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Povzetek

Delo je posvečeno študiju vpliva ograjujoče površine na fluktuacije nematskega ure-

ditvenega parametra – posredno preko spremembe povprečne ravnovesne ureditve in

neposredno preko spremembe robnih pogojev za fluktuacije. Posebej se posvečam

sistemom, v katerih so v bližini faznih in strukturnih prehodov pomembne tudi

nedirektorske prostostne stopnje ureditvenega parametra. Za kolektivne fluktuacije

ureditvenega parametra v heterofaznem sistemu — nematik v stiku z razurejujočo

površino — je značilen mehek fluktuacijski način fluktuacij skalarnega ureditvenega

parametra, ki predstavlja fluktuacije debeline staljene omočitvene plasti. Nematsko

hibridno celico označujejo tri različne urejene strukture. Prehod med njimi je lahko

tako nezvezen kot tudi zvezen. Posebej študiram dvoosno strukturo, v kateri je

direktorsko polje nedeformirano na račun staljenega reda in povečane stopnje ure-

jenosti v notranjosti celice. Strukturni prehod iz dvoosne v upognjeno direktorsko

strukturo vodi mehek direktoski fluktuacijski način. Močno upočasnjene so tudi

fluktuacije stopnje urejenosti. Spremembe urejenosti, ki so posledica ograditve,

povzročajo strukturni in psevdo Casimirjev privlak ali odboj med stenami. Spre-

menjena simetrija ureditve pa spremeni van der Waalsovo silo, ki jo tekoči kristal

posreduje med stenama.

Ključne besede: nematski tekoči kristali, ograditev, fluktuacije, fazni prehod,

strukturni prehod, močenje, van der Waalsova sila, strukturna sila, stabilnost
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Abstract

The thesis deals with effects of the confining substrates onto the nematic order

parameter fluctuations, both, through changing the equilibrium average order and

through changing the boundary conditions. A special attention is paid to systems in

which in the vicinity of phase and structural transitions certain degrees of freedom

differ significantly from the ones in the bulk. In the analysis of collective excitations

in a nematic liquid crystal in contact with disordering substrates, a soft fluctuation

mode is discovered. It represents fluctuations of the thickness of the molten wetting

layers. In hybrid nematic film, there are three possible ordered structures and the

structural transition between them can be either discontinuous or it can become

continuous. In biaxial structure, the director field is undistorted at the expense of

the decreased order and increased biaxiality of the order in the middle of the film.

At the transition to structure with bent director field, the spectrum of collective

excitations is characterized by soft director fluctuations and in addition, fluctuations

of the degree of order and of the parameter of biaxiality become softer as well.

Surface-induced change of the order gives rise to the structural and pseudo-Casimir

interaction between the confining walls and the changed symmetry of the order

changes the van der Waals interaction.

Keywords: nematic liquid crystals, confinement, fluctuations, phase transition,

structural transition, wetting, van der Waals force, structural force, stability
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Razširjeni povzetek

Uvod

Snovi v naravi obstajajo v treh osnovnih agregatnih stanjih: plinastem, tekočem in

trdnem. Pri mnogo snoveh meje med različnimi agregatnimi stanji niso ostre, ampak

obstajajo te tudi v vmesnih stanjih. Tekočekristalna faza označuje stanje, v katerem

snov teče kot tekočina, vendar ima optične lastnosti podobne kot trdne snovi, saj

je delno urejena. Tekočekristalne faze so značilne za snovi, ki jih tvorijo organske

molekule močno anizotropnih oblik: paličaste organske verige z dobro definirano

dolgo osjo in diskaste molekule, katerih sestavni del je mreža benzenskih obročev.

Ureditev molekul v tekočekristalni fazi je lahko odvisna predvsem od temperature

— termotropni tekoči kristali — ali predvsem od koncentracije tekočekristalne snovi

v topilu — liotropni tekoči kristali. V doktorskem delu obravnavam prve.

Najpreprosteǰsa tekočekristalna faza je nematska. V njej so molekule v povprečju

urejene okrog določene smeri v prostoru, ki ji pravimo direktor, težǐsča molekul pa

so enakomerno porazdeljena po prostoru. Za nematske tekoče kristale je značilna

cilindrična simetrija, tako da sta smeri direktorja n̂ in −n̂ enakovredni. Optična os

snovi v enoosni nematski fazi sovpada s smerjo direktorja. Pod vplivom zunanjih

dejavnikov ali polj se v nematski ureditvi lahko pojavi nova značilna smer, ki jo opǐse

sekundarni direktor, simetrija pripadajoče ureditve pa je dvoosna. Pri ohlajanju

nematskega tekočega kristala lahko ta ali preide v trdno kristalno strukturo ali pa

v eno naslednjih, bolj urejenih tekočekristalnih faz [4,5].

Tekoče kristale so prvič opazili, oziroma o njihovem obstoju poročali, že davnega

leta 1888 [2]. Botanik Friedrich Reinitzer je pod mikroskopom opazoval taljenje

rastlinskega holesterola. Kristal se je stalil v motno tekočino in Reinitzer je pravilno

ugotovil, da njena motnost ni posledica nečistosti vzorca, ampak posebnih fizikalnih

lastnosti stanja snovi. Moten videz tekočih kristalov je namreč posledica močenga

sipanja svetlobe, ki se od sipanja na izotropnih tekočinah razlikuje za kar do 6

velikostnih redov [4,5].

Zanimanje za tekoče kristale se je povečalo v drugi polovici preǰsnega stoletja,

ko so spoznali, da so tekoči kristali snovi, ki bi se jih dalo s pridom uporabiti v

i
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industriji prikazalnikov. Raziskave so bile najprej vezane na velike vzorce tekočih

kristalov, v katerih so površinski efekti zanemarljivi. V njih je red odvisen le od tem-

perature in zunanjih električnih in magnetnih polj. Poleg ravnovesne ureditve snovi

v tekočekristalni fazi je vedno več zanimanja deležna tudi dinamika spreminjana

ureditve [9–16]. Pri tem se zanimamo za kolektivna gibanja — termične fluktuacije

ureditve —, ki imajo vpliv na povprečen makroskopski red. Kolektivne termične

fluktuacije so predvsem pomembne, ker so takrat največje, v bližini faznih prehodov.

Kasneje so zaradi tehnoloških potreb pa tudi zaradi zanimanja za osnovne fizikalne

pojave postali precej bolj zanimivi ograjeni tekoči kristali [8]. V njih so zaradi ve-

likega razmerja površine glede na prostornino sistema vplivi površine na urejenost

tekočega kristala nezanemarljivi. Na efektivno interakcijo tekočekristalne snovi z

ograjujočo površino vpliva tako interakcija molekul obeh materialov, ki se razlikuje

od interakcije med molekulami tekočega kristala, kot tudi manjkajoče število sose-

dov.

V doktorskem delu predstavljam rezultate svojih raziskav vpliva ograjujoče povr-

šine na fluktuacije nematskega ureditvenega parametra. Površina vpliva na fluk-

tuacije neposredno z robnimi pogoji in posredno preko spremenjene povprečne ravno-

vesne ureditve, ki predstavlja potencial za fluktuacijske načine. Ločim dva primera:

(i) sisteme, v katerih je vpliv površine vezan na njeno neposredno bližino [15,24,23],

in (ii) sisteme, v katerih površina spremeni ureditev v celotnem tekočekristalnem

sistemu [21,23]. V obeh primerih me najbolj zanima pojav mehkih fluktuacijskih

načinov, ki jih v neograjenih tekočekristalnih sistemih ne zasledimo. Njihov obstoj

pomeni, da je fazni oziroma strukturni prehod zvezen, medtem ko je fazni prehod

v neograjenih sistemih nezvezen. Nadalje me zanimajo najznačilneǰse opazljivke

v ograjenih sistemih, sile, ki jih spremenjena ureditev povzroča med ograjujočimi

stenami. Omejim se na strukturne sile, ki so posledica spremenjene povprečne

ravnovesne ureditve, psevdo Casimirjeve sile, ki izvirajo v spremenjenem spektru

termičnih fluktuacij, in van der Waalsove sile, ki so sicer posledica fluktuacij elektro-

magnetnega polja, a prav tako zavisijo od nehomogenosti in anizotropije tekočega

kristala med stenami [31]. Sile med ograjujočimi stenami lahko merimo z različnimi

spektroskopskimi metodami, naprimer z mikroskopom na atomsko silo [67], pri

katerem prevzame vlogo ene od sten kar tipalo mikroskopa, ali preko njihovega vpliva

na stabilnost tekočekristalnih nanosov, ki imajo eno prosto površino [104,158]. V

delu obravnavam slednji primer.

V doktorskem delu najprej pojasnim nekaj osnovnih pojmov, ki jih potrebujem

za opis ureditve v tekočem kristalu in za opis termičnih fluktuacij. Sledi defini-

cija in opis določitve sil med ograjujočimi površinami ter komentar vpliva interakcij
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v tekočekristalnem nanosu na njegovo stabilnost. Nato se podrobneje posvetim

van der Waalsovi sili, kjer sledijo novi rezultati za silo med anizotropnimi sred-

stvi [31]. Konkretni izračuni vpliva ograjujoče površine na fluktuacije nematskega

ureditvenega parametra so vezani na heterofazni sistem nematika v stiku s površino,

ki tali red [15,24,23], in na hibridni nematski sistem, v katerem je zaradi naspro-

tujočih si vplivov ograjujočih površin nematski red močno deformiran [21,23]. V

obeh primerih izračunam strukturno silo [29], medtem ko so rezultati za psevdo

Casimirjevo silo le navedeni. V heterofaznem sistemu se zaradi nehomogenosti

reda v sistemu pojavi dodatna “stena” — fazna meja med izotropno in nematsko

fazo. Povprečno ureditev v heterofaznem sistemu renormaliziram glede na van der

Waalsovo silo, ki deluje med fazno mejo in mejo med tekočim kristalom in trdno

ograjujočo površino. V hibridnem sistemu določim sile v plasti tekočega kristala in

študiram njegovo stabilnost napram spinodalnemu razomočenju [30]. Delo zaključim

s pregledom opravljenega in izpostavitvijo odprtih vprašanj.

Fenomenološka teorija

Fenomenološka teorija opǐse tekoče kristale v bližini faznega prehoda, ko se sis-

temu nezvezno spremenijo nekateri termodinamski potenciali in zvezno ali nezvezno

njegova makroskopska urejenost [38]. Večja urejenost sistema je povezana z zmanǰsa-

njem njegove simetrije. Za opis posameznega sistema je pomembna določitev parame-

tra, ki opǐse spremembo ureditve — ureditveni parameter. Ta ustreza fizikalni opa-

zljivki, ki se ji vrednost ob faznem prehodu spremeni z nič na vrednost različno od

nič. Izhajajoč z mikroskopske porazdelitve molekul predstavlja ureditveni parame-

ter prvi nekonstantni neničelni moment v porazdelitveni funkciji, na makroskopskem

nivoju pa se odraža z vplivom na fizikalne količine istega ranga (skalar, vektor, ten-

zor,...). Pri enoosnem nematskem tekočem kristalu je f(θ) =
∑∞

n=0 fnPn(cos θ), kjer

je θ kot med dolgo osjo molekule in smerjo direktorja. Zaradi cilindrične simetrije

ureditve so vsi lihi momenti porazdelitve enaki nič, prvi nekonstantni neničelni mo-

ment pa ustreza brezslednemu tenzorju 2. reda

Q =
1

2
S (3n̂⊗ n̂− I) , (1)

kjer je S = 〈(3 cos2 θ − 1)/2〉 skalarni ureditveni parameter, ki meri stopnjo ure-

jenosti glede na os direktorja [4]. Kadar so vse molekule poravnane vzporedno

direktorju, je S = 1, ob popolnem neredu — enakomerni porazdelitvi molekul

po kotu θ — pa je S = 0. Najnižja vrednost skalarnega ureditvenega parame-

tra S = −1/2 ustreza molekulam enakomerno porazdeljenim v ravnini pravokotni

na direktor. V splošnem je nematski red lahko zaradi zunanjih vplivov deformi-
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Slika 1 Shematska predstavitev odstopanj od enoosnega reda, ki ustrezajo
posameznim amplitudam qm.

ran. V najsplošneǰsem primeru ga opǐse 5 neodvisnih parametrov: dva kota, ki

določata smer direktorja, skalarni ureditveni parameter glede na direktor, kot sekun-

darnga direktorja in stopnja dvoosnosti P = (3/2)〈sin2 θ cos 2φ〉, kjer je φ kot glede

na sekundarni direktor v ravnini pravokotni na direktor, Q = 1
2
S (3n̂⊗ n̂− I) +

1
2
P (ê1 ⊗ ê1 − ê2 ⊗ ê2). Včasih je smiselneǰsa parametrizacija ureditvenega parame-

tra glede na bazne tenzorje brezslednega tenzorja 2. reda Q =
∑2

i=−2 qmTm, kjer

so [32,33]

T0 =
3n̂⊗ n̂− I√

6
,

T1 =
ê1 ⊗ ê1 − ê2 ⊗ ê2√

2
, T−1 =

ê1 ⊗ ê2 + ê2 ⊗ ê1√
2

, (2)

T2 =
ê1 ⊗ n̂ + n̂⊗ ê1√

2
, T−2 =

ê2 ⊗ n̂ + n̂⊗ ê2√
2

.

Amplitude v razvoju, qm, predstavljajo skalarni ureditveni parameter (q0), stopnjo

dvoosnosti ureditve (q1) in smer sekundarnega direktorja v ravnini, ki jo določata

enotska vektorja ê1 in ê2, (q−1), ter odstopanja direktorja od smeri n̂ v ravnini z

vektorjem ê1 (q2) ali z vektorjem ê2 (q−2). Pomen posameznih amplitud je shematsko

predstavljen na sliki 1.

Urejenost in s tem simetrja nematske tekočekristalne faze se odraža na simetriji

tenzorskih opazljivk. V primeru enosne ureditve se tenzor magnetne susceptibilnosti

zapǐse kot

χ =
2

3
χaQ + χiI, (3)

kjer je χa = χ‖ − χ⊥ anizotopija suscepibilnosti in sta χ‖ ter χ⊥ susceptibilnosti

popolnoma urejenega sistema v smeri direktorja in pravokotno nanj. χi = (χ‖ +

2χ⊥)/3 je povprečna magnetna susceptibilnost oziroma njen izotropni del.
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T < T*
T = T*

T > T**

f

η
0

Slika 2 Prosta energija sistema z nezveznim faznim prehodom kot funkcija
ureditvenega parametra za različne temperature. Krepko je narisana prosta
energija pri temperaturi prehoda, črtkana in pikčasta črta pa ustrezata tem-
peraturam TNI < T < T ∗∗ oziroma T ∗ < T < TNI .

Do spremembe urejenosti pride pri faznih prehodih. Fenomenološki opis faznih

prehodov temelji na definiciji ureditvenega parametra in razvoju proste energije sis-

tema po simetrijsko dovoljenih invariantah ureditvenega parametra [34,38]. Razvoj

velja v okolici zveznih faznih prehodov in se ga da uporabiti tudi pri opisu nezveznih

prehodov, predvsem šibko nezveznih. Invariante tenzorskega nematskega ureditve-

nega parametra so potence operatorja sled na tenzorju. V bližini faznega prehoda

se gostota proste energije torej zapǐse kot

fhom = fizo +
1

2
Ã tr Q2 − 1

3
B tr Q3 +

1

4
C( tr Q2)2, (4)

kjer so Ã, B in C parametri, ki jih določimo fenomenološko. Člen v prvi potenci

je identično enak nič, saj je nematski ureditveni parameter brezsleden, kar zago-

tavlja, da je rešitev Q = 0 ekstrem proste energije. Člen tretjega reda nakazuje, da

bo fazni prehod nezvezen, ta potenca pa je simetrijsko dovoljena, ker rešitvi Q in

−Q ustrezata različnim fizikalnim stanjem [enačba (3)]. Kadar člen tretjega reda

simetrijsko ni dovoljen, je fazni prehod zvezen. Člen četrtega reda poskrbi za obstoj

globalnega minimuma proste energije, vǐsji členi v razvoju pa so zanemarljivi, razen

kadar je C < 0. Fenomenološki parametri Ã, B in C so v splošnem temperaturno

odvisni. Parameter Ã mora pri T ∗ menjati predznak, če naj pod to temperaturo

izotropna faza ne bo več možna rešitev. Ã je torej funkcija lihih potenc (T − T ∗),

ponavadi pa zadošča, da upoštevamo le najnižji člen, Ã = A(T − T ∗). V bližini

prehoda lahko privzamemo, da sta parametra B in C konstantna. Za tipične tekoče

kristale je A ∼ 105 J/m3K in B ∼ C ∼ 106 J/m3 [4]. Prosta energija sistema z

nezveznim faznim prehodom je upodobljena na sliki 2.

V obsežnem tekočem kristalu je povrprečna smer ureditve konstantna in se s



vi Razširjeni povzetek

temperaturo spreminja le stopnja urejenosti okrog direktorja. Izotropna faza je

stabilna nad temperaturo prehoda TNI = T ∗ + B2/27AC in metastabilna v tem-

peraturnem intervalu TNI > T > T ∗. Ob prehodu sta v ravnovesju izotropna

faza in nematska faza s stopnjo urejenosti Sc = 2B/3
√

6C ∼ 0,2 − 0,4. Nematska

faza je stabilna pod temperaturo prehoda, ko se stopnja urejenosti spreminja kot

S/Sc = 0,75(1 +
√

1− 8θ/9), kjer je θ = (T − T ∗)/(TNI − T ∗), in metastabilna za

TNI < T < T ∗∗ = T ∗+B2/24AC (glej sliko 2). Ob prehodu iz izotropne v nematsko

fazo se sprosti latentna toplota ql = B4/729C3[TNI/(TNI − T ∗)] ∼ 106 J/m3 [147];

za primerjavo, latentna toplota ob zmrzovanju vode je ql ∼ 3 · 108 J/m3.

Pod vplivom zunanjih polj, največkrat gre za vpliv ograjujočih sten, je povprečna

smer nematske ureditve lahko različna v različnih delih sistema. Deformacija uredit-

venega parametra zvǐsa prosto energijo. Njen prispevek zapǐsemo s simetrijsko do-

voljenimi gradientnimi členi. V bližini faznega prehoda je deformacija ureditvenega

parametra vezana predvsem na krajevno spreminjanje stopnje urejenosti, zato takrat

ne pridejo do izraza vsi vidiki elastičnosti sistema in zadošča opis z eno elastično

konstanto,

fel =
1

2
L∇Q

...∇Q, (5)

kjer je L =∼ 10−11 N do 10−10 N [4]. Globoko v nematski fazi, ko je stopnja

urejenosti približno konstantna po celotnem vzorcu, so deformacije ureditvenega

parametra vezane na elastične deformacije direktorskega polja. Te ponavadi opǐsemo

v okviru Frankove elastične teorije [42], ki razdeli prispevke k prosti energiji na

prispevek pahljačne, zvojne in upogibne deformacije.

Spontane deformacije ureditvenega parametra ni, saj ta vǐsa prosto energijo sis-

tema. Seveda pa je ureditveni parameter lahko deformiran zaradi vpliva ograjujočih

sten. Na mikroskopskem nivoju so interakcije med nevtralnimi molekulami van

der Waalsove interakcije kratkega dosega (1/r6). V fenomenološki teoriji jih zato

ponavadi nadomestimo s kontaktnimi interakcijami. V okviru direktorskega opisa

nematika opǐse sklopitev s površino Rapini–Papoularjev izraz [49], ki sta ga za popol-

neǰsi tenzorski opis prilagodila Nobili in Durand [17],

fS =
1

2
G tr (Q− QSi

)2δ(z − zS), (6)

kjer je G moč sklopitve s površino, QS je tenzorski ureditveni parameter, ki ga

vsiljuje ograjujoča površina, ta pa se nahaja pri z = zS. Izraz predstavlja prvi člen

v razvoju proste energije zaradi interakcije s površino. Vǐsji členi ponavadi niso

potrebni, razen pri opisu temperaturne odvisnosti ekstrapolacijske dolžine. Ta nam

pove, ali je energijsko ugodneǰsa deformacija direktorskega polja, pri čemer je le-to

v soglasju z redom, ki ga vsiljuje površina, ali pa je ugodneje kršiti robne pogoje in

se pri tem izogniti zvǐsanju proste energije zaradi deformacije, λ ∼ L/G. Moč vpliva
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površine meri razmerje ekstrapolacijske dolžine in tipične dolžinske enote v sistemu:

sklopitev s površino je močna, kadar je λ/d→ 0, in je šibka, če je λ/d� 1.

V nadaljevanju bomo računali z brezdimenzijskimi količinami: ureditveni pa-

rameter bomo zapisali glede na stopnjo urejenosti ob prehodu v obsežnem sis-

temu, Q̂ = Q/Sc, dolžine bomo merili v tipičnih enotah sistema d (x̂i = xi/d in

∇̂ = d∇) ali s korelacijsko dolžino ξNI = ζd =
√

27CL/B2 ∼ 10 nm, temperaturo s

θ = (T − T ∗)/(TNI − T ∗) in prosto energijo v enotah f̃ = Lξ−2
NI (2B2/27C2). Znak

·̂ · · bomo v nadaljevanju spustili. Brezdimenzijska gostota proste energije je potem

f = fizo +
1

2
θ tr Q2 −

√
6 tr Q3 +

1

2
( tr Q2)2 +

1

2
ζ2∇Q

...∇Q. (7)

Površinski prispevek h gostoti proste energije je

fS =
1

2
g tr (Q− QS)2δ(z − zS), (8)

kjer je g = (ξ2
NI/Ld)G ali g = (3ξ2

NI/2d)λ−1, če uporabimo zapis z ekstrapolacijsko

dolžino.

