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Abstract

We study vertex-quasiprimitive 2-arc-transitive digraphs, and reduce the problem of
vertex-primitive 2-arc-transitive digraphs to almost simple groups. This includes a com-
plete classification of vertex-quasiprimitive 2-arc-transitive digraphs where the action on
vertices has O’Nan-Scott type SD or CD.
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1 Introduction
A digraph Γ is a pair (V,→) with a set V (of vertices) and an antisymmetric irreflexive
binary relation → on V . All digraphs considered in this paper will be finite. For a non-
negative integer s, an s-arc of Γ is a sequence v0, v1, . . . , vs of vertices with vi → vi+1 for
each i = 0, . . . , s− 1. A 1-arc is also simply called an arc. We say Γ is s-arc-transitive if
the group of all automorphisms of Γ (that is, all permutations of V that preserve the relation
→) acts transitively on the set of s-arcs. More generally, for a group G of automorphisms
of Γ, we say Γ is (G, s)-arc-transitive if G acts transitively on the set of s-arcs of Γ.

A transitive permutation group G on a set Ω is said to be primitive if G does not pre-
serve any nontrivial partition of Ω, and is said to be quasiprimitive if each nontrivial normal
subgroup of G is transitive. It is easy to see that primitive permutation groups are necessar-
ily quasiprimitive, but there are quasiprimitive permutation groups that are not primitive.
We say a digraph is vertex-primitive if its automorphism group is primitive on the vertex
set. The aim of this paper is to investigate finite vertex-primitive s-arc transitive digraphs
with s > 2. However, we will often work in the more general quasiprimitive setting.
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There are many s-arc-transitive digraphs, see for example [2, 6, 7, 8]. In particular, for
every integer k > 2 and every integer s > 1 there are infinitely many k-regular (G, s)-arc-
transitive digraphs with G quasiprimitive on the vertex set (see the proof of Theorem 1 of
[2]). On the other hand, the first known family of vertex-primitive 2-arc-transitive digraphs
besides directed cycles was only recently discovered in [3]. The digraphs in this family are
not 3-arc-transitive, which prompted the following question:

Question 1.1. Is there an upper bound on s for vertex-primitive s-arc-transitive digraphs
that are not directed cycles?

The O’Nan-Scott Theorem divides the finite primitive groups into eight types and there
is a similar theorem for finite quasiprimitive groups, see [9, Section 5]). For four of the
eight types, a quasiprimitive group of that type has a normal regular subgroup. Praeger
[8, Theorem 3.1] showed that if Γ is a (G, 2)-arc-transitive digraph and G has a normal
subgroup that acts regularly on V , then Γ is a directed cycle. Thus to investigate vertex-
primitive and vertex-quasiprimitive 2-arc-transitive digraphs, we only need to consider the
four remaining types. One of these types is where G is an almost simple group, that is,
where G has a unique minimal normal subgroup T , and T is a nonabelian simple group.
The examples of primitive 2-arc-transitive digraphs constructed in [3] are of this type. This
paper examines the remaining three types, which are labelled SD, CD and PA, and reduces
Question 1.1 to almost simple vertex-primitive groups (Corollary 1.6). We now define these
three types and state our results.

We say that a quasiprimitive group G on a set Ω is of type SD if G has a unique
minimal normal subgroupN , there exists a nonabelian simple group T and positive integer
k > 2 such that N ∼= T k, and for ω ∈ Ω, Nω is a full diagonal subgroup of N (that is,
Nω ∼= T and projects onto T in each of the k simple direct factors of N ). It is incorrectly
claimed in [8, Lemma 4.1] that there is no 2-arc-transitive digraph with a vertex-primitive
group of automorphisms of type SD. However, there is an error in the proof which occurs
when concluding “σx also fixes Dt−1”. Indeed, given a nonabelian simple group T , our
Construction 3.1 yields a (G, 2)-arc-transitive digraph Γ(T ) with G primitive of type SD.
These turn out to be the only examples.

Theorem 1.2. Let Γ be a connected (G, 2)-arc-transitive digraph such thatG is quasiprim-
itive of type SD on the set of vertices. Then there exists a nonabelian simple group T such
that Γ ∼= Γ(T ), as obtained from Construction 3.1. Moreover, Aut(Γ) is vertex-primitive
of type SD and Γ is not 3-arc-transitive.

The remaining two quasiprimitive types, CD and PA, both arise from product actions.
For any digraph Σ and positive integer m, Σm denotes the direct product of m copies of Σ
as in Notation 2.6. The wreath product Sym(∆) o Sm = Sym(∆)m o Sm acts naturally on
the set ∆m with product action. Let G1 be the stabiliser in G of the first coordinate and let
H be the projection of G1 onto Sym(∆). If G projects onto a transitive subgroup of Sm,
then a result of Kovács [4, (2.2)] asserts that up to conjugacy in Sym(∆)m we may assume
that G 6 H o Sm. A reduction for 2-arc-transitive digraphs was sought in [8, Remark 4.3]
but only partial results were obtained. Our next result yields the desired reduction.

Theorem 1.3. Let H 6 Sym(∆) with transitive normal subgroup N and let G 6 H o Sm
acting on V = ∆m with product action such that G projects to a transitive subgroup of Sm
and G has component H . Moreover, assume that Nm 6 G. If Γ is a (G, s)-arc-transitive
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digraph with vertex set V such that s > 2, then Γ ∼= Σm for some (H, s)-arc-transitive
digraph Σ with vertex set ∆.

A quasiprimitive group of type CD on a set Ω is one that has a product action on Ω and
the component is quasiprimitive of type SD, while a quasiprimitive group of type PA on a
set Ω is one that acts faithfully on some partition P of Ω and G has a product action on P
such that the component H is an almost simple group. When G is primitive of type PA,
H is primitive and the partition P is the partition into singletons, that is, G has a product
action on Ω. As a consequence, we have the following corollaries.

Corollary 1.4. Suppose Γ is a connected (G, 2)-arc-transitive digraph such that G is
vertex-quasiprimitive of type CD. Then there exists a nonabelian simple group T and
positive integer m > 2 such that Γ ∼= Γ(T )m, where Γ(T ) is as obtained from Construc-
tion 3.1. Moreover, Γ is not 3-arc-transitive.

Corollary 1.5. Suppose Γ is a (G, s)-arc-transitive digraph such thatG is vertex-primitive
of type PA. Then Γ ∼= Σm for some (H, s)-arc-transitive digraph Σ and integer m > 2 for
some almost simple primitive permutation group H 6 Aut(Σ).

