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Abstract

An S-ring (a Schur ring) is said to be separable with respect to a class of groups K if
every algebraic isomorphism from the S-ring in question to an S-ring over a group from
K is induced by a combinatorial isomorphism. A finite group is said to be separable with
respect to K if every S-ring over this group is separable with respect to K. We provide a
complete classification of abelian p-groups separable with respect to the class of abelian
groups.
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1 Introduction
Let G be a finite group. A subring of the group ring ZG is called an S-ring (a Schur ring)
over G if it is determined in a natural way by a special partition of G (the exact definition
is given in Section 2). The classes of the partition are called the basic sets of the S-ring.
The concept of the S-ring goes back to Schur and Wielandt. They used S-rings to study a
permutation group containing a regular subgroup [19, 20]. For more details on S-rings and
their applications we refer the reader to [13].

Let A and A′ be S-rings over groupsG andG′ respectively. An algebraic isomorphism
from A to A′ is a ring isomorphism inducing a bijection between the basic sets of A and
the basic sets of A′. Another type of an isomorphism of S-rings comes from graph theory.
A combinatorial isomorphism from A to A′ is defined to be an isomorphism of the corre-
sponding Cayley schemes (see Subsection 2.2). Every combinatorial isomorphism induces
the algebraic one. However, the converse statement is not true (the corresponding examples
can be found in [6]).
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Let K be a class of groups. Following [3], we say that an S-ring A is separable with
respect to K if every algebraic isomorphism from A to an S-ring over a group from K is
induced by a combinatorial one. We call a finite group separable with respect to K if every
S-ring over G is separable with respect to K (see [18]).

The importance of separable S-rings comes from the following observation. Suppose
that an S-ring A is separable with respect to K. Then A is determined up to isomorphism
in the class of S-rings over groups from K only by the tensor of its structure constants (with
respect to the basis of A corresponding to the partition of the underlying group).

Given a group G denote the class of groups isomorphic to G by KG. If G is separable
with respect to KG then the isomorphism of two Cayley graphs over G can be verified effi-
ciently by using the Weisfeiler-Leman algorithm [12]. In the sense of [10] this means that
the Weisfeiler-Leman dimension of the class of Cayley graphs over G is at most 3. More
information concerned with separability and the graph isomorphism problem is presented
in [3, 17].

Denote the classes of cyclic and abelian groups by KC and KA respectively. The cyclic
group of order n is denoted by Cn. In the present paper we are interested in abelian groups
and especially in abelian p-groups which are separable with respect to KA. The problem of
determining of all groups separable with respect to a given class K seems quite complicated
even for K = KC . Examples of cyclic groups which are non-separable with respect to KC

were found in [6]. In [5] it was proved that cyclic p-groups are separable with respect to
KC . We prove that a similar statement is also true for KA.

Theorem 1.1. For every prime p a cyclic p-group is separable with respect to KA.

The result obtained in [18] implies that an abelian group of order 4p is separable with
respect to KA for every prime p. From [9] it follows that for every group G of order
at least 4 the group G × G is non-separable with respect to KG×G. One can check that
a normal subgroup of a group separable with respect to KA is separable with respect to
KA (see also Lemma 2.5). The above discussion shows that a non-cyclic abelian p-group
separable with respect to KA is isomorphic toCp×Cpk orCp×Cp×Cpk , where p ∈ {2, 3}
and k ≥ 1. The separability of the groups from the first family was proved in [17]. In the
present paper we study the question on the separability of the groups from the second
family.

Theorem 1.2. The group Cp × Cp × Cpk , where p ∈ {2, 3} and k ≥ 1, is separable with
respect to KA if and only if k = 1.

As an immediate consequence of Theorem 1.1, Theorem 1.2, and the above mentioned
results, we obtain a complete classification of abelian p-groups separable with respect
to KA.

Theorem 1.3. An abelian p-group is separable with respect to KA if and only if it is cyclic
or isomorphic to one of the following groups:

C2 × C2k , C3 × C3k , C3
2 , C3

3 ,

where k ≥ 1.

Throughout the paper we write for short “separable” instead of “separable with respect
to KA”. The text is organized in the following way. Section 2 contains a background of
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S-rings. Section 3 is devoted to S-rings over cyclic p-groups. We finish Section 3 with the
proof of Theorem 1.1. In Section 4 we prove Theorem 1.2.

