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Abstract

Work presents an attempt to show how secondary networks in polar rubbers,
formed by orientational and dispersional molecular interactions, affectthe rubbers’
rheological behavior. Secondary networks are weak and hermgylgtrsusceptible to
strain and temperature. Their strain and thermally induced breakdown can suitably be
followed by rubbers’ mechanical dynamic functions. For this purpose a model is chosen,
whose result is dependence of these functions on strain and tempdratagsuch
process, also enabling determination of two energies characteristic of the network: the one
for its mechanical and the other for its thermal breakdown. The model, originally devised
to describe rheological properties of carbon black filled rubbers, is based on statistical
mechanics of chain molecules and a few additional assumptions, yielding good agreement
with experiment.

Introduction

In polar rubbers, such as butadiene- acrylonitrile (NBR) and polychloroprene
(CR), orientational and dispersional interactions between molecules [1] create
associations acting as secondary rint#ecularlinkages and thus cstituting a
secondary network that represents morphological structure of rubbers when in
amorphoustate. To rubbers’ morphology also contribute roolar entanglement
formed mainly by larger molecules and acting as a kind of slipping pseudo linkages [2].

Orientational and dispersionateractions, termedecondary are of short range

type with energies decreasing with thetual molecular distance to the sixth power.

They are also considered weak since characteristic values of their energies, ranging fro
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about 5kJmol* to 15 kJmot, are low in comparison with emges of primary (covalent)
network linkages (e.gC-S-C obtained by sulfur crosslinking d2-C by peroxide
crosslinking). Nevertheless, the intermolecular linkggesluced by the foregoing
secondary interactions crullyeaffect rheological properties of rubbers, regardless if
crosslinked by primary linkages or not. In both cases secondary linkages form a network
which considerablyugments the rubbers’ aduli of elasticity. However, unlike primary
linkages that decay under extreme deformational and/or therovaditions, the
secondaryinkage breakdown already begins at low strains and at relatively sma
increase in temperature. Hence, rheological properties of rubbers with such secondar
morphology, éher uncrosshked or crosslinked by primar linkages,ostgly cepend on
strain and temperature. It is important to notice that once broken, the prifkagelin
network never restores when left at rest, whereas the secondary network gradually
reforms, regaining the properties it possessed before the breakdown.

The a of this work is to show relationship betweerosdary networks in
polar rubbers and their rheological properties, concurrently enabling determination of
characteristic energies for secondary network breakdown by mechanical means, as we

as determination of characteristic (activation) energies for its thermal breakdown.

Theoretical

An eligible way (among several equivalent ones) to study rheological properties
of rubbers is pursuing behavior of thdynamic mechanical functionse. thestorage
andlossmoduli under various strain, frequency and temperatanglittons. Regardless
of the strain type, the theory of rubber elasticity presdthe storage adulus, a measure
of material's resistance to strain, to be proportional to the intermoleculeagé
(primary and/or secondary) density and temperature [3]. In the presence of secondar
network, the storage modulus mooicdly decreases with increasing strain due to
gradual network breakdown, i.einihution of secondary linkage density. The storage
modulus decreases toward a low bmite terminal value, when the network is
completely destroyed.

The loss modulus, on the other hand, representing the measure for energ

dissipation in form of generated heat, displays different behavior. i gause for
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energy dissipation in rubbers is internal friction [4] whose intensaygty depends on

strain rate. In the case of secondary network structure, strong dissiggtion occurs

also dueits breakdown, the loss modulus being proportional to the secolidkage

density change. Thus the loss modulus first increases up to a maximum value, when the
network breakdown rate is the highest, and then, similarly as the storage modulus,
decreases toward a low finite value. Dependence of storage shear modulard loss

shear modulus(", on shear strain amplitude,, in the plateau frequency zone, i.e.

from a few parts of s™'to about10’ s, during a typical straimduced secondary

network breakdown is schematically given in Fig. 1 [5,7].

Glj GH

logy

Fig. 1. Dependence of storage and loss shear modtliand G", on shear strain
amplitude.

