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Abstract
Work presents an attempt to show how secondary networks in polar rubbers,

formed by orientational and dispersional molecular interactions, affect the rubbers’
rheological behavior. Secondary networks are weak and hence strongly susceptible to
strain and temperature. Their strain and thermally induced breakdown can suitably be
followed by rubbers’ mechanical dynamic functions. For this purpose a model is chosen,
whose result is dependence of these functions on strain and temperature during such
process, also enabling determination of two energies characteristic of the network: the one
for its mechanical and the other for its thermal breakdown. The model, originally devised
to describe rheological properties of carbon black filled rubbers, is based on statistical
mechanics of chain molecules and a few additional assumptions, yielding good agreement
with experiment.

Introduction

In polar rubbers, such as butadiene- acrylonitrile (NBR) and polychloroprene

(CR), orientational and dispersional interactions between molecules [1] create

associations acting as secondary intermolecular linkages and thus constituting a

secondary network that represents morphological structure of rubbers when in

amorphous state. To rubbers’ morphology also contribute molecular entanglement

formed mainly by larger molecules and acting as a kind of slipping pseudo linkages [2].

Orientational and dispersional interactions, termed secondary, are of short range

type with energies decreasing with the mutual molecular distance to the sixth power.

They are also considered weak since characteristic values of their energies, ranging fro
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about 5 kJmol-1 to 15 kJmol-1, are low in comparison with energies of primary (covalent)

network linkages (e.g. C-Sx-C obtained by sulfur crosslinking or C-C by peroxide

crosslinking). Nevertheless, the intermolecular linkages produced by the foregoing

secondary interactions crucially affect rheological properties of rubbers, regardless if

crosslinked by primary linkages or not. In both cases secondary linkages form a network

which considerably augments the rubbers’ moduli of elasticity. However, unlike primary

linkages that decay under extreme deformational and/or thermal conditions, the

secondary linkage breakdown already begins at low strains and at relatively sma

increase in temperature. Hence, rheological properties of rubbers with such secondar

morphology, either uncrosslinked or crosslinked by primar linkages, strongly depend on

strain and temperature. It is important to notice that once broken, the primary linkage

network never restores when left at rest, whereas the secondary network gradually

reforms, regaining the properties it possessed before the breakdown.

The a of this work is to show relationship between secondary networks in

polar rubbers and their rheological properties, concurrently enabling determination of

characteristic energies for secondary network breakdown by mechanical means, as we

as determination of characteristic (activation) energies for its thermal breakdown.

Theoretical

An eligible way (among several equivalent ones) to study rheological properties

of rubbers is pursuing behavior of their dynamic mechanical functions, i.e. the storage

and loss moduli, under various strain, frequency and temperature conditions. Regardless

of the strain type, the theory of rubber elasticity predicts the storage modulus, a measure

of material’s resistance to strain, to be proportional to the intermolecular linkage

(primary and/or secondary) density and temperature [3]. In the presence of secondar

network, the storage modulus monotonically decreases with increasing strain due to

gradual network breakdown, i.e. diminution of secondary linkage density. The storage

modulus decreases toward a low but finite terminal value, when the network is

completely destroyed.

The loss modulus, on the other hand, representing the measure for energ

dissipation in form of generated heat, displays different behavior. The usual cause for
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energy dissipation in rubbers is internal friction [4] whose intensity strongly depends on

strain rate. In the case of secondary network structure, strong energy dissipation occurs

also due its breakdown, the loss modulus being proportional to the secondary linkage

density change. Thus the loss modulus first increases up to a maximum value, when the

network breakdown rate is the highest, and then, similarly as the storage modulus,

decreases toward a low finite value. Dependence of storage shear modulus, � � , and loss

shear modulus, �� , on shear strain amplitude, γ , in the plateau frequency zone, i.e.

from a few parts of �
−� to about ���  � −� , during a typical strain-induced secondary

network breakdown is schematically given in Fig. 1 [5,7].
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Fig. 1.  Dependence of storage and loss shear moduli, � �  and �� , on shear strain
amplitude.