The author would like to thank Prof. I. Ponomarenko for the fruitful discussions on the
subject matters and Dr. Sven Reichard for the help with computer calculations.

Notation.
• The ring of rational integers is denoted by Z.
• Let X ⊆ G. The element

∑
x∈X x of the group ring ZG is denoted by X .

• The order of g ∈ G is denoted by |g|.
• The set {x−1 : x ∈ X} is denoted by X−1.
• The subgroup of G generated by X is denoted by 〈X〉; we also set rad(X) =
{g ∈ G : gX = Xg = X}.

• If m ∈ Z then the set {xm : x ∈ X} is denoted by X(m).
• Given a set X ⊆ G the set {(g, xg) : x ∈ X, g ∈ G} of edges of the Cayley graph

Cay(G,X) is denoted by R(X).
• The group of all permutations of a set Ω is denoted by Sym(Ω).
• The subgroup of Sym(G) induced by right multiplications of G is denoted by Gright.
• For a set ∆ ⊆ Sym(G) and a section S = U/L of G we set

∆S = {fS : f ∈ ∆, Sf = S},

where Sf = S means that f permutes the L-cosets in U and fS denotes the bijection
of S induced by f .

• If a group K acts on a set Ω then the set of all orbtis of K on Ω is denoted
by Orb(K,Ω).

• If H ≤ G then the normalizer of H in G is denoted by NG(H).
• If K ≤ Sym(Ω) and α ∈ Ω then the stabilizer of α in K is denoted by Kα.
• The cyclic group of order n is denoted by Cn.

2 S-rings
In this section we give a background of S-rings. The most of definitions and statements
presented here are taken from [13, 17].

2.1 Definitions and basic facts

Let G be a finite group and ZG the group ring over the integers. The identity element of G
is denoted by e. A subring A ⊆ ZG is called an S-ring over G if there exists a partition
S = S(A) of G such that:

(1) {e} ∈ S,

(2) if X ∈ S then X−1 ∈ S,

(3) A = SpanZ{X : X ∈ S}.

The elements of S are called the basic sets of A and the number |S| is called the rank
of A. Given X,Y, Z ∈ S the number of distinct representations of z ∈ Z in the form
z = xy with x ∈ X and y ∈ Y is denoted by cZX,Y . If X and Y are basic sets of A then
X Y =

∑
Z∈S(A) c

Z
X,Y Z. So the integers cZX,Y are structure constants of A with respect
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to the basis {X : X ∈ S}. It is easy to verify that given basic sets X and Y the set XY is
also basic whenever |X| = 1 or |Y | = 1.

A set X ⊆ G is said to be an A-set if X ∈ A. A subgroup H ≤ G is said to be an
A-subgroup if H is an A-set. One can check that for every A-set X the groups 〈X〉 and
rad(X) are A-subgroups.

A section U/L is said to be an A-section if U and L are A-subgroups. If S = U/L is
an A-section then the module

AS = SpanZ {Xπ : X ∈ S(A), X ⊆ U} ,

where π : U → U/L is the canonical epimorphism, is an S-ring over S.
If K ≤ Aut(G) then the set Orb(K,G) forms a partition of G that defines an S-ring

A over G. In this case A is called cyclotomic and denoted by Cyc(K,G).
Let G be abelian. Then from Schur’s result [19] it follows that X(m) ∈ S(A) for every

X ∈ S(A) and every m coprime to |G|. We say that X,Y ∈ S(A) are rationally conjugate
if Y = X(m) for some m coprime to |G|.

2.2 Isomorphisms and schurity

Throughout this and the next two subsections A and A′ are S-rings over groups G and G′

respectively. A bijection f : G→ G′ is called a (combinatorial) isomorphism from A over
to A′ if

{R(X)f : X ∈ S(A)} = {R(X ′) : X ′ ∈ S(A′)},

where R(X)f = {(gf , hf ) : (g, h) ∈ R(X)}. If there exists an isomorphism from A to A′

we write A ∼= A′. The group Iso(A) of all isomorphisms from A onto itself has a normal
subgroup

Aut(A) = {f ∈ Iso(A) : R(X)f = R(X) for every X ∈ S(A)}.