We give an example in Section 2.3 of an infinite family of (G, 2)-arc-transitive digraphs
Γ with G vertex-quasiprimitive of PA type such that Γ is not a direct power of a digraph Σ
(indeed the number of vertices of Γ is not a proper power). We leave the investigation of
such digraphs open.

We note that Theorem 1.2 and Corollaries 1.4 and 1.5, reduce Question 1.1 to studying
almost simple primitive groups.

Corollary 1.6. There exists an absolute upper bound C such that every vertex-primitive
s-arc-transitive digraph that is not a directed cycle satisfies s 6 C, if and only if for every
(G, s)-arc-transitive digraph with G a primitive almost simple group we have s 6 C.

Theorem 1.2 follows immediately from a more general theorem (Theorem 3.15) given
at the end of Section 3. Then in Section 4, we prove Theorem 1.3 as well as Corollaries 1.4–
1.5 after establishing some general results for normal subgroups of s-arc-transitive groups.

2 Preliminaries
We say that a digraph Γ is k-regular if both the set Γ−(v) = {u ∈ V | u → v} of in-
neighbours of v and the set Γ+(v) = {w ∈ V | v → w} of out-neighbours of v have
size k for all v ∈ V , and we say that Γ is regular if it is k-regular for some positive
integer k. Note that any vertex-transitive digraph is regular. Moreover, if Γ is regular and
(G, s)-arc-transitive with s > 2 then it is also (G, s− 1)-arc-transitive.

Recall that a digraph is said to be connected if and only if its underlying graph is con-
nected. A vertex-primitive digraph is necessarily connected, for otherwise its connected
components would form a partition of the vertex set that is invariant under digraph auto-
morphisms.

2.1 Group factorizations

All the groups we consider in this paper are assumed to be finite. An expression of a group
G as the product of two subgroups H and K of G is called a factorization of G. The
following lemma lists several equivalent conditions for a group factorization, whose proof
is fairly easy and so is omitted.
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Lemma 2.1. Let H and K be subgroups of G. Then the following are equivalent.

(a) G = HK.

(b) G = KH .

(c) G = (x−1Hx)(y−1Ky) for any x, y ∈ G.

(d) |H ∩K||G| = |H||K|.
(e) H acts transitively on the set of right cosets of K in G by right multiplication.

(f) K acts transitively on the set of right cosets of H in G by right multiplication.

The s-arc-transitivity of digraphs can be characterized by group factorizations as fol-
lows:

Lemma 2.2. Let Γ be a G-arc-transitive digraph, s > 2 be an integer, and v0 → v1 →
· · · → vs−1 → vs be an s-arc of Γ. Then Γ is (G, s)-arc-transitive if and only if Gv1...vi =
Gv0v1...viGv1...vivi+1

for each i in {1, . . . , s− 1}.

Proof. For any i such that 1 6 i 6 s − 1, the group Gv1...vi acts on the set Γ+(vi) of
out-neighbours of vi. Since vi+1 ∈ Γ+(vi) and Gv1...vivi+1 is the stabilizer in Gv1...vi of
vi+1, by Frattini’s argument, the subgroup Gv0v1...vi of Gv1...vi is transitive on Γ+(vi) if
and only if Gv1...vi = Gv0v1...viGv1...vivi+1

. Note that Γ is (G, s)-arc-transitive if and only
if Γ is (G, s − 1)-arc-transitive and Gv0v1...vi is transitive on Γ+(vi). One then deduces
inductively that Γ is (G, s)-arc-transitive if and only if Gv1...vi = Gv0v1...viGv1...vivi+1

for
each i in {1, . . . , s− 1}.

If Γ is a G-arc-transitive digraph and u → v is an arc of Γ, then since G is vertex-
transitive we can write v = ug for some g ∈ G and it follows that

vg
−1

→ v → · · · → vg
s−2

→ vg
s−1

(2.1)

is an s-arc of Γ. In this setting, Lemma 2.2 is reformulated as follows.

Lemma 2.3. Let Γ be a G-arc-transitive digraph, s > 2 be an integer, v be a vertex of Γ,
and g ∈ G such that v → vg . Then Γ is (G, s)-arc-transitive if and only if

i−1⋂
j=0

g−jGvg
j =

 i⋂
j=0

g−(j−1)Gvg
j−1

 i⋂
j=0

g−jGvg
j


for each i in {1, . . . , s− 1}.

Proof. Let vj = vg
j−1

for any integer j such that 0 6 j 6 s− 1. Then the s-arc (2.1) of Γ
turns out to be v0 → v1 → · · · → vs−1 → vs, and for any i in {1, . . . , s} we have

Gv1...vi =

i⋂
j=1

Gvj =
i⋂

j=1

g−(j−1)Gvg
j−1 =

i−1⋂
j=0

g−jGvg
j

and

Gv0v1...vi =

i⋂
j=0

Gvj =

i⋂
j=0

g−(j−1)Gvg
j−1.

Hence the conclusion of the lemma follows from Lemma 2.2.
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2.2 Constructions of s-arc-transitive digraphs

Let G be a group, H be a subgroup of G, V be the set of right cosets of H in G and g
be an element of G \ H such that g−1 /∈ HgH . Define a binary relation → on V by
letting Hx → Hy if and only if yx−1 ∈ HgH for any x, y ∈ G. Then (V,→) is a
digraph, denoted by Cos(G,H, g). Right multiplication gives an actionRH of G on V that
preserves the relation→, so that RH(G) is a group of automorphisms of Cos(G,H, g).

Lemma 2.4. In the above notation, the following hold.

(a) Cos(G,H, g) is |H:H ∩ g−1Hg|-regular.

(b) Cos(G,H, g) is RH(G)-arc-transitive.

(c) Cos(G,H, g) is connected if and only if 〈H, g〉 = G.

(d) Cos(G,H, g) is RH(G)-vertex-primitive if and only if H is maximal in G.

(e) Let s > 2 be an integer. Then Cos(G,H, g) is (RH(G), s)-arc-transitive if and only
if for each i in {1, . . . , s− 1},

i−1⋂
j=0

g−jHgj =

 i⋂
j=0

g−(j−1)Hgj−1

 i⋂
j=0

g−jHgj

 .

Proof. Parts (a)–(d) are folklore (see for example [2]), and part (e) is derived in light of
Lemma 2.3.

Remark 2.5. Lemma 2.4 establishes a group theoretic approach to constructing s-arc-
transitive digraphs. In particular, Cos(G,H, g) is (RH(G), 2)-arc-transitive if and only if
H = (gHg−1 ∩H)(H ∩ g−1Hg).

