POSTOPEK ZA PORUŠNO ANALIZO RAVNINSKIH ARMIRANOBETONSKIH NOSILCEV IN OKVIRJEV

A PROCEDURE FOR FAILURE ANALYSIS OF PLANAR REINFORCED CONCRETE BEAMS AND FRAMES

dr. Miha Jukić, univ. dipl. inž. grad. mjukic@fgg.uni-lj.si prof. dr. Boštjan Brank, univ. dipl. inž. grad. bbrank@fgg.uni-lj.si Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo Jamova cesta 2, 1000 Ljubljana **Znanstveni članek** UDK 624.072.2:691.3

Povzetek Opisan je postopek za porušno analizo armiranobetonskih ravninskih nosilcev in okvirjev. Zasnovan je na modificiranem Timošenkovem končnem elementu za nosilce. Uporabljene enačbe snovi modelirajo osnovne neelastične pojave v armiranobetonskem linijskem konstrukcijskem elementu: pokanje betona v nategu, drobljenje betona v tlaku ter plastično tečenje in odpoved vzdolžne jeklene armature. Podatke o kvaliteti betona in jekla, ki so potrebni za analizo, se lahko dobi ali s standardiziranimi preskusi betona in armature ali iz Evrokodov in drugih ustreznih publikacij. Prikazani so rezultati izračunanih primerov, ki kažejo na to, da je postopek robusten in da lepo opiše proces porušitve armiranobetonskih linijskih konstrukcij pri velikih obtežbah.

Ključne besede: armiranobetonski okvir, porušna analiza, metoda končnih elementov

Summary A procedure for failure analysis of reinforced concrete planar beams and frames is presented. It is based on a modified Timoshenko beam finite element. Chosen material models take into account main phenomena of inelastic response of a reinforced concrete frame member: concrete damage by cracking in tension and crushing in compression, and longitudinal steel yielding and failure. Material data needed for the analysis can be obtained either by standardized tests on concrete and steel or from the Eurocodes and other relevant publications. The results of computed examples are presented. They illustrate very satisfying performance of the derived procedure that turned out to be robust and able to nicely describe material failure process in reinforced concrete frames and beams at large load levels.

Keywords: reinforced concrete frame, failure analysis, finite element method

1 • UVOD

V armiranobetonskih linijskih konstrukcijah že pri relativno majhnih obtežbah nastanejo razpoke v betonu. Temu lahko ob povečevanju obtežbe sledijo plastično tečenje jeklene armature, drobljenje betona v tlaku, zdrs armature, uklon tlačenih armaturnih palic, popuščanje natezne armature, luščenje krovne plasti betona in podobno. Za te pojave je zelo težko pripraviti ustrezne modele in jih povezati s standardnimi končnimi elementi za analizo linijskih konstrukcij. Zaradi tega linijski končni elementi za porušno analizo, ki je v potresnem inženirstvu imenovana tudi potisna analiza, npr. (Fajfar, 2006), še niso dozoreli do te mere, da bi bili na voljo v splošnih komercialnih računalniških programih za analizo inženirskih problemov, kot je npr. (Abaqus, 2013). Ker se pri porušni analizi sledi obnašanju konstrukcije še po tem, ko je njena mejna nosilnost že dosežena, morajo znati končni elementi, ki naj bi se uporabljali za porušno analizo, dobro opisati vsaj najpomembnejše od zgoraj omenjenih pojavov. To pomeni, da je treba posvetiti pozornost opisu razvoja poškodb v betonu in plastičnih deformacij v vzdolžni armaturi, ki postopoma privedejo do lokalnih procesov odpovedovanja betona in armature, ki se kažejo v razpokanosti betona v nategu, zdrobljenem betonu v tlaku in popuščanju natezne armature. Slednje je pomembno tudi pri računu mejne nosilnosti konstrukcije, saj v mnogih območjih konstrukcije pride do procesa lokalne odpovedi materiala – ki se pogosto označi tudi kot mehčanja materiala –, že mnogo preden konstrukcija doseže mejno nosilnost, po kateri se pomiki konstrukcije povečujejo ob hkratnem zmanjševanju obtežbe.

Dodatno kompleksnost pri pripravi primernih končnih elementov za porušno analizo prinese dejstvo, da je treba zagotoviti neodvisnost numerične rešitve od mreže končnih elementov, ko preide material v nekem območju konstrukcije v fazo mehčanja – torej, ko se tam začne proces odpovedi materiala. Postopkov, ki pri mehčanju materiala bolj ali manj uspešno zagotavljajo neodvisnost rešitve od mreže in orientacije končnih elementov, je bilo razvitih cela vrsta; za njihov pregled glej npr. (Ibrahimbegović, 2009).

V strokovni literaturi je mogoče najti različne predloge, kako pristopiti k porušni analizi armiranobetonskih linijskih konstrukcij tako, da se: (i) ustrezno opiše razvoj poškodb v betonu in plastičnih deformacij v armaturi, ki postopoma privedejo do procesa lokalnih odpovedi (tj. do mehčanja) betona in armature, ter (ii) te opise vključi v (včasih nekoliko modificirane) standardne linijske končne elemente tako, da bodo rešitve, dobljene z izpeljanimi elementi, v veliki meri neodvisne od mreže končnih elementov pri mehčanju materiala. Za različne tovrstne predloge glej npr. ((Saje, 2005), (Jukić, 2013a), (Markovič, 2013)) in tam navedene vire. Dostopen raziskovalni računalniški program, v katerem je na voljo nekaj tako izpeljanih linijskih končnih elementov za porušno analizo armiranobetonskih linijskih konstrukcij, ki so poimenovani vlaknasti končni elementi, je OpenSees (2013).