Korelacijske dolžine fluktuacij

Fenomenološka teorija faznih prehodov se zanima le za povprčno vrednost ure-

ditvenega parametra in pri tem zanemarja krajevna in časovna odstopanja od pov-

prečja. Ta so predvsem pomembna v okolici zveznih faznih prehodov. Tudi v

obsežnem sistemu je ureditveni parameter odvisen od kraja, η(~r) = η0 + ∆(~r), a

je 〈η(~r)〉 = η0 in torej 〈∆(~r)〉 = 0. Tu η označuje vsako od petih prostostnih stopenj

nematske ureditve. Vsaj na majhnih področjih so molekule vedno urejene. Pomem-

bno pa je, kako velika so ta področja. Povezanost oziroma korelacijo v urejenosti

nam opǐse korelacijska funkcija Γ(~r) = 〈η(~r)η(0)〉 − 〈η(~r)〉〈η(0)〉 = 〈∆(~r)∆(0)〉.
Razvijemo korelacijsko funkcijo v Fourierovo vrsto po ravnih valovih, ki so v sis-

temih z zvezno translacijsko simetrijo naravna izbira lastnih funkcij, in dobimo

Γ(~r) =
∑

~q Γ̃(~q) e−i~q·~r, kjer je Γ̃(~q) = 〈|∆̃(~q)|2〉. Amplitude lastnih funkcij ∆̃(~q)

določimo iz proste energije,

F =
∫

d3r f = F0 +
V
2

∑
~q

(
∂2f

∂η2
+ Lq2

)
|∆̃(~q)|2 +O(|∆̃(~q)|3), (9)

s pomočjo ekviparticijskega teorema, Γ̃(~q) = kBT/V(Lξ−2 + Lq2), kjer je ξ =√
L/(∂2f/∂η2) korelacijska dolžina danega fluktuacijskega načina. V direktnem

prostoru dobimo namreč Γ(~r) = kBT
4πLr

e−r/ξ. Kadar je korelacijska dolžina končna,

pojema korelacija urejenosti z eksponentom razdalje in fluktuacije niso pomembne.

V primeru neskončne korelacijske dolžine je korelacija dolgega dosega in pojema

obratno sorazmerno z razdaljo.
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Slika 3 Temperaturna odvisnost korelacijskih dolžin petih prostostnih stopenj
nematskega reda v (meta)stabilni izotropni in enoosni nematski fazi.

Izpǐsimo zdaj korelacijske dolžine posameznih prostostnih stopenj enoosne ne-

matske ureditve, ki jo opǐse ureditveni parameter Q = a0T0,

ξ−2
0 /ξ−2

NI = θ − 6a0 + 6a2
0,

ξ−2
±1/ξ

−2
NI = θ + 6a0 + 2a2

0, (10)

ξ−2
±2/ξ

−2
NI = θ + 3a0 + 2a2

0.

V izotropni fazi so ravnovesne vrednosti vseh parametrom qm enake 0, tako da so

korelacijske dolžine vseh fluktuacijskih načinov enake, ξ−2
I /ξ−2

NI = θ. V nematski fazi

se korelacijske dolžine posameznih fluktuacijskih načinov s temperaturo spreminjajo

kot kaže slika 3. Ob prehodu iz izotropne v nematsko fazo ali ob prehodu v nasprotni

smeri ostajajo korelacijske dolžine vseh fluktuacijskih načinov končne, kar je še ena

značilnost nezveznih faznih prehodov. Zato pa korelacijska dolžina ξI divergira na

meji stabilnosti izotropne faze (θ = 0 oziroma pri T ∗), korelacijska dolžina stopnje

urejenosti nematske faze ξN,0 pa divergira pri najvǐsji temperaturi pregrete nematske

faze (θ = 9/8 oziroma pri T ∗∗). V bližini faznega prehoda je ξ−2
N,0/ξ

−2
NI ≈ 6 − 5θ in

ξ−2
N,±1/ξ

−2
NI ≈ 18− 9θ, korelacijska dolžina direktorskih fluktuacij pa je neskončna na

celotnem območju nematske faze.

Dinamika ureditvenega parametra

Termodinamsko ravnovesje sistema je določeno z minimumom njegove proste ener-

gije, F =
∫

dVf . V okviru fenomenološke teorije štejemo v prosto energijo le

prispevke povprečnega makroskopskega reda, ki se krajevno spreminja kvečejmu

na razdaljah večjih od nekaj tipičnih dolžin molekul. Z minimizacijo dobimo Euler–

Lagrangeve enačbe
δf

δQ
= 0, (11)
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kjer je funkcionalni odvod δ/δQ = ∂/∂Q−∇ · (∂/∂∇Q) in k f prispevajo volumski

členi v prosti energiji. Površinski členi določajo robne pogoje.

Zdaj pa si predstavljajmo sistem, ki ga malo izmaknemo iz ravnovesja. Takrat

je δf/δQ različen od 0 in predstavlja generalizirano silo, ki vleče sistem nazaj v

ravnovesje. Približevanje ravnovesju je proces, pri katerem se zgublja energija.

Opǐsemo ga z viskozno silo, ki je po analogiji z viskozno silo v mehaniki sorazmerna

s hitrostjo, tokrat s hitrostjo spreminjanja ureditvenega parametra [7,54,52],

δf

δQ
= −γ−1∂Q

∂t
, (12)

kjer je γ−1 posplošeni viskozni koeficient. V primeru nematskega tekočega kristala,

ko je ureditveni parameter tenzor drugega reda, je posplošeni viskozni koeficient ten-

zor 3. reda. V obravnavi ga nadomestim z izotropnim tenzorjem in s tem s skalarnim

koeficientom. V brezdimenzijski obliki določa generalizirana viskoznost tipični čas

za reorientacije direktorja, τa = 27Cγ−1/B2 ∼ 10−8 s [32,4]. Enačba (12) je znana

kot Landau–Halatnikova enačba ali Ginzburg–Landauov časovno odvisni model, ki

sta ga leta 1954 prva predlagala Landau in Halatnikov [7]. Do istega rezultata

pridemo s striktno obravnavo disipativnega anizotropnega sistema z zanemaritvijo

makroskopskih masnih tokov [52,53].

Časovno spreminjanje fluktuacijskih načinov opǐse v tem najpreprosteǰsem relak-

sacijskem opisu eksponentno pojemanje, bi ∝ e−µit, kjer je Q(~r, t) = A(~r) + B(~r, t),

‖B‖ � ‖A‖, in je µi relaksacijska hitrost danega fluktuacijskega načina. V primeru

homogenega nematika je µi ∝ (ξ−2
i + q2). Korelacijska dolžina fluktuacij ne pred-

stavlja torej le velikosti otočkov določenega reda, ampak je tudi v zvezi s hitrostjo

relaksacije vzbujenega stanja. Relaksacija je tem počasneǰsa in posledično vzbu-

jeno stanje tem bolj trdoživo, čimvečja je njegova korelacijska dolžina. Ločimo dva

posebna primera glede na obnašanje disperzijske relacije za dolgovalovne deforma-

cije ~q → 0 (v končnem sistemu si mislimo limito zvezne funkcije, ki bi v ustreznih

diskretnih vrednostih ustrezala naši funkciji). Relaksacijska hitrost mehkega fluk-

tuacijskega načina pade od prehodu v limiti ~q → 0 na 0, medtem ko je stran od

prehoda različna od nič. Za Goldstoneov fluktuacijski način pa je značilno, da je

njegova relaksacijska hitrost enaka 0 na celotnem območju urejene faze. Omenimo

še, da je Goldstoneov fluktuacijski način posledica zlomljene rotacijske simetrije

izotropne faze [36,37]. Goldstoneove fluktuacije v nematskem tekočem kristalu so

direktorske fluktuacije. Te so odgovorne za močno sipanje svetlobe na nematikih, o

čemer smo govorili v uvodu. Mehkih fluktuacijskih načinov v neograjenih nematikih

ni, saj spremljajo zvezne fazne prehode, lahko pa se pojavi zaradi vpliva površin.
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Slika 4 Shema ograjenega tekočekristalnega sistema za študij sil: pri spre-
membi razmika med ograjujočima stenama se prostornina in površina tekočega
kristala ne spremenita.

Strukturna in psevdo Casimirjeva sila

Zaključimo predstavitev fenomenološke teorije opisa faznega prehoda pri tekočih

kristalih s predstavitvijo sil, ki delujejo na tanko plast nematika, kadar je ta v stiku

s stenami. Zaradi prisotnosti sten se spremeni tako povprečna ravnovesna ureditev v

tekočem kristalu, kot tudi spekter fluktuacij. Spremenjeni ureditvi ustreza drugačna

prosta energija, kot enaki prostornini neograjenega tekočega kristala (glej sliko 4).

V splošnem je prirastek proste energije odvisen od razdalje med stenama, zaradi

česar se steni ali privlačita ali odbijata. Termodinamska definicija sile je

~F = −
(

∂F
∂~r

)
V,A

. (13)

Strukturna sila imenujemo del sile, ki izhaja iz spremenjenega povprečnega rav-

novesnega reda, F = −∂∆FMF /∂d = −∂FMF /∂d + fneoA, kjer je FMF prosta

energija sistema v okviru fenomenološke teorije povprečnega polja, enaki prostornini

neograjenega tekočega kristala pa znotraj iste teorije ustreza prosta energija fneoA.

Psevdo Casimirjeva sila izhaja iz spremenjene proste energije fluktuacij. To

določa fazni integral po vseh možnih konfiguracijah fluktuirajočih polj [54,38],

FCAS = −kBT ln
(∫
Db e−H[b]/kBT

)
, (14)

kjer je kB Boltzmannova konstanta in T temperatura. H[b] = L/2{
∫
[ξ−2b2 +

(∇b)2]dV +
∑

i λ
−1
i

∫
b2dA} je Hamiltonian za fluktuacije v harmonskem približku.

Izračun proste energije fluktuacij je ponavadi precej zapleten, predvsem pa moti

njena divergenca, ki za odpravo katere je razvitih več metod [155]. Za občutek

povejmo nekaj o splošnih lastnosti psevdo Casimirjeve sile, ki temeljijo na robnih

pogojih za fluktuacije. V primeru močne sklopitve s stenami, λ1,2 � d, ali šibke sklo-

pitve, λ1,2 � d, je psevdo Casimirjeva interakcija med stenami privlačna. Nasprotno
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Slika 5 Shematski prikaz (a) oslabitve kapilarnih valov v primeru odbojne sile
na plast tekočega kristala in (b) ojačitve kapilarnih valov.

je interakcija v primeru mešanih robnih pogojev, torej šibke sklopitve z eno steno

in močne z drugo, odbojna [27,63,64].

Študiju strukturnih in psevdo Casimirjevih sil se v delu posvečam zaradi študija

stabilnosti tankih tekočekristalnih plasti. Plast tekočega kristala je v stiku s trdno

steno, eno površino pa ima prosto, v stiku z zrakom. Zaradi termičnih fluktuacij

prosta površina ni ravna, ampak so na njej vzbujeni kapilarni valovi, ki povzročijo,

da se debelina filma s krajem spreminja. Na plast zaradi njene strukture, termičnih

fluktuacij ureditvenih in elektromagnetnih polj, deluje skupna sila, odvisna od de-

beline filma, Π(d). (Tudi, kadar bomo govorili o sili, bomo v resnici mislili silo na

enoto površine, torej na dodatni tlak v plasti.) Ko se debelina filma veča, se mora

velikost sil, ki delujejo nanj, zmanǰsevati. Slednje ne velja le pri debelinah, ko se

spreminja značaj sile iz odbojne v privlačno ali obratno. Za zdaj imejmo v mislih

le monotono padajoče odbojne sile in monotono rastoče privlačne sile, splošni izrazi

pa bodo veljali tudi za prevojna območja. Če torej deluje na plast odbojna sila, bo

odboj v stanǰsanih delih večji kot odboj v odebeljenih delih in bo sila povzročila

zmanǰsanje razlik v debelini. Nasprotno bo večji privlak v tanǰsih delih in manǰsi

privlak v debeleǰsih povzročil še dodatno povečanje razlik v debelini, dokler se ne bo

na stanǰsanem delu prosta površina dotaknila trdne podlage in se bo film razgradil

v kapljice tekočega kristala in suha področja. Opisanemu mehanizmu razomočenja

trdne podlage preko ojačitve kapilarnih valov pravimo spinodalno razomočenje; she-

matsko je predstavljen na sliki 5. Razmǐsljanje lahko posplǒimo v pravilo: film je

stabilen napram spinodalnemu razomočenju, če je v okolici povprečne debeline filma

sila padajoča funkcija debeline (Π′(d) < 0), medtem ko je v nasprotnem primeru

(Π′(d) > 0) film nestabilen. Povedano zapǐsemo formalno z relaksacijskim časom za
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kapilarne valove [73,74],
1

τq

=
d3

0

3η

[
γq4 − q2Π′(d0)

]
, (15)

ki je pozitiven — in s tem zagotavlja eksponentno pojemanje vzbujenih stanj —

za poljuben val, če je Π′ < 0, oziroma postane negativen za določene vrednosti

valovnega vektorja ~q za Π′ > 0; takrat se dani val ojači.

Van der Waalsova sila

Van der Waalsova sila med dvema nevtralnima molekulama združuje disperzijsko

interakcijo med fluktuirajočimi dipoli, ki nastanejo zaradi trenutne prerazporedit-

ve elektronov v molekulah, in orientacijsko interakcijo med fluktuirajočimi stalnimi

dipoli. Pripadajoča energija pada z razdaljo kot 1/r6, pri velikih oddaljenostih med

molekulama pa se disperzijski prispevek zmanǰsa (za velike razdalje se približuje

odvisnosti 1/r7 [91,68]). Zmanǰsanje disperzijske interakcijske energije je posledica

končne hitrosti svetlobe — ko postane čas, ki ga elektromagnetno polje vzbujenega

dipola potrebuje, da doseže drugo molekulo primerljiv tipičnemu življenskemu času

danega vzbujenega stanja, se zgublja fazna povezava med interagirajočima moleku-

lama. Pojav imenujemo retardacija.

Kadar interagirajo med seboj molekule, ki tvorijo makroskopska telesa, radi

prevedemo mikroskopske interakcije na makroskopske. Najenostavneǰsi način je, da

kar seštejemo dvodelčne interakcije med vsemi pari molekul, kot da bi bili izoli-

rani. Za ravninsko geometrijo pada energija pripadajoče interakcije v približku

brez upoštevanja retardacije kot 1/d2 (v limiti močne retardacije 1/d3). V trdnih

snoveh je gostota molekul precej večja, da bi upravičila približek “idealnega plina”.

Molekule vplivajo druga na drugo, kar bi morali upoštevati z večdelčnimi interakci-

jami. Na mezoskopskih in makroskopskih razdaljah lahko pozabimo na “zrnatost”

snovi in jo obravnavamo kot kontinuum. V tem približku lahko o van der Waalsovi

interakciji med makroskopskimi telesi govorimo v smislu spremembe proste energije

sistema, ker smo telesi iz neskončne oddaljenosti približali na končno razdaljo. S tem

smo spremenili spekter in pripadajočo prosto energijo elektromagnetnega valovanja

v dielektrični snovi. Spremenjeni fluktuacijski načini v splošnem zavisijo od razdalje

med telesoma, kar vodi do privlaka ali odboja med njima.

Z opisom van der Waalsove sile med makroskopskimi telesi se je na nivoju opisa

idealnega plina prvi ukvarjal Hamaker [92]. Kasneje je Lifshitz opis za trdna telesa

popravil s kontinuumskim opisom [93], na nivoju kvantne teorije polja pa so se z

njim ukvarjali Dzyaloshinskii in sodelavci [94,95]. Vsi opisi so vezani na izotropna

makroskoska telesa. Kihara in Honda sta v 60-ih letih predstavila van der Waalsovo

silo med optično enoosnimi telesi, vendar rezultata nista komentirala. Tako se še
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(a) (b)

Slika 6 Shema sistema, v katerem študiram van der Waalsovo silo: (a) dve
polneskončni makroskopski telesi, ki ju ločuje plast tretje snovi z debelino d;
(b) pogosto je na trdni podlagi še dodatna plast oksida, vode,... z debelino t.
Puščice označujejo smer optičnih osi.

vedno tudi za opis van der Waalsove sile med močno anizotropnimi sredstvi upo-

rabljajo izrazi za izotropna sredstva. Eden od razlogov za to, je poleg neznanosti

izraza za enoosna sredstva tudi to, da za silo med izotropnimi sredstvi obstajajo

poenostavljeni izrazi za izračun sile [89] za anizotropna sredstva pa ne.

Ker je v tekočih kristalih dielektrična in optična anizotropija precej velika, sem

se lotila študija van der Waalsove sile med optično anizotropnimi sredstvi. Omejila

sem se na edino geometrijo in simetrijo sistema, ki nas privede do končnega anali-

tičnega rezultata za van der Waalsovo silo: dve polneskončni makroskopski telesi,

med katerima je ravninska plast tretje snovi. Telesa so v splošnem optično enoosna,

optične osi pa so v vseh snoveh pravokotne na mejne površine, tako da je tudi

simetrija celotnega sistema enoosna. Shema študiranega sistema je predstavljena na

sliki 6. Čeprav se morda zdi, da smo za študiran sistem postavili preveč omejitev,

da bi lahko govorili o kakšnih splošneǰsih vplivih dielektrične anizotropije na van der

Waalsovo silo, pa ne smemo pozabiti, da je to edini sistem, glede katerega lahko kaj

povemo, poleg tega pa opǐse tudi precej tekočekristalnih sistemov, ki jih opisujem v

tem delu, pa tudi sistemov, ki so sicer predmet raziskav [77–85].

Van der Waalsova interakcija je posledica spremenjenih elektromagnetnih fluk-

tuacijskih načinov. Te določajo Maxwellove enačbe. V enoosnem sistemu, ki ga

študiram, lahko elektromagnetne fluktuacijske načine razdelimo na transverzalne

magnetne (TM) in transverzalne električne (TE). Načini v polneskončnih sredstvih

eksponentno pojemajo z vdorno globino

ρ̄TM(ω) =

[
ε⊥
ε‖

(
κ2 − ω2

c2
ε‖

)]1/2

,

ρTE(ω) =

(
κ2 − ω2

c2
ε⊥

)1/2

, (16)
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kjer je κ valovni vektor v ravnini meje med sredstvoma. Z upoštevanjem robnih

pogojev na meji sredstev, dobimo sekularno enačbo, katere rešitve so frekvence

elektromagnetnih fluktuacijskih načinov. Te določajo prosto energijo sistema,

∆F = kBT
∑
~κ

[∑
i

ln
(
2 sinh h̄ωi

2kBT

)
−
∑
i′

ln
(
2 sinh h̄ωi′

2kBT

)]
, (17)

kjer teče vsota i po frekvencah v sistemu s končno razdaljo med polneskončnima

makroskopskima telesoma d, vsota i′ pa po frekvencah sistema d→∞, ko je celoten

prostor napolnjen samo z vmesno snovjo. Sekularne enačbe nam ni treba ekspli-

citno rešiti, ker lahko vsote v enačbi (17) prevedemo z integracijo po kompleksni

ravnini [102,100] na

∆F =
kBTA

2π

∫ ∞
0

dκκ
∞∑

n=−∞
ln

D(iξn)

D0(iξn)
, (18)

kjer je A površina mejnih ploskev, D(ω) = 0 sekularna enačba za sestavljen sistem

in D0(ω) = 0 sekularna enačba za homogen sistem vmesne snovi; ξn = 2πkBTn/h̄.

Silo, ki izhaja iz povečanja proste energije zaradi prisotnosti sten, zračunamo po

enačbi (13).

