova 19 Ljubljana, Slovenia

* Corresponding author: E-mail: jure.zupan@ki.si;
phone: 00-386-(0)1-4760-279

Received: 01-02-2010

This paper is dedicated to Professor Milan Randi} on the occasion of his 80th birthday

Abstract
An algorithm for the evaluation of the extended connectivity in directed graphs is described and discussed. The algo-
rithm is a general purpose one for finding the number of all paths from any given node Vi in a directed graph toward all
leaves that can be reached from that particular node Vi in the graph.

Keywords: Extended connectivity, directed graphs, algorithm, large data base.

1. Introduction

Due to the demonstrated ability of graph theory in
various fields of science, including chemistry, graphs1,2 as
the representation of a certain form of interest (a molecu-
le, an ensemble of generated structures from the given set
of fragments, a network-ordered set of properties of a col-
lection of compounds, the hierarchy of process instruc-
tions, a representation of a set of compounds employed in
combinatorial synthesis, etc.) together with several simple
approaches, concepts and properties of graphs have found
new applications and new meanings. Together with the in-
creased application of graph theory, the available compu-
ter power has enabled researchers to handle large graphs
containing not only thousands but literally millions of no-
des and connections.

Graphs can represent a population of objects of very
different origin and type. Evidently, molecules (chemical
structures) are easily visualized as graphs composed of
atoms (as nodes) and covalent bonds between them (as
links) (Figure 1a). Another type of graphs, often encoun-
tered in many fields of science or in various forms of data
handling, is a directed graph. It represents a hierarchy of
objects of the same kind (molecules, products, com-
pounds, process steps, etc). A good example of a hie-
rarchy is a collection of chemical compounds linked to-
gether into various groups (nodes) according to common
structural features that are shared only by the sub-groups

of the collection. Such features or properties can be, for
example: aromaticity, presence of a specific atom (oxy-
gen, phosphorus, sulfur, etc.) or specific group (carbonyl,
hydroxyl, benzene ring, etc.), or any other well-defined
structural feature or property. In short, any feature that is
not shared by all members in the collection. In its simplest
form such a collection of hierarchical properties is called
a tree, when ordered according to the downward direction
(Figure 1b). A directed graph has the top-most node called
the root and the nodes at its end, called the leaves.

For the evaluation of graph invariants and/or other
graphs’ properties, any new or improved procedure that
offers more efficient or optimized solution, is welcome
and desired. The concept of extended connectivity in a
graph is one of often used procedures in the description of
graphs. In this study only connected graphs are conside-
red.

Morgan3 has introduced the extended connectivity
as an iterative procedure applied on all nodes of the graph
(representing the non-hydrogen atoms linked by the co-
valent bonds in the chemical structure). At the beginning
of the procedure the initial values of extended connecti-
vity coefficients ecis at each node are the numbers of non-
hydrogen atoms (nodes) linked directly to it. At each fol-
lowing iteration step all ecis are replaced by the sum of
the ecis of the closest neighboring nodes (Figure 1a). In
graph theoretical terms the extended connectivity at node
Vi, eci, at the iteration step r, is the sum of all walks of
length r starting at node Vi and ending at any node Vj that

605Acta Chim. Slov. 2010, 57, 604–608

Zupan: Extended Connectivity in Directed Graphs

can be reached in the particular graph4 by the walk of
length r.

If a graph is a directed one, the definition of the ex-
tended connectivity as used in the present work is somew-
hat different from the previous one. A graph is a directed
one (Figure 2) if each link between two nodes Vi and Vj is
associated with a specified direction ‘up’ or ‘down’. The
link (Vi , Vj), if regarded from Vi towards Vj , has opposite
orientation (down or up) compared to the orientation if re-
garded from node and Vj towards Vi (up or down).

Additionally, if the digraph contains rings, the up and
down links within each ring should not be cyclic, i.e., each
ring must have at least one exit node mandatory accessible

regard less through which entry point in the ring the parti-
cular path has been followed. This last condition provides
the access to at least one leaf in any possible path in the di-
graph. If this condition is not met, the walks following the
down direction can run in cycles never reaching any leaf.
The eci at any node Vi is the sum of all paths that are possib-
le from the node Vi to any terminal mode (leaf) of the direc-
ted graph that can be reached from that node in the down-
ward direction (Figure 1b). Under the explained conditions
the extended connectivity of any node Vi in a data base or-
ganized as a directed graph provides the information with
how many different paths the objects (leaves) in the collec-
tion can be retrieved from any entry point (node Vi).