V potresnem inženirstvu se za porušno analizo armiranobetonskih linijskih konstrukcij uspešno uporabljajo posebni (nestandardni) končni elementi, npr. (Fajfar, 2006), ki imajo vse materialno-nelinearne efekte zgoščene v obeh krajnih vozliščih v obliki nelinearnih vzmeti z (empirično) določenimi elastoplastičnimi konstitutivnimi zvezami. Takšni končni elementi so na voljo npr. v komercialnem računalniškem programu, ki je specializiran za linearno in nelinearno analizo konstrukcij Sap2000 (2013), skupaj s postopki za prerazporeditev notranjih sil, ko se v kakšnem od vozlišč začne mehčanje prereza (npr. zmanjševanje momenta ob hkratnem povečevanju zasuka).

V tem delu na kratko prikažemo naš končni element za porušno analizo armiranobetonskih ravninskih nosilcev in okvirjev, ki je razmeroma enostaven, robusten in učinkovit. Pomembno je tudi, da potrebuje le tiste podatke o betonu in jeklu, ki se jih lahko dobi ali s standardiziranimi preskusi betona in armature ali pa se iih povzame iz Evrokodov in drugih ustreznih publikacij. Gre za slojevit, ravninski linijski končni element, ki smo ga dobili z modifikacijo kinematike standardnega geometrijsko linearnega Timošenkovega končnega elementa za nosilce. Posledica modificirane kinematike je, da so dobljene rešitve v veliki meri neodvisne od mreže končnih elementov pri mehčanju materiala. Poškodbe v betonu opiše s poškodbenimi enačbami snovi, za opis delovanja armature pa uporabi elastoplastične enačbe snovi. Z izbranimi konstitutivnimi enačbami dobro opiše naslednje neelastične pojave v armiranobetonskem linijskem konstrukcijskem elementu: razvoj manjših poškodb v betonu, lokalno odpoved betona v nategu v obliki razpoke, lokalno odpoved betona v tlaku v obliki zdrobliene cone, plastično tečenje vzdolžne armature in lokalno odpoved vzdolžne armature v nategu. Končni element je vgrajen v raziskovalni računalniški program AceFEM (Korelc, 2013). Izpeljan je bil v (Jukić, 2013b), kjer so na voljo tudi vsi detajli.

2 • KONČNI ELEMENT ZA ARMIRANOBETONSKE NOSILCE

Vzemimo standardni 2-vozliščni ravninski geometrijsko-linearni Timošenkov končni element za nosilce, glej npr. (Reddy, 2005), ki ima v vsakem vozlišču tri prostostne stopnje: dva pomika in en zasuk (slika 1). Pomik težiščne osi nosilca in zasuk prereza nosilca opišemo kot: Iz zgornjih enačb sledi, da je prečna strižna deformacija $\tilde{\gamma} = \partial \tilde{v}(x) / \partial x - \tilde{\theta}(x)$ konstantna po elementu. Osno in upogibno deformacijo nosilca opišemo s sistemom navideznih betonskih in jeklenih palic (ki jim rečemo tudi sloji), ki so razvrščene po višini elementa od enega do drugega robnega prereza (slika 2). Osni pomik *i*-te palice je:

kjer sta h^i in y^i debelina in koordinata težišča palice, α^i je parameter, ki je enak širini razpoke ali odseku zdrobljenega betona v palici (slika 2), x_d^i pa je lokacija razpoke. Privzeto je, da nastane razpoka na sredini palice. Osna deformacija *i*-te palice je konstanta, razen na mestu razpoke:

$$\tilde{u}(x) = N(x)u, \quad N(x) = \{N_1, N_2\} = \{1 - x/L, x/L\}, \quad u = \{u_1, u_2\}^T$$
(1)

$$\tilde{v}(x) = N(x)v + N_3(x)v_3, \quad v = \{v_1, v_2\}^T, \quad N_3 = 4(L-x)x/L^2, \quad v_3 = L(\theta_1 - \theta_2)/8$$
⁽²⁾

$$\tilde{\theta}(x) = N(x)\boldsymbol{\theta}, \quad \boldsymbol{\theta} = \left\{\theta_1, \theta_2\right\}^T, \quad x \in [0, L]$$
(3)

$$u^{i}\left(x,x_{d}^{i}\right) = \tilde{u}\left(x\right) - y\tilde{\theta}\left(x\right) + P^{i}\left(x,x_{d}^{i}\right)\alpha^{i}, \quad y \in \left[y^{i} - h^{i}/2, y^{i} + h^{i}/2\right]$$

$$\tag{4}$$

$$P^{i}(x) = H_{x_{d}^{i}}(x) - N_{2}(x), \quad H_{x_{d}^{i}}(x) = \begin{cases} 0 & \text{za } x < x_{d}^{i} \\ 1 & \text{za } x \ge x_{d}^{i} \end{cases}$$
(5)

$$\varepsilon^{i}\left(x,x_{d}^{i}\right) = \frac{\partial u^{i}}{\partial x} = Bu - yB\theta + \overline{G}\alpha^{i} + \delta_{x_{d}^{i}}\alpha^{i}, \quad \delta_{x_{d}^{i}} = \begin{cases} \infty \text{ pri } x = x_{d}^{i} \\ 0 \text{ sicer} \end{cases}$$
(6)

saj sta $B = \{-1/L, 1/L\}$ in $\overline{G} = -1/L$.