V triplastnem sistemu [glej sliko 6 (a)] je

DR
TM(ω) = 1 + ∆̄R

12(ω)∆̄R
23(ω)e−2ρ̄2(ω)d = 0, (19)

kjer je

∆̄R
ij(ω) =

εi⊥(ω)ρ̄j(ω)− εj⊥(ω)ρ̄i(ω)

εi⊥(ω)ρ̄j(ω) + εj⊥(ω)ρ̄i(ω)
, (20)

in

DR
TE(ω) = 1 + ∆R

12(ω)∆R
23(ω)e−2ρ2(ω)d = 0, (21)

kjer je

∆R
ij(ω) =

ρi(ω)− ρj(ω)

ρi(ω) + ρj(ω)
. (22)

Za izračun van der Waalsove sile moramo poznati še funkcijsko odvisnost dielek-

trične konstante od frekvence. Dielektrična konstanta je povezana s polarizabilnostjo

molekul α kot ε = 1+nα/ε0, kjer je n gostota molekul. K polarizabilnosti molekule

prispeva več mehanizmov: reorientacija permanentnih dipolov, reorientacija ionov

in deformacija elektronskega oblaka. Permenentni dipoli sledijo zunanjemu polju le

pri zelo nizkih frekvencah, meja za reorientacijo ionov je v infrardečem območju,

pri frekvencah v območju vidne svetlobe pa zunanjemu polju sledi le še elektronski

oblak, ki se deformira zaradi skokov elektronov v vzbujena stanja. Pri izračunu van

der Waalsove sile je pomembna vrednost statične dielektrične konstante, ε(0), in pa
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konstante pri ω = inξ1. Ker je ξ1 = 2,5 ·1014 s−1 v območju, kjer je polarizabilnost le

še posledica elektronskih prehodov, vzamemo za ε(iξn) = 1 + n2−1
1+ξ2

n/ω2
e
. Privzeli smo,

da je v snovi en tipičen elektronski prehod, ki je v vseh snoveh (približno) enak;

ωe ∼ 2π · 3 · 1015s−1 [89]. Zdaj lahko izračunamo van der Waalsovo silo

Π(d, T ) =
kBT

16πd3

ε2‖(0)

ε2⊥(0)

∫ ∞
0

dx x2 ∆̄12∆̄23 e−x

1 + ∆12∆23 e−x
(23)

+
kBT

πd3

∞∑
n=1

d̃3
∫ ∞
1

dp p2

 ∆R
12∆

R
23 e−2pd̃

1 + ∆R
12∆

R
23 e−2pd̃

+
ε2‖

ε2⊥

∆̄R
12∆̄

R
23 e−2pd̃

1 + ∆̄R
12∆̄

R
23 e−2pd̃

 ,

kjer smo upoštevali, da je ε soda funkcija argumenta. Prvi člen v izrazu predstavlja

statičen odziv sistema, oziroma prispevek stalnih dipolov, medtem ko je drugi člen

posledica dinamičnega odziva. Funkcije ∆̄ij = ∆̄ij(0), ∆R
ij = ∆R

ij(iξn) in ∆̄R
ij =

∆̄R
ij(iξn) so določene v enačbah (20) in (22); d̃ = d

√
ε2⊥ξn/c. V enačbi (23) smo

integracijo po valovnem vektorju κ nadomestili z integracijo po brezdimenzijskem

parametru p = ρ2(κ)c/(ξn
√

ε2⊥), tako da so

∆̄ij =
ε̄i − ε̄j

ε̄i + ε̄j

, ε̄i =
√

εi‖εi⊥ ,

∆R
ij =

si − sj

si + sj

, si =
√

p2 − 1 + εi⊥/ε2⊥ , (24)

∆̄R
ij =

ε̄is̄j − ε̄j s̄i

ε̄is̄j + ε̄j s̄i

, s̄i =
√

p2 − 1 + εi‖/ε2‖ ,

in εi = εi(iξn), če ni navedeno drugače. Enoosnost zunanjih polneskončnih makro-

skopskih teles renormalizira dielektrično konstanto, εi → √εi‖εi⊥ . Po drugi strani

enoosnost snovi, ki je vrinjena med makroskopski telesi ne renormalizira le dielek-

trične konstante, ampak tudi samo moč interakcije.

Izračun van der Waalsove sile iz izraza v enačbi (24) je precej zamuden, odvisnost

sile od parametrov snovi pa precej nejasna. Izraz se poenostavi v neretardiranem pri-

bližku, c→∞. Približek velja dobro za majhen razmik med makroskopskima tele-

soma (d <∼ λe = 2πc/ωe ∼ 100 nm). Pri večjih razdaljah ne dobimo pričakovanega

zmanǰsanja dosega sile. Velikokrat nas natančna odvisnost od razmika med tele-

soma niti ne zanima, saj je v sistemu ena od sil dominantna, druge pa predstavljajo

le popravek. Dominantna je lahko van der Waalsova sila ali pa morebitne elektro-

statične sile ali druge. V tem primeru je pomemben predvsem značaj sile (odbojna

ali privlačna) in njena velikost. Vse te podatke nam v zadostni natančnosti nudi

tudi približek brez retardacije. V približku brez retardacije je Π = −A/6πd3, kjer je

A = −3kBT

4

∞∑
n=0

′ ε2‖(iξn)

ε2⊥(iξn)

∫ ∞
0

dx x2 ∆̄12(iξn)∆̄23(iξn)e−x

1 + ∆̄12(iξn)∆̄23(iξn)e−x
, (25)
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Hamakerjeva konstanta. Črtica nad vsoto označuje, da moramo člen z n = 0

množiti z 1/2; funkcijo ∆̄ij = ∆̄ij(iξn) smo definirali v enačbi (24). Integral v

enačbi (25) je analitično izračunljiv, vsoto po n pa izvedemo z nekaj nadaljnimi pri-

bližki: upoštvamo, da je |∆̄ij| � 1, zato zanemarimo člene vǐsjega reda kot ∆̄12∆̄23.

Pri sobni temperaturi je ξ1/ωe = (kBT/h̄c)λe ∼ 1/80 � 1, zato lahko vsoto po

n nadomestimo z integralom po ξ. Upoštevamo še, da je ∆̄ij(iξ) ≈
n̄2

i−n̄2
j

n̄2
i +n̄2

j+2ξ2/ω2
e
,

kjer smo zanemarili člene tipa [(∆ni/ni‖)
2 ± (∆nj/nj‖)

2](ξ/ωe)
2 in vǐsjih redov v

(∆ni/ni‖) in (ξ/ωe). Tu je ∆ni = ni‖ −ni⊥ in ima v primeru tekočih kristalov vred-

nost do 10% · ni‖ . Tako dobimo končni izraz za Hamakerjevo konstanto za enoosna

sredstva

A = Aν=0 + Aν>0 =
3

4
kBT

ε2‖

ε2⊥

ε̄1 − ε̄2

ε̄1 + ε̄2

ε̄3 − ε̄2

ε̄3 + ε̄2

(26)

+
3h̄ωe

8
√

2
(n̄2

1 − n̄2
2)(n̄

2
3 − n̄2

2)

 √
2(n2

2‖
− n2

2⊥
)

n2⊥(2n2
2⊥ − n̄2

1 − n̄2
2)(2n

2
2⊥ − n̄2

3 − n̄2
2)

−
2n2

2‖
− n̄2

1 − n̄2
2√

n̄2
1 + n̄2

2(2n
2
2⊥ − n̄2

1 − n̄2
2)(n̄

2
1 − n̄2

3)
+

2n2
2‖
− n̄2

3 − n̄2
2√

n̄2
3 + n̄2

2(2n
2
2⊥ − n̄2

3 − n̄2
2)(n̄

2
1 − n̄2

3)

 ,

kjer je āi =
√

ai‖ai⊥ in je a ali statična dielektrična konstanta ε ali lomni količnik

v področju vidne svetlobe n. Prvi člen v enačbi (26), Aν=0, ponovno predstavlja

statični odziv sistema, drugi člen, Aν>0, pa ustreza dinamičnemu odzivu.

Kot že pri splošnem izrazu, je tudi zdaj jasno razvidno, da anizotropija okolnih

sredstev le renormalizira dielektrično konstanto in lomni količnik, medtem ko je

vloga vmesnega sredstva večja. V primeru, da bi bila vsa tri sredstva izotropna, se

izraz v enačbi (26) poenostavi v znan izraz [89]

A =
3

4
kBT

ε2‖

ε2⊥

(ε̄1 − ε̄2)
2

(ε̄1 + ε̄2)2
+

3h̄ωe

8
√

2
(n̄2

1 − n̄2
2)

2 (27)

×

 √
2(n2

2‖
− n2

2⊥
)

n2⊥(2n2
2⊥ − n̄2

1 − n̄2
2)

2
+

(n̄2
1 + n̄2

2)
2 + 4n̄4

2 − 2(n̄2
1 + n̄2

2)(3n
2
2‖
− n2

2⊥
)

2(n̄2
1 + n̄2

2)
3/2(2n2

2⊥ − n̄2
1 − n̄2

2)
2

 .

Značaj van der Waalsove interakcije je odvisen od medsebojne relacije med

statičnimi dielektričnimi konstantami in lomnimi količniki interagirajočih snovi.

Znak statične Hamakerjeve konstante je določen z relacijami med statičnimi dielek-

tričnimi konstantami: za ε̄2 < ε̄1, ε̄3 ali ε̄2 > ε̄1, ε̄3 je konstanta pozitivna zato

je statični del van der Waalsove interakcije privlačen, za ε̄1 < ε̄2 < ε̄3 ali ε̄1 >

ε̄2 > ε̄3 je konstanta negativna in ustrezni del van der Waalsove interakcije odbojen.

Podobni pogoji veljajo za dinamičen del Hamakerjeve konstante. Izkaže se, da je del

izraza (26) v oglatih oklepajih pozitivno definiten in je torej znak konstante določen

z znakom produkta (n̄2
1 − n̄2

2)(n̄
2
3 − n̄2

2). Za n̄2 < n̄1, n̄3 ali n̄2 > n̄1, n̄3 je dinamični
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Slika 7 Dinamični del Hamakerjeve konstante za enoosna sredstva kot funkcija
parametra β = n1/n2⊥ . Polna črta označuje konstanto izračunano po
enačbi (26) za enoosna sredstva, črtkana črta pa označuje konstanto v približku
izotropnih sredstev, kjer je (niso

i )2 = (n2
i‖

+ 2n2
i⊥

)/3. Hamakerjeva konstanta

je merjena v enotah A0 = 3h̄ωen2⊥/8
√

2, n2‖/n2⊥ = 1,2 in n3/n2⊥ = 0,67.

del Hamakerjeve konstante pozitiven in interakcija privlačna, za n̄1 < n̄2 < n̄3

ali n̄1 > n̄2 > n̄3 pa je konstanta negativna in interakcija odbojna. Enaki pogoji

veljajo za značaj izotopne Hamakerjeve konstante [enačba (27)], če renormalizirane

parametre nadomestimo z izotropnimi. Kot je bilo omenjeno že na začetku, do sedaj

ni bil znan enostaven izraz za van der Waalsovo silo med enoosnimi sredstvi. Zato je

bila ta sila določena iz izrazov za izotropna sredstva, kjer so bili vstopni parametri

za Hamakerjevo konstanto izotropni deli ustreznih tenzorjev, εiso = (ε‖ + 2ε⊥)/3

oziroma (niso)2 = (n2
‖ + 2n2

⊥)/3. Kot je razvidno iz pogojev, ki smo jih ravnokar

zapisali in kot se vidi na sliki 7, se lahko tako določena van der Waalsova sila od

prave precej razlikuje po velikosti, v ozkem intervalu anizotorije pa celo po značaju

interakcije.

V nadaljevanju se bomo posvetili neposrednim vplivom ograjujočih sten na ne-

matski red in fluktuacije nematskega ureditvenega parametra. Najprej se bomo

posvetili lokalnim vplivom površin na nematski tekočekristalni red. Lokalizirane

variacije reda so značilne za spreminjanje stopnje nematskega reda, medtem ko se

deformacije, povezane s frustracijami direktorskega polja, ponavadi raztezajo po

celotnem tekočekristalnem vzorcu.

Heterofazni nematski sistem

Kadar je nematski tekoči kristal v stiku s površino, ki vsiljuje močan nematski red,

se tik ob površini tudi pri temperaturah nad prehodom v urejeno nematsko fazo
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Slika 8 Shema ureditve molekul v nematskem tekočem kristalu v stiku z
razurejujočo steno.

pojavi mezoskopska urejena plast. Pojav imenujemo (orientacijsko) močenje, opisani

sistem pa paranematski sistem. Podoben pojav opazimo pod temperaturo prehoda,

ko se ob površini, ki vsiljuje močan nered, med steno in nematsko fazo pojavi dobro

definirana plast izotropne faze (glej sliko 8). Tu opisujem predvsem slednji primer,

ki ga imenujem površinsko staljeni nematski sistem. Orientacijsko močenje je lahko

delno ali popolno. Pri delnem močenju je površinska plast le delno (raz)urejena,

njena debelina pa je končna tudi tik ob prehodu v fazo, ki jo vsiljuje tudi površina.

Fazni prehod je nezvezen. Pri popolnem močenju opazimo pred faznim prehodom

površinski prehod, kjer se delno (raz)urejena površinska plast skokovito (raz)uredi,

nato pa njena debelina ob približevanju prehodu močno narašča in v polneskončnem

sistemu ob faznem prehodu divergira. Fazni prehod je v primeru popolnega močenja

zvezen.

Močenje v polneskončnem sistemu, predvsem paranematskem, so od prvega za-

pisa leta 1976 študirali v mnogih skupinah [18,50,108–111,59,60,14]. Tu predstav-

ljam predvsem študij dinamike v nematski plasti s staljenim redom ob površinah.

Obravnava je vezana na Landau–de Gennesovo teorijo in opis tekočega kristala s ten-

zorskim nematskim ureditvenim parametrom. Smektičnega urejanja tik ob površini

ne upoštevam, saj je to, posebej v izotropni fazi, zelo majhno. Homeotropno

smer nematskega direktorja določa šibko zunanje magnetno polje, ki pa je dovolj

močno, da premaga morebitno drugačno preferenčno smer direktorja na meji obeh

faz [120–125]. Njegovega vpliva na stopnjo urejenosti v obravnavi ni potrebno

upoštevati. Prav tako ne upoštevamo šibke sklopitve med variacijo stopnje ure-

jenosti in deformacijami direktorskega polja [119]. Ravnovesni povprečni ureditveni

parameter torej zapǐsemo kot Q = a0T0, kjer je n̂ = êz in je os z v smeri normale na

plast, ureditveni parameter, ki ga vsiljuje površina pa je QS = aST0, kjer je aS < 1.

Na sliki 9 so predstavljeni profili stopnje nematske urejenosti pri različnih temper-

aturah in močeh vpliva površine. V primeru nematika v stiku z razurejujočimi ste-

nami pride do popolnega omočenja stene z izotropno fazo le, če stena vsiljuje popoln

nered (aS = 0) in je sklopitev dovolj močna (G >∼ 0,0023 J/m2). V obratnem parane-

matskem sistemu lahko dobimo popolno omočenje za vse vrednosti vsiljevanega ne-
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Slika 9 Stopnja nematske urejenosti v nematiku s staljenima površinskima
plastema v bližini prehoda v izotropno fazo. (a) Temperaturna odvisnost:
aS = 0, G → ∞, profili pa so označeni z vrednostjo ustrezne brezdimenzijske
temperature. (b) Odvisnost od moči sklopitve s površino: θ = 1−10−5, aS = 0
ter G→∞ (polna črta), 0,001 J/m2 (črtkana črta) in 0,0003 J/m2 (pikčasta
črta).

matskega reda, ki je večji od reda ob prehodu v neograjenem sistemu (aS > 1),

mejna vrednost sklopitve G, ki dovoljuje popolno omočenje pa je odvisna od aS; na

primer G(aS = 1,1) = 0,0006 J/m2. Eden od znakov, da je omočenje popolno, je

rast omočitvene plasti, ko se približujemo prehodu v izotropno fazo. Na sliki 10 (a)

lahko jasno razločimo med divergentnim naraščanjem debeline omočitvene plasti v

primeru popolnega omočenja in obnašanjem, značilnim za delno omočenje, ko doseže

površinska plast končno obliko že pred prehodom. V končnem vzorcu nematskega

tekočega kristala debelina omočitvene plasti seveda ne more divergirati, ker se obe

omočitveni plasti prej združita, vendar kaže temperaturna odvisnost dW (T − TNI)

tipično logaritemsko odvisnost. Zaradi končne prečne dimenzije je fazni prehod

tudi v primeru popolnega omočenja stene z izotropno fazo rahlo nezvezen. Poleg

tega nastopi prehod pri nižji temperaturi (vǐsji v primeru paranematskega sistema),

vendar je razlika komaj zaznavna — v celici debeline 792 nm je θNI = 0,99274, v

debeleǰsih celicah pa še manj.

Predvsem v neposredni bližini faznega prehoda sestavljata heterofazni sistem

površinska plast z redom, kot ga vsiljuje površina, in notranji del sistema, v katerem

se vpliv površine ne pozna in je tekoči kristal urejen tako, kot bi bil pri dani tempera-

turi v neograjenem sistemu. Obe področji loči dobro definirana fazna meja, tem bolj,

čim bližje smo faznemu prehodu. Obe fazi imata sicer enake izotropne dielektrične

lastnosti, vendar pa se razlikujeta v simetriji. Pri obravnavi van der Waalsove sile

v anizotropnih sredstvih smo ugotovili, da sta taki snovi z vidika van der Waalsove

interakcije različni. Zato fazna meja med njima predstavlja novo steno v sistemu, v

omočitveni plasti pa k tlaku prispeva tudi van der Waalsov tlak. Ker je omočitvena
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Slika 10 (a) Temperaturna odvisnost debeline staljene površinske plasti
v primeru popolnega in delnega močenja. Parametri računa: aS = 0,
d = 792 nm ter G → ∞ v primeru popolnega močenja in G = 0,001 J/m2

v primeru delnega močenja. (b) Renormalizacija debeline omočitvene plasti
zaradi van der Waalsove sile na fazno mejo. Logaritemsko divergenco s
kritičnim eksponentom 0 zamenja potenčna divergenca ∆dW ∝ (T − TNI)−ν

s kritičnim eksponentom ν = 0,5.

plast precej tanǰsa od celotne debeline celice, sem obravnavala tridelni sistem trdne

stene, omočitvene plasti in nezmotenega tekočega kristala. Blizu prehoda, kjer je

fazna meja dobro definirana, nadomestimo profil skalarnega ureditvenega parame-

tra s stopničasto funkcijo in izračunamo prispevek k prosti energiji zaradi van der

Waalsove interakcije. Ta je v primeru nematika s staljenimi površinami privlačna in

prispeva k stanǰsanju omočitvene plasti, v primeru paranematske celice pa odbojna

in poveča ravnovesno debelino plasti. Temperaturna odvisnost van der Waalsovega

popravka k debelini omočitvene plasti je narisana na sliki 10 (b). V področju do-

bro definirane fazne meje ima popravek potenčno odvisnost od razlike temperatur

T − TNI , kritični eksponent določen iz prilagoditve pa da vrednost blizu 0,5.

Fluktuacije ureditvenega parametra

Obravnavamo sistem z enakimi robnimi pogoji na obeh ograjujočih stenah, zato je

ravnovesni povprečni profil simetričen glede na sredino celice in ima enako simetrijo

tudi potencial za fluktuacije. Kot je znano, so lastne funkcije sodega operatorja

bodisi sode ali lihe glede na dano simetrijsko ravnino [130], kar velja tudi za har-

monski operator za fluktuacije ureditvenega parametra. Zato rešujem enčbe le na

eni polovici celice, pri čemer za fluktuacijske načine velja, da ima na sredini ničlo

bodisi fluktuacijski profil (lihi načini) ali njegov odvod (sodi načini).

Vpliv površin lahko študiramo ob primerjavi dimenzijsko in geometrijsko enakega

sistema, v katerem pa ograjujoče stene vsiljujejo prav tak red, kot bi ga imel neogra-

jeni tekoči kristal. V takem sistemu je stopnja urejenosti v celici konstantna. Fluk-
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Slika 11 (a) Spekter fluktuacij stopnje urejenosti, za katerega je značilen
mehki osnovni fluktuacijski način, in (b) upodobitev profila dveh fluktuacijskih
načinov — številka, ki označuje posamezni način, pove število vozlov med
obema stenama — skupaj z ravnovesnim povprečnim profilom za θ = 1−10−5.
(G→∞ in aS = 0)

tuacijski načini v konstantnem (škatlastem) potencialu so sinusi, sin qzz, kjer je

qz = ζ(n + 1)π, pripadajoče relaksacijske hitrosti pa so

λ̃i = ξ−2
N,i/ξ

−2
NI + ζ2 [(n + 1) π]2 , (28)

kjer so ξN,i korelacijske dolžine definirane v enačbi (10) z a0 = 0,75(1 +
√

1− 8θ/9).

V bližini faznega prehoda je ξ−2
N,0/ξ

−2
NI ≈ 6− 5θ in ξ−2

N,±1/ξ
−2
NI ≈ 18− 9θ, medtem ko

je ξ−2
N,±2/ξ

−2
NI = 0 na celotnem temperaturnem intervalu nematske ureditve.

Spekter fluktuacij v nematskem sistemu s razurejujočimi površinami se od ho-

mogenega sistema najbolj razlikuje po obstoju mehkega fluktuacijskega načina, s

tipično temperaturno odvisnostjo λ0,0 = ±C|θ − θNI | (Cnem = 3,0 in Cpara = 5,6).

Ta ustreza fluktuacijam debeline omočitvene plasti. Pri osnovnem načinu fluktuirata

debelini obeh plasti z nasprotno fazo in povrzročata krčenje oziroma širjenje osred-

njega nematskega dela. Prvi lihi način je po energiji enak osnovnemu (prvemu

sodemu) kadar je debelina celice dovolj velika, da omočitveni plasti ne “čutita”

povezave. Način predstavlja fluktuacije položaja osrednjega dela. Od homogenega

spektra se ločita še prva naslednja lihi in sodi način, ki spreminjata obliko fazne meje.

Vǐsji načini skorajda ne čutijo razurejujočega vpliva sten. Spekter fluktuacij stopnje

urejenosti in profili nekaj fluktuacijskih načinov stopnje urejenosti so predstavljeni

na sliki 11.

Mehki fluktuacijski način je še en znak za zveznost faznega prehoda, ki spremlja

sisteme s popolnim omočenjem. Kadar je močenje le delno, je λ0,0 > 0 in narašča

z oddaljenostjo od režima popolnega omočenja. Na sliki 12 je predstavljena odvis-

nost relaksacijske hitrosti mehkega načina od moči površinske sklopitve za aS = 0 v

primeru nematika v stiku z razurejujočima stenama in aS = 1,1 v primeru parane-
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Slika 12 Relaksacijska hitrost osnovnega načina fluktuacij stopnje urejenosti
v sistemu nematika v stiku z razurejujočima stenama (polna črta) in v parane-
matskem sistemu (črtkana črta). V območju delnega močenja, G < Gc,
je λ0,0 > 0. Kritična vrednost G je za nematik s staljenimi površinami
0,0023 J/m2 (aS = 0) in v paranematskem sistemu Gc = 0,0006 J/m2

(aS = 1,1). V paranematskem sistemu sta oba režima ločena z omočitvenim
prehodom, medtem ko je v primeru nematika v stiku z razurejujočimi
površinami prehod nekoliko zabrisan.

matika. Režima popolnega in delnega omočenja loči kritična vrednost sklopitve,

sistem pa iz enega režima preide v drugega z omočitvenim prehodom. Ta je v

primeru nematika v stiku z razurejujočimi stenami nekoliko zabrisan, ker je popolno

omočenje vezano na sam rob faznega diagrama (G, aS), na aS = 0.