The secondarlnkage density decreases also with increasing temperature. Since
the effect of linkage densityirdinution on G' exceeds the one of its entropic increase
with temperature, as asserted by the theory of rubber elasticity [3], in(iotdécreases
with increasing temperature, but not as strongly as tkedge density. The same is true
with G", but to its decrease also contributes reduction of internal friction. It should be
mentioned, however, that the effect of temperature®nand G" diminishes with
increasing strain, to be annulled entirely at high strains, which is plausible since the
network is completely destroyed.

Although such interpretation of dynamic functions’ behavior is ialigtive
agreement with observation, there have been no attempts titativeaty describe thei

dependence on strain and temperature, based on more primary principles. For this
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purpose, therefore, a model has been chosen, originally devised faptabesaf
dynamic functions’ strain and temperature dependence for rubber with carbon black
[6,7], but judging by analogy, suitable to treat dynamic functions of polar rubbers. The
model is based on statistical mechanics of chain molecules and some additiona
assumptions.

First assumption accounts for secondary network breakdown in rubbers while
being strained. The network decays, when the network linkages break and disappear.
According to the theory of elasticity of free chain molecules, the efaste, f,

deforming a molecule has the following form [8]:

f=3klr/<r* > (1)

where r is the molecular end-to-end distance, calleddhain vectoy <r? > the mea

square of the chain vectdrthetemperature anklthe Boltzmann constant. Elastic force

has completely the same form foetwork chains i.e. parts of molecules between
topologically adjacent linkages, the chain vector representing here the distance between
the latter. The linkages break, when acted upon by a pendant chain with a crtitzah

force, f,, proportional to a critical chain vector,r, (depending on network chain

length), and given as

f, =3kTr,/ <r®>. (2)

Second assnption considersdistribution of network chain lengths If such
distribution exists, then in strained network only chain vectors of a certain fixed length
will undergo affine transformation, whereas all chain vectors differing in lentjthen
transformed nonaffinely

As for the effect of temperature, it is additionally assumed that the secondar

network breakdown in polar rubbers is a thermally activatedess.

Effect of strain amplitude

It is well known from statistical mechanics of chain molecules that hla@n c

vector distribution in undeformed state is Gaussian of the following form [9]:
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wo(r)=G/2m<r’ > exp(-3r* /2<r’ >), (3)

where r? = x? + y? + z? in Cartesian coordinate system with one end of a network chain
in its origin. For affinely transformed chain vectors in strain,ri;e{}\}ro, where{A} is
the gradient deformation tensor andr, the chain vector in unstrained state, the

distribution fundion (3) is transformed accordingly into [9]

w(r,A) = (det{Ah) " w,{A} " r) (4)

The determinant factor responsible for volume changes can be neglected adilmy str
For shear strain, used in this work, the principal values of the tefidbrare
A=A, A =1andA, =1/ A where A represents the deformatin ratio [10], i.e. the ratio
of specimen’s lengths in strained and unstrained state, respectively. Substituting this into
(4) and negleting the determinant term, distribution of affinely transformed chain vectors

turns into

w(r,A)=3/2m<r’ >aﬁp)3/2 exp|—r* (A + A7 +1)/2<r’ >.) (5)

Since shear strain is expressable in terms of deformation ragio=as— A" [10], the

distribution (5) can be written as a functionyoin the following way:

w(r,y)=G/2m<r’ >aﬁp)3/2 exp|-(+y* )y’ /2<r’ > =

=w,(Pexp(-y*r? 12<r® > ) (6)

As assumed, network linkages break when subjected to ancefitical force
proportional to a critical chain vector. Thus, the fraction of unbrokendadka
deformation y is simply given by the fraction of network chains whose affinely

transformed vectors do not exceed the critical ckiaator 7, . This fraction is given as

1y (y) ij(r, V)YATE dr = 47Tjw0(r) exp(-y>r® | 2<r? > ) dr 7)
0 0

where 4t °dr is the volume elementlV in Cartesian coordinate system. It is worth

noting here that the integral (7) for=0,
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n,(0)= 47'['r6[w0 (r)r’dr, (8)

representing the fraction of unbroken linkages in unstrained state, is not equal to unity,
which can be attributed to thermal breakdown of linkages in the moment of formation.