Next we show how to construct s-arc-transitive digraphs from existing ones. Let Γ be
a digraph with vertex set U and Σ be a digraph with vertex set V . The direct product of
Γ and Σ, denoted Γ × Σ, is the digraph (it is easy to verify that this is indeed a digraph)
with vertex set U × V and (u1, v1)→ (u2, v2) if and only if u1 → u2 and v1 → v2, where
ui ∈ U and vi ∈ V for i = 1, 2.

Notation 2.6. For any digraph Σ and positive integer m, denote by Σm the direct product
of m copies of Σ.

Lemma 2.7. Let s be a positive integer, Γ be a (G, s)-arc-transitive digraph and Σ be a
(H, s)-arc-transitive digraph. Then Γ × Σ is a (G × H, s)-arc-transitive digraph, where
G×H acts on the vertex set of Γ× Σ by product action.

Proof. Let (u0, v0) → (u1, v1) → · · · → (us, vs) and (u′0, v
′
0) → (u′1, v

′
1) → · · · →

(u′s, v
′
s) be any two s-arcs of Γ×Σ. Then u0 → u1 → · · · → us and u′0 → u′1 → · · · → u′s

are s-arcs of Γ while v0 → v1 → · · · → vs and v′0 → v′1 → · · · → v′s are s-arcs of Σ.
Since Γ is (G, s)-arc-transitive, there exists g ∈ G such that ugi = u′i for each i with
0 6 i 6 s. Similarly, there exists h ∈ H such that vhi = v′i for each i with 0 6 i 6 s. It
follows that (ui, vi)

(g,h) = (u′i, v
′
i) for each i with 0 6 i 6 s. This means that Γ × Σ is a

(G×H, s)-arc-transitive.
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2.3 Example

In this subsection we give an example of an infinite family of (G, 2)-arc-transitive digraphs
Γ with G vertex-quasiprimitive of PA type such that Γ is not a direct power of a digraph Σ.
In fact, we prove in Lemma 2.9 that the number of vertices of Γ is not a proper power.

Let n > 5 be odd, G1 = Alt({1, 2, . . . , n}) and G2 = Alt({n + 1, n + 2, . . . , 2n}).
Take permutations

a = (1, n+ 1)(2, n+ 2) · · · (n, 2n), b = (1, 2)(3, 4)(n+ 1, n+ 2)(n+ 3, n+ 4)

and

g = (1, n+ 2, 2, n+ 3, 5, n+ 6, 7, n+ 8, . . . , 2i− 1, n+ 2i, . . . , n− 2, 2n− 1, n,

n+ 1, 3, n+ 4, 4, n+ 5, 6, n+ 7, . . . , 2j, n+ 2j + 1, . . . , n− 1, 2n).

In fact, g = ac with

c = (1, 3, 5, 6, 7, . . . , n)(n+ 1, n+ 2, . . . , 2n).

LetG = (G1×G2)o〈a〉, and note that g ∈ G as c ∈ G1×G2. LetH = 〈a, b〉 = 〈a〉×〈b〉
and Γn = Cos(G,H, g).

Lemma 2.8. For all odd n > 5, Γn is a connected (G, 2)-arc-transitive digraph with G
quasiprimitive of PA type on the vertex set.

Proof. As (G1 ×G2) ∩H = 〈b〉 we see that G is quasiprimitive of PA type on the vertex
set. To show that Γn is connected, we shall show 〈H, g〉 = G in light of Lemma 2.4(c). Let
M = 〈H, g〉 ∩ (G1 ×G2). Then we only need to show M = G1 ×G2 since a ∈ 〈H, g〉.

Denote the projections of G1 × G2 onto G1 and G2, respectively, by π1 and π2. Note
that g2 fixes both {1, . . . , n} and {n+ 1, . . . , 2n} setwise with

π1(g2) = (1, 2, 5, 7, . . . , 2i− 1, . . . , n, 3, 4, 6, . . . , 2j, . . . , n− 1)

and
π1(gn+1) = (1, 3, 2, 4, 5, . . . , n).

We have g2 ∈M and

π1(g−(n+1)bgn+1b) = π1(g−(n+1)bgn+1)π1(b) = (3, 4)(2, 5)(1, 2)(3, 4) = (1, 2, 5),

which implies

π1(M) > π1(〈g2, b〉) > π1(〈g2, g−(n+1)bgn+1b〉) = 〈π1(g2), π1(g−(n+1)bgn+1b)〉 = G1

using the fact that the permutation group generated by a 3-cycle (α, β, γ) and an n-cycle
with first 3-entries α, β, γ is An. It follows that

π2(M) = π2(Ma) = (π2(M))a = Ga1 = G2,

and soM is eitherG1×G2 or a full diagonal subgroup ofG1×G2. However, c = ag ∈M
while π1(c) and π2(c) have different cycle types. We conclude that M is not a diagonal
subgroup of G1 ×G2, and so M = G1 ×G2 as desired.
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Now we prove that Γn is (G, 2)-arc-transitive, which is equivalent to proving that H =
(gHg−1 ∩H)(H ∩ g−1Hg) according to Lemma 2.4(e). In view of

(ab)g = (ab)ac = (ab)c = a (2.2)

we deduce that a ∈ H ∩ Hg . Since H is not normal in G = 〈H, g〉, we have Hg 6= H .
Consequently, H ∩Hg = 〈a〉. Then again by (2.2) we deduce that

H ∩Hg−1

= (H ∩Hg)g
−1

= 〈a〉g
−1

= 〈ag
−1

〉 = 〈ab〉.

This yields
(gHg−1 ∩H)(H ∩ g−1Hg) = 〈a〉〈ab〉 = H. (2.3)

Finally, the condition g−1 /∈ HgH holds as a consequence (see [3, Lemma 2.3]) of (2.3)
and the conclusion Hg 6= H . This completes the proof.

Lemma 2.9. The number of vertices of Γn is not a proper power for any odd n > 5.

Proof. Suppose that the number of vertices of Γn is mk for some m > 2 and k > 2. Then
we have

mk =
|G|
|H|

=
2(n!/2)2

4
=

(n!)2

8
(2.4)

If k = 2, then (2.4) gives (n!)2 = 2(2m)2, which is not possible. Hence k > 3. By
Bertrand’s Postulate, there exists a prime number p such that n/2 < p < n. Thus, the
largest p-power dividing n! is p, and so the largest p-power dividing the right hand side
of (2.4) is p2. However, this implies that the largest p-power dividing mk is p2, contradict-
ing the conclusion k > 3.