V nematiku v stiku z razurejujočimi stenami ni drugih fluktuacijskih načinov,

katerih relaksacijska hitrost bi ob prehodu padla na 0, medtem ko je v paranematiku

tak še najnižji direktorski način, ki je lokaliziran znotraj nematske omočitvene plasti.

Zmanǰsanje njegove relaksacijske hitrosti na 0 je posledica dejstva, da so direktorske

fluktuacije v nematski fazi, ki postane ob prehodu stabilna, Goldstoneove. V hetero-

faznem nematiku se zaradi povečanja debeline omočitvene plasti ob prehodu močno

poveča relaksacijska hitrost Goldstoneovih direktorskih fluktuacij. Te so strogo

vezane na osrednji nematski del, kjer je njihova korelacijska dolžina neskončna, tako

da je povečanje relaksacijske hitrosti posledica efektivnega zmanǰsanja debeline “sis-

tema”. V nasprotju z direktorskimi fluktuacijami so fluktuacije dvoosnosti energij-

sko zelo neugodne v nematski fazi. Tako je za nekaj najnižjih načinov ugodneje, da

so vezani na tanko izotropno omočitveno plast in se šele vǐsji načini raztezajo tudi

po osrednjem delu. Število fluktuacijskih načinov, katerih relaksacijska hitrost se

približuje nižji vrednosti v izotropni fazi, je odvisna od debeline omočitvene plasti

in s tem od temperature. Spektra fluktuacij dvoosnosti in direktorskih fluktuacij

sta narisana na sliki 13.
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Slika 13 Spektra fluktuacij (a) dvoosnosti in (b) direktorja v sistemu nematika
v stiku z razurejujočima stenama. (θ = 1− 10−5, aS = 0 in G→∞)

Ograjujoče stene, ki jih izotropna oziroma nematska faza v tekočekristalnem sis-

temu popolnoma omoči, močno spremenijo tako povrpečni red kot tudi fluktuacije

v bližini prehoda. Zaradi nenasprotujočih si robnih pogojev se steni privlačita.

Ravnovesna ureditev je zaznamovana z lokalizirano spremembo ureditvenega parame-

tra, ki je vezana na fazno mejo. Strukturni privlak je zato kratkega dosega. K fluk-

tuacijski psevdo Casimirjevi sili prispeva fluktuacijska interakcija med steno in fazno

mejo ter interakcija med obema faznima mejama. Najpomembneǰsi je vpliv Gold-

stoneovih direktorskih fluktuacij v nematskem delu sistema, ki vodi do sile dolgega

dosega. V paranematskem sistemu je dolgi red interakcije prikrit z eksponentnim

padanjem debeline nematskega dela tekočega kristala, tako da je psevdo Casimir-

jeva sila enakega dosega kot strukturna sila. Nasprotno je psevdo Casmirjeva sila v

nematskem sistemu s staljenimi površinami dolgega dosega.

Hibridna nematska celica

V hibridni nematski celici je nematski tekoči kristal ograjen s stenama, ki vsiljujeta

enoosni nematski red v različnih smereh. Ponavadi sta vsiljevani smeri pravokotni

druga na drugo, tako da je na eni površini vsiljevani red v smeri pravokotno na steno

(na primer v smeri osi z) na drugi pa v določeni smeri v ravnini stene (recimo, v smeri

osi x). Ker steni vsiljujeta nematski red v različnih smereh, je ureditev med njima

vedno deformirana v primerjavi s spontano nematsko ureditvijo v neograjenem sis-

temu. Podobni nasprotujoči si pogoji pa niso nujno le posledica vsiljevanega reda na

ograjujočih površinah, ampak pride do njih tudi v bližini defektov in zaradi geometije

sistema. Tako v cilindrični geometriji, kjer ograjujoče stene cilindra vsiljujejo red v

radialni smeri, takemu redu nasprotuje simetrija cilindra, ki daje prednost ureditvi

vzdolž dolge osi cilindra.
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Slika 14 Shema urejenih struktur v hibridni celici: (a) upognjena struktura,
(b) dvoosna struktura in (c) homogena struktura.

Študij povprečne ravnovesne ureditve v hibridni celici je ponavadi vezan na tem-

perature globoko v nematski fazi, kjer se zanimamo predvsem za deformacije direk-

torskega polja in ne toliko za variacije stopnje urejenosti ter morebitne dvoosnosti

ureditve. Opis z direktorskim poljem predvidi dve strukturi, katerih stabilnost je

odvisna od debeline hibridne celice in relativne moči površinske sklopitve [19]. Za

d < dc ≡ |λ1 − λ2| je stabilna struktura z nedeformiranim direktorskim poljem —

homogena struktura, saj je energijsko ugodneje, da na površini s šibkeǰsim sidranjem

ni izpolnjen robni pogoj, kot da bi bilo deformirano direktorsko polje. Nasprotno je

za d > dc elastična deformacija direktorskega polja ugodneǰsa od močnega kršenja

robnih pogojev na eni od sten — upognjena struktura. Direktorsko polje v celici

je upognjeno, smer direktorja na obeh stenah pa se v splošnem razlikuje od vsilje-

vane smeri. Shema ureditve molekul v obeh opisanih strukturah je predstavljena na

sliki 14.

Blizu prehoda v izotropno fazo in, kadar je sidranje na površinah zelo močno eks-

trapolacijski dolžini pa približno enaki, so poleg direktorja pomembne tudi ostale

prostostne stopnje ureditvenega parametra. Nekaj raziskav ravnovesnih struktur

v hibridni celici, kadar so pomembne tudi nedirektorske prostostne stopnje je že

bilo narejenih [20,139], z variacijo različnih parametrov, ki vplivajo na stabilnost

različnih struktur in fazne prehode med njimi, pa smo védenje o hibridni celici

poglobili s študijo tudi mi [21]. Ker je za vse opisane strukture značilno, da leži

direktorsko polje v ravnini vsiljevanih smeri x in z, opǐsemo ureditveni parameter

s konstantno trojico enotskih vektorjev n̂ = êy, ê1 = êz in ê2 = êx, na katerih raz-

pnemo bazne tenzorje Ti [enačba (2)]. Tako z upoštevanjem vseh prostostnih stopenj

nematskega reda pri vǐsjih temperaturah popravimo predstavo o že znanih struktu-
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Slika 15 (a) Ravnovesni profil neničelnih prostostnih stopenj nematskega ure-
ditvenega parametra: stopnja urejenosti glede na osi x [ax

0 = −(a0 +
√

3a1)/2]
ali z [az

0 = (−a0 +
√

3a1)/2] — krepki polni črti — ali glede na os y (a0)
— tanka polna črta. Črtkani črti označujeta absolutno vrednost stopnje ure-
jenosti [S = (

√
6/2)|Qii|, kjer je predznak Qii nasproten predznaku drugih

dveh lastnih vrednosti Q] in dvoosnosti (P = |Qjj − Qkk|/
√

2, kjer j, k 6= i).
(b) Povečan del na območju izmenjave direktorja. (θ = 0,9, ζ2 = 0,01258,
aS = 1,1 in g1 = g2 →∞)

rah, najdemo pa še dodatno strukturo, ki jo imenujemo dvoosna struktura. Shemo

ureditve molekul v dvoosni strukturi kaže slika 14. V dvoosni strukturi se direktor

ob stenah ujema z vsiljevano smerjo. Red ob stenah je enoosen, z oddaljevanjem od

sten se zmanǰsuje, povečuje pa se dvoosnost. Do preklopa direktorja iz ene smeri v

drugo pride na sredini celice, kjer je red močno staljen. V osrednjem, slabih 10 nm

debelem, delu hibridne celice so molekule urejene vedno bolj enakomerno v ravnini

obeh direktorjev, torej kot bi bil direktor pravokoten na značilno ravnino, stopnja

urejenosti pa negativna. Odvisnost ureditvenih parametrov od oddaljenosti od ene

od sten kaže slika 15.

Z zmanǰsevanjem moči sidranja na eni od sten preide dvoosna struktura v ho-

mogeno strukturo s homogenim direktorskim poljem, medtem ko stopnja urejenosti

pada v smeri proti steni, kjer se direktor in vsiljevana smer direktorja ne ujemata. V

isti smeri narašča dvoosnost ureditve. Preobrazba ene strukture v drugo ni povezana

s strukturnim ali faznim prehodom, ampak je stvar dogovora o poimenovanju faz.

Pojav dvoosne sturkture je vezan na dovolj veliko frustracijo, kvantitativno jo oce-

nimo z močjo sidranja G >∼ 10−4 J/m2. Po drugi strani pa ob nespremenjenih

enakih (velikih) močeh sidranja na obeh ograjujočih stenah z nižanjem tempera-

ture ali z večanjem debeline hibridne celice pridemo do strukturnega prehoda iz

dvoosne strukture v upognjeno strukturo. Prehod je v splošnem šibko nezvezen, kar

je razvidno iz slike 16 (a). Ob prehodu, kjer se vrednosti prostih energij ujemata,
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Slika 16 (a) Temperaturna odvisnost proste energije dvoosne in upognjene
strukture. Do strukturnega prehoda pride pri θt = 0,951, dvoosna struktura
pa je metastabilna v temperaturnem intervalu θt > θ > θs = 0,869. (ζ2 = 0,02,
aS = 1,1 in g1 = g2 →∞) (b) Temperaturna odvisnost proste energije dvoosne
in upognjene strukture pri debelini, ki ustreza meji stabilnosti dvoosne struk-
ture ζs = ζs(θ). Pod trikritično točko θTP = 0,746 in ζ2

TP = 0,054 je strukturni
prehod zvezen, nad njo pa postane postopoma vedno bolj nezvezen.

sta naklona obeh funkcij različna, črtkano nadaljevanje funkcij pa ustreza prostim

energijam metastabilnega stanja dvoosne oziroma upognjene strukture. Pri debe-

lini 56 nm je dvoosna struktura metastabilna v temperatunem intervalu 0,09 K, do

strukturnega prehoda pa pride 0,04 K pod temperaturo faznega prehoda v neogra-

jenem sistemu. Latentna toplota povezana s strukturnim prehodom je velikostnega

reda 104J/m3, kar je za dva velikostna reda manj kot pri faznem prehodu v neogra-

jenem sistemu. Nezvezni strukturni prehod preide pod trikritično točko v zvezni

prehod [glej sliko 16 (b)]. Zgornja meja za trikritično točko je v limiti neskončno

močnega sidranja dTP = 34 nm in TNI − TTP = 0,28 K.

Obstoj dvoosne strukture smo preverili s primerjavo rezultatov, ki jih da računal-

nǐska simulacija z metodo Monte Carlo [148,149]. Mikroskopske interakcije med

molekulami “tekočega kristala” smo modelirali s preizkušenim Lebwohl-Lasherjevim

potencialom [150], ki dobro opǐse nematski sistem. Samo simulacijo na kubični

mreži so izvedli v skupini dr. Pasinija in prof. Zannonija v Bologni, obdelavo po-

datkov in primerjavo z rezultati fenomenološkega opisa pa smo izvedli v naši skupini.

Na rezultatih simulacije so bila izračunana različna makroskopska povprečja, ki us-

trezajo ureditvenim parametrom, ki jih določamo s fenomenološko teorijo. Poseben

poudarek smo posvetili določitvi parametra a−1, ki meri upogib direktorskega polja

v celici. Z njim smo razločili med dvoosno in upognjeno strukturo, ki imata v

bližini strukturnega prehoda kvalitativno podobno obnašanje ostalih ureditvenih

parametrov.
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Slika 17 (a) Energija (kvadratki) in specifična toplota (polni krogci) v 14
plastni hibridni celici. Vrh pri TMC

2 ≈ 1,115 ustreza strukturnemu prehodu
med dvoosno in upgnjeno strukturo, manǰsi vrh pri TMC

1 ≈ 1,165 pa ustreza
ureditvi tekočega kristala v sredini celice. (b) Temperaturi TMC

1 in TMC
2 kot

funkciji števila plasti v celici. Črtkana črta označuje temperraturo prehoda v
neograjenem sistemu.

Po pričakovanjih so rezultati Monte Carlo simulacije pokazali obstoj tako dvoosne

kot upognjene strukture. Homogene strukture v sistemu ni, ker sta bili moči sidranja

na obeh ograjujočih stenah enaki. Simulacija je bila izvedena na različno velikih sis-

temih (30 × 30 × N ′, kjer je N ′ = N + 2 = 6, 8, 10, 12, 16, 22 in predstavlja N

“plasti” molekul ali skupkov molekul tekočega kristala in po 1 krajno “plast” na

vsaki strani celice, ki ustreza molekulam ograjujoče stene) in pri različnih vred-

nostih Monte Carlo temperature (TMC = kBT/ε, kjer je ε energija interakcije med

sosednjima molekulama), predvsem v okolici prehodov. Na sliki 17 (a) je pred-

stavljena tipična odvisnost energije in specifične toplote hibridne celice v odvisnosti

od temperature. Dobro razviden visok vrh specifične toplote ustreza strukturnemu

prehodu iz dvoosne strukture v upognjeno. Temperaturo prehoda smo označili s

TMC
2 . V celici z N = 14 plastmi je TMC

2 ≈ 1.12. Temperatua strukturnega pre-

hoda je nižja od temperature faznega prehoda v neograjenem sistemu, ki ustreza

TMC
NI = 1.1232 [152]. Nekoliko skrit v glavni vrh in precej manǰsi je vrh, ki us-

treza ureditvenemu prehodu v sredini celice. Pri visokih temperaturah so urejene

le molekule blizu sten, ko pa se omočitveni plasti stakneta, dobimo znano dvoosno

strukturo. Temperaturo ureditvenega prehoda smo označili z TMC
1 , v 14 plastni

celici je njena vrednost TMC
1 ≈ 1.18. Zaradi urejujoče narave sten nastopi ured-

itev v celici pri temperaturi vǐsji od prehoda v neograjenem sistemu, o čemer smo

govorili v poglavju o heterofaznih sistemih. S povečevanjem debeline celice se TMC
1

približuje vrednosti TMC
NI , prav tako se proti tej vrednosti približuje temperatura

strukturnega prehoda TMC
2 .



xxviii Razširjeni povzetek

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

1
0

β -1
,n

z/d
0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.4

0.8

1.2

1.6

2.0
3

2

1

0

λ -1
,n

ζ  2

(a) (b)

Slika 18 (a) Relaksacijska hitrost nekaj osnovnih direktorskih fluktuacijskih
načinov v odvisnosti od debeline filma. Ker direktorske fluktuacije vodijo
strukturni prehod, pade njihova relaksacijska hitrost na 0 ob prehodu v upogn-
jeno strukturo, če je prehod zvezen, oziroma pri debelini, nad katero dvoosna
struktura ni več niti metastabilna, v primeru nezveznega prehoda. Pikčasta in
črtkana črta ustrezata mejni debelini za stabilnost oziroma debelini prehoda.
(θ = 0,9, aS = 1,1 in g1 = g2 →∞)

Fluktuacije ureditvenega parametra

Pri študiju fluktuacij se zanimamo za fluktuacije v dvoosni strukturi v bližini pre-

hoda v upognjeno strukturo. Ločimo štiri neodvisne fluktuacijske načine.

Direktorske fluktuacije, povezane s fluktuacijami v smeri baznega tenzorja T−1, pred-

stavljajo deformacije direktorskega polja v ravnini (x, z). Njihov osnovni način

povzroča prav tako deformacijo direktorskega polja, kot je značilna za upognjeno

strukturo. Zato direktorske fluktuacije vodijo strukturni prehod. Njihova relak-

sacijska hitrost pade ob debelini (temperaturi) prehoda na 0, če je prehod zvezen.

V primeru nezveznega prehoda je relaksacijska hitrost direktorskih fluktuacij ob

prehodu končna, a pade na 0 pri debelini (temperaturi), ki predstavlja mejo sta-

bilnosti dvoosne strukture. Te lastnosti direktorskih fluktuacij so znak, da prav te

fluktuacije predstavljajo mehanizem prehoda. Odvisnost relaksacijske hitrosti di-

rektorskih fluktuacij v primeru nezveznega strukturnega prehoda kaže slika 18 (a).

Fluktuacije dvoosnosti (fluktuacije amplitud βi v smeri tenzorjev T±2) merijo po-

razdelitev molekul v ravnini pravokotni na ravnino obeh značilnih smeri v hibridni

celici, torej ureditev v ravnini (y, z) in v ravnini (x, y). Prve predstavljajo fluktuacije

dvoosnosti v delu celice, kjer je direktor v smeri osi x, medtem ko predstavljajo v delu

filma z direktorjem v smeri osi z direktorske fluktuacije. Za drugi tip fluktuacij velja

ravno nasprotno. Ker so v urejeni nematski fazi fluktuacije dvoosnosti precej trše od

direktorskih fluktuacij, je nekaj najnižjih fluktuacijskih načinov β±2 lokaliziranih le

v n̂ = êz oziroma n̂ = êx delu filma, kjer predstavljajo direktorske fluktuacije. Vǐsji
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Slika 19 (a) Profila osnovnega načina fluktuacij stopnje urejenosti. Polni
črti predstavljata sklopnjena fluktuacijska načina stopnje urejenosti glede na
direktor v smeri osi x oziroma z, črtkani črti pa ustrezata pripadajočima
ravnovesnima profiloma. (b) Relaksacijska hitrost nekaj najnižjih fluktuaci-
jskih načinov. Pikčasta in črtkana vertikala ustrezata debelini filma ob
meji stabilnosti dvoosne strukture in ob strukturnem prehodu. (θ = 0,9,
ζ2 = 0,01258, aS = 1,1 in g1 = g2 →∞)

načini deformirajo red v celotnem filmu. Fluktuacijski načini ±2 so degenerirani,

njihovi profili pa so zrcalno simetrični glede na sredino filma. Degeneracija se zgubi

v filmih, kjer moči sidranja na obeh stenah nista enaki.

Fluktuacije stopnje urejenosti predstavljajo sklopljene fluktuacije obeh neničelnih

ravnovesnih ureditvenih parametrov. Upodobimo jih lahko kot fluktuacije stopnje

urejenosti glede na oba direktorja v filmu. Načini so sodi ali lihi glede na sredino

celice, kar je posledica sodosti poteniciala za fluktuacije [130]. Najnižji fluktuacijski

način je najnižji lihi oziroma antisimetrični način. Ta ustreza fluktuacijam debeline

omočitvene plasti ob steni in smo ga spoznali že v poglavju o heterofaznem sistemu.

Maksimum načina ustreza mestom z največjim naklonom v spreminjanju stopnje

urejenosti, kot je razvidno tudi s slike 19 (a). Oba načina sklopljena skupaj pred-

stavljata fluktuacije položaja osrednjega dela, kjer pride do zamenjave lastnih osi

ureditvenega tenzorja. Vǐsji načini spreminjajo obliko profilov in s tem izmenjal-

nega področja. Relaksacijska hitrost osnovnega načina fluktuacij stopnje urejenosti

se ob prehodu oziroma ob meji stabilnosti močno zmanǰsa, vendar ostane končna, saj

strukturni prehod ni povezan z mehanizmom urejanja, ki ga te fluktuacije predstav-

ljajo [glej sliko 19 (b)]. Relaksacijska hitrost doseže ob prehodu nižjo vrednost, če gre

za prehod v debeleǰsih filmih (prehod dosežemo z nižanjem temperature) oziroma

pri temperaturah blizu temperature faznega prehoda v neograjenih sistemih (prehod

dosežemo z večevanjem debeline), ko dvoosna struktura izgine, namesto nje pa je

pred upognjeno strukturo izotropna faza in je urejen le majhen del molekul tik ob

steni.
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Slika 20 Fotografija tankega nematskega filma po razpadu zaradi spinodal-
nega razomočenja. Fotografijo so posneli F. Vandenbrouck in sodelavci objavl-
jena pa je v reviji Phys. Rev. Lett. 82, 2693 (1999).

Stabilnost tankih hibridnih nematskih filmov

Zaradi vpliva površin se povprečni red in fluktuacije v bližini prehoda močno spre-

menijo, zaradi česar deluje med stenama dodatni tlak. Če je tekočekristalni film

ograjen le z ene strani, ostale površine pa so proste, je v odvisnosti od dodatnega

tlaka film lahko stabilen ali pa zaradi ojačenja kapilarnih valov razpade v kapljice

nematika in vmesna suha področja [104,158]. Primer nematskega filma po spinodal-

nem razomočenju kaže slika 20.

K tlaku v hibridnem nematskem filmu prispevajo strukturni tlak, psevdo Casimir-

jev tlak in van der Waalsov tlak [28,30]. Vsi so odvisni od nematske strukture v

filmu. Na sliki 21 lahko vidimo odvisnost strukturnega tlaka od ravnovesne strukture

in debeline filma. V okviru direktorskega opisa v homogeni strukturi ni strukturnega

tlaka, strukturni tlak v upognjeni strukturi pa je močno odbojen in pada z razdaljo

kot 1/d2. Upoštevanje ostalih prostnostnih stopenj nematske ureditve privede do

neničelnega tlaka tudi v homogeni strukturi. Ta je kratkega dosega in zelo šibek, saj

je posledica močno lokalizirane in majhne deformacije stopje urejenosti. Popravki

k strukturnemu tlaku v upognjeni strukturi so zanemarljivo majhni, saj so nekaj

velikostnih redov manǰsi od glavnega prispevka zaradi elastičnih deformacij direk-

torskega polja. Tudi strukturni tlak v dvoosni strukturi je odbojen, kar je posledica

nasprotujočih si robnih pogojev, ki povzročajo deformacije, tem večje čim manǰsa je

debelina filma [29]. Pri majhnih debelinah je deformacija ureditvenega parametra

vezana na celoten film, zato je tam tlak približno enak tlaku v upognjeni strukturi.