For small deformations, the value of integral (7) is approximately

Ny (V) =15 (0)exp(=r.y* /2<1” > ), (9)

or, in terms of the critical fce, f_,

Ny (V) =15 (0)exp| = (f, /3KT)" <r® >, y* /2. (10)

Such would be low strain functional dependencezof(proportional to linkage density

and in this case, therefore, to the fraction of unbroken linkages), if all network chains
were of equal

length, with <7> >=<r?>

<r’>[8].
However, all network chains are notequally long and chai n vector

4 Since the length of a chainis proportional to its

transformations of those wit<r? ># <r? > _ are nonaffine in strain. Deformati

aff
ratio, say A', of such chain vectors is not equal to deformation ratio of affinely
transformed vectorsA, but is related to it through the relationship between their

corresponding relative deformations' (¢'=A'-1) ande (£ =A —1), respectively:

£|: £<r2 >aﬂ1/2 /<r2 >1/2 . (11)

By taking accountof this relation and of the facttha
y=A-A"=1+eg-(1+¢&)" =2¢ for small ¢, replacement oy in Eq. (10) by the
expressiory <r?>_"?/ <r? >¥? would make Eq. (10) valid also for network chains of
an arbitrary<r? > . So the fraction of unbroken linkages in this generalized aases

n (Y)=n (O)exp| = (f, <r* >, BKT)y* /2<r >|. (12)

To obtain the total fraction of unbroken chains as a function of strain, iti

necessary to consider distribution of network chain lengths, or, more precisely,
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distribution of average absolute values of chain vectar$ >, It is natural to assume

this distribution to be Gaussian, too, possessing the form:

w(<r? >y =3/ 2m<r? >) exp(-3<r? >/2 <7’ >), (13)

where<r? > is the overall average of the chain vector mean squares in the system. The

total fraction of unbroken linkages at given deformatign n(y), is obtained by

combination of Eq. (12) and distribution (13) in the following manner:

n(y) =4mf <r® >n (yyw(<r® >y <r? > (14)
0

where integration is carried out over the entire space, sicé>"? can theoretically

assume any value. By designating the quanmty<3r_22> from distribution (13) wit

the lettera and the quantit (f, <r* > . /3k7)* /2 from Eq. (15) with the letteb,

substitution of (12) and (13) into (1¥iglds
n(y) = B}<r2 >exp(—a <r’>-by’/<r’>}d<r’>"=
0
=(B/2)}< r’>"?expa<r?>-by?/<ri>pg<r’>, (15)
0
where B =4m(0) (3/2m< r’ >)*? . Evaluation of this integral gives the finalués:

n(y) = n(O)(l +2a'?p"? y) exp(— 2a"?p'"? y) (16)
and
~dn(y)/ dy = 4n(0)aby exp(-2a"b"?y). (17)

1/2b1/2

The expression2a in these equations is straindependent for low strain

amplitudes and is of the following form:
B3V <r? SV kT =W, /32 RT (18)

2a1/2b1/2 Efc <r2 >

where

aff

W,=N,f, <r’>,/<r’>" (19)

(N, being the Avogadro number) is a quantity with the unit of energy per mol,

characteristic of material. It may lalled characteristic energyor secondary linkage
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and subsequentlsecondary network breakdowAs shown later, the values &f, are

typically within the range of energies characteristic for secondary interactions.
The storage shear modul@s, being proportional to the linkage déy# rubber

and thus to the total fraction of unbroken linkages, is then givertasedi b Eq(16):

G'(y)=G' )1+ W,y /3" RT) exp(- W,y / 3> RT) (20)

where ' (0) is the initial storage shear modulus, i.eya= 0.
The loss shear moduluS" is proportional to deformational change of the total

fraction of unbroken linkages. As the function given b Eq. (17) experienc@#auna a
V.. = (4ab) ™7, i.e. at strain amplitude of the strongest decrease of unbroken linkage

density and subsequenty/, G"(y) written in terms of its maximum valu&;" _ (at

max

Y ma)» thus possesses the form:

G'(V)=G"

W,y /3" RT)exp(1 - W,y /3> RT). (21)

It should be noted again that this equation accounts only for edesgjpation due to
secondary network breakdown and does not consider internal friction. Hence, this fact i
expected to worsen its agreement with experiment.