This subgroup is called the automorphism group of A. Note that Aut(A) ≥ Gright. If S
is an A-section then Aut(A)S ≤ Aut(AS). An S-ring A over G is said to be normal if
Gright E Aut(A). One can check that

NAut(A)(Gright)e = Aut(A) ∩Aut(G). (2.1)

Now let K be a subgroup of Sym(G) containing Gright. As Schur proved in [19], the
Z-submodule

V (K,G) = SpanZ{X : X ∈ Orb(Ke, G)},

is an S-ring over G. An S-ring A over G is called schurian if A = V (K,G) for some K
such that Gright ≤ K ≤ Sym(G). Not every S-ring is schurian. The first example of a
non-schurian S-ring was found by Wielandt in [20, Theorem 25.7]. It is easy to see that A
is schurian if and only if

S(A) = Orb(Aut(A)e, G). (2.2)

Every cyclotomic S-ring is schurian. More precisely, if A = Cyc(K,G) for some K ≤
Aut(G) then A = V (Gright oK,G).
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2.3 Algebraic isomorphisms and separability

A bijection ϕ : S(A)→ S(A′) is called an algebraic isomorphism from A to A′ if

cZX,Y = cZ
ϕ

Xϕ,Y ϕ

for all X,Y, Z ∈ S(A). The mapping X → Xϕ is extended by linearity to the ring
isomorphism of A and A′. This ring isomorphism we denote also by ϕ. If there exists an
algebraic isomorphism from A to A′ then we write A ∼=Alg A′. An algebraic isomorphism
from A to itself is called an algebraic automorphism of A. The group of all algebraic
automorphisms of A is denoted by AutAlg(A).

Every isomorphism f of S-rings preserves the structure constants and hence f induces
the algebraic isomorphism ϕf . However, not every algebraic isomorphism is induced by
a combinatorial one (see [6]). Let K be a class of groups. An S-ring A is defined to be
separable with respect to K if every algebraic isomorphism from A to an S-ring over a
group from K is induced by a combinatorial isomorphism.

Put

AutAlg(A)0 = {ϕ ∈ AutAlg(A) : ϕ = ϕf for some f ∈ Iso(A)}.

It is easy to see that ϕf = ϕg for f, g ∈ Iso(A) if and only if gf−1 ∈ Aut(A). Therefore

|AutAlg(A)0| = | Iso(A)|/|Aut(A)|. (2.3)

One can verify that for every groupG the S-ring of rank 2 overG and ZG are separable
with respect to the class of all finite groups. In the former case there exists the unique
algebraic isomorphism from the S-ring of rank 2 over G to the S-ring of rank 2 over a
given group of order |G| and this algebraic isomorphism is induced by every bijection. In
the latter case every basic set is singleton and hence every algebraic isomorphism is induced
by an isomorphism in a natural way.

Let ϕ : A → A′ be an algebraic isomorphism. One can check that ϕ is extended to a
bijection between A- and A′-sets and hence between A- and A′-sections. The images of an
A-setX and an A-section S under these extensions are denoted byXϕ and Sϕ respectively.
If S is an A-section then ϕ induces the algebraic isomorphism ϕS : AS → A′S′ , where
S′ = Sϕ. The above bijection between the A- and A′-sets is, in fact, an isomorphism of
the corresponding lattices. One can check that

〈Xϕ〉 = 〈X〉ϕ and rad(Xϕ) = rad(X)ϕ

for every A-set X (see [4, Equation (10)]). Since c{e}X,Y = δY,X−1 |X|, where X,Y ∈ S(A)

and δY,X−1 is the Kronecker delta, we conclude that |X| = c
{e}
X,X−1 , (X−1)ϕ = (Xϕ)−1,

and |X| = |Xϕ| for every A-set X . In particular, |G| = |G′|.

2.4 Cayley isomorphisms

A group isomorphism f : G→ G′ is called a Cayley isomorphism from A to A′ if S(A)f =
S(A′). If there exists a Cayley isomorphism from A to A′ we write A ∼=Cay A′. Every
Cayley isomorphism is a (combinatorial) isomorphism, however the converse statement is
not true.
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2.5 Algebraic fusions

Let A be an S-ring over G and Φ ≤ AutAlg(A). Given X ∈ S(A) put XΦ =
⋃
ϕ∈ΦX

ϕ.
The partition

{XΦ : X ∈ S(A)}

defines an S-ring over G called the algebraic fusion of A with respect to Φ and denoted by
AΦ. Suppose that Φ = {ϕf : f ∈ K} for some K ≤ Iso(A) and A is schurian. Then one
can verify that

AΦ = V (Aut(A)K,G).