Z večanjem debeline je deformacija vedno bolj vezana na osrednji izmenjalni del

filma, tako da velikost tlaka pade močneje kot v upognjeni strukturi. Primerjani sili

ne ustrezata upognjeni in dvoosni strukturi pri istih parametrih, ampak gledamo

upognjeno strukturo globoko v nematski fazi, kjer zadošča opis z direktorskim po-

ljem, dvoosno strukturo pa v temperaturnem območju, kjer je ta stabilna, torej v

bližini temperature TNI .
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Slika 21 Strukturna sila na enoto površine v hibridni celici (a) s homogeno
strukturo ter (b) z upognjeno (črtkana črta) in dvoosno (polna črta) struk-
turo. Strukturna sila v hibridni celici z upognjeno ali dvoosno strukturo je
nekaj velikostnih redov večja, saj je posledica močnih elastičnih deformacij.
Pri debelinah nad nekaj 10 nm pada velikost sile v dvoosni strukturi hitreje
kot v upognjeni strukturi, saj postaja deformacija vedno bolj lokalizirana.
(G1, G2 →∞, upognjena struktura globoko v nematski fazi in dvoosna struk-
tura blizu temperature TNI .)

V podrobnosti izračuna in lastnosti psevdo Casimirjeve sile se tu ne bomo spuščali.

V splošnem je njen izračun v hibridni celici zaradi nehomogenosti ureditvenega

parametra zelo otežen. Rezultate, ki jih bomo uporabili pri študiju stabilnosti in

interpretaciji eksperimentalnih rezultatov [158], bomo povzeli po študiji Ziherla in

sodelavcev [65]. Izračun velja za najpreprosteǰso, homogeno, strukturo in to dovolj

globoko v nematski fazi, da lahko zanemarimo deformacije stopnje urejenosti. Po-

leg tega je študirana hibridna celica taka, v kateri stena, ki vsiljuje red v ravnini

stene, na makroskopskem skali ne preferira nobene smeri. Na mikroskopskem in

mezoskopskem nivoju to seveda nikoli ni res in je rotacijska simetrija zlomljena,

ravnovesne strukture pa take, kot smo jih opisali v tem poglavlju. Do pomembne

razlike pride pri opisu fluktuacij in fluktuacijske sile, saj opisana stena ne poruši

zvezne rotacijske simetrije okrog normale na ograjujoči steni. Psevdo Casimirjeva

sila v takem sistemu je potem odvisna od dveh parametrov, razmerja ekstrapo-

lacijskih dolžin Λ = λH/λP ter razmerja med debelino celice in kritično debelino

za prehod v upognjeno strukturo, d/dc. Odvisnost psevdo Casimirjevega tlaka od

debeline filma je upodobljena na sliki 22.

Poleg opisanih strukturnega in psevdo Casimirjevega tlaka prispeva k skupnemu

tlaku še van der Waalsov tlak [31]. V eksperimentalnem sistemu, ki ga želimo

obravnavati, je bila na trdni steni še dodatna tanka oksidna plast, tako da sistem

sestavljajo štiri plasti. Njihove dielektrične in optične lastnosti so zbrane v tabeli 1.

Ker imata silicij in njegov oksid različen vpliv na van der Waalsovo interakcijo v
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Slika 22 Dodatni tlak v hibridnem nematskem filmu v stiku s trdno steno in s
prosto površino globoko v nematski fazi (polna črta). Črtkana črta ustreza van
der Waalsovemu tlaku, pikčasta in črtkano pikčasta črta pa psevdo Casimirjevi
in strukturni sili. Povečan je del v bližini prehoda tlaka iz naraščajočega z
debelino filma v padajočega.

povezavi z danim tekočim kristalom in zrakom, je van der Waalsova sila v sestav-

ljenem sistemu nemonotona. V grobem lahko rečemo, da je privlak pri majhnih

debelinah filma posledica interakcije z dodatno oksidno plastjo, medtem ko je pri

d > t, kjer je t debelina oksidne plasti, njen vpliv zanemarljiv in je odbojni tlak

posledica interakcije s silicijem. Pri debelinah d ∼ t sta pomembna oba vpliva.

Odvisnost van der Waalsovega tlaka od debeline nematskega filma je predstavljen

na sliki 22.

Skupni tlak v hibridnem nematskem filmu ima nemonotono odvisnost od debe-

line. Za debeline manǰse od marginalne debeline d∗ tlak narašča z debelino, za d > d∗

pa pada. V prvem primeru je film nestabilen napram spinodalnemu razomočenju,

v drugem je stabilen. Pri sobni temperaturi dobimo za vrednosti parametrov λH =

33 nm in λP = 133 nm (Λ = 0,25 in dc = 100 nm) za marginalno debelino 18 nm,

Tabela 1 Dielektrične in optične lastnosti snovi, ki sestavljajo štiriplastni
sistem, pri sobni temperaturi. ε je statična dielektrična konstanta in n lomni
količnik v območju vidne svetlobe. Vsi parametri so podani pri sobni tempera-
turi.

material ε n

silicij 12 3,5
silicijev oksid 14 1,5

5CB
ε‖ ε⊥ n‖ n⊥

18,5 7 1,71 1,53
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Slika 23 Temperaturna odvisnost marginalne debeline filma za različne vred-
nosti razmerja ekstrapolacijskih dolžin Λ. Kvadratki označujejo eksperimen-
talne rezultate, ki so jih izmerili Valignat s sodelavci [154].

kar ustreza rezultatom eksperimenta. Parametra λH in λP sta primerljiva že znanim

vrednostim [159,43,28]. S približevanjem prehodu v izotropno fazo izmerjene vred-

nosti marginalne debeline močno narastejo. Naraščanja ne opraviči temperaturno

spreminjanje dielektirčnih in optičnih lastnosti tekočega kristala, ki so povezane

s stopnjo urejenosti. Zaradi spreminjanja le-teh se van der Waalsova in struk-

turna sila le malo spreminjajo. Tudi eksplicitna temperaturna odvisnost tako van

der Waalsove kot tudi psevdo Casimirjeve sile ne da opaženega, skoraj divergent-

nega obnašanja. Tako obnašanje pojasni temperaturno spreminjanje ekstrapola-

cijskih dolžin. V okviru direktorskega opisa in z razvojem površinske proste en-

ergije do členov drugega reda so ekstrapolacijske dolžine konstantne. Vendar pa

rezultati meritev kažejo, da postanejo ob približevanju prehodu pomembni tudi

členi vǐsjega reda, tako da se ekstrapolacijske dolžine s temperatuo spreminjajo

nekako kot λ ∝ S−2(T ) [17,46–48,16]. Pri interpretaciji spinodalnega razomočenja

smo privzeli najpreprosteǰsi model: ekstrapolacijski dolžini se spreminjata na enak

način, tako da ostaja njuno razmerje stalno ,ob približevanju temperaturi prehoda

pa se povečuje kritična debelina dc. Ekstrapolacijski dolžni se ujemata z izmerjenimi

vrednostmi globoko v nematski fazi, kjer je opis z direktorskim poljem dobro defini-

ran. Na sliki 23 vidimo primerjavo temperaturne odvisnosti izmerjenih vrednosti

za marginalno debelino z rezultati našega modela za različne vrednosti parametra

Λ. Vrednosti λH in λP sta izbrani tako, da se ujemata izračunana in izmerjena

vrednost marginalne debeline globoko v nematski fazi. Najbolǰse ujemanje dobimo

pri prej omenjenih parametrih. Spinodalno razomočenje je eden od mehanizmov za

opazovanje strukturnih in psevdo Casimirjevih sil v tanki plasti tekočega kristala.
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Zaključki

V doktorskem delu sem predstavila različne vidike vpliva ograjujočih sten na ravno-

vesno ureditev in fluktuacije ureditvenega parametra v bližini faznih in strukturnih

prehodov. Pokazala sem, pri katerih pogojih privede (raz)urejevalna moč sten do

zmanǰsnja nezveznosti prehoda oziroma ga celo odpravi in postane prehod zvezen.

V vseh študiranih sistemih sem poiskala mehanizme, ki vodijo prehod, poleg teh pa

so me zanimali tudi lokalizirani fluktuacijski načini, ki so povezani z obstojem faznih

ali strukturnih mej. Fazni prehod v heterofaznem prehodu vodijo fluktuacije stopnje

urejenosti, ki so odgovorne za rast omočitvenih plasti, ko se približujemo prehodu.

Na omočitveno plast so vezani nižji direktorski načini v paranematskem sistemu in

nižji fluktuacijski načini dvoosnosti v nematskem sistemu v stiku z razurejujočimi

stenami. Strukturni prehod v hibridni celici vodijo direktorske fluktuacije, saj pri

prehodu ne gre za urejanje nematika, ampak spreminjanje ureditve. Strukturni

prehod je lahko zvezen ali nezvezen, vmes pa je trikritična točka, katere zgornjo

mejo sem določila. Fluktuacije stopnje urejenosti v hibridni celici predstavljajo

povezano spreminjanje dveh parametrov, ki opǐsejo povprečno ravnovesno ureditev.

Te prispevajo k urejevanju nematika v celici. Nižji fluktuacijski načini dvoosnosti

so zanimivi, ker so lokalizirani v le eni omočitveni plasti, tisti, kjer te fluktuacije

predstaljajo direktorske fluktuacije.

Strukture v hibridni celici in prehode med njimi sem študirala tudi ob primerjavi

rezultatov, ki jih da Monte Carlo simulacija nematskega tekočega kristala v hibridni

celici. Pokazala sem kvalitativno ujemanje rezultatov, za kvantitativno primerjavo

pa moramo vzpostaviti še nekaj povezav med temperaturami v okviru Monte Carlo

simulacije in fenomenološkega opisa ter med močmi sidranja in vsiljevano stopnjo

ureditve.

Ograjujoče stene vplivajo posredno preko vpliva na ureditev tekočega kristala

tudi na van der Waalsov tlak v plasti ograjenega tekočega kristala. Ker do zdaj

ni bilo znano, kakšen vpliv ima anizotropija snovi na van der Waalsovo interakcijo,

sem jo za primer enoosne simetrije sistema določila v tem delu. Pokazala sem,

da se v enoosni snovi dielekrične in optične lastnosti renormalizirajo tako, da so

pomembni parametri za opis sistema
√

ε‖ε⊥ in n‖n⊥ ne pa izotropne vrednosti (ε‖+

2ε⊥)/3 in (n2
‖ + 2n2

⊥)/3. Dobljeni rezultat za van der Waalsovo silo, ki razlikuje

med neurejenim in urejenim tekočim kristalom, sem uporabila za renormalizacijo

debeline omočitvene plasti v heterofaznem sistemu. Van der Waalsova interakcija

spremeni kritični eksponent rasti z 0 na 1/2. V nadaljevanju sem popravljen izraz

za van der Waalsov tlak uporabila tudi pri določitvi pogojev za stabilnost tankega

nematskega filma s hibridnimi robnimi pogoji. Določila sem temperaturno odvisnost

mejne debeline, ki se dobro ujema z izmerjenimi vrednostmi.
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V raziskavi vpliva ograjujočih sten na fluktuacije nematskega ureditvenega para-

metra sem pojasnili in raziskala nekaj različnih vidikov, še vedno ostaja nekaj

vprašanj, ki sem jih v tej obravnavi izpustila. Tako bi si morali v prihodnosti

pogledati še, kakšen je vpliv delnega urejanja molekul ob steni v plasti. Smektično

urejanje visoko nad morebitno smektično A fazo, v manǰsi meri pa se pojavlja tudi

v tekočih kristalih brez spontane smektične faze, je posledica zlomljene translacijske

simetrije, ki jo povzroči prisotnost stene. Diskretna rast smektičnih plasti bi morala

imeti zanimiv vpliv na nematske red in njegove fluktuacije.

S popravljenim izrazom za van der Waalsovo interakcijo v primeru anizotropnih

sredstev sem popravila debelino ravnovesne omočitvene plasti. Ker van der Waalsova

interakcija spremeni kritični eksponent rasti plasti in s tem položaja fazne meje, na

katero je vezan mehki fluktuacijski način, bi bilo treba pogledati, kakšen vpliv ima

to na spekter fluktuacij stopnje urejenosti.

Že od vsega začetka smo predpostavili, da se energija v sistemu zgublja le

v notranjosti tekočekristalnega sistema. Gibanje molekul ob stenah je sicer res

upočasnjeno in je disipacija energije zato tam manǰsa, vendar pa je različna od nič.

Raziskati bi morali vpliv površinske viskoznosti na fluktuacije celotnega ureditvenega

parametra.

Pojavi, ki sem jih opisala v tem delu, niso vezani le na opisano planarno geo-

metrijo in seveda ne le na nematske tekoče kristale. Da bi lahko povedali kaj več,

kot le načelno pričakovanje podobnih pojavov v kapilarah in drugih geometrijah, bi

morali študije razširiti na splošneǰse sisteme.
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Introduction

The matter can exist in three basic states: gas, liquid, and solid state. For a number

of materials the limits between these states are not sharp and the material can

be found in various intermediate states called mesophases. The liquid-crystalline

phases denote a cascade of states between liquid and solid state of the matter.

In these states, the matter is characterized by some of the liquid-like properties,

such as the ability to flow, and solid-like properties, such as partial order, which

results in anisotropy of dielectric, magnetic, and optical properties. The materials,

which exhibit one or more liquid-crystalline phases, are characterized by highly

anisotropic molecular shape: the molecules are either rodlike or disklike. In fact, the

molecular shape is irregular, but due to fast molecular rotations it appears rodlike

or disklike. The order in liquid crystals is controlled either mainly by temperature

—thermotropic liquid crystals — or mainly by concentration of liquid-crystalline

material in a solution —lyotropic liquid crystals. This thesis deals with thermotropic

liquid crystals.

The simplest liquid-crystalline phase is a nematic phase. The term nematic

was invented by Friedel [1] who studied many properties of the liquid-crystalline

phases in the first part of the twentieth century. The name originates in Greek word

νηµα, which means thread. When observed between crossed polarizers, the defects

in nematics produce a threadlike structure. In the nematic phase, the molecules

tend to orient in a particular direction in the space, however, their centers of mass

are randomly distributed (see Fig. 1.1). The average orientation of long axes of

rodlike molecules or discs’ normals is denoted as a nematic director — n̂. In nematic

liquid crystals, the states with directors n̂ and −n̂ are indistinguishable. Therefore,

the nematic phase occurs only with achiral materials or with racemic mixtures of

chiral molecules. The molecules are not perfectly ordered in the direction of the

director, but their order increases with the decreasing temperature. The distribution

of molecules around the director is uniform and corresponds to uniaxial symmetry

13
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Figure 1.1 Schematic representation of a molecular order in (a) isotropic, (b)
nematic, and (c) smectic phase. n̂ denotes the average orientation of molecular
long axes in nematic in smectic phase.

— the symmetry of a perfect cylinder. The optical axis of a material coincides with

the nematic director. Due to external constraints another characteristic direction

can occur — a secondary or biaxial director — and the corresponding order is

biaxial. On cooling the liquid-crystalline material even further the transition to

either crystalline state or to another, more ordered liquid-crystalline phase occurs.

In smectic liquid crystals (from Greek σµεγµα for soap), the molecules start to

arrange in layers. Here layering denotes that the distribution of centers of mass of

the molecules becomes periodic along the director.

Liquid crystals were first recognized as an intermediate state between the liquid

and the solid state in 1888 by the botanist Friedrich Reinitzer [2] and in 1889 by

Otto Lehman [3]. They studied cholesterol in plants through the microscope as

it underwent the melting and they observed that at melting the crystal became

“cloudy”, but fluid. As the cholesterol was heated even more, it transformed into

a transparent liquid. Similar experiments were performed even before that, but

before Reinitzer and Lehman nobody thought that the intermediate cloudy liquid

was different state of a matter and that its nontransparent appearance was not due

to the impurities of the material.

The cloudy or opaque appearance of liquid crystals is due to the thermal collec-

tive fluctuations of the macroscopic order. The scattering of visible light by nematics

is higher by a factor of the order of 106 than the scattering by the isotropic liquid

in which the scattering is due to density fluctuations [4,5]. The first detailed ex-

perimental studies in the field of light scattering from ordered samples are due to

Chatelain [6]. In the 40’s of the twentieth century he showed from systematic obser-

vations of the Rayleigh scattering that the scattering intensity exhibits a pronounced

angular variation. An early model put forward to explain this phenomenon assumed

the medium to consist of swarms of aligned molecules or of small crystallites, with

dimensions comparable to the optical wavelength. Later it became progressively
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clear that the high scattering power was an intrinsic property of nematic phases,

i.e., the thermal fluctuations of the alignment.

In bulk the order of the molecules of the nematic liquid crystal depends only on

temperature and external electric or magnetic fields. Qualitatively, the system can

be described by the phenomenological Landau-de Gennes theory [4], which replaces

the microscopic interactions between the molecules by an effective interaction and

macroscopic order parameter. Using phenomenological mean-field theory the main

features of the liquid crystalline systems near the phase transitions can be described.

However, the mean-field description neglects the temporal and spatial fluctuations

which are especially important in the vicinity of transitions. The first correction

to the mean-field equilibrium description is the study of collective order parameter

fluctuations [7].

More frequent and physically interesting are confined liquid crystals which fill

the pores in porous media, holes in polymer matrix or the space between the two

confining substrates in the slab geometry of the LC displays [8]. In the confined

liquid crystals, the equilibrium order as well as dynamic properties attracted a lot

of attention of experimentalists and theorists. Studies devoted to the determination

of the equilibrium order in different confining geometries with various constraining

properties [8] have lately been followed by investigations of the pretransitional dy-

namics. The understanding of collective order fluctuations gives a better insight into

equilibrium ordering in the vicinity of phase and structural transitions as well as in

the mechanism of the transition itself [9–16]. In confined liquid-crystalline systems,

the order of the molecules does not depend only on the interaction between the con-

stituting molecules but also (mainly) on (i) the lack of the neighboring molecules

(interactions) near the surface and (ii) interaction between the molecules of the liq-

uid crystal and the confining substrate which differs from the interactions in the

bulk liquid crystal. The confinement of the liquid crystal is in the phenomenological

theory usually modeled by a first order symmetrically allowed term [17]. The inter-

action with the confining substrate can result in higher or lower order than expected

in bulk [18,14,15], in the spatial dependence and deformation of the order [19–21],

and in partial positional —not only orientational— order [22]. Furthermore, the

confinement affects also the pretransitional dynamics, both through changing the

equilibrium order and through changing the boundary conditions for the fluctuations

themselves [8,14,15,21].

The aim of my thesis is to study the effect of different kinds of substrate–liquid

crystal interaction onto the macroscopic order of the liquid crystal in the vicinity of

phase and structural transitions. The studied order will be both, the equilibrium or-

der within the phenomenological mean-field theory and the collective pretransitional
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excitations. Here, the studied excitations are not only the orientational fluctuations,

but fluctuations of all five degrees of freedom of the nematic order. In the studied

systems, their contribution to the light scattering is nonnegligible in the vicinity of

phase transitions [15,23]. The study is focused into the search and determination

of geometries and anchoring conditions for the discontinuous transition characteris-

tic for the isotropic–nematic transition to become continuous. With respect to the

extent of the deformation caused by the confinement two categories of systems will

be treated: (i) systems with the deformation localized to the vicinity of the confin-

ing walls and (ii) systems in which the frustration caused by competing boundary

conditions is reflected in deformation spread all over the system.

Among the systems with local deformation of the order the systems characterized

with the coexistence of the high-temperature isotropic and low-temperature nematic

phase are studied. In such systems one of the phases corresponds to the order in bulk

at a given temperature, whereas the other phase is induced by the confinement. The

two phases are separated by a broad interface where the order progressively changes

from one to the other regime. The nematic order in a semi-infinite system in con-

tact with a single wall has been described 20 years ago [18]. Few years ago the

substrate induced nematic order in a thin isotropic film (paranematic phase) has

been determined together with the corresponding order parameter fluctuations in

the vicinity of the transition to the ordered nematic phase [14]. In this thesis, I will

focus on the study of order in a heterophase system with substrates which induce

disorder. Beside that, the previous study of the paranematic phase is supplemented

by considering different kinds of interaction between the liquid crystal and confining

substrates. The work related to the disordering substrates is centered on discus-

sion about the collective fluctuations on approaching the phase transition to the

disordered isotropic phase and on determination of conditions where the transition

becomes continuous [15,24].

In the study of nonlocal deformation of the nematic order caused by the con-

finement, the hybrid nematic geometry is taken into account. In hybrid nematic

cells the liquid crystal is confined by substrates inducing nematic order in differ-

ent directions, usually close to being perpendicular. Such cells are mainly used for

studying anchoring properties of confining substrates but also as switches. As long

as the used hybrid cells are thick enough (∼micrometer) and the liquid crystal is

deep in the nematic phase the usual director description even though neglecting

the variation of the degree of the nematic order is good enough [19]. Nowadays

thinner and thinner films are used in which spatial dependence of the degree of

nematic order and the biaxiality of the order can be crucial. The pioneering work

in describing the hybrid nematic cell with non-director degrees of freedom of the
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nematic order has been done a decade ago by Palffy et. al [20]. In the thesis,

the hybrid nematic geometry is studied in detail. In cells with the cell thickness

up to few 100 nanometers different possibilities of the nematic order are discussed.