2.4 Normal subgroups

Lemma 2.10. Let Γ be a (G, s)-arc-transitive digraph with s > 2,M be a vertex-transitive
normal subgroup of G, and v1 → · · · → vs be an (s − 1)-arc of Γ. Then G = MGv1...vi
for each i in {1, . . . , s}.

Proof. Since M is transitive on the vertex set of Γ, there exists m ∈M such that vm1 = v2.
Denote ui = vm

i−1

1 for each i such that 0 6 i 6 s. Then Gu0u1...ui = mGu1...uiui+1
m−1

for each i such that 0 6 i 6 s − 1, and u0 → u1 → · · · → us is an s-arc of Γ since
v1 → v2 and m is an automorphism of Γ. For each i in {1, . . . , s − 1}, we deduce from
Lemma 2.2 that

Gu1...ui = Gu0u1...uiGu1...uiui+1
= (mGu1...uiui+1

m−1)Gu1...uiui+1
.

Let ϕ be the projection from G to G/M . It follows that

ϕ(Gu1...ui) = ϕ(m)ϕ(Gu1...uiui+1
)ϕ(m)−1ϕ(Gu1...uiui+1

)

= ϕ(Gu1...uiui+1
)ϕ(Gu1...uiui+1

)

= ϕ(Gu1...uiui+1
)

and so Gu1...uiM = Gu1...uiui+1
M for each i in {1, . . . , s− 1}. Again as M is transitive

on the vertex set of Γ, we have G = MGu1 . Hence

G = MGu1
= MGu1u2

= · · · = MGu1...ui = · · · = MGu1...us .
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Now for each i in {1, . . . , s}, the digraph Γ is (G, i−1)-arc-transitive, so there exists g ∈ G
such that (vg1 , . . . , v

g
i ) = (u1, . . . , ui). Hence

G = MGu1...ui = M(g−1Gv1...vig) = MGv1...vi

by Lemma 2.1(c).

By Frattini’s argument, we have the following consequence of Lemma 2.10:

Corollary 2.11. Let Γ be a (G, s)-arc-transitive digraph with s > 2, and M be a vertex-
transitive normal subgroup of G. Then Γ is (M, s− 1)-arc-transitive.

To close this subsection, we give a short proof of the following result of Praeger [8,
Theorem 3.1] using Lemma 2.10.

Proposition 2.12. Let Γ be a (G, 2)-arc-transitive digraph. If G has a vertex-regular
normal subgroup, then Γ is a directed cycle.

Proof. Let N be a vertex-regular normal subgroup of G, and u → v be an arc of Γ. Then
|G|/|N | = |Gv|, and G = GuvN by Lemma 2.10. Hence by Lemma 2.1(d), |Guv| >
|G|/|N | = |Gv| and so |Guv| = |Gv|. Consequently, Γ is 1-regular, which means that Γ is
a directed cycle.

2.5 Two technical lemmas

Lemma 2.13. LetA be an almost simple group with socle T and L be a nonabelian simple
group. Suppose Ln 6 A and |T | 6 |Ln| for some positive integer n. Then n = 1 and
L = T .

Proof. Note that Ln/(Ln ∩ T ) ∼= (LnT )/T 6 A/T , which is solvable by the Schreier
conjecture. If Ln ∩ T 6= Ln, then Ln/(Ln ∩ T ) ∼= Lm for some positive integer m,
a contradiction. Hence Ln ∩ T = Ln, which means Ln 6 T . This together with the
condition that |T | 6 |Ln| implies Ln = T . Hence n = 1 and L = T , as the lemma
asserts.

Lemma 2.14. Let A be an almost simple group with socle T and S be a primitive permu-
tation group on |T | points. Then S is not isomorphic to any subgroup of A.

Proof. Suppose for a contradiction that S . A. Regard S as a subgroup of A, and write
Soc(S) = Ln for some simple group L and positive integer n. Since S is primitive on
|T | points, Soc(S) is transitive on |T | points, and so |T | divides |Soc(S)| = |L|n. Conse-
quently, L is nonabelian for otherwise T would be solvable. Then by Lemma 2.13 we have
Soc(S) = L = T . It follows that S is an almost simple primitive permutation group with
Soc(S) regular, contradicting [5].

3 Vertex-quasiprimitive of type SD

3.1 Constructing the graph Γ(T )

Construction 3.1. Let T be a nonabelian simple group of order k with T = {t1, . . . , tk}.
Let D = {(t, . . . , t) | t ∈ T} be a full diagonal subgroup of T k and let g = (t1, . . . , tk).
Define Γ = Cos(T k, D, g) and let V be the set of right cosets of D in T k, i.e. the vertex
set of Γ(T ).
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Lemma 3.2. Γ(T ) is a |T |-regular digraph.

Proof. Suppose thatD∩g−1Dg 6= 1. Then there exist s, t ∈ T \{1} such that (s, . . . , s) =
(t−11 tt1, . . . , t

−1
k ttk). Thus s = t−1i tti for each i such that 1 6 i 6 k. Since {ti | 1 6

i 6 k} = T , we have tj = 1 for some 1 6 j 6 k. It then follows from the equality
s = t−1j ttj that s = t. Thus t = t−1i tti for each i such that 1 6 i 6 k. Hence t lies in the
center of T , which implies t = 1 as T is nonabelian simple, a contradiction. Consequently,
D ∩ g−1Dg = 1, and so Cos(T k, D, g) is |T |-regular as |D|/|D ∩ g−1Dg| = |D| = |T |.

Suppose that g−1 ∈ DgD. Then there exist s, t ∈ T such that (t−11 , . . . , t−1k ) =
(st1t, . . . , stkt). It follows that t−1i = stit for each i such that 1 6 i 6 k. Since {ti | 1 6
i 6 k} = T , we have tj = 1 for some 1 6 j 6 k. Then the equality t−1j = stjt leads to
s = t−1. Thus t−1i = t−1tit for each i such that 1 6 i 6 k. This implies that the inverse
map is an automorphism of T and so T is abelian, a contradiction. Hence g−1 /∈ DgD,
from which we deduce that Cos(T k, D, g) is a digraph, completing the proof.

Next we show that up to isomorphism, the definition of Γ(T ) does not depend on the
order of t1, t2, . . . , tk.

Lemma 3.3. Let g′ = (t′1, . . . , t
′
k) such that T = {t′1, . . . , t′k}. Then Cos(T k, D, g) ∼=

Cos(T k, D, g′).