In particular, the following statement holds.

Lemma 2.1. Let A be a schurian S-ring over G and K ≤ Iso(A). Then AΦ, where
Φ = {ϕf : f ∈ K}, is also schurian.

2.6 Wreath and tensor products

Let A be an S-ring over a group G and S = U/L an A-section. The S-ring A is called the
S-wreath product if L E G and L ≤ rad(X) for all basic sets X outside U . In this case
we write

A = AU oS AG/L.

The S-wreath product is called non-trivial or proper if e 6= L and U 6= G. If U = L we
say that A is the wreath product of AL and AG/L and write A = AL oAG/L.

Let A1 and A2 be S-rings over groups G1 and G2 respectively. Then the set

S = S(A1)× S(A2) = {X1 ×X2 : X1 ∈ S(A1), X2 ∈ S(A2)}

forms a partition of G = G1 ×G2 that defines an S-ring over G. This S-ring is called the
tensor product of A1 and A2 and denoted by A1 ⊗A2.

Lemma 2.2. The tensor product of two separable S-rings is separable.

Proof. As noted in [18, Lemma 2.6], the statement of the lemma follows from [1, Theo-
rem 1.20].

Lemma 2.3 ([17, Lemma 4.4]). Let A be the S-wreath product over an abelian groupG for
some A-section S = U/L. Suppose that AU and AG/L are separable and Aut(AU )S =
Aut(AS). Then A is separable. In particular, the wreath product of two separable S-rings
is separable.

Let Ω be a finite set. Permutation groups K, K ′ ≤ Sym(Ω) are called 2-equivalent if
Orb(K,Ω2) = Orb(K ′,Ω2). A permutation group K ≤ Sym(Ω) is called 2-isolated if it
is the only group which is 2-equivalent to K.

Lemma 2.4. Let A be the S-wreath product over an abelian group G for some A-section
S = U/L. Suppose that AU and AG/L are separable, AU is schurian, and the group
Aut(AS) is 2-isolated. Then A is separable.

Proof. Since AU is schurian, the groups Aut(AU )S and Aut(AS) are 2-equivalent. In-
deed,

Orb(Aut(AU )S , S2) = Orb(Aut(AS), S2) = {R(X) : X ∈ S(AS)}.
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This implies that Aut(AU )S = Aut(AS) because Aut(AS) is 2-isolated. Therefore the
conditions of Lemma 2.3 hold and A is separable.

Lemma 2.5. Let H be a normal subgroup of a group G, B an S-ring over H , ϕ ∈
AutAlg(B) \ AutAlg(B)0. Then there exists ψ ∈ AutAlg(A) \ AutAlg(A)0, where A =
B o Z(G/H), such that ψH = ϕ.

Proof. Define ψ as follows: Xψ = Xϕ for X ∈ S(AH) and Xψ = X for X ∈ S(A) \
S(AH). Let us prove that ψ ∈ AutAlg(A). To do this it suffices to check that cZ

ψ

Xψ,Y ψ =

cZX,Y for all X,Y, Z ∈ S(A). Suppose that X,Y ∈ S(AH). If Z ∈ S(AH) then cZ
ψ

Xψ,Y ψ =

cZ
ϕ

Xϕ,Y ϕ = cZX,Y . If Z /∈ S(AH) then Zψ /∈ S(AH) and hence cZ
ψ

Xψ,Y ψ = cZX,Y = 0.
Now suppose that exactly one of the sets X,Y , say X , lies inside H . Then Y ψ = Y

and X ∪ Xψ ⊆ H ≤ rad(Y ). So XY = XψY = |X|Y . This implies that cZ
ψ

Xψ,Y ψ =

cZX,Y = |X| whenever Z = Y and cZ
ψ

Xψ,Y ψ = cZX,Y = 0 otherwise.
Finally, suppose that X,Y /∈ S(AH). In this case Xψ = X and Y ψ = Y . If Z /∈

S(AH) then Zψ = Z and hence cZ
ψ

Xψ,Y ψ = cZX,Y . If Z ∈ S(AH) then Z and Zψ enter
the element XY with the same coefficients because H = rad(X) ∩ rad(Y ). Therefore
cZ

ψ

Xψ,Y ψ = cZX,Y . Thus, ψ ∈ AutAlg(A).
If ψ is induced by an isomorphism then [4, Lemma 3.4] implies that ψH = ϕ is also

induced by an isomorphism. We obtain a contradiction with the assumption of the lemma
and the lemma is proved.