My original contribution to the study of hybrid nematic cells is associated to the

determination of pretransitional collective excitations of all five degrees of freedom

of the nematic order parameter [21,23]. The study reveals the mechanism for the

structural transition between different ordered configurations. Although the work is

done for the simple planar geometry it serves as a model system for studying the line

defects in cylindrical cavities. In planar hybrid geometry the frustration is caused

by mutually perpendicular induced easy axes whereas in cylindrical geometry the

frustration is caused by homeotropic anchoring at the wall and topological favoring

of the axial alignment [21,25]. The phenomenological description of the nematic liq-

uid crystal is compared to the results obtained by methods which take into account

the microscopic interactions among the liquid crystal molecules [26].

The effect of the confinement is reflected in the variations of fields of macro-

scopic physical observables with respect to the corresponding fields when there are

no walls. The perturbed fields are the order parameter fields in ordered liquids,

both corresponding to the equilibrium average value and to collective excitations,

and in general, the electromagnetic fields. Their variations give rise to the change

of the energy of the system which depends of the separation between walls and as a

consequence, forces act among them [27–29]. Due to different properties of the con-

fining walls the forces can be either attractive or repulsive, and the samples of the

liquid crystal can be either stable (they wet the substrate) or unstable (they disinte-

grate into small drops). Thus, the determined ordered structures and pretransitional

dynamics are used to study stability of liquid-crystalline systems in corresponding

geometry and with appropriate properties of the confining walls [30].

A special interest is paid to the van der Waals force even though it is not described

in terms of fluctuating order parameter fields, however, it is strongly affected by the

confinement. Since there was no appropriate description of this force for the case

of anisotropic media I perform a detailed study of van der Waals force, especially,

for the case of uniaxial materials which are most common among nematic liquid-

crystalline systems [31].

The outline of the thesis is as follows. First, in Chapter 2 the basic theoretical

background used to study the nematic liquid crystals is introduced. In Section 2.1

the nematic order parameter is derived from the microscopic description and its

influence on the macroscopic physical observables is emphasized. Section 2.2 deals

with basics of the phase transitions. The general introduction of basic terminology



18 Introduction

which includes the Landau free energy and correlation length of the order parameter

is followed by the description of the phenomenological theory of nematic liquid crys-

tals in the vicinity of the isotropic–nematic phase transition. Then, the correlation

lengths of all degrees of freedom of the nematic order are determined and discussed

in terms of the type of the phase transition. In Section 2.3 the equations describing

dissipative dynamics of the system are derived within the continuum description.

After arguing the approximations that are made when performing calculations the

equations describing pretransitional collective dynamics in nematic liquid crystals

are deduced. Section 2.4 deals with forces that arise as a consequence of the in-

fluence of the confinement onto the nematic order and with the stability of thin

liquid films which is strongly related to forces acting on it. Structural force is due

to the changed equilibrium order and pseudo-Casimir force is caused by the change

in spectrum and shape of fluctuations of the order parameter. The van der Waals

force, which is also affected by the presence of walls, is discussed in more detail.

Since I derive original results for the van der Waals force among uniaxial media

the discussion of this force is separated from the discussion of other forces and it

is gathered in Chapter 3. Chapter 4 deals with heterophase system characterized

by “order-melting” substrates. All through the Chapter, the comparison is made

to the inverse heterophase system — the paranematic system. In Section 4.1 the

equilibrium order is discussed and in Section 4.2 the pretransitional dynamics is

determined. Structural and pseudo-Casimir forces acting on a heterophase system

are overviewed in Section 4.3. Nematic and isotropic phase give rise to different

dielectric and optical properties of the medium. Therefore, the two phase inter-

face represents an additional wall in the system and van der Waals interaction acts

among solid–liquid-crystalline interface and the phase boundary. Its effect on the

equilibrium order in the heterophase system is argued in Section 4.4. In Chapter 5

non-local deformations caused by the confinement are discussed. First, different

possible equilibrium configurations and the structural transitions between them are

introduced in Section 5.1. In Section 5.1.1 they are compared to the ones obtained

by Monte Carlo simulations of a hybrid nematic cell. The pretransitional dynamics

associated with the structural transition is discussed in Section 5.2. In order to

study the stability of thin nematic films subject to hybrid confinement the relevant

forces are described in Section 5.3, whereas the study of stability is provided in

Section 5.4. The thesis ends with conclusions and discussion of open problems in

Chapter 6.



2

Phenomenological description

As explained in the Introduction, my thesis deals with nematic liquid crystals and

with how they are affected by the presence of walls. Therefore, in this Chapter we

will introduce parameters that describe the nematic liquid crystal and present the

theoretical frame within which the liquid-crystalline systems will be described.

2.1 Nematic order parameter

In the isotropic phase the medium possesses full symmetry. On the contrary, in

the nematic phase the symmetry is lowered because the molecules exhibit collective

orientational order. Lower symmetry corresponds to higher order. This order is

reflected in the macroscopic physical quantities characteristic for the system. To

express the order of the system quantitatively, we need to define the parameter

describing the order — the order parameter. The latter has to vanish in the isotropic

phase and has to become nonzero in the ordered nematic phase. We will derive the

order parameter of the nematic liquid crystal from the microscopic approach.

The nematic liquid crystal consists of rodlike molecules characterized by unit

vectors along the long axis of the molecule, â. The molecule is assumed to have

complete cylindrical symmetry about â which is realized by fast molecular rotations

about this axis. In practice, we can distinguish between the “tail” and the “head”

of a molecule, however, there are as much heads pointing in the direction of the

director as there are tails pointing in the same direction. The orientation of a single

molecule is determined by two angles with respect to the laboratory frame (x, y, z),

the polar angle θ and the azimuthal angle φ; the z axis coincides with the direction

of the director. The state of the alignment of molecules is described by a distribution

function f(θ, φ) which gives the probability of finding molecules in a solid angle dΩ,

f(θ, φ)dΩ/Ω. In bulk nematic liquid crystals, the uniaxial symmetry does not allow

any φ dependence of the distribution function, and so the latter can be expanded in

19
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a series

f(θ) =
∞∑

n=0

fnPn(cos θ), (2.1)

where Pn(x) are Legendre polynomials and fn = (2n + 1)Ω−1
∫

dΩf(θ)Pn(cos θ).

From this and because f is normalized, Ω−1
∫

dΩf(θ) ≡ 1, f0 = 1, which does

not depend on the ordering of molecules and is, thus, inappropriate as an order

parameter. Due to the cylindrical symmetry yielding the equivalence of n̂ and −n̂,

fn ≡ 0 for odd parameters n. From the same argument fn’s are nonzero for even

parameters n. The first nonzero parameter is

f2 =
5

Ω

∫
dΩf(θ)P2(cos θ) = 5〈P2(cos θ)〉

= 5
〈

1

2

(
3 cos2 θ − 1

)〉
≡ 5S, (2.2)

where S is a scalar order parameter which describes the degree of order of molecules

about the average orientation. The value of S is in the interval [−1
2
, 1]: In the case of

a perfect nematic order all molecules point in the direction of the director, θ = 0, and

S = 1. When the distribution of molecules is uniform over all directions 〈cos2 θ〉 = 1
3

and S = 0. The minimum value of S corresponds to a situation when all molecules

lie in the plane perpendicular to the director and there is no preferred direction in

this plane. Now, up to the first nontrivial term, the distribution function reads

f(θ) = 1 + 5SP2(cos θ) = 1 + 5S
1

2

(
3 cos2 θ − 1

)
= 1 + 5S

1

2

(
3(n̂ · â)2 − 1

)
= 1 + 5S

1

2
[3(niai)(njaj)− 1]

= 1 + 5S
1

2
[3(ninj)(aiaj)− δi,jaiaj] = 1 + 5S

1

2
(3ninj − δi,j) aiaj

= 1 + 5S
1

2
[3(n̂⊗ n̂)ij − (I)ij] aiaj = 1 + 5(Q)ij aiaj (2.3)

and

Q =
1

2
S (3n̂⊗ n̂− I) (2.4)

is the tensorial order parameter of the nematic liquid crystal which represents the

quadrupolar moment of the distribution, i.e., deviations from the perfect sphere.

Here, I is the second rank unit tensor.

If there are external fields acting on the nematic liquid crystal the cylindrical

symmetry of the order can be lost. In that case, the tensorial order parameter is

somewhat more complicated. With the procedure similar to the one in Eq. (2.3) one

ends up with

Q =
1

2
S (3n̂⊗ n̂− I) +

1

2
P (ê1 ⊗ ê1 − ê2 ⊗ ê2) (2.5)
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where P = (3/2)〈sin2 θ cos 2φ〉 denotes parameter of biaxiality of order, ê1 represents

a secondary director, and n̂, ê1, and ê2 form the orthonormal triad.

The full tensorial order parameter has five independent degrees of freedom. This

can be easily recognized if one considers, that the order parameter is a second rank

symmetrical traceless tensor: The second rank tensor has 9 degrees of freedom. Be-

cause it is symmetric, (Q)ij = (Q)ji, there are 3 degrees of freedom less, and, finally,

the constraint tr Q = 0 reduces the number of independent degrees of freedom for

one which leads to only 5 independent degrees of freedom. In the parametrization

considered in Eqs. (2.4) and (2.5) these degrees of freedom are two angles determin-

ing the orientation of the director, the scalar order parameter, the angle specifying

the orientation of the secondary director, and the parameter of biaxiality. In most

of the thesis the order parameter will be parameterized with respect to the 5 base

tensors of the symmetrical traceless tensor [32,33]

T0 =
3n̂⊗ n̂− I√

6
,

T1 =
ê1 ⊗ ê1 − ê2 ⊗ ê2√

2
, T−1 =

ê1 ⊗ ê2 + ê2 ⊗ ê1√
2

, (2.6)

T2 =
ê1 ⊗ n̂ + n̂⊗ ê1√

2
, T−2 =

ê2 ⊗ n̂ + n̂⊗ ê2√
2

.

All the above tensors are traceless and they are orthogonal with respect to the metric

Tn : Tm = tr (TnTm) = δn,m. (With this the magnitude of a tensor can be defined

as ‖A‖ =
√

tr A2.) In this parametrization the order parameter reads

Q =
2∑

m=−2

qmTm, (2.7)

where qm = tr (QTm). The multiplicative constants are set so that the amplitude

q0 represents the scalar order parameter, parameters q±1 are nonzero if the order is

biaxial, and parameters q±2 represent deviations in the orientation of the director

with respect to the assumed director n̂. If we interpret the nematic order in the

eigenframe it can be schematically visualized by a block with the length of sides

equal to λi +λ>, where λi’s are the eigenvalues of the tensor Q and λ> is the largest

of them. In the case of uniaxial order the ratio between the sides is 1 : 1 : 4.

Schematic representation of the nematic order is plotted in Fig. 2.1 together with

representation of amplitudes along different base tensors Ti.

The order that is represented by a tensorial order parameter is reflected in its

influence on the macroscopic tensorial physical quantities, such as magnetic suscep-

tibility. In the eigenframe, the magnetic susceptibility can be written as

χ =

χ1 0 0
0 χ2 0
0 0 χ3

 , (2.8)
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(a)

(b)
(c)

Figure 2.1 Schematic representation of (a) uniaxial and (b) biaxial nematic
order. In (c) deviations of amplitudes from the uniaxial nematic order are
visualized along base tensors. Variations of the degree of order correspond to
a breathing mode (T0); variations of the degree of biaxiality simultaneously
decrease one of the short sides and increase the other by the same amount
(T1), whereas the deviations of the biaxial and nematic director are identified
by rotations of the block about the long (T−1) and the two short axes (T±2),
respectively.
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where χ3 > χ1, χ2 are susceptibilities in the direction of the director and in two per-

pendicular directions ê1 and ê2, respectively. By use of the derived order parameter

[Eq. (2.5)] and the scalar product A : B = tr (AB) it can be rewritten as

χ =
2

3
χa

[
1

2
S (3n̂⊗ n̂− I)

]
+ χb

[
1

2
P (ê1 ⊗ ê1 − ê2 ⊗ ê2)

]
+ χiI. (2.9)

Here, χa = χ̃3− (χ̃1 + χ̃2)/2 is the biggest anisotropy of the magnetic susceptibility

and χ̃α = χα/S are susceptibilities of the perfectly ordered nematic, χb = χ̃1 − χ̃2

is nonzero in biaxially ordered nematic (χ̃α = χα/P ), and χi = (χ1 + χ2 + χ3)/3 is

the average magnetic susceptibility, i.e., its isotropic part.

2.2 Phenomenological Landau–de Gennes theory

Before we proceed with the Landau–de Gennes theory of phase transitions in liquid

crystals let us first recall the general properties of phase transitions and the basic

assumptions within the Landau description of phase transitions.

2.2.1 Landau theory of phase transitions

The term phase transition denotes a change in the medium which is accompanied

by discontinuity of some of the thermodynamic potentials and by a change of a

certain physical quantity, e.g., density of a medium, macroscopic magnetization or

polarization of the material, magnetic, electric and optical properties of the medium,

etc. If entropy of the system is a continuous function of thermodynamic variables

at the transition then the transition is of second order or continuous whereas it is

of the first order or discontinuous if the entropy is discontinuous. In the first order

transitions, heat is absorbed by the system in going from the low temperature to

the high temperature phase. The absorbed heat or the latent heat of the transition

is QL = Tc∆S, where ∆S is the difference of the entropies of the two coexisting

phases at the transition and Tc is the phase transtition temperature. The two

phases of the medium can either possess the same symmetry or the symmetry is

changed at the transition. The Landau theory pertains to the latter category of

transitions. In the following, the Landau theory will be reviewed [34]. Although it

was first established for continuous phase transitions it is used also for describing the

discontinuous transitions, however, in this case special care should be taken because

the order parameter exhibits a jump at the transition and is, thus, not necessarily

small.

In Landau theory, the information about the change of physical quantities as well

as of the change of the symmetry of the system is gathered in the order parameter



24 Phenomenological description

η0 which is a macroscopic quantity, η0 = V−1
∫

ddrη(~r), and neglects spatial and

temporal fluctuations. The basic concept of the Landau description of phase transi-

tions is the introduction of Landau free energy. The Landau free energy takes into

account the symmetry of the system through the power series expansion in terms of

the order parameter in the vicinity of the transition. This originates in the Legendre

transformation of the grand potential Ω(T, hi) of the system with which the external

fields hi related to physical quantities that change with order parameter(s) ηi are

replaced by the order parameter(s), F(T, ηi) = Ω(T, hi) +
∫

ddrhiηi. From this, the

equation of state of the system reads

∂f

∂ηi

= hi, (2.10)

where F =
∫

ddrf . When there are no external fields, the equilibrium state is the

one that minimizes f . If a solution to Eq. (2.10) with hi = 0 exists for a nonzero

η0 there can be spontaneous order provided that the free energy of the state with

nonzero η0 is lower than the free energy of the state with η0 = 0.

The Landau theory assumes that the order parameter is small in the vicinity of

the transition so that only the lowest terms required by symmetry and preventing

the free energy from diverging are kept in the expansion,

f = f0 +
1

2
Aη2

0 −
1

3
Bη3

0 +
1

4
Cη4

0 +O(η5
0), (2.11)

where f0 is the free energy density of the disordered phase. Coefficients A, B, and

C are determined phenomenologically and are temperature dependent. Coefficient

C > 0 in order for f to have a local minimum for η0 < ∞ whereas the parameter

A must change the sign at the temperature below which the solution η0 = 0 is not

possible anymore so that the solution η0 > 0 becomes stable. In the expansion

A = a(T − T ∗) + . . . only the first term is taken into account. The transition is

discontinuous. Usually, parameters B and C can be regarded as being constants. If

at some temperature B = 0 the temperature is referred to as a critical temperature.

In systems with the center of inversion the odd-power terms are not allowed by the

symmetry and the phase transition is continuous. If in addition the parameter C is

negative in some temperature interval next even-power term has to be added to the

expansion and the transition becomes discontinuous. The temperature at which the

line of continuous transitions changes to a line of discontinuous transitions between

the two phases is denoted as a tricritical point.

In the equilibrium, the free energy of the system has its minimum,

∂f

∂η0

= 0

∂2f

∂η2
0

> 0. (2.12)
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(a) (b)

Figure 2.2 (a) Free energy of a system with a continuous phase transition as
a function of the order parameter for various temperatures. (b) Temperature
dependence of the order parameter.

If the transition is continuous the order parameter ηdis
0 = 0 in the disordered phase

changes continuously to

ηord
0 = ±

√
a

C
(T − Tc) (2.13)

in the ordered phase which occurs below Tc = T ∗. Free energy of a system with center

of inversion and a continuous phase transition is plotted in Fig. 2.2. In Eq. (2.13)

we recognize the well-known critical exponent for the order parameter within the

mean-field theories, β = 1/2. At the phase transition, the first term in Eq. (2.11)

vanishes and the free energy of a system is a function of the fourth power of η0. This

means that the free energy of the system is undistinguishable from the equilibrium

value even if the order parameter deviates significantly from its equilibrium value.

Thus, the continuous phase transition is characterized by increased fluctuations of

the order parameter.

At the discontinuous phase transition the temperature of the transition is

shifted from T ∗ which is by definition the temperature below which the disordered

phase can not exist. Therefore, in the interval T ∗ < T < Tc the disordered phase

with ηdis
0 = 0 is metastable whereas it is stable above Tc. Here,

Tc = T ∗ +
2B2

9aC
. (2.14)

The ordered phase with

ηord
0 =

B

2C

1 +

√
1− 4aC

B2
(T − T ∗)


=

3

4
ηc

(
1 +

√
1− 8θ/9

)
(2.15)
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Figure 2.3 (a) Free energy of a system with a discontinuous phase transition
as a function of the order parameter for various temperatures. Dashed and
dotted lines correspond to Tc < T < T ∗∗ and T ∗ < T < Tc, respectively.
(b) Temperature dependence of the order parameter in stable (solid line) and
metastable state of the appropriate phase (dotted lines).

is stable below Tc and it is metastable in the temperature interval Tc < T < T ∗∗ =

T ∗ + B2/4aC. Here, ηc = ηord
0 (Tc) and θ = (T − T ∗)/(Tc − T ∗). Temperature

dependence of the order parameter in (meta)stable (dis)ordered phases is plotted

in Fig. 2.3(b) and the free energy of the system as a function of η0 is plotted in

Fig. 2.3(a). The latent heat associated with the transition is

Ql = Tc∆S =
TcaV

2
η2

c . (2.16)

At the phase transition, the free energy has a parabolic shape and the pretransitional

fluctuations are much smaller than the pretransitional fluctuations at the continuous

transition.

Fluctuations of the order parameter within the mean-field theory

Although in bulk the order is a macroscopic quantity and, on the average, depends

only on the external parameters such as temperature, pressure, and external fields,

due to finite temperature it is characterized by spatial and temporal deviations from

the average value, caused by thermal fluctuations. What is important when con-

sidering fluctuations is their correlation length which determines how big are the

islands characterized by different order. When the correlation length of the fluctu-

ations is small compared to the typical dimensions of the system the fluctuations

do not mask the average behavior of the system. On the other hand, highly cor-

related fluctuations change the order on large scales and perturb the macroscopic

appearance of the system. Since we are interested in spatial deviations of the order
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parameter with respect to the mean-field value η0 defined either in Eq. (2.13) or in

Eq. (2.15)

η(~r) = η0 + ∆(~r), (2.17)

where 〈η(~r)〉 = η0 and ∆(~r) are spatially-dependent fluctuations, 〈∆(~r)〉 = 0. To

describe spatial variations of the order parameter a gradient term has to be added

in the free energy density which reads in the first nontrivial order L(∇η)2/2. Here,

LV−2/3 is the measure for free energy density associated with deformation of the

order parameter and V is the volume of the system. The correlation function of

fluctuations reads

Γ(~r) = 〈η(~r)η(0)〉 − 〈η(0)〉2, (2.18)

where we have used the equality 〈η(~r)〉 = 〈η(0)〉 which is due to transitional invari-

ance of the system. Taking into account Eq. (2.17) the correlation function reduces

to

Γ(~r) = 〈∆(~r)∆(0)〉. (2.19)

Because of the continuous translational invariance of the system the functions of ~r

can be expanded in a Fourier series, f(~r) =
∑

~q f̃(~q) e−i~q·~r, so that Γ̃(~q) = 〈|∆̃(~q)|2〉.
The amplitudes ∆̃(~q) are derived from the free energy of the system which can be

by applying the Fourier series expansion rewritten in a form

F =
∫

d3r f (2.20)

= V(f0 +
1

2
Aη2

0 −
1

3
Bη3

0 +
1

4
Cη4

0) +
V
2

∑
~q

(A− 2Bη0 + 3Cη2
0 + Lq2)|∆̃(~q)|2.

Since the fluctuations are assumed to be small the free energy is written out only

up to the quadratic terms in fluctuations. From the equipartition theorem we know

that each degree of freedom which enters into the energy with a quadratic term holds

the internal energy kBT/2. Taking into account this and the Eq. (2.20) the Fourier

transform of a correlation function reads Γ̃(~q) = kBT/V(A − 2Bη0 + 3Cη2
0 + Lq2)

which gives in the direct space

Γ(~r) =
kBT

4πLr
e−r/ξ. (2.21)

Here, ξ =
√

L/(A− 2Bη0 + 3Cη2
0) is the correlation length of fluctuations. For finite

ξ, correlations are weak and decrease exponentially whereas for infinite correlation

length the correlations are long-range and decrease inversely with distance.

From the result for η0 in Eq. (2.13) the correlation lengths in the vicinity of a

continuous transition (B = 0) have the following temperature dependence,

ξ =

√
L

a(T − Tc)
; T > Tc,
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(2.22)

ξ =

√
L

2a(Tc − T )
; T < Tc.