2. The problem

On the paper and for small graphs, the extended
connectivity for each node is very simple to evaluate and
assign to each of them. In the standard way for the calcu-
lation of the extended connectivity of graphs, higher order
of the adjacency matrix are used5, which, unfortunately,
increases with the square of the number of nodes. When a
graph contains a large number of nodes n, n being in order
of tens of thousands or even more (large chemical structu-
re or large collection of chemical structures), keeping
track of most of the graph descriptors or graph properties
becomes increasingly more complex6. Regardless of the
representation of the graph (either as adjacency matrix or
as a non-ordered list of nodes), the calculation of the ex-
tended connectivity in large graphs can be very time-con-
suming. This is especially true for trees (directed graphs
or digraphs) representing large collections of data where
individual objects or items are frequently updated – ad-
ded, changed, and/or deleted, etc. what causes permanent
recalculation of paths and connectivity between nodes in
the graph. Therefore, updating the extended connectivity
for each node in the digraph permanently under the condi-
tion of frequent update becomes a bottle-neck in the pro-
cess of handling graphs.

In a tree each node has only one link oriented to-
wards the root, while the number of downward links is
completely dependent on the structure of the graph. If
each node has exactly two down links, the tree is called a
binary tree. If a directed graph is not a tree, but a graph
containing rings (Figure 2), than at least one node has
more than one upward link what enables some of the lea-
ves to be accessed via different paths. As mentioned befo-
re, any ring in the digraph should not have links with di-
rections running in cycles.

Because each node in a directed graph can have dif-
ferent numbers of downward and upward links, in the re-
presentation of a directed graph these two sorts of links
have to be distinguished and consequently at each node
the information about the orientation of each link must be
provided.

Figure 1: Ordinary and directed graphs. Ordinary graph (a) repre-

senting chemical structure composed of 15 atoms (nodes) and cor-

responding bonds (links), and directed graph or tree (b)Figure 1:
Ordinary and directed graphs. Ordinary graph (a) representing che-

mical structure composed of 15 atoms (nodes) and corresponding

bonds (links), and directed graph or tree (b) representing a collec-

tion of ten objects Xi, (i = 1,...10). The extended connectivity values

ecis after the first three iteration steps for ordinary and directed

graph are shown on the left and right side, respectively. The ecis va-

lues of the ordinary graphs (left column) are sums of all ecis of

neighboring nodes, while in the directed graph ecis are sums of ecis

belonging to downward nodes. representing a collection of ten ob-

jects Xi, (i = 1,...10). The extended connectivity values ecis after the

first three iteration steps for ordinary and directed graph are shown

on the left and right side, respectively. The ecis values of the ordi-

nary graphs (left column) are sums of all ecis of neighboring nodes,

while in the directed graph ecis are sums of ecis belonging to down-
ward nodes.

a) b)

606 Acta Chim. Slov. 2010, 57, 604–608

Zupan: Extended Connectivity in Directed Graphs

Let us suppose that a directed graph is described by a
list of n nodes {Vi}, i = 1,...n each of which is represented by
two groups of k1 and k2 addresses towards upward and to-
wards downward nodes, respectively: Vi = ({Aj1

up}, j1 =
1,...k1, {Aj2

down }, j2 = 1,...k2). The goal is to find the extended
connectivity for the downward nodes in a procedure that
will run efficiently on a list n nodes, which is linear, and not
on the adjacency matrix, which grows proportional to n2.

3. The Algorithm

The procedure is schematically shown in Figure 2. It
starts with the initial eci value (or values) for all nodes Vi of
the graph (root, nodes, and leaves). In fact this initial va-

lues do not represent the connectivity of any kind, but set-
ting at the beginning all ecis to one speeds up the proposed
algorithm replacing two operations (checking for zero and
summation) with only one summation in all cases. The
procedure of calculating the actual downward extended
connectivity continues iteratively. Each iteration means se-
quential checking for all nodes {Vi} their down addresses
{Aj2

down} replacing the current eci at the node Vi with the
sum of ecis of the first down neighbors of Vi in a similar
fashion the standard extended connectivity calculation is
made. At each iteration the number of ecis that have chan-
ged their values from the previous ones is recorded. When
none of the ecis have been changed the iteration stops. The
obtained ecis represent the number of all possible paths to-
ward the nodes that can be reached from Vi.