Proof. Since {t′1, . . . , t′k} = {t1, . . . , tk}, there exists x ∈ Sk such that tix = t′i for each i
with 1 6 i 6 k. Define an automorphism λ of T k by (g1, . . . , gk)λ = (g1x , . . . , gkx) for
all (g1, . . . , gk) ∈ T k. Then λ normalizes D and λ−1gλ = g′. Hence the map Dh 7→ Dhλ

gives an isomorphism from Cos(T k, D, g) to Cos(T k, D, g′).

For any t ∈ T , let x(t) and y(t) be the elements of Sk such that tix(t) = tti and
tiy(t) = tit

−1 for any 1 6 i 6 k, and define permutations λ(t) and ρ(t) of V by letting

D(g1, . . . , gk)λ(t) = D(g1x(t) , . . . , gkx(t))

and
D(g1, . . . , gk)ρ(t) = D(g1y(t) , . . . , gky(t))

for any (g1, . . . , gk) ∈ T k. For any ϕ ∈ Aut(T ), let z(ϕ) ∈ Sk such that tiz(ϕ) = tϕi for
any 1 6 i 6 k, and define δ(ϕ) ∈ Sym(V ) by letting

D(g1, . . . , gk)δ(ϕ) = D((g1z(ϕ−1))
ϕ, . . . , (gkz(ϕ−1))

ϕ)

for any (g1, . . . , gk) ∈ T k. In particular, δ(ϕ) both permutes the coordinates and acts on
each entry.

Lemma 3.4. λ and ρ are monomorphisms from T to Sym(V ), and δ is a monomorphism
from Aut(T ) to Sym(V ).

Proof. For any s, t ∈ T , noting that x(t)x(s) = x(st), we have

D(g1, . . . , gk)λ(s)λ(t) = D(g1x(s) , . . . , gkx(s))
λ(t)

= D(g1x(t)x(s) , . . . , gkx(t)x(s))

= D(g1x(st) , . . . , gkx(st))

= D(g1, . . . , gk)λ(st)
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for each (g1, . . . , gk) ∈ T k, and so λ(st) = λ(s)λ(t). This means that λ is a homomor-
phism from T to Sym(V ). Moreover, since λ(t) acts on V as the permutation x(t) on the
entries, λ(t) = 1 if and only if x(t) = 1, which is equivalent to t = 1. Hence λ is a
monomorphism from T to Sym(V ). Similarly, ρ is a monomorphism from T to Sym(V ).

For any ϕ,ψ ∈ Aut(T ), since z(ψ−1)z(ϕ−1) = z(ψ−1ϕ−1) = z((ϕψ)−1), we have

D(g1, . . . , gk)δ(ϕ)δ(ψ) = D((g1z(ϕ−1))
ϕ, . . . , (gkz(ϕ−1))

ϕ)δ(ψ)

= D((g1z(ψ−1)z(ϕ−1))
ϕψ, . . . , (gkz(ψ−1)z(ϕ−1))

ϕψ)

= D(g1, . . . , gk)δ(ϕψ)

for all (g1, . . . , gk) ∈ T k. This means that δ is a homomorphism from Aut(T ) to Sym(V ).
Next we prove that δ is a monomorphism. Let ϕ ∈ Aut(T ) such that

D((g1z(ϕ−1))
ϕ, . . . , (gkz(ϕ−1))

ϕ) = D(g1, . . . , gk)δ(ϕ) = D(g1, . . . , gk) (3.1)

for each (g1, . . . , gk) ∈ T k. Take any i ∈ {1, . . . , k} and (g1, . . . , gk) ∈ T k such that
gj = 1 for all j 6= i and gi 6= 1. By (3.1), there exists t ∈ T such that (gjz(ϕ−1))ϕ = tgj for
each j ∈ {1, . . . , k}. As a consequence, we obtain t = 1 by taking any j ∈ {1, . . . , k}\{i}
such that jz(ϕ

−1) 6= i. Also, for j ∈ {1, . . . , k}, (gjz(ϕ−1))ϕ 6= t if and only if j = i. It

follows that iz(ϕ
−1) = i. As i is arbitrary, this implies that z(ϕ−1) = 1, and so ϕ = 1.

This shows that δ is a monomorphism from Aut(T ) to Sym(V ).

Let M be the permutation group on V induced by the right multiplication action of T k.
For any group X , the holomorph of X , denoted by Hol(X), is the normalizer of the right
regular representation of X in Sym(X). Note that 〈x(T ), y(T ), z(Aut(T ))〉 = x(T ) o
z(Aut(T )) = y(T ) o z(Aut(T )) is primitive on {1, . . . , k} and permutation isomorphic
to Hol(T ). Thus,

X := 〈M,λ(T ), ρ(T ), δ(Aut(T ))〉 (3.2)

is a primitive permutation group on V of type SD with socle M , and the conjugation
action of X on the set of k factors of M ∼= T k is permutation isomorphic to Hol(T ). Let
v = D ∈ V , a vertex of Γ(T ). For any t ∈ T let σ(t) ∈ M be the permutation of V
induced by right multiplication by (t, . . . , t). Then

Xv/σ(T ) = Xv/(Xv ∩M) ∼= XvM/M = X/M ∼= Hol(T )

since M acts transitively on V , and therefore

|Xv| = |σ(T )||Hol(T )| = |T |3|Out(T )|. (3.3)

Lemma 3.5. X 6 Aut(Γ(T )).

Proof. Clearly M 6 Aut(Γ(T )), so it remains to verify that λ(T ), ρ(T ) and δ(Aut(T ))
are subgroups of Aut(Γ(T )). Let D(g1, . . . , gk) ∈ V and D(g′1, . . . , g

′
k) ∈ V . Then we

have D(g1, . . . , gk)→ D(g′1, . . . , g
′
k) in Γ(T ) if and only if

(g′1g
−1
1 , . . . , g′kg

−1
k ) ∈ D(t1, . . . , tk)D. (3.4)
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Let t ∈ T . Since (3.4) holds if and only if

(g′1x(t)g
−1
1x(t)

, . . . , g′kx(t)g
−1
kx(t)

) ∈ D(t1x(t) , . . . , tkx(t))D

= D(tt1, . . . , ttk)D

= D(t1, . . . , tk)D,

we conclude that D(g1, . . . , gk) → D(g′1, . . . , g
′
k) if and only if D(g1, . . . , gk)λ(t) →

D(g′1, . . . , g
′
k)λ(t). This shows λ(t) ∈ Aut(Γ(T )) for any t ∈ T . Similarly, we have

ρ(t) ∈ Aut(Γ(T )) for any t ∈ T . Let ϕ ∈ Aut(T ). Then (3.4) holds if and only if

((g′
1z(ϕ−1)g

−1
1z(ϕ−1)

)ϕ, . . . , (g′
kz(ϕ−1)g

−1
kz(ϕ−1)

)ϕ) ∈ D((t1z(ϕ−1))
ϕ, . . . , (tkz(ϕ−1))

ϕ)D

= D((tϕ
−1

1 )ϕ, . . . , (tϕ
−1

k )ϕ)D

= D(t1, . . . , tk)D.