On approaching the phase transition the correlation length in both, high temper-

ature disordered phase and low temperature ordered phase, diverges. The critical

exponent is in both cases ν = 1/2 which is again the common feature of mean-field

theories. Due to fluctuations the islands of ordered (disordered) phase occur in the

disordered (ordered) phase. Typical dimension of these islands is the correlation

length. Far from the transition the correlation length is small and the islands of

(dis)ordered phase do not change the macroscopic behavior of the system. Correla-

tions are smaller in the ordered phase. Getting closer to the transition the dimension

of islands grows and, finally, at the transition domains of different order extend over

the whole system.

In systems with a discontinuous phase transition the correlation lengths in

the two phases read

ξ =

√
L

a(T − T ∗)
; T > Tc,

(2.23)

ξ =

√√√√ L

2a(T ∗ − T ) + B2(1 +
√

1 + 4aC(T ∗ − T )/B2)/2C
; T < Tc.

Neither of them diverges at the phase transition, however, they diverge at the tem-

perature where the given phase ceases to exist even as a metastable phase. Nondi-

vergent behavior of the correlation length of fluctuations at the transition is a char-

acteristics of a discontinuous phase transition and leads to occurrence of metastable

phases and a jump of the order parameter at the transition. At the transition,

both of the phases are energetically equally favored, thus, the correlation lengths of

fluctuations in both phases are equal there.

Goldstone mode and soft mode

As it was derived in Eq. (2.20) the free energy associated with a certain fluctuation

mode is

F~q =
VL

2
(ξ−2 + q2). (2.24)

In the following Sections this free energy will be related to the relaxation rate µ~q

for the decrease of the excited mode, µ~q ∝ (ξ−2 + q2) and consequently, F~q ∝ µ~q.

There are two specific types of fluctuation modes in which we will be interested

in the study of thermal fluctuations in confined nematic liquid-crystalline systems:

Goldstone modes and soft modes.
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When the correlation length of fluctuations diverges the relaxation rate of a

long wavelength mode (~q → 0) drops down to 0 — the free energy associated with

a deformation caused by the mode is very small. Soft modes are modes whose

relaxation rate drops to zero at the transition whereas it is nonzero elsewhere. From

the consideration of correlation lengths we can deduce that the ~q = 0 fluctuation

mode of the order parameter characteristic for a given continuous transition belongs

to the category of soft modes. On the other hand, the relaxation rate of a Goldstone

mode drops to zero at the transition and stays critical within the entire range of

a given ordered phase. At the phase transition from the disordered to the ordered

phase the symmetry of the system is typically lowered. This spontaneous breaking

of the symmetry is accompanied by a multiple degeneration of the ground state.

The system is brought from one ground state to the other by symmetry operations

of the high-symmetry phase. If the broken symmetry is continuous a fluctuation

mode occurs whose deformation of the system represents a continuous change from

one ground state to another and so on. In the thermodynamic limit with ~q →
0 this excitation does not increase the free energy of the system. The mode is

called a Goldstone mode and the condition for its existence is stated in a Goldstone

theorem [35–37].

Ginzburg criterion

The measure of the importance of fluctuations of the order parameter is the difference

between the order parameter and its mean-field value averaged over the correlation

volume Vξ ∼ ξ3,

δηcor = V−1
ξ

∫
Vξ

ddr (η(~r)− η0) , (2.25)

where d is the dimensionality of the system. Fluctuations are negligible if in the

ordered phase 〈(δηcor)
2〉 = V −1

ξ

∫
Vξ

ddr Γ(~r) � η2
0 [38]. Taking into account previ-

ously derived correlation function [Eq. (2.21)] and the mean-field value of the order

parameter written out in Eq. (2.13), the criterion for the negligibility of fluctuations

reads (
Tc − T

Tc

)(4−d)/2

� Id

∆cvξd
0

kBT 2

2T 2
c

. (2.26)

Here, ∆cv = a2Tc/2C denotes the difference between heat capacity per unit volume

in ordered and disordered phase, and ξ0 =
√

L/2aTc is the bare correlation length.

Parameter Id =
∫

ddx x−(d−2)Y (x) depends solely on the dimensionality of the sys-

tem, whereas the integral Y (x) =
∫∞
0 dz zd−1

∫
(dΩd/(2π)d) eiz cos θ/(z2 + x2) comes

from the correlation function, Γ(~r) = (kBT/Lrd−2)Y (r/ξ). The criterion was first

derived by Ginzburg [39] which yields the name Ginzburg criterion. Although the
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criterion was derived by considering fluctuations in the ordered phase it also applies

in the disordered phase [38].

For d > 4 the left hand side of Eq. (2.26) diverges as T approaches Tc and the

Ginzburg criterion is always satisfied near the critical point. On the contrary, for

d < 4, |Tc− T |4−d tends to zero as T → Tc and the Eq. (2.26) is never satisfied near

the critical point. Thus, the mean-field theory provides an adequate description

of continuous transitions for d > 4 and it breaks down for d < 4. The dimension

dc = 4 below which the mean-field theory fails to describe the continuous transition

adequately is called the critical dimension. For d < dc, the mean-field theory is valid

far from the phase transition and up to the Ginzburg temperature TG,

|Tc − TG|
Tc

∼
(

kBId

2∆cvξd
0

)2/(4−d)

. (2.27)

In systems with d < dc , however, with ξ0 →∞ the mean-field theory is valid even

close to the transition; ξ0 →∞ in systems with long-range forces.

2.2.2 Phase transition in a nematic liquid crystal

Isotropic–nematic phase transitions are typically only weakly discontinuous which is

reflected in the narrow interval of metastable phases. Typically, the isotropic phase

can be undercooled for ∼ 1 K and the nematic phase can be overheated for ∼ 0.1 K.

Therefore, the isotropic–nematic transition can be described within the Landau

theory of phase transitions. Here, we will use the extended theory which permits

local variations of order parameter, however, the variations are on the lengthscales

much larger than the length of a molecule (typically 1 nm) which preserve continuum

description of the system. To do this, the free energy is expanded in a power series of

scalar invariants of the order parameter and the gradient terms are considered only

up to the quadratic term. The order parameter for the isotropic–nematic transition

was derived in Section 2.1. Here, we will use the parametrization in terms of five

base tensors in Eqs. (2.6) and (2.7), so that in the uniaxial nematic tr Q2 = S2.

The free energy of the system must be invariant to all symmetry operations

that preserve the system in the high symmetry phase. The isotropic phase has

full symmetry. Scalar invariants of a tensor are its trace and determinant. Both

invariants are preserved with rotations, however, the determinant changes sign with

reflections. Thus, the free energy is expanded in a power series of traces of powers of

the order parameter. As defined in Section 2.1, tr Q ≡ 0, so the first nontrivial term

is tr Q2. The absence of the first order term is in accordance with the existence of the

stable high temperature phase with Q = 0. There are no other second order terms

than tr Q2 and there is also only one third order invariant, tr Q3. It is included in the
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Figure 2.4 Schematic representation of three basic elastic deformations of the
director field in an uniaxial nematic liquid crystal: (a) splay with (∇· n̂)2 6= 0,
(b) twist with [n̂ · (∇× n̂)]2 6= 0, and (c) bend with nonzero [n̂× (∇× n̂)]2.

expansion because ±Q have different physical meaning; from Eq. (2.9) we can see

that for materials with positive magnetic anisotropy, which are studied in this thesis,

Q > 0 corresponds to nematic phase in which molecules tend to orient along the

director whereas Q < 0 is associated with a nematic phase in which molecules orient

in the plane perpendicular to the director. There are two fourth order invariants,

tr Q4 and ( tr Q2)2, however, for symmetric tensors tr Q4 = ( tr Q2)2/2 and we will

use only ( tr Q2)2 in the expansion. Higher order invariants are not considered here

so that the homogeneous part of the free energy density reads

fhom = fiso +
1

2
A(T − T ∗) tr Q2 − 1

3
B tr Q3 +

1

4
C( tr Q2)2, (2.28)

where A, B, and C are temperature independent, and T ∗ is the supercooling temper-

ature. The magnitude of A is typically 10−5 J/m3K whereas B ∼ C ∼ 10−6 J/m3.

Since spatial variations of order parameter are allowed gradient terms have to be

added to the free energy. There are many symmetry allowed invariants related to

gradients of the tensorial order parameter. Up to second order derivatives: L(1)Qij,ij;

L
(2)
1 Qij,kQij,k, L

(2)
2 Qij,iQkj,k, L

(2)
3 Qij,kQkj,i, L

(2)
4 Qij,ikQjk, L

(2)
5 Qij,kkQij; L

(3)
1 QijQij,kQkl,l,

L
(3)
2 QijQik,jQkl,l, L

(3)
3 QijQik,kQjl,l, L

(3)
4 QijQik,lQjk,l, L

(3)
5 QijQik,lQjl,k, L

(3)
6 QijQik,lQkl,j,

etc., where Qij,k = ∂Qij/∂xk [40,41]. In the vicinity of the phase transition, one is

not interested in elastic deformations of nematic director but rather in spatial varia-

tions of the degree of nematic order. Therefore, the pretransitional nematic system

is described adequately within the usual one-elastic-constant approximation,

fel =
1

2
L∇Q

...∇Q. (2.29)

Here, L = L
(2)
1 is typically in order of 10−11 N to 10−10 N.

Deep in the nematic phase, variations of the scalar order parameter do not play

significant role and the main contribution to the elasticity of the system is due to

elastic deformations of the director field which contribute to the free energy density

fFrank
el =

1

2

{
K11(∇ · n̂)2 + K22[n̂ · (∇× n̂)]2 + K33[n̂× (∇× n̂)]2

}
(2.30)
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+K13∇ · [n̂(∇ · n̂)]−K24∇ · [n̂(∇ · n̂) + n̂× (∇× n̂)].

The terms apply to invariants with respect to rotations of the system as a whole,

space inversion, and the transformation n̂ → −n̂. Here, the first three terms cor-

respond to three basic deformations of the director field, splay, twist, and bend

deformations, respectively. These deformations are schematically represented in

Fig. 2.4. The description of the nematic liquid crystal within the frame of elastic

deformations of the director whereas the other degrees of freedom of the nematic

order are considered to be constant is known as the Frank elastic description [42].

The stiffness of the nematic with respect to a given deformation is determined by pa-

rameters Kij; typical magnitude being 10 pN [4]. The other two terms in Eq. (2.30)

correspond to splay-twist and saddle-splay deformations, respectively. From their

form it can be seen that unlike the three bulklike terms they represent a kind of

surface terms, therefore, they are often neglected in studies. In the last decade

the interest in these terms was renewed in the studies of spontaneously deformed

nematic liquid crystals characterized by stripe-domain structure [43,44]. However,

there are still arguments in favor or against these terms. The main reason for that

is that unlike the first three terms which are obviously positive definite for the K13

and K24 terms the existence of the lower limit is not that evident. In fact, it can

be shown that the saddle-splay term has the lower limit [45] whereas the K13 term

does not.

The one-elastic-constant approximation used in Eq. (2.29) corresponds to the

case Kii = K, K13 = 0, and K24 = K in the Frank elastic theory and does not allow

any spontaneous deformation of the director field. In the uniaxial nematic liquid

crystal parameters L and K relate through K = 9LS2/2.

Within the mean-field theory there are no spontaneous elastic deformations since

any deformation increases the free energy. As discussed before, if we take into

account thermal fluctuations of the director even in bulk the director field is not

uniform but bent due to Goldstone director mode. However, when the nematic

liquid crystal is subject to interactions with the confining walls the equilibrium

order can be also perturbed. In this thesis we are interested in highly constrained

nematic liquid crystals where the interaction with the walls and their effect can not

be neglected. On the microscopic level, the molecules of the walls and of the liquid

crystal attract each other via van der Waals interaction. This interaction is rather

short-range since it decreases with distance as 1/r6. Therefore, it is assumed that

only the molecules that are in a contact with the wall interact with it — contact

interaction. On the macroscopic level, this interaction reduces to the quadruple–

quadruple interaction and can be, as the interaction between molecules of the liquid

crystals, expanded in a power series over scalar invariants. Usually, only the first
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order term is taken into account although some experimental evidence suggest that

higher orders could be important as well [17,46–48,16]. (Temperature dependence of

extrapolation length of the substrate–liquid crystal interaction can not be modelled

by taking into account only the quadratic term. This is discussed in more detail in

Section 5.4 on page 140.) The contribution from this interaction to the free energy

density of a nematic liquid crystal is modeled by an improved expression of the

Rapini–Papoular expression [49], first suggested by Nobili and Durand [17],

fS =
1

2
G tr (Q− QSi

)2δ(z − zS), (2.31)

where G is the strength of the interaction, QS is the preferred value of the tensor

order parameter at the substrate, and the wall is located at z = zS. In the case of

uniaxial nematic order the anchoring strength G can be related to anchoring strength

W for the bare director description as W = 3GS2, where S is the scalar order

parameter. Often, the anchoring strength is measured in terms of the extrapolation

length which denotes the length on which the director field would relax to the one

preferred by the substrate. It is the measure for the relevance of the competing

elastic distortions vs. violating substrate induced order, λ = K/W or, similarly,

λ = 3L/2G. The criterion whether the anchoring is strong or weak is the ratio

between the extrapolation length and typical dimension of the system; λ/d → 0

corresponds to strong anchoring whereas λ/d� 1 is associated with weak anchoring.

It is useful to rewrite the quantities into a dimensionless form. Thus in the

following, all coordinates will be measured in terms of the film thickness d and

the correlation length ξNI = ζd =
√

27CL/B2 ≈ 10 nm. The order parameter

will be rescaled in units of the scalar order parameter of the nematic phase at the

phase transition temperature, Sc = 2B/3
√

6C which is typically between 0.2 and

0.6, and the temperature will be controlled by θ = (T − T ∗)/(TNI − T ∗), where

TNI = T ∗ + B2/27AC is the bulk nematic–isotropic phase transition temperature;

the reduced temperatures θ = 1, 0, and 9/8 correspond to the bulk phase transition

temperature, and to the supercooling and superheating limits, respectively. Thus,

the dimensionless free energy density reads

f = fiso +
1

2
θ tr Q2 −

√
6 tr Q3 +

1

2
( tr Q2)2 +

1

2
ζ2∇Q

...∇Q, (2.32)

where f is measured in units of f̃ = Lξ−2
NI S

2
c and ∇ corresponds to derivatives with

respect to dimensionless coordinates xi ← xi/d. The substrate induced contribution

to the free energy density is rescaled in

fS =
1

2
g tr (Q− QS)2δ(z − zS), (2.33)
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where g = (ξ2
NI/Ld)G or g = (3ξ2

NI/2d)λ−1 in terms of the extrapolation length.

Unless stated otherwise, the calculations will be performed for a nematic liquid

crystal 5CB with A = 0.13×106 J/m3K, B = 3.89×106 J/m3, C = 3.92×106 J/m3,

L = 9 × 10−12 N, and T ∗ = 307.1 K [50,51]. Here, Sc ≈ 0.27, TNI − T ∗ ≈ 1.1 K,

and the latent heat ql = B4/729C3[TNI/(TNI −T ∗)] ≈ 1.5 ·106 J/m3 which is rather

small comparing to the latent heat of the typical first order transition — for melting

of ice ql = 3.36 · 108 J/m3.

2.2.3 Correlation lengths of the nematic order parameter

Again, we will discuss the validity of the mean-field description of the isotropic–

nematic phase transition in terms of correlations of fluctuations of the nematic

order parameter. In the bulk, the average equilibrium order is uniaxial with the

order parameter QMF = A = a0T0 and a0 = S. Due to thermal fluctuations,

the local order can deviate from the average mean-field value, Q(~r) = A + B(~r),

where 〈B(~r)〉 = 0 and ‖B‖ � ‖A‖. If B is expanded in terms of the base tensors

Eq. (2.6), B =
∑2

m=−2 bmTm, the free energy density depends only on amplitudes

qm, q being either a or b. By the Fourier expansion and up to the quadratic terms

in deviations from the mean-field order, the free energy is decomposed in a mean-

field part and a sum of contributions from independent fluctuation modes, F =

Fiso +V f̃(θa2
0/2− a3

0 + a4
0/2) +

∑
mHm, where Hm is a Hamiltonian associated with

a given type of fluctuations,

Hm =
V f̃

2
ξ2

NI

∑
~q

(
ξ−2
m + q2

)
|b~q|2. (2.34)

Here, ~q is the wavevector of a specific fluctuation mode and ξm is the correlation

length associated with fluctuations of the scalar order parameter (m = 0), fluctu-

ations of biaxiality (m = ±1), and director fluctuations (m = ±2), as they were

represented in Fig. 2.1(c);

ξ−2
0 /ξ−2

NI = θ − 6a0 + 6a2
0,

ξ−2
±1/ξ

−2
NI = θ + 6a0 + 2a2

0, (2.35)

ξ−2
±2/ξ

−2
NI = θ + 3a0 + 2a2

0.

Due to the uniaxial symmetry of the nematic phase the two types of fluctuations of

biaxiality are degenerated and so are the two types of director fluctuations.

In the isotropic phase, there is no order and all directions are equivalent, there-

fore, all types of fluctuations must have the same correlation length. Indeed, if we

put a0 = 0 in Eqs. (2.35) we find out that the correlation lengths of all degrees of
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freedom in the isotropic phase are

ξ−2
I /ξ−2

NI = θ. (2.36)

As expected, the correlation length does not diverge at the transition where θ = 1,

however, it diverges at the supercooling limit of the isotropic phase. On the other

hand, in the nematic phase a0 = 3/4 (1 +
√

1− 8θ/9) and

ξ−2
N,0/ξ

−2
NI =

9

4

√
1− 8θ/9

(
1 +

√
1− 8θ/9

)
,

ξ−2
N,±1/ξ

−2
NI =

27

4

(
1 +

√
1− 8θ/9

)
, (2.37)

ξ−2
N,±2/ξ

−2
NI = 0.

The correlation length of director fluctuations is infinite in the whole range of the

stable nematic phase. Director is the order parameter responsible for breaking

the full continuous rotational symmetry of the isotropic phase, thus, the director

excitation with the infinite wavelength (~q → 0) is the Goldstone mode. Fluctuations

of other degrees of freedom of the nematic order are much more energy consuming.

The correlation length of fluctuations of the scalar order parameter diverges at the

superheating temperature θ∗∗ = 9/8. In the vicinity of the transition to the isotropic

phase

ξ−2
N,0/ξ

−2
NI ≈ 6− 5θ,

ξ−2
N,±1/ξ

−2
NI ≈ 18− 9θ. (2.38)

Now we can set the meaning to the correlation length ξNI — it is the correlation

length of fluctuations of the scalar order parameter at the bulk isotropic–nematic

phase transition. The hardest type of fluctuations in the uniaxial nematic phase are

fluctuations of biaxiality since they oppose to the established symmetry of the phase.

Temperature dependence of correlation lengths of different types of fluctuations are

depicted in Fig. 2.5.

2.3 Dynamics of the ordered fluid

At a phase transition or on applying external fields the order of the system changes.

To describe the changes on the macroscopic level we have to restrict ourselves to

phenomena which happen on timescales much larger than the characteristic times for

microscopic phenomena — the time between two distinct collisions. The dynamics

on the macroscopic level is related to acquiring the equilibrium; the process associ-

ated with that is dissipative. In this Section the equations describing the dissipative

dynamics will be derived [52,53].
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Figure 2.5 Temperature dependence of correlation lengths in the isotropic
and nematic phase. Continuations of the lines across the dotted vertical cor-
respond to the correlation lengths in the corresponding metastable phase.

First, we will introduce the basic terminology and physical quantities on the

example of a homogeneous body moving in an isotropic liquid. The state and motion

of such system is described by a set of macroscopic observables xi, where i = 1, .., s

and s is the total number of degrees of freedom of the system. In general, these are

the 3 spatial coordinates, 3 components of the macroscopic velocity of the system,

Euler’s angles, etc., and components of the order parameter. The entropy of a system

is a function of the thermodynamic state of the system, thus, it depends on the just

mentioned macroscopic observables, S = S(xi). Let us define thermodynamically

conjugate quantities to observables xi,

Xi = − ∂S
∂xi

. (2.39)

With these, the production of the entropy can be written as

Ṡ =
dS
dt

= −
s∑

i=1

Xiẋi. (2.40)

In the equilibrium, the entropy reaches its maximum, dS =
∑

∂S/∂xi dxi = 0,

which is realized if Xi = 0 for each i. Simultaneously, the production of entropy

is equal to 0. The production of entropy accompanies irreversible processes, i.e.,

the approach of the equilibrium. Thus, the system which approaches the thermal

equilibrium acts like an origin of the entropy. So far as the state of the system is not

too far from the equilibrium the linear relations between “flows” xi’s and “forces”

Xi’s can be assumed [54],

ẋi = −
s∑

j=1

γijXj, (2.41)
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with kinetic coefficients γij. (The relaxation of slightly non-equilibrium system is

described by ẋi = −∑j λijxj. From the definition of Xi in Eq. (2.39) and, again, not

to far from the equilibrium, the thermodynamic conjugate Xi’s can be expanded in

Xi =
∑

j βijxi, where βij = −∂2S/∂xi∂xj and, thus, βij = βji. Then, by expressing

xi from the latter expansion and by using this in the expression for ẋi the Eq. (2.41)

follows directly [52].) In 1931 Onsager showed that from the reversibility of dy-

namical laws governing the microscopic processes behind observable macroscopic

phenomena

γij = γji, (2.42)

which is known as the Onsager’s reciprocity principle [55,54].