The difference between the iterative procedure of
extended connectivity calculation in ordinary graphs and
directed graphs is twofold: first, in ordinary graphs at each
node all their direct neighboring ecis are added to obtain
the new eci value, while in the directed graph at each node
only the ecis values of the downward nodes are added to
yield the new eci, and second, the consequence of the first
difference is that the iterative procedure in ordinary
graphs yield larger and larger ecis values (walks in the
graph can be of any length!), while in the directed graphs
all ecis values are limited by the length of the longest path
to the furthest leaf reachable in the downward direction
from each particular node Vi.

The efficiency of the algorithm lies in the fact that
the order in which the nodes are considered does not inf-
luence the results. At first glance this property does not
seem to be of much value; however, in large and heavily
branched data collections where most of the nodes are up-
ward and downward multilinked, and in which the objects
(leaves) are constantly updated and nodes containing (lin-
king together) large sub-graphs often relocated, any pro-
cedure that requires either ordered nodes or recalculation
of the adjacency matrix, or both. Both procedures are
quadratic with the respect to n what makes them prohibi-
tively time consuming.

The procedure of the calculation of the extended
connectivity of the directed graph is discussed in detail us-
ing a small collection of six objects and six properties as
an example. In Figure 2, the root representing the entire
collection is the node V5, the objects are nodes V3,V4, V7,
V9, V12, and V13, while the nodes V1, V2, V6, V8, V11, and
V12 represent properties that each of the objects connected
to a particular node has. There are four rings in the graph
{V5, V2, V12, V1, V5}, {V5, V8, V6, V1, V5}, {V5, V8, V11 V10,
V6, V1, V5}, and {V8, V11, V10, V6, V8}. If object V10 is taken
as an example, one can see that there are three (3) diffe-
rent paths leading to it from the root: a) V5, V8, V11, V10; b)
V5, V8, V6, V10, and c) V5, V1, V6, V10.

Table 1 shows the ecis for all 13 nodes in three con-
secutive iteration steps. The second column shows the
sum of all downward nodes. The third column shows the

Figure 2: Calculation of the extended connectivity for directed

graph containing four rings (closed loops). The eci values at each

node Vi (the ID numbers of nodes are inside the circles) are calcula-

ted as a sum of eci values of the closest downward nodes from the

previous iteration. The evaluation starts with all ecis set to one. For

example: the ec2 value is always calculated as a sum of ec3 + ec9 +

ec12. In the first, in the second, and in the third iteration ec3 has the

values of 3, 5, and 5, respectively. After the third iteration all eci va-

lues remain unchanged.

607Acta Chim. Slov. 2010, 57, 604–608

Zupan: Extended Connectivity in Directed Graphs

initial values of ecis. In the next three columns the ecis ob-
tained in three consecutive iteration steps are given. Each
ecis value is calculated from the ecis values of the nodes as
given by the formula in the second column. For the calcu-
lation of ecis in the directed graphs the upward nodes (or
their addresses) are not required.

For example, at the moment, the algorithm starts
evaluate ec5 = ec1 + ec2 + ec8 (Table 1, column 4), two of
the three values, ec1 and ec2, are already updated (ec1 = 2,
and ec2 = 3). This yields the sum (ec1 + ec2 + ec8) equal six
(6) instead of three (3) what would follow from the initial
values of (ec1 = ec2 = ec8 = 1) if the algorithm would take
their values from the previous iteration (initial state) and
not the updated ones. This makes the proposed algorithm
more efficient, what can be checked by comparing Figure
2 with Table 1. In Figure 2, the ecis in each iteration are
calculated separately on the basis of the values of ecis ob-
tained in the previous iteration. Therefore, it takes four ite-
rations to achieve the stable set of ecis values. The propo-
sed algorithm needs only three iterations for stabilization
of ecis because it takes into account actually updated ecis
values, as shown in Table 1.