The secondary linkage density decreases also with increasing temperature. Since

the effect of linkage density diminution on � �  exceeds the one of its entropic increase

with temperature, as asserted by the theory of rubber elasticity [3], in total, � �  decreases

with increasing temperature, but not as strongly as the linkage density. The same is true

with �� , but to its decrease also contributes reduction of internal friction. It should be

mentioned, however, that the effect of temperature on � �  and ��  diminishes with

increasing strain, to be annulled entirely at high strains, which is plausible since the

network is completely destroyed.

Although such interpretation of dynamic functions’ behavior is in qualitative

agreement with observation, there have been no attempts to quantitatively describe thei

dependence on strain and temperature, based on more primary principles. For this
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purpose, therefore, a model has been chosen, originally devised for description of

dynamic functions’ strain and temperature dependence for rubber with carbon black

[6,7], but judging by analogy, suitable to treat dynamic functions of polar rubbers. The

model is based on statistical mechanics of chain molecules and some additiona

assumptions.

First assumption accounts for secondary network breakdown in rubbers while

being strained. The network decays, when the network linkages break and disappear.

According to the theory of elasticity of free chain molecules, the elastic force, f,

deforming a molecule has the following form [8]:

� � �	
�

�� �
 < >  (1)

where �  is the molecular end-to-end distance, called the chain vector, < >r 2  the mea

square of the chain vector, T the temperature and k the Boltzmann constant. Elastic force

has completely the same form for network chains, i.e. parts of molecules between

topologically adjacent linkages, the chain vector representing here the distance between

the latter. The linkages break, when acted upon by a pendant chain with a certain critical

force, �
�
, proportional to a critical chain vector, �

�
 (depending on network chain

length), and given as

� �
� �

= < >	
�

�� �
 .                                      (2)

Second assumption considers distribution of network chain lengths. If such

distribution exists, then in strained network only chain vectors of a certain fixed length

will undergo affine transformation, whereas all chain vectors differing in length will be

transformed nonaffinely

As for the effect of temperature, it is additionally assumed that the secondar

network breakdown in polar rubbers is a thermally activated process.

Effect of strain amplitude

It is well known from statistical mechanics of chain molecules that the chain

vector distribution in undeformed state is Gaussian of the following form [9]:
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� � � �
�

� � � � �	 � 	 �� 
 � 
 
 ���� 
 
�
� = < > − < >π ,                     (3)

where  r x y z2 2 2 2= + +  in Cartesian coordinate system with one end of a network chain

in its origin. For affinely transformed chain vectors in strain, i.e { }� �= λ
�
, where { }λ  is

the gradient deformation tensor and �
�
 the chain vector in unstrained state, the

distribution function (3) is transformed accordingly into [9]

{ } { }� �� � 
 ���� 
 � 
� �λ λ λ= − −�

�

�                                           (4)

The determinant factor responsible for volume changes can be neglected at low strains.

For shear strain, used in this work, the principal values of the tensor { }λ  are

λ λ1 = , λ2 1=  and λ λ3 1= /  where λ represents the deformatin ratio [10], i.e. the ratio

of specimen’s lengths in strained and unstrained state, respectively. Substituting this into

(4) and negleting the determinant term, distribution of affinely transformed chain vectors

turns into

[ ]� � � ���� ���� � 
 � 
 
 ��� � 
 
 
�
� λ π λ λ= < > − + + < >−

	 � � �� � � � � � �          (5)

Since shear strain is expressable in terms of deformation ratio as γ λ λ= − −1 [10], the

distribution (5) can be written as a function of γ in the following way:

[ ]� � � ���� ���� � 
 � 
 
 ��� � 
 
 
�
� γ π γ= < > − + < > =	 � 	 �

� � � � � �

= − < >� � � ����

� � ��� 
 ���� 
 
� γ                                       (6)

As assumed, network linkages break when subjected to a certain critical force

proportional to a critical chain vector. Thus, the fraction of unbroken linkages a

deformation γ  is simply given by the fraction of network chains whose affinely

transformed vectors do not exceed the critical chain vector ����
����
. This fraction is given as

� � � �� � � � � ����� ���

��
��

� 
 � � 
 � 
 ���� 
 
γ γ π π γ= = − < >∫∫ � �� � ��

�

� � � �

��

           (7)

where 4 2πr dr  is the volume element dV  in Cartesian coordinate system. It is worth

noting here that the integral (7) for γ = 0,
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� � � �����

�
�

� 
 � 
� �
�

�

�

= ∫π � ,                                              (8)

representing the fraction of unbroken linkages in unstrained state, is not equal to unity,

which can be attributed to thermal breakdown of linkages in the moment of formation.