It follows that D(g1, . . . , gk)→ D(g′1, . . . , g
′
k) if and only if

D(g1, . . . , gk)δ(ϕ) → D(g′1, . . . , g
′
k)δ(ϕ),

and so δ(ϕ) ∈ Aut(Γ(T )) for any ϕ ∈ Aut(T ). This completes the proof.

Denote H = 〈M,λ(T )〉 = M o λ(T ) 6 X .

Lemma 3.6. Γ(T ) is (H, 2)-arc-transitive.

Proof. It is readily seen that Hv = σ(T )× λ(T ) ∼= T 2. Let K = {σ(t)λ(t) | t ∈ T}. For
any t ∈ T and any (g1, . . . , gk) ∈ T k we have

D(g1, . . . , gk)g
−1σ(t)λ(t)g = D(g1t

−1
1 t, . . . , gkt

−1
k t)λ(t)g

= D(g1x(t)t
−1
1x(t)

t, . . . , gkx(t)t
−1
kx(t)

t)g

= D(g1x(t)(tt1)−1t, . . . , gkx(t)(ttk)−1t)g

= D(g1x(t)t
−1
1 , . . . , gkx(t)t

−1
k )g

= D(g1x(t) , . . . , gkx(t))

= D(g1, . . . , gk)λ(t).

Hence g−1σ(t)λ(t)g = λ(t) for all t ∈ T . Consequently, g−1Kg = λ(T ) < Hv and so
K 6 Hv ∩ gHvg

−1. Now for any elements s and t of T ,

σ(s)λ(t) = (σ(s)λ(s))λ(s−1t) ∈ Kλ(T ) = K(g−1Kg).

It follows that

Hv 6 K(g−1Kg) 6 (Hv ∩ gHvg
−1)(Hv ∩ g−1Hvg),

so Hv = (Hv ∩ gHvg
−1)(Hv ∩ g−1Hvg). Thus by Remark 2.5, Γ(T ) is (H, 2)-arc-

transitive, as the lemma asserts.

An immediate consequence of Lemma 3.6 is that Γ(T ) is (X, 2)-arc-transitive. How-
ever, X is not transitive on the set of 3-arcs of Γ(T ), as we shall see in the next lemma.
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Lemma 3.7. Γ(T ) is not (X, 3)-arc-transitive.

Proof. Suppose that Γ(T ) is (X, 3)-arc-transitive. Then since M is a vertex-transitive
normal subgroup of X , Corollary 2.11 asserts that Γ(T ) is (M, 2)-arc-transitive. As a
consequence, Mv is transitive on A2(v) := {(v1, v2) ∈ V 2 | v → v1 → v2}, the set of
2-arcs starting from v. However, |Mv| = |T | while |A2(v)| = |T |2 as Γ(T ) is |T |-regular.
This is not possible.

3.2 Classification

Throughout this subsection, let T be a nonabelian simple group, k > 2 be an interger,
D = {(t, . . . , t) | t ∈ T} be a full diagonal subgroup of T k, V be the set of right cosets of
D in T k, and M be the permutation group induced by the right multiplication action of T k

on V . Suppose thatG is a permutation group on V withM 6 G 6M.(Out(T )×Sk), and
Γ is a connected (G, 2)-arc-transitive digraph. Let v = D ∈ V and w be an out-neighbour
of v. Then w = D(t1, . . . , tk) ∈ V for some elements t1, . . . , tk of T which are not all
equal. Without loss of generality, we assume tk = 1. Let u = D(t−11 , . . . , t−1k ) ∈ V
and g ∈ M be the permutation of V induced by right multiplication by (t1, . . . , tk) ∈ T k.
Moreover, define {Ω1, . . . ,Ωn} to be the partition of {1, . . . , k} such that ti = tj if and
only if i and j are in the same part of {Ω1, . . . ,Ωn}. Note that Gv 6 Aut(T ) × Sk.
Let α be the projection of Gv into Aut(T ) and β be the projection of Gv into Sk. Let
A = α(Gv) and S = β(Gv), so that Gv 6 A × S, where each element σ of A is induced
by an automorphism of T acting on V as

D(g1, . . . , gk)σ = D(gσ1 , . . . , g
σ
k )

and each element x of S is induced by a permutation on {1, . . . , k} acting on V as

D(g1, . . . , gk)x = D(g1x−1 , . . . , gkx−1 ).

As G > M we have Inn(T ) 6 A 6 Aut(T ). Moreover, since G is 2-arc-transitive,
Lemma 2.2 implies that Gv = GuvGvw. Let R be the stabilizer in S of k in the set
{1, . . . , k}.

Take any σ ∈ A and x ∈ S. Then σx ∈ Gu if and only if x−1σ−1 fixes u, that is

D((t−11x )σ
−1

, . . . , (t−1(k−1)x)σ
−1

, (t−1kx )σ
−1

) = D(t−11 , . . . , t−1k−1, 1),

or equivalently,

D(tkxt
−1
1x , . . . , tkxt

−1
(k−1)x , 1) = D((t−11 )σ, . . . , (t−1k−1)σ, 1). (3.5)

Similarly, σx ∈ Gw if and only if x−1σ−1 fixes w, which is equivalent to

D(t−1kx t1x , . . . , t
−1
kx t(k−1)x , 1) = D(tσ1 , . . . , t

σ
k−1, 1). (3.6)

Lemma 3.8. 〈t1, . . . , tk〉 = T .

Proof. For all σ ∈ α(Guv), there exists x ∈ S such that σx ∈ Gu. Then (3.5) im-
plies that tkxt−1ix = (t−1i )σ and thus tσi = tixt

−1
kx for all i such that 1 6 i 6 k. This

shows that α(Guv) stabilizes 〈t1, . . . , tk〉. Similarly, for all σ ∈ α(Gvw), there exists
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x ∈ S such that σx ∈ Gw. Then (3.6) implies that tσi = t−1kx tix for all i such that
1 6 i 6 k. Accordingly, α(Gvw) also stabilizes 〈t1, . . . , tk〉. It follows that A = α(Gv) =
α(GuvGvw) = α(Guv)α(Gvw) stabilizes 〈t1, . . . , tk〉. Hence 〈t1, . . . , tk〉 = T since
Inn(T ) 6 A 6 Aut(T ).