Egs. (20) and (21) in the foregoing forms are valid only for low strains because
approxmations made in solving integral (7) and in generalizing(EEQ) into Eq. (12) are
possible only in the low strain range. For higher strains, exact solution of the integral (7)
is divergent. Nevertheless, Egs. (20) and (21) can be generalized to hold at higher strains

as well. In doing this, their forms remain uncheaigout the characteristic energl?, at
given temperature becomes strain dependéi (y), specifically, it decreasegith
increasing strain from the initial valugy, (0), towards a low constant valué, («).
Mathematically, the reason for strain dependencd?p is formal, but it also has a
physical meaning. For its explanation it is necessary to examiferthe ¥, given by

Eqg. (19). As defonation increases, the lage density decreases and topologically

adjacent unbroken linkages are connected by ewgel network chains.
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Hence, the denominater on the right-hand side of(E®). increases, causing/, (y) to

decrease. Namely, from obvious relation
n(y) <r’>,**=n(0) < r? >,* (22)

where<r? >y‘°”2 and<r? > ¥ are the basic volume elements associated witagjes

at shear straing andy = 0, respectively, it follows
d<r®> 7" ldn(y)=-n(0) <r’ > In*(y)==<r’ > In(y). (23)

Since, except at very low strains, the functngp) given by (16) is dominated by the
exponential term, which is elent from strong decrease iG'(y), combination of Egs.

(16) and (17) yields approratel

dn(y) | n(y)==W,(y)dy / 3'*RT . (24)
As ensues from (19),

d,(y)/d<r®>2==N, f <r’>,/<r’ > =-W,(y)/<r’ >, (25)
and combination of Egs. (23), (24) and (25) yields by a short calculation the equation
dw, (y) | W, (y) = =dy | 3> RT (26)

which, integrated from#, (0) =W, (o) aty =0 to W,(y)—W,(») at y,gives &er

rearrangement the following functional form faf (y):

W, (y) =W, () +{1/[,0) - W, ()] +y /3> RT} . (27)

Arriving at this reslt, the critical brce f, has plausibly been assumed to be strain
independent. By substitution of Eq. (27) into Eq. (20) excellent agreement is obtained
with the measure&'(y), whereas agreemento EQq. (21) with the measGiég) may

not always be that fine, particularly at low strains. This is becaGsalepends only
network linkage derty (and tanperature), whil G", as already mentioned, may, apart
from linkage denty change, be affected by othereegy dissipation processes, such as

internal friction.
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It is worth noting here that good agreement of this model (which considers the
rubbers’ secondary structure breakdown only) with experiment in the instanGé o
excludes any effects of nonlinear viscoelasticity from being responsible for strai
dependence oG'. This simultaneously confirms the fact predicted by the finite strain
rheology that, unlike in the case of extension, the stress-strain relation in simple shear
remains linear at finite strains, with stramlépendent shear modulus [11].

Both constantsl¥, (0) in W, (), can simply be determined from measurements

and Eg. (20). At low strains, the exponential term on the right-hand side of Eq. (20) can

be expanded into series. Keeping only the first two terms, it turns into

G'(y) =G O1+W,©)y /3" RT|[1-W,0)y /3" RT] =

=G'O[1=1,7(0) y* /3(RT)’] (28)

from which 7, (0) can immediately be calculated.
At high strains,W(y) becomes constant, i.é/'(y) =W (), and the function

G'(y) can be written as

G'(y) =G O, (w)y /3 T exp~ W, (@)y /13" R1]. (29)

Using this equation and measuremehlit§eo) is obtained simply from linear relationship
betwee ln[G'(y)/y] andy .