For small deformations, the value of integral (7) is  approximately

� � � ���� ��� � ���� 
 � 
 ���� 
 
γ γ≈ − < >� �
� � � ,                                (9)

or, in terms of the critical force, f c ,

[ ]� � 	 �� ���� ��� � ���� 
 � 
 ��� � 
 
 
γ γ≈ − < >� 	 �
� � � .                        (10)

Such would be low strain functional dependence of G'  (proportional to linkage density

and in this  case,  therefore,  to the fraction of unbroken linkages), if all network chains

were of equal

length, with < > = < >� � ���

� � , since the length of a chain is proportional to its

< >� � [8].
However, all network chains are not equally long and chai n vector

transformations of  those wit< > ≠ < >� � ���

� �  are nonaffine in strain. Deformati

ratio, say λ � , of such chain vectors  is not equal to deformation ratio of affinely

transformed vectors λ , but is related to it through the relationship between their

corresponding relative deformations ε �  � � � 
ε λ= −�  and ε  � 
ε λ= − � , respectively:

ε ε� 
� �= < > < >� ����

� � � � � � .                                          (11)

By taking account of this relation and of the fact tha
γ λ λ ε ε ε= − = + − + ≈− −� �� � �� 
  for small ε , replacement oγ  in Eq. (10) by the

expression γ < > < >r raf
2 1 2 2 1 2/ //  would make Eq. (10) valid also for network chains of

an arbitrary < >r 2 . So the fraction of unbroken linkages in this generalized case, �� , is

[ ]� � 	 � �� �� � � ���� 
 � 
 ��� � 
	 
 
γ γ≈ − < > < >� �� � � � .                   (12)

To obtain the total fraction of unbroken chains as a function of strain, it i

necessary to consider distribution of network chain lengths, or, more precisely,
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distribution of average absolute values of chain vectors < >r 2 1 2/ . It is natural to assume

this distribution to be Gaussian, too, possessing the form:

� � � � �� 
 � 


�


 ���� 
�

�


� �< > = < > − < > < >� � � � � � � �	 � 	π ,                   (13)

where < >r 2
_

 is the overall average of the chain vector mean squares in the system. The

total fraction of unbroken linkages at given deformation γ , �� 
γ , is obtained by

combination of Eq. (12) and distribution (13) in the following manner:  

� � � � � � ��� 
 � 
 � 

� �γ π γ= < > < > < >

∞

∫�
� � � �

�

� � �                             (14)

where integration is carried out over the entire space, since < >r 2 1 2/ can theoretically

assume any value.  By designating the quantity 3 22/
_

< >r  from distribution (13) wit

the letter a and the quantit � 
	 
 
	 � ��� ���< >� � �  from Eq. (15) with the letter b,

substitution of (12) and (13) into (14) yields

� 
 � � � � � � �� 
 ���� 
 
 �γ γ= < > − < > − < > < > =
∞

∫ � � � �

�

� � �

= < > − < > − < > < >
∞

∫( / ) exp( / )/B r a r b r d r2 2 1 2 2 2 2

0

2γ ,                     (15)

where 
 �≡ � �π � 
 � 


�


 �	 � � � �π < >� . Evaluation of this integral gives the final results:

( ) ( )� � � � � �� � � � ���� � � �γ γ γ= + −� � � �� � � � � � � �                               (16)

and

( )− = −�� � � �� � �� 
 
 � 
 ��� � �γ γ γ γ� � � � � � � .                               (17)

The expression � � � � �� �� �  in these equations is strain independent for low strain

amplitudes and is of the following form:

� 	� � � � � � � � � � � �� � 	 � � �� 
 ��� ��� �

� � � � �
	

�


≡ < > < > =                       (18)

where


 � 	 � �� � � ���= < > < >� � � �


�
�                                          (19)

( �
�

 being the Avogadro number) is a quantity with the unit of energy per mol,

characteristic of material. It may be called characteristic energy for secondary linkage
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and subsequently secondary network breakdow. As shown later, the values of 

�
 are

typically within the range of energies characteristic for secondary interactions.