Lemma 3.9. Guv ∩ (A×R) = Gvw ∩ (A×R).

Proof. Let σ ∈ A and x ∈ R. Then tkx = tk = 1, and thus (3.6) shows that σx ∈ Gw if
and only if tix = tσi for all i such that 1 6 i 6 k. Similarly, (3.5) shows that σx ∈ Gu
if and only if t−1ix = (t−1i )σ for all i such that 1 6 i 6 k. Since this is equivalent to
tix = tσi for all i, we conclude that σx ∈ Gw if and only if σx ∈ Gu. As a consequence,
Guv ∩ (A×R) = Gvw ∩ (A×R).

Lemma 3.10. Guv ∩A = Gvw ∩A = 1.

Proof. In view of Lemma 3.9 we only need to prove that Gvw ∩ A = 1. For any σ ∈
Gvw ∩A, (3.6) shows that D(t1, . . . , tk−1, 1) = D(tσ1 , . . . , t

σ
k−1, 1), and so tσi = ti for all

i such that 1 6 i 6 k. By Lemma 3.8, this implies that σ = 1 and so Gvw ∩ A = 1, as
desired.

Lemma 3.11. Both β(Guv) and β(Gvw) preserve the partition {Ω1, . . . ,Ωn}.

Proof. Let x ∈ β(Guv). Then there exists σ ∈ A such that σx ∈ Gu, and so (3.5) gives

tkxt
−1
ix = (t−1i )σ (3.7)

for all i such that 1 6 i 6 k. For any i, j ∈ {1, . . . , k}, if i and j are in the same part of
{Ω1, . . . ,Ωn}, then ti = tj and so (t−1i )σ = (t−1j )σ , which leads to tix = tjx by (3.7).
Since tix = tjx if and only if ix and jx are in the same part of {Ω1, . . . ,Ωn}, this shows
that x, hence β(Guv), preserves the partition {Ω1, . . . ,Ωn}. The proof for β(Gvw) is
similar.

Lemma 3.12. t1, . . . , tk are pairwise distinct.

Proof. Let U be the subset of V consisting of the elements D(g1, . . . , gk) with gi = gj
whenever i and j are in the same part of {Ω1, . . . ,Ωn}. By Lemma 3.11, both β(Guv) and
β(Gvw) preserve the partition {Ω1, . . . ,Ωn}. Then since S = β(Gv) = β(GuvGvw) =
β(Guv)β(Gvw), we derive that S preserves the partition {Ω1, . . . ,Ωn}. As a consequence,
S stabilizes U setwise. Meanwhile, A and g stabilize U setwise. Hence G = 〈Gv, g〉 6
〈A × S, g〉 stabilizes U setwise, which implies U = V . Thus each Ωi has size 1 and so
t1, . . . , tk are pairwise distinct.

Lemma 3.13. Guv ∩R = Gvw ∩R = 1.

Proof. In view of Lemma 3.9 we only need to prove that Gvw ∩R = 1. Let x ∈ Gvw ∩R.
Then tkx = tk = 1, and so (3.6) shows that tix = ti for all i such that 1 6 i 6 k.
Note that t1, . . . , tk are pairwise distinct by Lemma 3.12. We conclude that x = 1 and so
Gvw ∩R = 1, as desired.

Lemma 3.14. k = |T |, {t1, . . . , tk} = T and Γ ∼= Γ(T ) as given in Construction 3.1.
Moreover, ifG is vertex-primitive, then the induced permutation group ofG on the k copies
of T is a subgroup of Hol(T ) containing Soc(Hol(T )).
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Proof. It follows from Lemma 3.9 that Guvw ∩ (A×R) = Guv ∩ (A×R). Then as G is
2-arc-transitive on Γ, we have

|Gv|
|Guv|

=
|Guv|
|Guvw|

6
|Guv|

|Guvw ∩ (A×R)|
(3.8)

=
|Guv|

|Guv ∩ (A×R)|
=
|Guv(A×R)|
|A×R|

6
|A× S|
|A×R|

= k.

We thus obtain |Gv| 6 k|Guv| = k|Gvw|. From Lemma 3.10 we deduce β(Guv) ∼= Guv
and β(Gvw) ∼= Gvw. Moreover, t1, . . . , tk are pairwise distinct by Lemma 3.12, which
implies |T | > k. Therefore,

k|S| 6 |T ||S| 6 |Gv ∩A||S| = |Gv| 6 k|Guv| = k|β(Guv)| 6 k|S|

and
k|S| 6 |T ||S| 6 |Gv ∩A||S| = |Gv| 6 k|Gvw| = k|β(Gvw)| 6 k|S|.

Hence |Gv ∩ A| = |T | = k, |Gv| = k|Guv| = k|Gvw| and β(Guv) = β(Gvw) = S. As
a consequence, T = {t1, . . . , tk} by Lemma 3.12, and so Γ ∼= Cos(T k, D, g) ∼= Γ(T ).
Also, (3.8) implies that Guvw = Guvw ∩ (A × R). If Guv ∩ S = 1 or Gvw ∩ S = 1,
then Lemma 3.10 implies S = β(Guv) ∼= Guv . A or S = β(Gvw) ∼= Gvw . A,
contradicting Lemma 2.14. ThusGuv∩S andGvw∩S are both nontrivial normal subgroups
of β(Guv) = β(Gvw) = S.

From now on suppose that G is primitive and so S is a primitive subgroup of Sk.
By Lemma 3.13, Guv ∩ R = Gvw ∩ R = 1, so we derive that Guv ∩ S and Gvw ∩ S
are both regular normal subgroups of S. Moreover, Guv ∩ S 6= Gvw ∩ S for otherwise
Guvw ∩S = Guv ∩S would be a regular subgroup of S, contrary to the condition Guvw =
Guvw∩ (A×R) 6 A×R. This indicates that S has at least two regular normal subgroups,
and so Soc(S) = N2n for some nonabelian simple group N and positive integer n such
that k = |N |n and S/(Guv ∩ S) has a normal subgroup isomorphic to Nn. It follows that

Nn . S/(Guv ∩ S) = β(Guv)/(Guv ∩ S) ∼= α(Guv)/(Guv ∩A) ∼= α(Guv) 6 A,

and then Lemma 2.13 implies that n = 1 and N ∼= T . Thus, Soc(S) ∼= T 2, and so
Soc(Hol(T )) 6 S 6 Hol(T ).