Egs. (20) and (21) pdet G'(y) and G"(y) to decrease toward zero when
y — . In reality the functions decrease toward low finite values G'(«) in G" (),
respectively. Despite virtually complete destruction obselary network at high strains,
some secondafiykages gtl form and almost instantly decay, whereas to finite values o
dynamic functions may also contribute some molecular entanglements that have not
disentangled yet. So, strictly, Egs. (20) and (2pukl be written in terms of function
differences rather than functions alone, @(y) - G'(«0) andG'(0) - G'(«) in Eq. (20),
as well asG"(y)- G" () andG", - G"(x) in Eq. (21). But since for all ssible strains
G'(y)>>G'(») and G"(y)>>G"(), the forms of Egs. (20) and (21), as written, are

adequate.
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It should be noted, finally, that Eq&0) and (21) are equally valid for polar
rubbers crosslinked by primary linkages ( vulcanizates). Albeit higher valueso
vulcanizates’ dynamic functions, the breakdown course of their secondary networks with
increasing strain is the same as in the case o unaletirubbers. Experiments show
that the main contribution t moduli of elasticity at low strains comes from the secondary
network.

All findings from this model are in perfect qualitative agreement with those
acquired from the study of dynamic mechanical functions of carbon blsck fubbers
where carbon black forms its own agglomeration network with van der Waals bonding,
strongly susqgatible to strain §,7],. The only exception is that carbon black
agglomeration network starts and ends its breakdown at much lower strains, thus making

the breakdown characteristic energy independent of strain.

Effect of Temperature

Theory of rubber elasticity prexs the storage sheaodulus to be fated to the
network linkage derity and temperaturein the following manner:G'=nk7 wherek is
the Boltzmann constant [3]. In the case of secondary network, the linkage density itself
depends on temperature, owing to thertf@molecular motion. At given meperature
secondary linkages form and decay in a dynamic equilibrium and their average density is
constant. With increasing temperature more energy is availablenkagé breakdown
and equilibrium is established at lowarklage density.

It is notdifficult to conceive an energy barrier that mustsibepassed for a
linkage to break. fis is sipported by experimental evidenceggesting the drop o
linkage denigy with increasing temperature to be of thermal activation nature,

i.e.n Uexp(£, / RT) where £ is the height of the energy barrier called #ativaton

energyfor secondary linkageand subsequentecondary network thermal breakdaow

Considering this(G'(7) has the form:

G'(T)=CTexp(E, | RT) (30)

whereC is a constant. For polar rubbers this equation holds with high precision.
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Experimental

Using the presented model, secondary networks were studied through dynamic
mechanical functions o polychloroprene (CR - Byprene 611, Bayer) rubber and
butadiene-acrylonitrile (NBR - Krynac, Polysar) rubber of weight average molecular
weights 270000 and 414000, respectively, both uncrosslinked and crosslinked by primar
linkages (vulcanized), but withoutldrs. Measurements d5' and G" as a function of
shear strain amplitude and temperature were performed by the instrument for measuring
dynamic mechanical functions (Rubber Process Analyzer - BI®A, Monsanto), hich
also carried out vulcanization, at the frequency of 0.3 Hz, beingrougé to allow

undisturbed changes of molecular conformations in the entire chosen ranges of strain

(from 0.03 to 9) and temperature (fros®°C to 100°C) . Characteristic energies for
mechanical breakdown of sewary networks and tagtion energies for their therma
breakdown were determined by the measurdand the model, using Eqgs. (28)-(30).
Finally, to verify credibility of the model, these energies were then used to make
comparison of calculated and measured and G" as a function of strain and

temperature.

Results and Discussion

Figs. 2 and 3 demonstrate comparison of measured (points) and by Eq. (20)
calculated (curves) storage shear mo@ulof CR and NBR, respectively, as a function
of shear strain amplitude at different temperatures. Itis immediately notideatbile t
all the cases good agreemen is obtained within the whole strain rangeec C
prediction of the gradual diminution of the effect aihfeerature wth increasing strain
and its total disappearance at high strains when the secondary network is destroyed is

another suppdive attribute for the model.
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CR G'(0) Wp0) Wy ()
(kPa) (kJ/mol) (kJ/mol)
“E. 30°C 250 59 1.5
. 50°C 165 6.1 1.6
AL 70°C 110 6.5 1.7
64 72 1.8

240

180

60

0.1 1 10
Shear strain amplitude, Y

Fig. 2. Shear strain amplitude dependence of storage shear modulus for CR at the
frequency of 0.3 Hz and various temperatures (measured: points, calculated: curves).