3 S-rings over cyclic p-groups
In this section we prove Theorem 1.1. Before the proof we recall some results on S-rings
over cyclic p-groups. The most of them can be found in [7, 8]. Throughout the section p is
an odd prime, G is a cyclic p-group and A is an S-ring over G. We say that X ∈ S(A) is
highest if X contains a generator of G. Put rad(A) = rad(X), where X is highest. Note
that rad(A) does not depend on the choice of X because every two basic sets are rationally
conjugate and hence have the same radicals.

Lemma 3.1. The S-ring A is schurian and one of the following statements holds for A:

(1) | rad(A)| = 1 and rk(A) = 2;

(2) | rad(A)| = 1, A is normal, and A = Cyc(K,G) for some K ≤ K0, where K0 is
the subgroup of Aut(G) of order p− 1;

(3) | rad(A)| > 1 and A is the proper generalized wreath product.

Proof. The S-ring A is schurian by the main result of [16]. The other statements of the
lemma follow from [8, Theorem 4.1, Theorem 4.2 (1)] and [7, Lemma 5.1, Equation (1)].

Lemma 3.2. Let S be an A-section with |S| ≥ p2. The following statements hold:

(1) If Statement (2) of Lemma 3.1 holds for A then Statement (2) of Lemma 3.1 holds
for AS;
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(2) If rk(AS) = 2 then Aut(A)S = Sym(S).

Proof. Statement (1) of the lemma follows from [8, Corollary 4.4] and Statement (2) of the
lemma follows from [8, Theorem 4.6 (1)].

Lemma 3.3. Suppose that Statement (2) of Lemma 3.1 holds for A. Then Aut(A) is
2-isolated.

Proof. By [15, Lemma 8.2], it suffices to prove that Aut(A)e has a faithful regular orbit.
The S-ring A is normal. So (2.1) implies that Aut(A)e ≤ Aut(G). Let X ∈ S(A) be
highest. Since A is cyclotomic, each element of X is a generator of G. If f ∈ Aut(A)e
fixes some x ∈ X then f is trivial because f ∈ Aut(G) and x is a generator of G. Besides,
A is schurian and hence X ∈ Orb(Aut(A)e, G) by (2.2). Therefore X is a regular orbit of
Aut(A)e. The group Aut(G) is cyclic because p is odd. So both of the groups Aut(A)e
and Aut(A)Xe are cyclic groups of order |X|. Thus,X is a faithful regular orbit of Aut(A)e
and the lemma is proved.

Lemma 3.4. Suppose that Statement (2) of Lemma 3.1 holds for A and ϕ is an algebraic
isomorphism from A to an S-ring A′ over an abelian group G′. Then G′ is cyclic.

Proof. By the hypothesis,

A = Cyc(K,G) for some K ≤ Aut(G) with |K| ≤ p− 1.

The group E = {g ∈ G : |g| = p} is an A-subgroup of order p because A is cyclotomic.
The group E′ = Eϕ is an A′-subgroup of order p by the properties of an algebraic iso-
morphism. Assume that G′ is non-cyclic. Then there exists X ′ ∈ S(A′) containing an
element of order p outside E′. Let X ∈ S(A) such that Xϕ = X ′. The set X consists of
elements of order greater than p because G is cyclic and all elements of order p from G lie
inside E. The identity element e of G enters the element Xp with a coefficient dividing
by p because xp 6= e for each x ∈ X . The identity element e′ of G′ enters the element
(X ′)p with a coefficient which is not divided by p because (x′)p = e′ for some x′ ∈ X ′
and |X ′| ≤ p− 1. Since ϕ is an algebraic isomorphism, we have

(Xp)ϕ = (X ′)p and {e}ϕ = {e′}.

This implies that e and e′ must enter Xp and (X ′)p respectively with the same coefficients,
a contradiction. Therefore G′ is cyclic and the lemma is proved.

Lemma 3.5. Suppose that | rad(A)| > 1. Then there exists an A-section S = U/L such
that A is the proper S-wreath product, | rad(AU )| = 1, and |L| = p.

Proof. From [17, Lemma 5.2] it follows that there exists an A-section U/L1 such that A is
the proper U/L1-wreath product and | rad(AU )| = 1. Let L be a subgroup of L1 of order
p. Then the lemma holds for S = U/L.