The storage shear modulus G' , being proportional to the linkage density in rubber

and thus to the total fraction of unbroken linkages, is then given as dictated b Eq. (16):

( ) ( )� � 
 �� 
 ��
� �

� � 
 � � 
 
 ��� 
� �γ γ γ= + −� � 	 	� � � �                       (20)

where �� � 
�  is the initial storage shear modulus, i.e. aγ = � .
The loss shear modulus G" is proportional to deformational change of the total

fraction of unbroken linkages. As the function given b Eq. (17) experiences maximum a

γ max
/( )= −4 1 2ab , i.e. at strain amplitude of the strongest decrease of unbroken linkage

density and subsequently G' , G" ( )γ  written in terms of its maximum value, G" max (at

γ max), thus possesses the form:

( )� � 
 �� 
 ��
� �

� � 
 � � 
 
 ��� 

���

� �γ γ γ= −	 � 	� � � � .                     (21)

It should be noted again that this equation accounts only for energy dissipation due to

secondary network breakdown and does not consider internal friction. Hence, this fact i

expected to worsen its agreement with experiment.

Eqs. (20) and (21) in the foregoing forms are valid only for low strains because

approximations made in solving integral (7) and in generalizing Eq. (10) into Eq. (12) are

possible only in the low strain range. For higher strains, exact solution of the integral (7)

is divergent. Nevertheless, Eqs. (20) and (21) can be generalized to hold at higher strains

as well. In doing this, their forms remain unchanged, but the characteristic energ

�
 at

given temperature becomes strain dependen

�
� 
γ , specifically, it decreases with

increasing strain from the initial value, 

�
� 
� , towards a low constant value, 


�
� 
∞ .

Mathematically, the reason for strain dependence o

�
 is formal, but it also has a

physical meaning. For its explanation it is necessary to examine the form o 

�
 given by

Eq. (19). As deformation increases, the linkage density decreases and topologically

adjacent unbroken linkages are connected by ever longer network chains.
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Hence, the denominater on the right-hand side of Eq. (19) increases, causing  

�
� 
γ  to

decrease. Namely, from obvious relation

n r n r( )
_

( )
_

/ /γ γ< > = < >2 3 2 2
0

3 20                                          (22)

where < >r 2 3 2
_

/
γ  and < >r 2

0
3 2

_
/  are the basic volume elements associated with linkages

at  shear strains γ  and γ = 0, respectively, it follows

� � �� � � � � �< > = − < > = − < >� � � �

�

� � � � � �
�

�


 � 
 � 


�


 � 


�


 � 

� � �

γ γγ γ γ .          (23)

Since, except at very low strains, the function n( )γ  given by (16) is dominated by the

exponential term, which is evident from strong decrease iG' ( )γ , combination of Eqs.

(16) and (17) yields approximatel

�� � 
 � ��
�

� 
 
 � 
 � 
 
 �γ γ γ γ≈ − 	� � .                                   (24)
As ensues from (19),

�
 � � � 	 � � 
 �
� � � �� �� 
 


�




�

� 



�
� �γ γγ γ γ< > = − < > < > = − < >� � � � � � � � ,   (25)

and combination of Eqs. (23), (24) and (25) yields by a short calculation the equation

�
 
 � ��
� �
� 
 
 � 
 
 �γ γ γ� � �	= −                                        (26)

which, integrated from 
 

� �
� 
 � 
� − ∞  at γ = 0 to 
 


� �
� 
 � 
γ − ∞  at γ , gives after

rearrangement the following functional form for 

�
� 
γ :

[ ]{ }
 
 
 
 ��� � � �� 
 � 
 
 � 
 � 
 
 �γ γ= ∞ + − ∞ +
−

� � 	� �
�

.                  (27)