Slika 1 • Timošenkov končni element za ravninski nosilec

Slika 2 • Navidezne palice (sloji) betona in jekla med obema ravnima in nedeformabilnima robnima prerezoma končnega elementa

Če uporabimo princip virtualnega dela za obravnavani končni element, dobimo dve skupini enačb (Jukić, 2013b):

$$\boldsymbol{f}^{not,(e)} - \boldsymbol{f}^{zun,(e)} = \boldsymbol{0}, \quad \boldsymbol{h}^{(e)} = \left\{ h^{(e),1}, h^{(e),2}, \dots, h^{(e),n_L} \right\}^T = \boldsymbol{0}$$
(7)

Prva skupina zagotavlja enakost notranjih in zunanjih sil v obeh vozliščih, druga pa opisuje ravnotežje v vseh n_{l} palicah vsakega elementa (*e*), ki so ali razpokane ali so se zdrobile v tlaku. Notranje sile v vozliščih so:

$$\boldsymbol{f}^{not,(e)} = \sum_{i=1}^{n_L} \int_{L} \boldsymbol{\breve{B}}^T \int_{A^i} \left\{ \boldsymbol{\sigma}^i, -y \boldsymbol{\sigma}^i, \boldsymbol{\tau}^i \right\}^T dA dx = \int_{L} \boldsymbol{\breve{B}}^T \left\{ N, M, V \right\}^T dx$$
(8)

kjer je σ^i osna napetosti v *i*-ti palici, τ^i je strižna napetost na mestu *i*-te palice, *N*, *M* in *V* so osna sila, upogibni moment in prečna sila, in

$$\vec{B} = \begin{bmatrix} -1/L & 0 & 0 & 1/L & 0 & 0 \\ 0 & 0 & -1/L & 0 & 0 & 1/L \\ 0 & -1/L & -1/2 & 0 & 1/L & -1/2 \end{bmatrix}$$
(9)

Zunanje sile v vozliščih se izračunajo iz zunanje obtežbe elementa na standarden način, npr. (Reddy, 2005). Ravnotežje v *i*-ti razpokani palici zahteva, da je osna napetost v palici enaka kohezijski napetosti v razpoki ali zdrobljenem betonu, ki jo označimo s *tⁱ* (Jukić, 2013b):

$$h^{(e),i} = 0 \Longrightarrow t^i = \sigma^i \tag{10}$$

Za mrežo končnih elementov z Nv nepodprtimi prostostnimi stopnjami imamo Nv ravnotežnih enačb za enako število neznanih vozliščnih pomikov in zasukov. Število ravnotežnih enačb, povezano z navideznimi palicami, pa se spreminja med analizo. Na začetku analize je 0, kasneje pa vsaka razpokana oziroma zdrobljena palica prispeva po eno enačbo, v kateri je neznanka parameter, ki opisuje širino razpoke v nategu oziroma širino zdrobljenega dela v tlaku v tej palici.

Strižno obnašanje nosilca predpostavimo kot elastično. Torej velja $\tau^i = c \tilde{G}^i \tilde{\gamma}$, kjer je \tilde{G}^i strižni modul materiala na mestu *i*-te palice, c = 5/6 pa je standardni strižni korekcijski faktor.

Betonska palica je elastična v napetostnem območju $\sigma^i \in (-\sigma_{dc'}, \sigma_{dt})$, kjer sta $\sigma_{dc} > 0$ in $\sigma_{dt} > 0$ meji elastičnosti v tlaku in nategu. Ko je meja elastičnosti presežena, nastanejo v betonski palici poškodbe, ki jih modeliramo s poškodbenim modelom 1d, opisanim v ((Ibrahimbegović, 2009), (Jukić, 2013b)). Osnovna lastnost poškodbenega modela je, da se, glede na nakopičene poškodbe, spreminja elastični modul materiala (slika 3). Drobljenje betona v tlaku in pojav razpoke v nategu se v obravnavani palici zgodita, ko je $\sigma^i = \sigma_{fcc}$ oziroma ko je $\sigma^i = \sigma_{fct}$ (slika 3), kjer sta σ_{fcc} in σ_{fct} trdnosti betona v tlaku in nategu. Širjenje zdrobljene cone v tlaku oziroma razpoke v nategu se kinematično opiše s parametrom α^i (slika 2), ki se aktivira, ko je ena od porušnih vrednosti presežena. Kohezijske napetosti v razpoki določimo s poškodbenim modelom 1d za mehčanje, ki je prikazan na sliki 4 in detajlno opisan v (Jukić, 2013b).

Slika 3 • Enoosna zveza med napetostmi in deformacijami za betonski sloj do odpovedi betona v tlaku (ko se začne drobiti) ali nategu (ko nastane razpoka)

Jeklena palica je elastična v napetostnem območju $\sigma^i \in (-\sigma_{\gamma}, \sigma_{\gamma})$, kjer je σ_{γ} napetost na meji elastičnosti. Ko je ta presežena, pride do plastičnega tečenja jekla, ki ga opišemo z elastoplastičnim modelom 1 d z izotropnim utrjevanjem, slika 5, glej npr. (Ibrahimbegović, 2009). Jeklena palica začne popuščati, ko je $\sigma^i = \sigma_{is'}$ kjer je σ_{fs} trdnost jekla. Širjenje mehčanja v palici se kinematično opiše s parametrom α^i , ki se aktivira, ko se začne proces odpovedi jekla. Kohezijske napetosti na mestu popuščanja določimo s plastičnim modelom 1d za mehčanje, ki je prikazan na sliki 6 in opisan v (Jukić, 2013b).

Potrebnih materialnih podatkov za izvedbo analize je dvanajst, če privzamemo, da je obnašanje betona v nategu linearno elastično vse do dosežene natezne trdnosti, tj., da velja $\sigma_{dt} = \sigma_{fat}$. Za opis

obnašanja betona potrebujemo (glej sliki 3 in 4): elastični modul nepoškodovanega betona E_{cr} , mejo elastičnosti v tlaku σ_{dc} tlačno trdnost σ_{fcc} in pripadajočo deformacijo D_{c1} , energijo loma za beton v tlaku G_{fcc} , natezno trdnost $\sigma_{dt} = \sigma_{fct}$ in energijo loma za beton v nategu G_{fct} . Za opis obnašanja armature potrebujemo (glej sliki 5 in 6): elastični modul jekla E_{sr} mejo plastičnega tečenja σ_{yr} modul linearnega utrjevanja jekla H_{sr} trdnost jekla σ_{fs} in energijo loma za jeklo G_{fs} . Omenjene podatke o kvaliteti betona in jekla se lahko dobi ali s standardiziranimi preskusi betona in armature ali iz Evrokodov in drugih relevantnih publikacij. Iz naštetih dvanajstih podatkov lahko izračunamo vse potrebne materialne parametre za našo analizo.