Lemma 3.6 ([5, Theorem 1.3]). Every S-ring over a cyclic p-group is separable with
respect to KC .
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Proof of the Theorem 1.1. The statement of the theorem for p ∈ {2, 3} was proved in [17,
Lemma 5.5]. Further we assume that p ≥ 5. Let A be an S-ring over a cyclic p-group G of
order pk, where k ≥ 1. Prove that A is separable. We proceed by induction on k. If k = 1
then G is the unique up to isomorphism group of order p and the statement of the theorem
follows from Lemma 3.6.

Let k ≥ 2. One of the statements of Lemma 3.1 holds for A. If Statement (1) of
Lemma 3.1 holds for A then rk(A) = 2 and hence A is separable. Suppose that State-
ment (2) of Lemma 3.1 holds for A. Let ϕ be an algebraic isomorphism from A to an
S-ring A′ over an abelian group G′. Due to Lemma 3.4, the group G′ is cyclic. So ϕ is
induced by an isomorphism by Lemma 3.6. Therefore A is separable.

Now suppose that Statement (3) of Lemma 3.1 holds for A. Then A = AU oS AG/L
for some A-section S = U/L with L > e and U < G. The S-rings AU and AG/L are
separable by the induction hypothesis. Due to Lemma 3.5 we may assume that rad(AU ) =
e and |L| = p. In this case rk(AU ) = 2 or Statement (2) of Lemma 3.1 holds for AU . If
rk(AU ) = 2 or |S| = 1 then U = L and A is separable by Lemma 2.3.

Assume that Statement (2) of Lemma 3.1 holds for AU . If |S| ≥ p2 then Statement (2)
of Lemma 3.1 holds for AS by Statement (1) of Lemma 3.2. Lemma 3.3 implies that
Aut(AS) is 2-isolated. The S-ring AU is cyclotomic and hence it is schurian. Therefore A
is separable by Lemma 2.4.

It remains to consider the case when |S| = p. In this case |U | = p2. If rad(X) > L for
every X ∈ S(A) outside U then rad(X) ≥ U for every X ∈ S(A) outside U because G is
cyclic. This yields that A = AU oAG/U and hence A is separable by Lemma 2.3.

Suppose that there exists X ∈ S(A) outside U with rad(X) = L. The remaining part
of the proof is divided into two cases.

Case 1: 〈X〉 < G. In this case put S1 = 〈X〉/L. The S-ring A is the S1-wreath product
and |S1| ≥ p2. Note that | rad(AS1

)| = 1 because rad(X) = L. So Statement (1) or State-
ment (2) of Lemma 3.1 holds for AS1 . In the former case Aut(A〈X〉)

S1 = Aut(AS1) =
Sym(S1) by Statement (2) of Lemma 3.2 and A is separable by Lemma 2.3. In the lat-
ter case Aut(AS1

) is 2-isolated by Lemma 3.3. Since A〈X〉 is schurian, the conditions of
Lemma 2.4 hold for S1 and A is separable by Lemma 2.4.

Case 2: 〈X〉 = G. In this case | rad(AG/L)| = 1 because rad(X) = L. Let π : G→ G/L
be the canonical epimorphism. Clearly, π(U) is an AG/L-subgroup and π(X) lies outside
π(U). So rk(AG/L) > 2 and hence Statement (2) of Lemma 3.1 holds for AG/L.

Let ϕ be an algebraic isomorphism from A to an S-ring A′ over an abelian group G′.
Put U ′ = Uϕ and L′ = Lϕ. Clearly,

L′ ≤ U ′. (3.1)

The algebraic isomorphism ϕ induces the algebraic isomorphism ϕU from AU to AU ′ ,
where U ′ = Uϕ. From Lemma 3.4 it follows that

U ′ ∼= Cp2 . (3.2)

Alsoϕ induces the algebraic isomorphismϕG/L from AG/L to AG′/L′ . Lemma 3.4 implies
that G′/L′ is cyclic. Since |L′| = |L| = p, we conclude that

G′ ∼= Cpk or G′ ∼= Cp × Cpk−1 .
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However, in the latter case L′ is not contained in a cyclic group of order p2 because G′/L′

is cyclic. This contradicts to (3.1) and (3.2). So G′ is cyclic and ϕ is induced by an
isomorphism by Lemma 3.6. Therefore A is separable and the theorem is proved.