Arriving at this result, the critical force fc has plausibly been assumed to be strain

independent. By substitution of Eq. (27) into Eq. (20) excellent agreement is obtained

with the measured G' ( )γ , whereas agreement o Eq. (21) with the measured G" ( )γ  may

not always be that fine, particularly at low strains. This is because G’ depends only 

network linkage density (and temperature), whil �� , as already mentioned, may, apart

from linkage density change, be affected by other energy dissipation processes, such as

internal friction.
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It is worth noting here that good agreement of this model (which considers the

rubbers’ secondary structure breakdown only) with experiment in the instance o� �

excludes any effects of nonlinear viscoelasticity from being responsible for strai

dependence o� � . This simultaneously confirms the fact predicted by the finite strain

rheology that, unlike in the case of extension, the stress-strain relation in simple shear

remains linear at finite strains, with strain independent shear modulus [11].

Both constants, 

�
� 
�  in 


�
� 
∞ , can simply be determined from measurements

and Eq. (20). At low strains, the exponential term on the right-hand side of Eq. (20) can

be expanded into series. Keeping only the first two terms, it turns into

[ ][ ]� � 
 �� 
 ��
� �

� � 
 � � 
 � 
 
 � 
 

� �

γ γ γ≈ + − =� � � 	 � � 	
� � � �

[ ]= −� 
 ��
�

� � 
 � 
 
 � 
� � � 	
� � �γ                                        (28)

from which 

�
� 
�  can immediately be calculated.

At high strains, W( )γ  becomes constant, i.e. 
 
� 
 � 
γ = ∞ , and the function

G' ( )γ  can be written as

[ ] [ ]� � 
 �� 
 ��
� �

� � 
 � � 
 � 
 
 ��� � 
 

�

�

γ γ γ≈ ∞ − ∞� 	 	
� �

� �

.                   (29)

Using this equation and measurements, W( )∞  is obtained simply from linear relationship

betwee [ ]�� � � 
 
� γ γ and γ .

 Eqs. (20) and (21) predict G' ( )γ  and G" ( )γ  to decrease toward zero when

γ → ∞. In reality the functions decrease toward low but finite values G' ( )∞  in G" ( )∞ ,

respectively. Despite virtually complete destruction of secondary network at high strains,

some secondary linkages still form and almost instantly decay, whereas to finite values o

dynamic functions may also contribute some molecular entanglements that have not

disentangled yet. So, strictly, Eqs. (20) and (21) should be written in terms of function

differences rather than functions alone, i.e. G' ( )γ  - G' ( )∞  and G' ( )0 - G' ( )∞  in Eq. (20),

as well as G" ( )γ - G" ( )∞  and G" max- G" ( )∞  in Eq. (21). But since for all sensible strains

G' ( )γ >>G' ( )∞  and G" ( )γ >>G" ( )∞ , the forms of Eqs. (20) and (21), as written, are

adequate. 
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It should be noted, finally, that Eqs. (20) and (21) are equally valid for polar

rubbers crosslinked by primary linkages ( vulcanizates). Albeit higher values o

vulcanizates’ dynamic functions, the breakdown course of their secondary networks with

increasing strain is the same as in the case o uncrosslinked rubbers. Experiments show

that the main contribution t moduli of elasticity at low strains comes from the secondary

network.

All findings from this model are in perfect qualitative agreement with those

acquired from the study of dynamic mechanical functions of carbon black filled rubbers

where carbon black forms its own agglomeration network with van der Waals bonding,

strongly susceptible to strain [6,7] ,. The only exception is that carbon black

agglomeration network starts and ends its breakdown at much lower strains, thus making

the breakdown characteristic energy independent of strain.

Effect of Temperature

Theory of rubber elasticity predicts the storage shear modulus to be related to the

network linkage density and temperature in the following manner: � ����=  where k is

the Boltzmann constant [3]. In the case of secondary network, the linkage density itself

depends on temperature, owing to the thermal molecular motion. At given temperature

secondary linkages form and decay in a dynamic equilibrium and their average density is

constant. With increasing temperature more energy is available for linkage breakdown

and equilibrium is established at lower linkage density.

It is not difficult to conceive an energy barrier that must be surpassed for a

linkage to break. This is supported by experimental evidence suggesting the drop o

linkage density with increasing temperature to be of thermal activation nature,

i.e.� � ��
�

∝ ���� 
 
  where �
�
 is the height of the energy barrier called the activaton

energy for secondary linkage and subsequently secondary network thermal breakdow.