Slika 4 • Zveza med kohezijsko napetostjo v razpoki in širino razpoke v sloju betona v nategu oziroma med kohezijsko napetostjo v zdrobljeni coni in širino zdrobljene cone v tlaku. Energija loma za beton v tlaku G_{rec} je enaka površini spodnjega obarvanega pravokotnega trikotnika. Energija loma za beton v nategu G_{rer} je enaka površini zgornjega obarvanega pravokotnega trikotnika

Slika 5 • Zveza med napetostmi in deformacijami za jekleni sloj, ki predstavlja armaturo, do odpovedi jekla

Slika 6 • Zveza med napetostjo v jekleni armaturi v popuščanju in dolžino območja, na katerem jeklo popušča. Energija loma za jeklo je enaka površini zgornjega pravokotnega trikotnika, katerega dve stranici sta odseka na abscisi in ordinati

3 • PORUŠITEV SIMETRIČNEGA PORTALNEGA OKVIRJA

Obravnavamo členkasto podprt portalni okvir, predstavljen na sliki 7. V sklopu eksperimentov na armiranobetonskih okvirjih ga je preizkusil (Cranston, 1965), numerično pa so ga analizirali (Saje, 2005). V tem poglavju predpostavimo, da je bil preizkušeni okvir simetričen. V naslednjem poglavju pa bomo predstavili rezultate analize z upoštevanjem začetne imperfektnosti okvirja, ki jo je izmeril (Cranston, 1965). Višina

obravnavanega okvirja je H = 1,93 m, razpon je L = 2,64 m, širina in višina betonskih prerezov stebrov in prečke sta b = 0,1016 m in h = 0,1524 m. Odmika armature od spodnjega in zgornjega roba prereza znašata $a_1 = a_2 = 0,014$ m. Količina armature se spreminja po okvirju in je predstavljena na sliki 7 (desno). Upoštevani podatki za jeklo so: elastični modul $E_s = 200000$ MPa, meja plastičnega tečenja σ_v = 293 MPa, tranost σ_{fs} = 310 MPa, modul utrievanja H_s = 2020 MPa in modul mehčanja $K_s = -2.5 \times 10^7$ kNm⁻³ (kar ustreza $G_{ts} = 1922$ kNm). Materialne lastnosti betona so: elastični modul $E_c = 31500 \text{ MPa}$, meja elastičnosti v tlaku $\sigma_{dc} = 0.4 \sigma_{fcc} = 14.6 \text{ MPa}$, tlačna trdnost σ_{tec} = 36,5 MPa, modul utrjevanja v tlaku H_{cc} = 29000, modul mehčanja v tlaku $K_{cc}^* = -4 \times 10^7$ kNm⁻³ (kar ustreza $G_{fcc} = 16,65$ kNm), natezna trdnost σ_{tct} = 0,95 MPa, modul mehčanja v nategu K_{ct}^* = - 1,1 × 10⁷ kNm⁻³ (kar ustreza G_{tot} = 0,04 kNm). Privzamemo, da je obnašanje betona v nategu linearno elastično vse do dosežene natezne trdnosti, tj., da velja $\sigma_{dt} = \sigma_{fct}$. Vrednosti za $E_{sr} \sigma_{yr}$, E_c in σ_{fcc} so povzete neposredno po (Saje, 2005). Naslednje parametre smo določili posredno iz podatkov v (Saje, 2005): tranost jekla $\sigma_{ts} = \sigma_v + E_p (D_{v2} - D_{v1})$, kjer je $E_p = 2000 \text{ MPa}$ naklon enoosnega bilinearnega nateznega diagrama v plastičnem območju, D_{v2} = 1 % je deformacija na meji nosilnosti in $D_{v1} = \sigma_v / E_s$ je deformacija na meji tečenja; modul utrjevanja jekla $H_s = E_s E_o / (E_s - E_o);$ modul utrjevanja betona v tlaku H_{cc} določimo tako, da je trdnost betona v tlaku σ_{tcc} dosežena pri deformaciji D_{c1} = -0,23 %; natezna trdnost je σ_{tct} = 0,55 ($D_{cr}E_c$), kjer je D_{cr} = 0,0055 %. Za parametre mehčanja, K_{sr} $K_{cc'}^*$, $K_{ct'}^*$ izberemo značilne vrednosti za jeklo in beton, kot jih navaja npr. (Pham, 2009). Ker je v vseh končnih elementih, ki modelirajo nosilec v območju med silo in osjo simetrije, napetostno stanje enako, trdnost jeklene armature v enem od elementov oslabimo za 1 %. S tem se izognemo možnosti, da bi se v vseh elementih armatura mehčala hkrati.

Okvir je simetrično obremenjen z dvema točkovnima silama P na razdalji $I_p = 1,09$ m od osi stebrov. Ker predpostavimo simetrično konstrukcijo, modeliramo samo polovico okvirja in pri tem upoštevamo ustrezne robne pogoje. Obtežbo nanašamo z vsiljevanjem vertikalnega pomika na mestu in v smeri sile P. Okvir opišemo z različno gostimi mrežami končnih elementov (od 8 do 128 elementov za steber (C) in od 5 do 80 elementov za polovico prečke (B)).