4 Proof of Theorem 1.2
Proposition 4.1. The group C3

p is separable for p ∈ {2, 3}.

Before we prove Propostion 4.1 we give the lemma providing a description of S-rings
over these groups.

Lemma 4.2. Let A be an S-ring over C3
p , where p ∈ {2, 3}. Then A is schurian and one

of the following statements holds:

(1) rk(A) = 2;

(2) A is the tensor product of smaller S-rings;

(3) A is the proper S-wreath product of two S-rings with |S| ≤ p;

(4) p = 3 and A ∼=Cay Ai, where Ai is one of the 14 exceptional S-rings whose param-
eters are listed in Table 1.

Remark 4.3. In Table 1 the notation km means that an S-ring have exactly m basic sets of
size k.

Table 1: Parameters of the 14 exceptional S-rings A1,A2, . . . ,A14.

S-ring rank sizes of basic sets

A1 3 1, 132

A2 4 1, 6, 8, 12

A3 4 1, 2, 122

A4 5 1, 42, 6, 12

A5 5 1, 2, 83

A6 6 1, 2, 64

A7 7 1, 2, 44, 8

A8 7 1, 2, 32, 63

A9 8 1, 2, 46

A10 9 1, 23, 45

A11 10 1, 25, 44

A12 10 13, 36, 6

A13 11 13, 38

A14 14 1, 213

Proof. The statement of the lemma can be checked with the help of the GAP package
COCO2P [11].
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Proof of the Proposition 4.1. From [17, Theorem 1, Lemma 5.5] it follows that the group
Ckp is separable for p ∈ {2, 3} and k ≤ 2. Let A be an S-ring over G ∼= C3

p , where
p ∈ {2, 3}. Then one of the statements of Lemma 4.2 holds for A. If Statement (1) of
Lemma 4.2 holds for A then, obviously, A is separable. If Statement (2) of Lemma 4.2
holds for A then A is separable by Lemma 2.2. Suppose that Statement (3) of Lemma 4.2
holds for A. Then A is the proper schurian S-wreath product for some A-section S = U/L
with |S| ≤ 3. Since A is schurian, AU is also schurian. Note that Aut(AS) is 2-isolated
becasue |S| ≤ 3. Therefore A is separable by Lemma 2.4.

Suppose that Statement (4) of Lemma 4.2 holds for A and ϕ is an algebraic isomor-
phism from A to an S-ring A′ over an abelian group G′. Clearly, if A′ is separable then
ϕ−1 is induced by an isomorphism and hence ϕ is also induced by an isomorphism. If
G′ ∼= Cp3 then A′ is separable by Theorem 1.1; if G′ ∼= Cp × Cp2 then A′ is separable
by [17, Theorem 1]; if G′ ∼= C3

p and one of the Statements (1) – (3) of Lemma 4.2 holds
for A′ then A′ is separable by the previous paragraph. So in the above cases ϕ is induced
by an isomorphism. Thus, we may assume that G′ ∼= C3

p and Statement (4) of Lemma 4.2
holds for A′.

Two algebraically isomorphic S-rings have the same rank and sizes of basic sets. So
information from Table 1 implies that Ai �Alg Aj whenever i 6= j. Therefore we may
assume that

A = A′ = Ai

for some i ∈ {1, . . . , 14}. Using the package COCO2P again, one can find that

|AutAlg(Aj)| = | Iso(Aj)|/|Aut(Aj)|

for every j ∈ {1, . . . , 14}. In view of (2.3) this yields that AutAlg(Aj) = AutAlg(Aj)0 for
every j ∈ {1, . . . , 14}. So ϕ ∈ AutAlg(Ai)0 and hence ϕ is induced by an isomorphism.
Thus, A is separable and the proposition is proved.

Proposition 4.4. The group Cp × Cp × Cpk is non-separable for p ∈ {2, 3} and k ≥ 2.

Proof. In view of Lemma 2.5 to prove that the group Cp × Cp × Cpk is non-separable
for p ∈ {2, 3} and k ≥ 2 it is sufficient to construct an S-ring A over Cp × Cp × Cp2 ,
p ∈ {2, 3}, and an algebraic isomorphism ϕ from A to itself which is not induced by an
isomorphism.