240 NBR - 27 % ACN G'0) Wy0) Wy ()
(kPa) (kJ/mol) (kJ/mol)

200 oL 30°C 225 5.9 1.5
& 50°C 130 6.1 1.6
AL 70°C 70 6.5 1.7

“E_100°C 46 7.0 1.8

160

120

G'/kPa

80

40

0.1 1 10
Shear strain amplitude, Y

Fig. 3. Shear strain amplitude dependence of storage shear modulus for NBR at the
frequency of 0.3 Hz and various temperatures (measured: points, calculated: curves).

The values of characteristic energies for secondary network breakidpgon
and /¥, («) obtained by Eqgs. (28) and (29), respectively, and given in the figures are a

within the range of magnitudes typical for secondary interactions. It can be noticed tha

they slightly increase with increasing temperature, which due to the fact that the
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expressionsi¥, (0) /3" RT and W, () /3" RT appearing in Egs. (20) and (21) are
virtually independent of temperature. Namely, considering Egs. (3) and (19), in these
expressions temperature cancels out, which is experimentally confirmed.

W, (0) also slightly increases with electric dipole density in rubbers, presumably
due to closer dipole packing. This is demonstrated in Fig. 4 for NBRersuo

different acriylnitrile (ACN) contents/¥, (), on the other hand, logically remains

unchanged.
350
G'0) Wy0) Wy, ()
300 (kPa) (kJ/mol) (kJ/mol)
“®.NBR (27 % ACN) 130 6.1 1.6
250 A NBR (34 % ACN) 220 62 1.6
“@.NBR (45 % ACN) 320 6.5 1.6
< 200
(o
=<
(B 150
100
50

0.1 1 10
Shear strain amplitude, Y

Fig. 4. Shear strain amplitude dependence of storage shear moduli for NBR’s with
different ACN contents at the frequencyof 0.3 Hz and 5C (measured: points,
calculated: curves).

As mentioned, dynamic straining of rubber may, apart from secondary linkage
breaking, generate other energy dissipation nmeging, mainly internal friction. The
pure effect of secondary linkage breakdown(@his thus screened, particularly at low
strains, and hence its @ dependence cannot be adequately itbescb Eqg. 21. In
rubbers crosslinked by primary linkages (vulcanizates), however, internal friction is
somewhat reduced because of shorter network chains. Contribution of sediokdgey
breakdown to energy dissijat is therefore manifested more clearly. This is shown in
Figs. 5 and 6 for vulcanizates of CR and NBR, respectively, together with the values o

characteristic energies and moduli.
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500 100°C CR-vulcanizate G(0) G pax Wo(0) Wy ()
(kPa) (kPa) (kJ/mol) (kJ/mol)
470 115 8.0 1.8

400

300 e G

oG

200

G'/kPa, G"/kPa

100

0.1 1 10
Shear strain amplitude, Y

Fig. 5. Shear strain amplitude dependence of storage and loss shear moduli for
vulcanized CR at the frequency of 0.3 Hz and “@@measured: points, calculated:
curves).

NBR (27 % ACN) - vulcanizate G'(0) G"pax Wp0) Wy (o)
(kPa) (kPa)  (kJ/mol) (klJ/mol)
410 100 72 18

400

w
o
o

G'/kPa, G"/kPa

100

Shear strain amplitude, Y

Fig. 5. Shear strain amplitude dependence of storage and loss shear moduli for
vulcanized NBR at the frequency of 0.3 Hz and “@Qmeasured: points, calculated:
curves).

In the case of CR vulcanizate, the model’'s agreement with experiment is good for
both, G' and G". Agreementis also good fai' of NBR vulcanizate, but less so for its
G" at low strains, owing to the above-mentioned arguments. However, due to growing

degree of moleculadignment with increasing tin , internal friction becomes less
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intensive at higher strains and secondary linkage breakdown turns to be the main energ
dissipation mechanism, resultinggood agreement of the model with experiment. It is
plausible to supposehdugh, that at high strains soménary linkages break, too. But
since in the case o vulcanizatés is proportional to the density of both, primary and
secondaryinkages, andG" to the change of this density, the primarkdige breakdown

does not affect the result.