Slika 7 • Simetrični portalni okvir: geometrija in obtežba (levo) ter armatura (desno)

Slika 8 • Simetrični okvir: konvergenca krivulje P-w za različne mreže končnih elementov (levo); primerjava z eksperimentom (Cranston, 1965) in numerično analizo (Saje, 2005) (desno)

Rezultati porušne analize so predstavljeni na slikah 8 do 10. Na sliki 8 (levo) je prikazana zveza med silo *P* in pomikom na sredini razpona (glej sliko 7) za različne mreže končnih elementov. Pomik *w* lepo konvergira h končni rešitvi, pri čemer se z mrežo 32S 20B že zelo približamo končnim rezultatom. Primerjava naših rezultatov z eksperimentom (Cranston, 1965) in z numerično rešitvijo (Saje, 2005) je podana na sliki 8 (desno). Očitno je, da se naši rezultati lepo ujemajo tako z eksperimentom kot tudi z referenčno numerično rešitvijo. Dodatna primerjava je podana na sliki 9, kjer se izračunani momenti primerjajo s tistimi, ki jih je določil (Cranston, 1965) na podlagi meritev specifičnih deformacij. Za konvergenco vogalnega momenta, slika 9 (levo), je potrebna gostejša mreža kot za konvergenco pomika *w*, slika 8 (desno), in konvergenco momenta na sredini nosilca, slika 9 (desno).

Slika 10 prikazuje širjenje razpok in zdrobljenih con v betonu pri treh vrednostih pomika ter za različne mreže končnih elementov. Široki razpoki se vedno pojavita na dveh najbolj kritičnih mestih: najprej na stiku prečke in stebra, nato pa še pod silo blizu simetrijske osi. Vendar lokacija široke razpoke v vogalu ni zmeraj ista: dve bolj grobi mreži oblikujeta razpoko v stebru, tri finejše mreže pa v prečki. Posledica tega se vidi na sliki 8 levo: krivulji bolj grobih mrež sta oddaljeni od krivulj finejših mrež.

Na sliki 10 je opazno, da razpoke z zgoščevanjem mreže konvergirajo k nekemu vzorcu razpok, ki bi lahko nakazoval lego realnih razpok, razdaljo med njimi in morda tudi širino realnih razpok. Ali se lokacije dobljenih vzorcev razpok ujemajo z realnostjo, ne moremo presoditi, ker o tem ni podatkov v (Cranston, 1965); če pa bi bili, bi morali eksperimentalne rezultate primerjati z rezultati analize za okvir z začetno imperfektnostjo, ki je podana v naslednjem poglavju.

Slika 9 • Simetrični okvir: upogibni moment na stiku med stebrom in prečko (levo) in upogibni moment na osi simetrije (desno); primerjava z eksperimentom (Cranston, 1965) in numerično analizo (Saje, 2005)

Miha Jukić, Boštjan Brank • POSTOPEK ZA PORUŠNO ANALIZO RAVNINSKIH ARMIRANOBETONSKIH NOSILCEV IN OKVIRJEV

Slika 10 • Simetrični okvir: izračunane razpoke (črne črte) in zdrobljene cone (rdeče črte) pri treh različnih vrednostih pomika , ki so označene na slikahs pikami, za različne mreže končnih elementov: 128C 80B (levo zgoraj), 64C 40B (desno zgoraj), 32C 20B (levo spodaj), 16C 10B (sredina spodaj), do 8C 5B (desno spodaj). Širine razpok so 50-krat povečane

4 • PORUŠITEV PORTALNEGA OKVIRJA Z ZAČETNO IMPERFEKTNOSTJO

Ponovno obravnavamo členkasto podprt portalni okvir, predstavljen na sliki 7, ki ga je preizkusil (Cranston, 1965), le da zdaj upoštevamo tudi začetno imperfektnost okvirja $u_{im} = 0,32$ cm (slika 11), ki je bila izmerjena pred izvedbo eksperimenta. Vrednosti vseh materialnih parametrov ostanejo enake kot v prejšnjem poglavju; spremenimo le K_s na $K_s = -1,2 \times 10^7$ kNm⁻³ (kar ustreza $G_{ts} = 4004,17$ kNm), ker se s to vrednostjo računsko bolj približamo izmerjeni vrednosti momenta na osi simetrije (glej sliki 9 (desno) in 13 (desno)).

Slika 11 • Portalni nesimetrični okvir: oblika začetne imperfektnosti

Slika 12 • Nesimetrični okvir: odnos P-w (levo) in odnos u-w (desno)

Rezultati analize so prikazani na slikah 12 do 17. Na sliki 12 (levo) je prikazana zveza med silo P in pomikom na sredini razpona w za dve mreži končnih elementov, ki sta se že v prejšnjem poglavju izkazali za dovolj gosti. Iz primerjave slik 8 (desno) in 12 (levo) se lahko opazi, da sta se izračunani krivulji zaradi upoštevanja začetne imperfektnosti le malo spremenili. Na sliki 12 (desno) je prikazan odnos med horizontalnim pomikom levega vogala in pomikom (slika 11). Za mrežo 64C 40B se izračunane vrednosti lepo ujemajo z rezultati eksperimenta (Cranston, 1965) in tudi z rezultati numerične analize (Saje, 2005). Na sliki 13 so prikazani izračunani upogibni momenti v levem vogalu in na sredini prečke. Iz primerjave slik 9 in 13 lahko opazimo, da se je izračunani vogalni moment le malo spremenil glede na simetrični okvir. Moment na sredini prečke se je spremenil opazneje predvsem zaradi spremenjene vrednosti modula mehčanja jeklene armature. Konvergenca pomikov in momentov je prikazana na slikah 14 in 15, kjer C predstavlja število končnih elementov za en steber, B pa število končnih elementov za polovico prečke. Najmanj občutljiv za gostoto mreže končnih elementov je moment na osi simetrije, kar je posledica skoraj konstantnega upogibnega momenta med obema silama.