Let G = 〈a〉 × 〈b〉 × 〈c〉, where |a| = |b| = p and |c| = p2. Put A = 〈a〉, B = 〈b〉,
C = 〈c〉, c1 = cp, and C1 = 〈c1〉. Firstly consider the case p = 2. Let f ∈ Aut(G) such
that

f : (a, b, c)→ (a, bac1, ca)

and A = Cyc(〈f〉, G). It easy to see that |f | = 2 and the basic sets of A are the following

T0 = {e}, T1 = {a}, T2 = {c1}, T3 = {ac1},
X1 = cA, X2 = c3A,

Y1 = b〈ac1〉, Y2 = ba〈ac1〉,
Z1 = bcC1, Z2 = bcaC1.

Define a permutation ϕ on the set S(A) as follows:

Tϕ0 = T0, Tϕ1 = T1, Tϕ2 = T3, Tϕ3 = T2,

Xϕ
1 = X1, Xϕ

2 = X2,
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Y ϕ1 = Z1, Y ϕ2 = Z2, Zϕ1 = Y1, Zϕ2 = Y2.

It easy to see that |ϕ| = 2. The straightforward check implies that ϕ is an algebraic
isomorphism from A to itself. Let us check, for example, that cT2

Y1,Y2
= c

Tϕ2
Y ϕ1 ,Y

ϕ
2

. We have

Y1Y2 = 2a+ 2c1 and Y1
ϕY2

ϕ = Z1Z2 = 2a+ 2ac1. So cT2

Y1,Y2
= c

Tϕ2
Y ϕ1 ,Y

ϕ
2

= 2.
Note that A corresponds to a Kleinian quasi-thin scheme of index 4 in the sense of [14].

The S-ring A is cyclotomic and hence it is schurian. Assume that ϕ is induced by an iso-
morphism. Then the algebraic fusion A〈ϕ〉 is schurian by Lemma 2.1. However, computer
calculations made by using the package COCO2P [11] (see also [21]) imply that A〈ϕ〉 is
non-schurian, a contradiction. Therefore, ϕ is not induced by an isomorphism and hence
A is non-separable.

Now let p = 3. Let f1, f2, f3 ∈ Aut(G) such that

f1 : (a, b, c)→ (a−1, b−1, c−1), f2 : (a, b, c)→ (a, b, cc1), f3 : (a, b, c)→ (a, ba, c).

The direct check implies that |f1| = 2, |f2| = |f3| = 3, and f1, f2, f3 pairwise commute.
Put K = 〈f1〉 × 〈f2〉 × 〈f3〉 and A = Cyc(K,G). The basic sets of A are the following:

T0 = {e}, T1 = {a, a−1}, T2 = {c1, c−1
1 }, T3 = {ac1, a−1c−1

1 }, T4 = {a−1c1, ac
−1
1 },

X1 = cC1 ∪ c−1C1, X2 = caC1 ∪ c−1a−1C1, X3 = ca−1C1 ∪ c−1aC1,

Y1 = bA ∪ b−1A, Y2 = bc1A ∪ b−1c−1
1 A, Y3 = b−1c1A ∪ bc−1

1 A,

Z1 = {bc, b−1c−1}(A× C1), Z2 = {b−1c, bc−1}(A× C1).

Let ϕ be a permutation on the set S(A) such that Tϕ3 = T4, Tϕ4 = T3, and Xϕ = X
for every X ∈ S(A) \ {T3, T4}. Clearly, |ϕ| = 2. Note that for every X,Y ∈ S(A) \
{T3, T4} the elements T3 and T4 enter with non-zero coefficients the element XY only in
the following cases: X = Y = Zi;X = Xi, Y = Xj , i 6= j;X = Yi, Y = Yj , i 6= j. The
straightforward check using this observation implies that ϕ is an algebraic isomorphism
from A to itself.

If ϕ is induced by an isomorphism then A〈ϕ〉 is schurian by Lemma 2.1. However,
A〈ϕ〉 coincides with the non-schurian S-ring constructed in [2, pp. 8–10] in case of G ∼=
C3 × C3 × C9, a contradiction. Thus, ϕ is not induced by an isomorphism and hence A is
non-separable. The proposition is proved.

Theorem 1.2 is an immediate consequence of Proposition 4.1 and Proposition 4.4.

References
[1] S. Evdokimov, Schurity and Separability of Association Schemes (in Russian), Ph.D. thesis,

St. Petersburg State University, Russia, 2004.
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