The final ‘downward’ extended connectivity value
eci for any node Vi shows the number of different paths
leading downward to all objects (leaves) from that parti-
cular node Vi. If the directed graph is a tree eci is equal
to the number of leaves that are linked in the node. As it
is shown in our example, this procedure allows the eva-
luation of ecis in the directed graph even if it contains
rings.

4. Conclusion

The efficiency of the algorithm for the evaluation
of the extended connectivity in directed graphs depends
on the length of the longest path and on the ordering of
nodes along this path. The most convenient order of no-

des would be the one in which the ecis of nodes closest
to the leaves will be evaluated first, and the ecis of the
nodes directly below the root last. In such a case only
one iteration step is needed to calculate all ecis even in
the largest graphs. On the other hand, the slowest case
of the ecis calculation depends on the most inconvenient
order in the longest path possible. Nevertheless, in hea-
vily branched and interconnected directed graphs, the
longest paths are usually very short compared to the
number of all leaves and compared to the number of all
nodes, hence the algorithm is very efficient. In our ap-
plications on collections consisting of more than 10,000
nodes, the algorithm needs 10–15 runs to calculate ecis
for all nodes.

It might be interesting to note that this algorithm,
although invented for chemists, was applied in the dictio-
nary of meanings of Slovenian words7 where it works well
showing all possible meaning-paths from generalized
meanings (nodes) toward all single words (leaves) in the
dictionary.

5. Acknowledgement

The financial support by the Agency for Research of
Republic of Slovenia (ARRS) through the program grant
P01–0017 and project grant J7–0382 is gratefully ack-
nowledged.

The paper is dedicated to my friend and co-worker
of many years – to Professor Milan Randiæ at the occa-
sion of his 80-th birthday. At the same time this paper,
describing an algorithm on the extended connectivity in
graphs, is written as a tribute to the crucial role the late
Dr. Marko Razinger has played with his research in the
applicability of graph theory in chemistry through
which Professor Randiæ was attracted to the collabora-
tion with National Institute of Chemistry, Ljubljana, fif-
teen years ago.

Table 1. Three iteration steps in the calculation of the extended connectivity values eci for the directed

graph shown in Figure 2.

Node Downward nodes Initial ecis 1st iteration 2nd iteration 3rd iteration
V1 V6+V12 1 1+1=2 1+3=4 1+3=4

V2 V3+V9+V12 1 1+1+1=3 1+1+3=5 1+1+3=5

V3 – 1 1 1 1

V4 – 1 1 1 1

V5 V1+ V2+V8 1 2+3+1=6 4+5+2=11 4+5+2=11

V6 V10 1 1 1 1

V7 – 1 1 1 1

V8 V6+V11 1 1+1=2 1+1=2 1+1=2

V9 – 1 1 1 1

V10 – 1 1 1 1

V11 V10 1 1 1 1

V12 V4+V7+V13 1 1+1+1=3 1+1+1=3 1+1+1=3

V13 – 1 1 1 1

No. of changes in ecis 13 5 3 none

608 Acta Chim. Slov. 2010, 57, 604–608

Zupan: Extended Connectivity in Directed Graphs

Povzetek
Predstavljen je u~inkovit algoritem za dolo~anje raz{irjene sti~nosti v usmerjenih grafih. Algoritem je splo{en in omo-

go~a dolo~itev {tevila vseh poti od poljubnega vozla Vi v usmerjenem grafu do vseh kon~nih vozlov (listov), ki so do-

segljivi iz omenjenega vozla Vi.

6. References

1. R. B. King, Applications of Graph Theory and Topology in
Inorganic Cluster and Coordination Chemistry, CRC Press,

1993.

2. J. Randi}, Acta Chim. Slov., 1998, 45, 239–252.

3. H. L. Morgan, J. Chem. Doc., 1965, 5, 107–113.

4. J. Figueras, J. Chem. Inf. Comput., Sci., 1993, 33, 717–718.

5. M. Razinger, Theoret. Chim. Acta (Berl.), 1982, 61, 581–586.

6. M. Randi}, M. Razinger, J. Chem. Inf. Comp. Science, 1995,

35 (3), 594–606.

7. J. Zupan, Jezik in slovstvo, 2009, 54 (3–4), 139–151.