Considering this, � �� � 
  has the form:

� � �� � ��
�

� � 
 ���� 
 
=                                                   (30)

where C  is a constant. For polar rubbers this equation holds with high precision.
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Experimental

Using the presented model, secondary networks were studied through dynamic

mechanical functions o polychloroprene (CR - Byprene 611, Bayer) rubber and

butadiene-acrylonitrile (NBR - Krynac, Polysar) rubber of weight average molecular

weights 270000 and 414000, respectively, both uncrosslinked and crosslinked by primar

linkages (vulcanized), but without fillers. Measurements o� �  and ��  as a function of

shear strain amplitude and temperature were performed by the instrument for measuring

dynamic mechanical functions (Rubber Process Analyzer - RPA 2000, Monsanto), which

also carried out vulcanization, at the frequency of 0.3 Hz, being low enough to allow

undisturbed changes of molecular conformations in the entire chosen ranges of strain

(from 0.03 to 9) and temperature (from 	��C to ����C) . Characteristic energies for

mechanical breakdown of secondary networks and activation energies for their therma

breakdown were determined by the measured � �  and the model, using Eqs. (28)-(30).

Finally, to verify credibility of the model, these energies were then used to make

comparison of calculated and measured � �  and ��  as a function of strain and

temperature.

Results and Discussion

Figs. 2 and 3 demonstrate comparison of measured (points) and by Eq. (20)

calculated (curves) storage shear moduli G’ of CR and NBR, respectively, as a function

of shear strain amplitude  at  different  temperatures.  It is immediately noticeable that in

all the cases good agreemen is  obtained  within  the  whole  strain  range.   Correc

prediction of the gradual diminution of the effect of temperature with increasing strain

and its total disappearance at high strains when the secondary network is destroyed is

another supportive attribute for the model.
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Fig. 2.  Shear strain amplitude dependence of storage shear modulus for CR at the
frequency of 0.3 Hz and various temperatures (measured: points, calculated: curves).
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Fig. 3. Shear strain amplitude dependence of storage shear modulus for NBR at the
frequency of 0.3 Hz and various temperatures (measured: points, calculated: curves).

The values of characteristic energies for secondary network breakdown 

�
� 
�

and 

�
� 
∞  obtained by Eqs. (28) and (29), respectively, and given in the figures are a

within the range of magnitudes typical for secondary interactions. It can be noticed tha

they slightly increase with increasing temperature, which due to the fact that the
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expressions 
 ��
�
� 
 
 �� 	� �  and 
 ��

�
� 
 
 �∞ 	� �  appearing in Eqs. (20) and (21) are

virtually independent of temperature. Namely, considering Eqs. (3) and (19), in these

expressions temperature cancels out, which is experimentally confirmed.
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�  also slightly increases with electric dipole density in rubbers, presumably

due to  closer  dipole  packing.  This  is  demonstrated  in  Fig.  4   for  NBR   rubbers  o

different acriylnitrile (ACN) contents. 

�
� 
∞ , on the other hand, logically remains

unchanged.
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Fig. 4.  Shear strain amplitude dependence of storage shear moduli for NBR’s with
different ACN contents at the frequency of 0.3 Hz and 50oC (measured: points,
calculated: curves).

As mentioned, dynamic straining of rubber may, apart from secondary linkage

breaking, generate other energy dissipation mechanisms, mainly internal friction. The

pure effect of secondary linkage breakdown on ��  is thus screened, particularly at low

strains, and hence its strain dependence cannot be adequately described b Eq. 21. In

rubbers crosslinked by primary linkages ( vulcanizates), however, internal friction is

somewhat reduced because of shorter network chains. Contribution of secondary linkage

breakdown to energy dissipation is therefore manifested more clearly. This is shown in

Figs. 5 and 6 for vulcanizates of CR and NBR, respectively, together with the values o

characteristic energies and moduli.
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Fig. 5.  Shear strain amplitude dependence of storage and loss shear moduli for
vulcanized CR at the frequency of 0.3 Hz and 100oC (measured: points, calculated:
curves).
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Fig. 5.  Shear strain amplitude dependence of storage and loss shear moduli for
vulcanized NBR at the frequency of 0.3 Hz and 100oC (measured: points, calculated:
curves).