Characteristic energies?, (0) are a littte higher for vulcanizates than for
unvulcanized rubbers, which can béributed to somewhat increased fress of the
secondary network when embedded in the strong primary netwirkeo) , on the other
hand, is expectably unaffected by primary network because the secondary roktesrk
not exist any more at very high strains.

Finally, the effect of temperature 6A (taken here ay =0.1) of CR, NBR, and
their vulcanizates, is accounted forin Fig. 7, verifying validity o Eqg. (30) and
determining the activation energy for secondary network thermal breakdowrlhe
expressiorin(G'/T') is plottedagainst 1/ R7", the slope representing the valuefof. In
all the cases linear relationship with high correlation is obtained, pointing out that in

these rubbers therma breakdown of secondary networks is indeed a thermally activated

process.
0.8
B V%
0
= .04
=
g s E,
=) " (kJ/mol)
% ~o._CR 20
= 16 ~O. CR-vulcanizate 35
= “®_NBR 24
-2 “®_NBR-vulcanizate 6.1

031 0.33 0.35 0.37 0.39 0.41
-1
kJmol " /RT

Fig. 7. Plots of In(G'/T) againstl/ RT for storage shear moduli of CR, NBR and their
vulcanizates at the frequency of 0.3 Hz and shear strain amplitude of 0.1.
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A rather drastic difference can be noticed between thermal breakdown of the
secondary network in rubbers and that in their vulcanizates. Activation energies o
secondary network breakdown in vulcanizates are lower than those for the breakdown in
rubbers by almost an order of magnitude. This, however, is noisiugpit only means
that by hindering mobility of network chains, thermally stalsien@ry networks of
vulcanizates substantially augment thermal stability of the embeddattiaeg retworks

themselves, which is then reflected in low activation energies.

Conclusion

Study of secondary morphological structures in polar rubbers, both uncrosslinked
and crosslinked by primary linkages, through dynamic nmecdlafunctions has given
some important results. Firstly, good qualitative andntjtetive agreementwith
experiment of the proposed theoretical model for strain and tempedaperdence of
dynamic functions confirms both the existence of secondary networks formed b
secondary interactions in these rubbers and correctness of the assumptions on which the
model is based. Secondly, the model’'s agreement with imgrenables determination
of two quatities characteristic of seadary networks: characteristic energy for
network’s strainnduced breakdown and activation energy for its thermal breakdown,
their values being in the range typical for energies of secondary interactions. Finally, as
the model is rather general, i.e. its assumptions being not associated with any specific
polymeric system, it could presumably be used, alaitlg measured dynamic mectiea
functions or other equivalent rheologica quantities, for study oforskoy
morphological structures and selgsient rheologica properties of any related materials -
after all, it was originally devised to describe behaviour of carbon black agglomeration

network in rubbers.
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Povzetek

V delu je poskuSano pokazati kako sekundarmeze v polarnih ka¥ukih, ki nastanejo zaradi
orientacijskih in disperzijskih molekulskih interakcij, vplivaj na reoloSko ved&aj&ukov.
Sekundarnemreze so Sibke in zat moéno obéutljive na deformacijo in temperaturo. Primere
nain spremljanja njihovih deformacijskih ali toplotnih poruSitev geeucevanje dinamiénih
mehani¢nih funkcij kavéukov. V ta namen je izbran model, katerega rezultat je odvisnost teh
funkcij od deformacije in temperature med takSnim procesom, in Kotnegoca dologitev dveh
energij, zna¢ilnih za mrezo: ene za njenanchani¢no in druge za njeno toplotno porusitev.
Model, ki je bil prvotno zgrajen za opis reoloskih lastnksticukov, polnjenih s sajami, temelji

na statisti¢cni mehaniki verigastih molekul in na nekaj dodatnih predpostavkahieprér je
dobljeno dobro ujemanje z eksperimentom.