Slika 13 • Nesimetrični okvir: moment na stiku med stebrom in prečko (levo) in moment na osi simetrije (desno)

Slika 14 • Nesimetrični okvir: konvergenca pomika *w* (levo) in pomika *u* (desno) glede na število končnih elementov v mreži

Razpoke v betonu in zdrobljene cone betona so za mrežo 64C 40B prikazane na sliki 16. Pri drugi piki na diagramu P-w na sliki 16 je prišlo do odpovedi celotnega prereza prečke v desnem vogalu, tj. do mehčanja vsega materiala v tem prerezu, tako armature kot betona. Na zgornjem delu prereza tik ob desnem vogalu je nastala široka razpoka (črne črte), na spodnjem delu prereza pa se je beton zdrobil v tlaku (rdeča črta). Pri drugi piki na diagramu P-w na sliki 16 je v prerezu tik ob desnem vogalu v tlaku ostal en sam sloj betona. (Cranston, 1965) poroča, da se je približno pri tej velikosti pomika w začelo odluščenja betona v desnem vogalu (uporabi izraz »side spalling at corner«), kar se lepo sklada z rezultati analize. Pri tretji piki na diagramu P-w na sliki 16 sta odpovedala oba prereza pod silama v prečki. Na spodnjem delu prereza je nastala široka razpoka (črne črte), na zgornjem tlačenem delu prereza pa se je beton zdrobil v tlaku (rdeča črta). V prerezu pod silo je v tlaku ostal en sam sloj betona. (Cranston, 1965) poroča, da je pri malo manjši velikosti pomika w nastalo drobljenje betona 22,9 cm na desno od vnosa leve sile v okvir (uporabi izraz »crushing«), kar se dobro sklada z rezultati analize. Slika 16 kaže, da se tudi pri okviriu z začetno imperfektnostjo nakaže vzorec razporeditve razpok, ki je bolj izrazit pri večjem pomiku w (pri tretji piki v diagramih P-w na sliki 16). Če lahko ta vzorec razpok povežemo z realnimi razpokami, ne more presoditi.

Na sliki 17 je drugače kot na sliki 16 prikazano stanje betona in armature. Gre za stanje pri tretji piki na krivulji *P-w* za na sliki 16 in za mrežo 64C 40B končnih elementov. Zelena barva označuje območja v betonu, ki so razpokana, ne glede na to, koliko so široke razpoke. Primerjava slik 16 in 17 za vrhnje območje obeh stebrov pokaže, da so vsi končni elementi razpokani do enake višine, da pa so razpoke različno široke; nekatere so tako tanke, da se jih na sliki 16 ne vidi kljub 50-kratni povečavi. Beton je v mehčanju le v treh prerezih (vijolična barva na sliki 17), ki so bolje vidni na sliki 16.

Slika 16 • Nesimetrični okvir: izračunane razpoke (črne črte) in zdrobljene cone (rdeče črte) pri treh različnih vrednostih pomika w, ki so označene na sliki P-w s pikami, za mrežo 64C 40B končnih elementov. Širine razpok so 50-krat povečane. Prikazana je povečana porušitev desnega vogala pri drugi piki in porušitev prečke pod silo pri tretji piki

Slika 17 • Stanje betona in armature pri tretji piki na krivulji *P-w* na sliki 16 za mrežo 64C 40B končnih elementov. Oznaka »tlak po mehčanju v nategu« pomeni, da se je tam razpoka zaprla in beton nosi v tlaku

5 • PORUŠITEV PREVISNEGA NOSILCA

Obravnavamo previsni nosilec, prikazan na sliki 18, ki so ga eksperimentalno preizkusili v Franciji na Ecole Normale Supérieure de Cachan (Ibrahimbegović, 2013) ob različnih vrednostih nateznih osnih sil. Modeliramo primer brez osne sile. Polje med podporama je dolgo $L_1 = 7,2$ m,

Miha Jukić, Boštjan Brank • POSTOPEK ZA PORUŠNO ANALIZO RAVNINSKIH ARMIRANOBETONSKIH NOSILCEV IN OKVIRJEV

previsni del nosilca pa $L_2 = 1,69$ m. Širina in višina betonskega prereza sta in b = 0,6 m in h = 0,2 m, odmika armature od spodnjega in zgornjega roba prereza sta $a_1 = a_2 = 0,065$ m. Količini zgornje in spodnje armature sta enaki $A_{s1} = A_{s2} = 31,86$ cm². Uporabljene materialne lastnosti jekla so (Ibrahimbegović, 2013): elastični modul $E_s = 215000$ MPa, meja tečenja $\sigma_y = 498$ MPa, trdnost $\sigma_{fs} = 587$ MPa, modul utrjevanja $H_s = 786$ MPa, modul mehčanja $K_s = -5 \times 10^6$ kNm⁻³ (kar ustreza $G_{ts} = 34457$ kNm). Materialne lastnosti betona so (Ibrahimbegović, 2013): elastični modul $E_c = 32400$ MPa, meja elastičnosti v tlaku $\sigma_{dc} = 28,8$ MPa, tlačna trdnost $\sigma_{fcc} = 41,2$ MPa, modul utrjevanja v tlaku $H_{cc} = 26400$ kNm, modul mehčanja v tlaku $K_{cc} = -10^7$ kNm⁻³ (kar ustreza $\sigma_{tcc} = 84,9$ kNm), meja elastičnosti v nategu in natezna trdnost $\sigma_{dt} = \sigma_{tct} = 3,21$ MPa, modul mehčanja v nategu $K_{ct}^* = -5 \times 10^6$ kNm⁻³ (kar ustreza $G_{tc} = 1,03$ kNm).