In the case of CR vulcanizate, the model’s agreement with experiment is good for

both, � �  and �� . Agreement is also good for � �  of NBR vulcanizate, but less so for its

��  at low strains, owing to the above-mentioned arguments. However, due to growing

degree of molecular alignment with increasing strain ,  internal friction becomes less
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intensive at higher strains and secondary linkage breakdown turns to be the main energ

dissipation mechanism, resulting in good agreement of the model with experiment. It is

plausible to suppose, though, that at high strains some primary linkages break, too. But

since in the case o vulcanizates � �  is proportional to the density of both, primary and

secondary linkages, and ��  to the change of this density, the primary linkage breakdown

does not affect the result.

Characteristic energies 

�
� 
�  are a little higher for vulcanizates than for

unvulcanized rubbers, which can be attributed to somewhat increased firmness of the

secondary network when embedded in the strong primary network. 

�
� 
∞ , on the other

hand, is expectably unaffected by primary network because the secondary network does

not exist any more at very high strains.

Finally, the effect of temperature on � �  (taken here aγ = ��� ) of CR, NBR, and

their vulcanizates, is accounted for in Fig. 7, verifying validity o Eq. (30) and

determining the activation energy for secondary network thermal breakdown, �
�
. The

expression ��� �
 
� �  is plotted against � 
 �� , the slope representing the value of �
�
. In

all the cases linear relationship with high correlation is obtained, pointing out that in

these rubbers therma breakdown  of secondary networks is indeed a thermally activated

process.
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A rather drastic difference can be noticed between thermal breakdown of the

secondary network in rubbers and that in their vulcanizates. Activation energies o

secondary network breakdown in vulcanizates are lower than those for the breakdown in

rubbers by almost an order of magnitude. This, however, is not surprising. It only means

that by hindering mobility of network chains, thermally stable primary networks of

vulcanizates substantially augment thermal stability of the embedded secondary networks

themselves, which is then reflected in low activation energies.

Conclusion

Study of secondary morphological structures in polar rubbers, both uncrosslinked

and crosslinked by primary linkages, through dynamic mechanical functions has given

some important results. Firstly, good qualitative and quantitative agreement with

experiment of the proposed theoretical model for strain and temperature dependence of

dynamic functions confirms both the existence of secondary networks formed b

secondary interactions in these rubbers and correctness of the assumptions on which the

model is based. Secondly, the model’s agreement with experiment enables determination

of two quantities characteristic of  secondary networks: characteristic energy for

network’s strain induced breakdown and activation energy for its thermal breakdown,

their values being in the range typical for energies of secondary interactions. Finally, as

the model is rather general, i.e. its assumptions being not associated with any specific

polymeric system, it could presumably be used, along with measured dynamic mechanica

functions or other equivalent rheologica  quantities, for study of secondary

morphological structures and subsequent rheologica  properties of any related materials -

after all, it was originally devised to describe behaviour of carbon black agglomeration

network in rubbers.
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Povzetek

V delu je poskušano pokazati kako sekundarne 	��
� � polarnih kav�ukih, ki nastanejo zaradi
orientacijskih in disperzijskih molekulskih interakcij, vplivaj na reološko vedenje 
����
���
Sekundarne 	��
� �� šibke in zat 	���� ���������� na deformacijo in temperaturo. Primere
na��� spremljanja njihovih deformacijskih ali toplotnih porušitev je ����������� ����	�����
	��������� funkcij 
����
��� � ta namen je izbran model, katerega rezultat je odvisnost teh
funkcij od deformacije in temperature med takšnim procesom, in ki tudi �	����� ��������� dveh
energij, ��������� za 	��
�� ene za njeno 	�������� �� druge za njeno toplotno porušitev.
Model, ki je bil prvotno zgrajen za opis reoloških lastnosti 
����
��� polnjenih s sajami, temelji
na ����������� mehaniki verigastih molekul in na nekaj dodatnih predpostavkah, pri ��	�� je
dobljeno dobro ujemanje z eksperimentom.