We are now ready to give the main theorem of this section. Recall X defined in (3.2).

Theorem 3.15. Let T be a nonabelian simple group, k > 2 be an interger, and T k 6 G 6
T k.(Out(T )×Sk) with diagonal action on the set V of right cosets of {(t, . . . , t) | t ∈ T}
in T k. Suppose Γ is a connected (G, 2)-arc-transitive digraph with vertex set V . Then
k = |T |, Γ ∼= Γ(T ), Aut(Γ) = X is vertex-primitive of type SD with socle T k and the
conjugation action on the k copies of T permutation isomorphic to Hol(T ), and Γ is not
3-arc-transitive.

Proof. We have by Lemma 3.14 that k = |T |, {t1, . . . , tk} = T and Γ ∼= Γ(T ). In the
following, we identify Γ with Γ(T ). Let X be as in (3.2) and Y = Aut(Γ(T )). Then X
is vertex-primitive of type SD with socle T |T |, and the conjugation action of X on the |T |
copies of T is permutation isomorphic to Hol(T ). Also, X 6 Y by Lemma 3.5. It follows
from [1, Theorem 1.2] that Y is vertex-primitive of type SD with the same socle of X .
Then again by Lemma 3.14 we have Yv 6 Aut(T ) × Hol(T ). Thus by (3.3) Yv = Xx.
Since X is vertex-transitive, it follows that Y = XYv = X , and so Γ is not 3-arc-transitive
by Lemma 3.7.



M. Giudici and B. Xia: Vertex-quasiprimitive 2-arc-transitive digraphs 81

4 Product action on the vertex set
In this section, we study (G, s)-arc-transitive digraphs with vertex set ∆m such that G acts
on ∆m by product action. We first prove Theorem 1.3.

Proof of Theorem 1.3. Let G1 be the stabiliser in G of the first coordinate and π1 be the
projection of G1 into Sym(∆). Then π1(G1) = H . Since N is normal in H and transitive
on ∆, Nm is normal in G and transitive on ∆m = V . Hence Corollary 2.11 implies that Γ
is (Nm, s− 1)-arc-transitive. In particular, since s > 2, Nm is transitive on the set of arcs
of Γ, and so Γ has arc set A = {un → vn | n ∈ Nm} for any arc u→ v of Γ.

Let α ∈ ∆, u = (α, . . . , α) ∈ V and v = (β1, . . . , βm) be an out-neighbour of u in Γ.
By Lemma 2.10 we have G = NmGuv . Let ϕ be the projection of G to Sm, and we regard
ϕ(G) as a subgroup of Sym(V ). Then

ϕ(G) 6 HmG = Hm(NmGuv) = HmGuv.

Take any i in {1, . . . ,m}. Since ϕ(G) is transitive on {1, . . . ,m}, there exists x ∈ ϕ(G)
such that 1x = i and x = yz with y = (y1, . . . , ym) ∈ Hm and z ∈ Guv . Note that
z ∈ Guv and x ∈ Sm both fix u. We conclude that y fixes u and hence yj ∈ Hα for each

j in {1, . . . ,m}. Also, y−1x = z ∈ Guv 6 Gv implies βy
−1
1

1 = βi. It follows that for
each i in {1, . . . ,m} there exists hi ∈ Hα with βhii = β1. Let w = (β1, . . . , β1) ∈ V ,
h = (h1, . . . , hm) ∈ (Hα)m and Γh be the digraph with vertex set V and arc set Ah :=
{unh → vnh | n ∈ Nm}. It is evident that uh = u, vh = w, and h gives an isomorphism
from Γ to Γh. Let Σ be the digraph with vertex set ∆ and arc set I := {αn → βn1 | n ∈ N}.
Then N 6 Aut(Σ), and viewing Nmh = hNm we have

Ah = {uhn → vhn | n ∈ Nm} = {un → wn | n ∈ Nm}
= {(αn1 , . . . , αnm)→ (βn1

1 , . . . , βnm1 ) | n1, . . . , nm ∈ N}.

This implies that Γh = Σm. Consequently, Γ ∼= Σm.
For any β ∈ ∆, denote by δ(β) the point in V = ∆m with all coordinates equal to β.

Then δ(α)→ δ(β1) in Γh since α→ β1 in Σ. Let x be any element of H . Then since

H = h−11 Hh1 = h−11 π1(G1)h1 = π1(h)−1π1(G1)π1(h) = π1(h−1G1h),

there exists g ∈ h−1G1h such that x = π1(g). As g is an automorphism of Γh and
δ(α) → δ(β1) in Γh, we have δ(α)g → δ(β1)g in Γh. Comparing first coordinates, this
implies that απ1(g) → β

π1(g)
1 in Σ, which turns out to be αx → βx1 in Σ. In other words,

αx → βx1 is in I . It follows that

I = {αxn → βxn1 | n ∈ N} = {αnx → βnx1 | n ∈ N}

as xN = Nx. Hence x preserves I , and so H 6 Aut(Σ).
Let α0 → α1 → · · · → αs be an s-arc of Σ. Since Γ is (Nm, s− 1)-arc-transitive and

Nm = h−1Nmh, it follows that Γh is (Nm, s−1)-arc-transitive. Then for any (s−1)-arc
α′1 → · · · → α′s of Σ, since δ(α1) → · · · → δ(αs) and δ(α′1) → · · · → δ(α′s) are both
(s − 1)-arcs of Γh, there exists (n1, . . . , nm) ∈ Nm such that δ(αi)(n1,...,nm) = δ(α′i)
for each i with 1 6 i 6 s. Hence αn1

i = α′i for each i with 1 6 i 6 s. Therefore,
Σ is (N, s − 1)-arc-transitive. Let Σ+(αs−1) be the set of out-neighbours of αs−1 in
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Σ. Take any β ∈ Σ+(αs−1). As δ(αs) and δ(β) are both out-neighbours of δ(αs−1) in
Γh and Γh is (h−1Gh, s)-arc-transitive, there exists g ∈ h−1Gh 6 H o Sm such that g
fixes δ(α0), δ(α1), . . . , δ(αs−1) and maps δ(αs) to δ(β). Write g = (x1, . . . , xm)σ with
(x1, . . . , xm) ∈ Hm and σ ∈ Sm. Then x1 fixes α0, α1, . . . , αs−1 and maps αs to β. This
shows that Σ is (H, s)-arc-transitive, completing the proof.
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