Slika 18 • Previsni nosilec: geometrija in obtežba (levo) ter prerez (desno)

Del nosilca med podporama razdelimo na 36 enakih končnih elementov, previsni del pa na devet. Vsi elementi so sestavljeni iz desetih slojev betona in dveh slojev armature. Lastna teža nosilca je podana kot zvezna obtežba g = 3,2 kN/m. Točkovne sile $Q = Q_g + Q_{jack}$ in $P = P_g + P_{jack}$ se vsiljujejo s hidravličnimi bati, pri čemer $Q_g = 1,8$ kN in $P_g = 3,8$ kN predstavljata lastno težo naprave za vsiljevanje obtežbe, Q_{jack} in P_{jack} pa vsiljeno obtežbo. Slednji se monotono povečujeta po predpisani shemi, prikazani v tabeli 1. Za vsak obtežni korak izračunamo pomik w_2 na sredini razpona in pomik w_c na prostem koncu nosilca.

<i>Q_{jack}</i> (kN)	P _{jack} (kN)	<i>Q_{jack}</i> (kN)	P _{jack} (kN)
0	0	35	59,0
0	5,6	40	66,2
5	15,8	45	73,4
10	23,0	50	80,6
15	30,2	55	87,8
20	37,4	60	95,0
25	44,6	65	102,0
30	51,8	70	109,4

Preglednica 1 • Shema vsiljevanja obtežbe

Slika 19 • Previsni nosilec: pomik w₂ na sredini razpona in pomik w_c na koncu nosilca v odvisnosti od sile Q_{lack}

Slika 19 prikazuje izračunana pomika w_2 in w_c v odvisnosti od sile Q_{jack} . S pikami so označene tri konfiguracije nosilca, za katere je na slikah 20 do 22 prikazano stanje materiala. Že zaradi lastne teže in teže obremenjevalnih naprav se v polju in nad desno podporo pojavijo dovolj veliki nategi, da beton razpoka. Z nalaganjem obtežbe se območje razpokanosti širi (slika 20). V okolici desne podpore se pojavijo poškodbe betona v tlaku (slika 21). Armatura je elastična vse do sile $Q_{jack} \approx 60$ kN, ko se začne plastično tečenje zgornje armature. Takoj zatem se poruši prerez tik ob podpori na desni strani. Prerez se poruši po betonu, kar je lepo vidno s slike 22. Porušitvi kritičnega prereza sledi porušitev nosilca, kar se vidi s slike 19.

Na sliki 23 je prikazan obravnavani nosilec med preizkusom, na sliki 24 pa so prikazani porušeni preizkušanci, ki so bili predobremenjeni z različnimi vrednostmi osnih sil. Ob pomoči slik 22 in 24 lahko primerjamo izračunane rezultate z eksperimentom. V obeh primerih pride do porušitve nosilca zaradi porušitve betona nad podporo in desno od nje (slika 22). V obeh primerih imamo enakomerno razpokanost na sredinskem območju polja med podporama (slika 22). Razpoke segajo do približno dveh tretjin višine nosilca (vse do zgornje armature). Številčni rezultati eksperimenta za detajlno primerjavo še niso na voljo.

Slika 21 • Stanje materiala (zgoraj) in prikaz razpok v betonu (spodaj) pri obtežbi, označeni z drugo piko na krivulji sila–pomik na sliki 19. Prikazana višina nosilca je 2-krat večja od dejanske. Razpoke so 50-krat povečane. Za legendo barv glej sliko 17

POSTOPEK ZA PORUŠNO ANALIZO RAVNINSKIH ARMIRANOBETONSKIH NOSILCEV IN OKVIRJEV • Miha Jukić, Boštjan Brank

New York Contraction

Slika 22 • Stanje materiala (zgoraj), prikaz razpok v betonu in drobljenja betona (sredina) ter preizkušanec po eksperimentu (spodaj), pri obtežbi, označeni s tretjo piko na krivulji sila-pomik na sliki 19. Razpoke so črne črte, krušenje v tlaku je prikazano z rdečima črtama. Prikazana višina nosilca je 2-krat večja od dejanske. Razpoke so 50-krat povečane. Za legendo barv glej sliko 17

Slika 23 • Izvedba preizkusa (Ibrahimbegović, 2013)

6 • SKLEP

Opisali smo računski postopek, ki deluje po metodi linijskih končnih elementov in je zelo primeren za porušno analizo armiranobetonskih nosilcev in okvirjev pri statični, tj. monotoni obremenitvi. Je robusten in potrebuje le tiste materialne podatke, ki se jih lahko pridobi ali s standardiziranimi preskusi betona in armature ali iz Evrokodov in drugih primernih publikacij. Rezultati prikazanih numeričnih testov za portalni okvir in previsni nosilec nakazujejo naslednje sklepe. (i) Za takšen okvir (in verjetno tudi za večino armiranobetonskih okvirjev) je geometrijska nelinearnost zanemarljiva v primerjavi z materialno-nelinearnimi efekti. (ii) Z opisanim postopkom lahko zelo dobro ponovimo (in verjetno tudi predvidimo) rezultate eksperimenta. (iii) Rezultati opisanega postopka so praktično neodvisni od mreže končnih elementov, ko material na več območjih konstrukcije funkcionira v mehčanju. (iv) Z zgoščevanjem mreže končnih elementov rezultati, ki jih izračunamo z opisanim postopkom, konvergirajo k rešitvi. Ugotovimo tudi, da se z zgoščevanjem mreže končnih elementov oblikuje vzorec razpok, za katerega pa nismo pokazali, na kakšen način ga lahko povežemo z dejanskimi razpokami v armiranobetonskih linijskih konstrukcijskih elementih (takšna študija presega namene tega članka). Detajli prikazanega končnega elementa in drugi računski primeri so prikazani v (Jukić, 2013b).

7 • LITERATURA

Abaqus, komercialni program za analizo s končnimi elementi, povzeto po: http://www.simulia.com, 2013.

Cranston, W. B., Tests on reinforced concrete frames, 1: Pinned portal frames, Technical report TRA/392, Cement and concrete association, London, 1965.

Fajfar, P., Dolšek, M., Marušić, D., Stratan, A., Pre- and post-test mathematical modelling of a plan-asymmetric reinforced concrete frame building, Earthquake Engineering and Structural Dynamics 35: 1359–1379, 2006.

Slika 24 • Porušeni preizkušanci (Ibrahimbegović, 2013). Spodnji je bil numerično analiziran

Miha Jukić, Boštjan Brank • POSTOPEK ZA PORUŠNO ANALIZO RAVNINSKIH ARMIRANOBETONSKIH NOSILCEV IN OKVIRJEV

Ibrahimbegović, A, Nonlinear solid mechanics: Theoretical formulations and finite element solution methods, Springer, 2009.

Ibrahimbegović, A. Ecole Normale Supérieure de Cachan, osebni stik, 2013.

Jukić, M., Brank, B., Ibrahimbegović, A., Embedded discontinuity finite element formulation for failure analysis of planar reinforced concrete beams and frames, Engineering Structures 50: 115–125, 2013.

Jukić, M., Končni elementi za modeliranje lokaliziranih porušitev v armiranem betonu, doktorska disertacija, Univerza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, 2013.

Korelc, J., AceFEM, raziskovalni program za analizo s končnimi elementi, povzeto po: http://www.fgg.uni-lj.si/Symech, 2013.

Markovič, M., Krauberger, N., Saje, M., Planinc, I., Bratina, S., Non-linear analysis of pretensioned concrete planar beams, Engineering Structures 46: 279–293, 2013.

OpenSees, raziskovalni program za analizo konstrukcij, povzeto po: http://opensees.berkeley.edu, 2013.

Pham, B. H., Stress-resultant models for optimal design of reinforced-concrete frames, doktorska disertacija, Ecole Normale Superieure de Cachan, Cachan, 2009.

Reddy, J. N., An Introduction to the Finite Element Method, McGraw-Hill, 2005.

Saje, M., Planinc, I., Bratina, S. Large displacements and instability of beam-like structural systems, v A. Ibrahimbegović, B. Brank (urednika), Engineering structures under extreme conditions: Multi-physics and multi-scale computer models in nonlinear analysis and optimal design, IOS Press, 329–350, 2005.

Sap2000, komercialni program za analizo konstrukcij, povzeto po: http://www.csiamerica.com/sap2000, 2013.

OBVESTILO

Zaradi manjšega zanimanja za pripravljalne seminarje za strokovne izpite za gradbeno stroko bosta v letu 2014 organizirana le dva namesto predvidenih treh seminarjev.

CEMINAD	IZPIT		
SEMINAR	Osnovni in dopolnilni	Revidiranje	
1012. 2. 2014	25. 3. 2014 (po potrebi še 24. in 26.)	24. 3. 2014	
	27. 5. 2014 (po potrebi še 26. in 28.)		
68. 10. 2014	25. 11. 2014 (po potrebi še 24. in 26.)	21. 10. 2014	

A. PRIPRAVLJALNI SEMINARJI:

Seminarje organizira Zveza društev gradbenih inženirjev in tehnikov Slovenije (ZDGITS), Karlovška cesta 3, 1000 Ljubljana;

Telefon: (01) 52-40-200; Fax: (01) 52-40-199; e-naslov: gradb.zveza@siol.net; gradbeni.vestnik@siol.net.

Uradne ure:

ponedeljek, torek, sreda od 09.00 do 13.00 ure; četrtek od 12.00 do 16.00 ure. V petek NI URADNIH UR za stranke!

Seminar vključuje izpitne programe za:

- 1. odgovorno projektiranje (osnovni in dopolnilni strokovni izpit)
- 2. odgovorno vodenje del (osnovni in dopolnilni strokovni izpit)
- 3. odgovorno vodenje posameznih del
- 4. Investicijski procesi in vodenje projektov (za kandidate, ki opravljajo dopolnilni strokovni izpit; predavanje se odvija v okviru rednih seminarjev).
- 5. Kandidati drugih strok lahko poslušajo posamezna predavanja v okviru rednih seminarjev.

(Vsi posamezni programi so dostopni na spletni strani IZS – MSG: <u>http://www.izs.si</u>, v rubriki »Strokovni izpiti«)

Cena za udeležbo na seminarju (za predavanje in literaturo) po izpitnih programih pod 1., 2. in 3. točko znaša 623,22 EUR z DDV, pod 4. točko pa 89,10 EUR z DDV. Cena za udeležbo na posameznem predavanju je 89,10 EUR z DDV.

Kotizacijo za seminar je potrebno <u>nakazati ob prijavi</u> na poslovni račun ZDGITS: SI56 0201 7001 5398 955. Prijavo je potrebno poslati organizatorju (ZDGITS) najkasneje <u>14 dni pred pričetkom</u> seminarja!

Prijavni obrazec je mogoče dobiti na spletni strani ZDGITS (<u>http://www.zveza-dgits.si</u>).

Izvedba seminarja je odvisna od števila prijav (najmanj 20).

B. STROKOVNI IZPITI

potekajo pri Inženirski zbornici Slovenije (IZS), Jarška 10-B, 1000 Ljubljana.

Informacije o strokovnih izpitih in izpitnih programih je mogoče dobiti na spletni strani IZS <u>http://www.izs.si</u> ali po telefonu (01) 547-33-19 ob uradnih urah (ponedeljek, sreda, četrtek, petek: od 08.00 do 12.00 ure; v torek od 12.00 do 16.00 ure).