The state of a rigid body under a dissipative motion in a viscous medium is

described by generalized coordinates Qi and impulses Pi, where i = 1, .., s. If H =

H(Qi, Pi) is the energy of a system then the non-dissipative motion is determined

by

Ṗi = − ∂H
∂Qi

, (2.43)

where Pi = ∂H/∂Q̇i. When the processes become dissipative the dissipative terms

introduced in Eq. (2.41) have to be added to equations of motion [Eq. (2.43)],

Ṗi = − ∂H
∂Qi

−
s∑

j=1

γijXPj
. (2.44)

The deviation of the entropy of a closed system, which is not in its equilibrium,

from its maximum value equals ∆S = −Amin/T , where Amin is the minimum work

required to bring the system (body in a system) in the given non-equilibrium state

and T is the temperature of the system [52]. In the case discussed here Amin = ∆H,

thus, XPi
= −∂S/∂Pi = 1/T (∂H/∂Pi) = Q̇i/T and

(
Ṗi

)
dis

= −∑s
j=1 γijQ̇j, where

γij ← γij/T . Since the matrix γ is fully symmetric the latter eqution can be reduced

to (Ṗi)dis = −∂D/∂Q̇i, where

D =
1

2

s∑
i,j=1

γijQ̇iQ̇j (2.45)

is a bilinear form of velocities, which is called the dissipation function. Now, the

equations of motion can be rewritten in

Ṗi = − ∂H
∂Qi

− ∂D
∂Q̇i

. (2.46)

Temporal evolution of the system is determined by a reactive part and a dissipative

part describing the part of the energy of the system which converts into heat. The
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rate of the decrease of the energy of the system is thus, Ḣ =
∑

i[Q̇i(∂H/∂Qi) +

Ṗi(∂H/∂Pi)] =
∑

i Q̇i[(∂H/∂Qi) + Ṗi] = −∑i Q̇i(∂D/∂Q̇i) = −2D.

The above derived equations of a dissipative motion can be generalized for macro-

scopic motion of continuum media such as liquids and liquid crystals. Here, we have

to take into account the spatial dependence of macroscopic velocity as well as of

macroscopic observables. In that case, the entropy of the system is a function of

macroscopic observables and their gradients, S =
∫

d3r s(xi,∇xi). The production

of entropy is then

Ṡ =
∫

d3r ṡ =
∫

d3r
∑

i

(
∂s

∂xi

ẋi +
∂s

∂∇xi

∇ẋi

)

=
∫

d3r
∑

i

(
∂s

∂xi

−∇ ∂s

∂∇xi

)
ẋi +

∫
d3r

∑
i

∇ ·
(

∂s

∂∇xi

ẋi

)
, (2.47)

where the first term can be rewritten in terms of products of flows ẋi and forces Xi,

Xi = − ∂s

∂xi

+∇ ∂s

∂∇xi

, (2.48)

which determine the dissipative nature of the motion. The second term in production

of entropy,
∫

d3r
∑

i∇ · [ẋi(∂s/∂∇xi)] =
∑

i

∮
S d~S · [ẋi(∂s/∂∇xi)], corresponds to

dissipation of energy on the surfaces. This can be neglected in bulk systems, however,

we will neglect it even in the case of systems with high surface-to-volume ratio.

The deviation of the entropy density from its maximum value is again related to

the minimum work required to bring the system in a given non-equilibrium state,

δs = −amin/T . Due to inhomogeneity of the system we do not now the exact

amount of this work, however, we know that it depends on variations of macroscopic

observables and their gradients which cause internal friction in the system. The

change of the macroscopic velocity for a constant value or the rotation of a system

as a whole do not cause any relative internal motion, thus, they do not contribute

to the dissipation. Therefore, the minimum work and consequently, the dissipation

function do not depend on velocity but rather on its gradient. The work related to

changes of the order of the system is phenomenologically determined to be equal

to f(η,∇η) as it was written out in Eqs. (2.11) and (2.32). In addition to these

contributions there is also a contribution which couples the velocity field and the

order of a system.

The equations of motion of a continuum system are written in the same way as

for the rigid body [Eqs. (2.44) and (2.46)], however, the energy H has to be replaced

by the energy density h = H/V . The dissipative part of equation is described

by a dissipation function which is constructed to be a bilinear form of invariants

of macroscopic observables and their gradients allowed by symmetry. Coefficients
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before the terms are determined phenomenologically. The state of the system and its

dynamic behavior is further determined by the dynamics of the order parameter(s),

η̇ = −∂D
∂η

. (2.49)

The evolution of the order is purely dissipative. In general, it is coupled to gradients

of the velocity field which makes the description even harder.

The energy density of an isotropic fluid reads

h =
1

2
ρ~v2 + p, (2.50)

where ρ is the density of the fluid, ~v is the spatially dependent macroscopic flow,

and p is the pressure in a given point. The state of the system in a point ~r is

described by the impulse ~p = ∂h/∂~v = ρ~v. The reactive part of the equation

of motion then reads ρ~̇v = −∇p, where ~̇v is the material time derivative of the

velocity, ~̇v = ∂~v/∂t + (~v · ∇)~v. Taking into account the dissipative nature of the

motion, X~p = −(1/T )∇ · (∂amin/∂∇~p), where we have taken into account that amin

depends solely on gradient of the velocity. From this, the equation of motion reads

ρ~̇v = −∇h +∇ · ∂D
∂∇~v

, (2.51)

where (∂D/∂∇~v) = γ(∂amin/∂∇~v) and D is the dissipation function which is in the

case of isotropic fluid D = [η′(∇~v) : (∇~v)+η′′ tr (∇~v)2 +η′′′( tr∇~v)2]/2. The viscous

coefficients η′, η′′, and η′′′ are determined phenomenologically. In incompressible

fluids η′′′ ≡ 0, whereas η′ = η′′ because D must be zero for pure rotations, ~v = ~ω×~r.

Taking into account all these, the Eq. (2.51) reduces to the well-known Navier–Stokes

equation,

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = −∇p + η′∇2~v. (2.52)

In the anisotropic liquid, the dissipation is also due to variations of the order pa-

rameter(s). Therefore, first, terms bilinear in invariants of the order parameter and,

secondly, terms coupling the order and the motion of the system, have to be added

in the dissipation function. The latter terms, denoted as Da, depend on the charac-

ter of the order parameter and will be written out at the end of this Section. The

dissipative terms related solely to the variations of order can be written out in terms

of linear laws,

η̇ = −γ′Xη −
∂Da

∂η
, (2.53)

where by definition Xη = ∇ · [∂s/∂(∇η)] − (∂s/∂η). The change of the entropy

density due to variations of the order parameter, s = −f(η,∇η)/T , thus,

η̇ = γ

(
∇ · ∂f

∂∇η
− ∂f

∂η

)
− ∂Da

∂η
. (2.54)
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The left-hand side of Eq. (2.54) and the second term of its right-hand side are

associated with the friction whereas the force Xη corresponds to the generalized

elastic force which is due to the macroscopic order. In equilibrium, both forces are

equal to 0. Due to the macroscopic order the equation of motion changes as well,

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = −∇p + η′∇2~v +∇ · ∂D

a

∂∇~v
. (2.55)

The part of the dissipation function which couples the macroscopic flow and

the order in the system is a bilinear form of gradients of velocity and the order

parameter. In the case of a scalar order parameter bilinear invariants coincide

with scalar invariants of gradients of velocity, thus,

Da =
1

2
α1η

2( tr∇~v)2 +
1

2
α2η

2 tr (∇~v)2 +
1

2
α3η

2∇~v : ∇~v. (2.56)

For the vectorial order parameter, η → ~η,

Da =
1

2
α1(~η · ∇~v)2 +

1

2
α2(∇~v · ~η)2 +

1

2
α3(~η · ∇~v) · (∇~v · ~η), (2.57)

whereas in the case of a tensorial order parameter, η → η,

Da =
1

2
α1(η : ∇~v)2 +

1

2
α2(∇~vη) : (∇~vη) +

1

2
α3(∇~vη) : (η∇~v)

+
1

2
α4(η∇~v) : (∇~vη) +

1

2
α5(η∇~v) : (η∇~v) +

1

2
α6(∇~v : η)(η : ∇~v)

+
1

2
α7[ tr (η∇~v)]2 +

1

2
α8 tr (η∇~v∇~vη) +

1

2
α9 tr (η∇~v)2. (2.58)

In the case of a symmetric, traceless, second rank tensor the dissipation function Da

is less complicated since (η : ∇~v)2 = (∇~vη) : (η∇~v) = (η∇~v) : (∇~vη) = (∇~v : η)(η :

∇~v) = [ tr (η∇~v)]2 = tr (η∇~v)2 = [n̂ · ∇~v · n̂]2.

In the case of anisotropic liquids, due to the coupling between the macroscopic

motion and the order of the system the description of dissipative processes is rather

complex. One has to deal with (1 + 3 + the number of components of the order

parameter) coupled partial differential equations: ∇ · ~v = 0 for the incompressible

fluid, and Eqs. (2.55) and (2.54), for the same number of observables: pressure, 3

components of the velocity field, and independent degrees of freedom of the order

parameter. However, in nematic liquid crystals the typical time for equilibration of

the velocity field, τ~v ∝ 1/η′, is several orders of magnitude smaller than the typical

time τn̂ for the relaxation of the nematic director, τ~v/τn̂ ∼ 10−6 [4,56]. Thus, the

adiabatic approximation which assumes the velocity field to immediately follow the

orientational changes of the system is not far from reality. In the following, we will be

interested in pretransitional dynamics of the liquid crystal without any macroscopic
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motion. If there is no macroscopic velocity when the system is far from the phase

transition and if the transition is approached with small and slow changes, within

the adiabatic approximation, no motion will be induced. In that case the dissipative

equations derived in this Section reduce to

∂η

∂t
= −γ

δf

δη
, (2.59)

where δ/δη = ∂/∂η−∇·(∂/∂∇η) denotes functional derivative with respect to η and

γ−1 is a generalized viscosity associated with the relaxation of the order parameter.

The same result could be obtained also directly from the Landau–Khalatnikov

equation [7]. In 1954 Landau and Khalatnikov proposed that in the case of a non-

equilibrium configuration of the order parameter the latter relaxes to the equilibrium

value as dη/dt = −Γ−1∂Φ/∂η, where Φ is the appropriate thermodynamic potential,

and Γ is a generalized viscosity coefficient. Now, the equation is known also as a

time-dependent Ginzburg–Landau model (TDGL) [38]. The Landau–Khalatnikov

equation obtained in Eq. (2.59) can be understood as follows: The equilibrium

configuration of the order parameter is determined by the minimum of the free

energy, δF =
∫

dVδf(η,∇η) =
∫

dV(δf/δη)δη, which is satisfied for δf/δη = 0. If

the system is out of the equilibrium δf/δη acts like a generalized elastic force which

is balanced by viscous forces. When the macroscopic velocity can be neglected the

viscosity is related solely to the rate of change of the order parameter η̇.

2.3.1 Pretransitional collective dynamics in a nematic liquid
crystal

In the equilibrium, the macroscopic order corresponds to the minimum of the free

energy. Due to T > 0 there are motions on the microscopic level which can result

in a collective motion — thermal excitations with characteristic energy kBT . When

the system is excited out of the equilibrium it relaxes back following the relaxation

equation [Eq. (2.59)]. For the nematic liquid crystal with a tensorial order param-

eter the generalized viscosity is in general a tensor. In the ordered phase, one can

expect that due to the anisotropy of the order the viscosities differ with respect to

directions along different eigenvectors. In nonhomogeneously ordered nematic the

generalized viscosity can be also spatially dependent. However, in order to simplify

the description the generalized viscosity will be assumed to be isotropic with the

effective value equal to the average viscosity, γ−1 = γ−1I. In the case of a nematic

liquid crystal with the free energy density written out in Eqs. (2.32) and (2.33) the

relaxation equation reads

∂Q

∂t
= −θQ + 3

√
6
←→
Q2 −2Q tr Q2 + ζ2∇2Q, (2.60)
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where time is measured in units of time τa = 27Cγ−1/B2, which is related to the

relaxation of the alignment, t ← t/τa. The value of τa ∼ 10−8 s is determined

phenomenologically [32]; typical values of the effective generalized viscosity are

γ−1 ∼ 0.01 kg/ms [4]. The operator
←→
. . . denotes the traceless part of the ten-

sor in question. The surface part of the free energy is non-negligible only in the

immediate proximity of the confining wall, thus, it reduces to boundary conditions

for the order parameter,

(n̂S · ∇)Q = ± g

ζ2
(Q− QS)

∣∣∣∣on surface
, (2.61)

where n̂S is the surface normal and ± correspond to the wall placed at ~rS where ~rS+~ε

is either within the liquid crystal or outside, respectively. As already mentioned, the

dissipation of energy on the confining substrates is neglected in this study. Usually,

the motion of molecules close to the substrates is hindered due to the anchoring

and the energy dissipated at the substrate can be assumed very small. If this would

not be the case, the second term in Eq. (2.47) would contribute to the boundary

conditions as well.

In the equilibrium, Q =
∑2

i=−2 ai(~r)Ti is not time-dependent and the Eq. (2.60)

reduces to five coupled, scalar, differential equations for five scalar amplitudes ai(~r),

0 = −
(
θ − ζ2∇2

)
ai + 3

√
6

2∑
j,k=−2

ajak tr (TiTjTk)− 2ai

2∑
j=−2

a2
j , (2.62)

with boundary conditions

(n̂S · ∇)ai = ± g

ζ2
(ai − ai,S)

∣∣∣∣on surface
. (2.63)

Here, it was assumed that the system can be described by a constant set of base

tensors Ti which is usually true in planar geometry and in some special cases in

curved geometries. In a particular geometry and with given anchoring conditions

the problem is generally simplified, since due to the symmetry reasons some of the

amplitudes are equal to 0. In addition to that, only few of the products TiTjTk

have a nonzero trace; the combinations of base tensors which have a nonzero trace

are listed in Table 2.1. In planar geometry, in the case of a uniaxial nematic order

(ai6=0 = 0) one is left with only one scalar equation.

When considering pretransitional collective dynamics let us repeat that the

derived equations hold for states not far from the equilibrium. Thus, the or-

der can be assumed to be only slightly perturbed with respect to the equilibrium

value, Q(~r, t) = A(~r) + B(~r, t), where A is the equilibrium order parameter de-

termined by the mean-field theory [Eq. (2.62)] and B is a small fluctuating part,
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Table 2.1 List of products of up to three base tensors Tα with nonzero trace:
trTi = 0, tr (TiTj) = δi,j , and tr (TiTjTk) is as follows in the Table. Base
tensors are defined in Eq. (2.6).

i j k tr (TiTjTk)

0 0 0 1/
√

6

0 ±1 ±1 −1/
√

6

0 ±2 ±2 1/2
√

6

1 ±2 ±2 ±1/23/2

2 −1 −2 1/23/2

‖B‖ � ‖A‖. If B is small it can be assumed to be governed by a linearized form

of equation of motion [Eq. (2.60)], which is equivalent to describing fluctuations

within the harmonic approximation. The linearized form of the relaxation equation,

Ḃ = −(∂2f/∂A2)B + ζ2∇2B, reads

∂B

∂t
= −θB + 3

√
6(AB + BA)− 2B tr A2 − 4A tr (AB) + ζ2∇2B, (2.64)

or in terms of amplitudes bi, B(~r, t) =
∑2

i=−2 bi(~r, t)Ti,

∂bi

∂t
= −θbi +6

√
6

2∑
j,k=−2

ajbk tr (TiTjTk)−2bi

2∑
j=−2

a2
j −4ai

2∑
j=−2

ajbj +ζ2∇2bi (2.65)

with boundary conditions

(n̂S · ∇)bi = ± g

ζ2
bi

∣∣∣∣on surface
. (2.66)

In general, the fluctuations of five independent degrees of freedom of the nematic

order are a solution of five coupled scalar, partial differential equations. In the case

of a uniaxial equilibrium nematic order, when only the amplitude a0 is nonzero, the

Eqs. (2.65) uncouple. They correspond to fluctuations of the scalar order parameter,

fluctuations of the biaxiality, and director fluctuations as denoted in Section 2.2.3

and schematically represented in Fig. 2.1 (c). Time dependence of the fluctuation

modes which are described by relaxation is the exponential decay, bi ∝ e−µit, where

µi is the relaxation rate of a given fluctuation mode. If we take into account this and

compare Eq. (2.64) to Eqs. (2.20) and (2.24) we can see that µi = ζ2(ξ−2
i +∇2) is

closely related to the free energy of the corresponding mode, which we have already

used in the discussion of soft and Goldstone modes.
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Figure 2.6 Schematic representation of the confined liquid-crystalline system
in which by changing the distance between the confining walls the volume and
the surface of the liquid crystal are preserved.

2.4 Forces acting on a thin liquid-crystalline film

The presence of walls causes the change of the energy of the system. In general,

this change depends on the separation between the walls which, thus, results in an

attractive or repulsive force between them. In this thesis, the state of the system will

be described by a free energy rather than by its energy. Here, by system we refer to

the liquid crystal in which the confining walls are immersed, so that the volume and

the surface of the liquid crystal are preserved by changing the separation between

walls (see Fig. 2.6). To relate the free energy of the system to the force, the force

is expressed as a gradient of a potential, i.e., ~F = −∇φ, which can be done for all

conservative forces. Here, dφ = A is the amount of work required in order to move

the walls to a new separation ~r + d~r. The free energy of the system and the work

are related by the thermodynamic relation, dF = dA−SdT , where S is the entropy

of the system. In an isothermal process the force is related to the free energy of a

system as

~F = −∂F
∂~r

. (2.67)

In the planar parallel system consisting of two infinitely large surfaces, the force

is perpendicular to the surfaces and, consequently, F = −(∂F/∂d), where d is the

separation between the two objects. The positive value of F corresponds to repulsive

force and the negative value corresponds to the attractive force.

In all studied systems it is assumed that there are no free electric charges. Fur-

ther, the permanent electric dipoles of the liquid-crystalline molecules are assumed

small, so that the electrostatic interaction can be safely neglected. The thermal

fluctuations of the electromagnetic field in a confined dielectric medium give rise to

a van der Waals interaction. Since this interaction is of my special interest and be-

cause I derive some new results for the van der Waals interaction it will be discussed

in detail in the following Chapter. Here, we will proceed with forces which are due

to the order in a liquid crystal.
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First observations of forces in liquid crystal were performed in the 80’s by

Horn et. al [57]. They studied the force between two mica plates separated by

a liquid crystal 5CB using the X-ray surface forces apparatus [57,58]. The observed

forces were resulting from the elastic deformations in liquid crystal, from the en-

hanced order close to the substrate, and the oscillating part of the force originated

in the substrate-induced smectic layering. Later on, the forces due to the structure

were only briefly discussed by Poniewierski and Sluckin [59], however, a detailed

study of forces due to mean-field nematic order was performed by Borštnik and

Žumer at the end of 90’s [60]. The interactions in the presmectic fluid were studied

by de Gennes [61]. In the meantime, much attention was paid to the fluctuation-

induced forces started by studies of Ajdari et. al [27,62], and Li and Kardar [63,64].

Ajdari et. al studied the fluctuation-induced force in liquid crystals with homoge-

neous mean-field order, either nematic or smectic. Later, the pseudo-Casimir forces

were studied in various liquid-crystalline systems by Ziherl et. al [28,65,66]. The

theoretical interest was accompanied by experimental studies of forces in presmectic

lyotropic systems performed with surface forces apparatus by Moreau et. al [22] and

by observations of interfacial forces in various thermotropic liquid crystals performed

with the atomic force microscope by Kočevar and Muševič [67].

Structural force

The confinement has, especially in the vicinity of phase and structural transitions,

great impact on the equilibrium order of the liquid crystal. The force arising from

the change of the corresponding part of the free energy will be denoted as a struc-

tural force. In principle, the free energy of a system associated to its structure

corresponds to both, the equilibrium average order and to order related to collective

fluctuations. In this thesis, the free energy of a system is determined by means of

the phenomenological mean-field theory and the structural force denotes the force

associated with the equilibrium order obtained within this theory,

~Fstruct. = −∂∆FMF

∂~r
= −∂FMF

∂~r
+ fbulkA. (2.68)

∆FMF is the variation of the free energy of the system in the framework of mean-

field theory with respect to the free energy of the same amount of the liquid crystal

in bulk, F bulk
MF = fbulkV .

Pseudo-Casimir force

In practice, the equilibrium order determined within the mean-field theory is per-

turbed due to thermal fluctuations which give rise to collective excitations. Except

in the close vicinity of the phase/structural transitions, the thermal fluctuations of
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the order parameter can be assumed small, and the free energy of fluctuations can be

considered a correction to the mean-field free energy. In such a case, the fluctuations

of liquid-crystalline order are described consistently by harmonic a Hamiltonian of

the form

H[b] =
L

2


∫ [

ξ−2b2 + (∇b)2
]
dV +

∑
i=1,2

λ−1
i

∫
b2dAi

 , (2.69)

where b stands for each of the fluctuating degrees of freedom of the order param-

eter and ξ is a generalized correlation length characteristic of a particular type of

fluctuations. From the discussion of fluctuations in previous Sections,

ξ−2 =
1

L

∂2f

∂η2

∣∣∣∣
η=η0

, (2.70)

where ξ corresponds to fluctuations of the order parameter η whose equilibrium

mean-field value is η0. In the case of a uniform nematic order parameter tensor

the relevant temperature-dependent correlation lengths are the ones introduced in

Eqs. (2.36) and (2.37) for the isotropic and nematic phase, respectively.

We have divided the free energy of the system associated to the equilibrium

order into the mean-field part corresponding to the order calculated by means of

a phenomenological mean-field theory and to the part associated with collective

thermal fluctuations, FCAS. The latter is given by a partition function

FCAS = −kBT ln
(∫
Db e−H[b]/kBT

)
, (2.71)

where kB is the Boltzmann constant, T is the temperature, and the integral is over

all configurations of a fluctuating field b which satisfy boundary conditions [54,38].

The name pseudo-Casimir force for the fluctuation-induced interaction is due to

the analogy with a Casimir effect which was first recognized by Casimir in 1948 [68].

In his study he found out that at T = 0 quantum fluctuations of the electromagnetic

field in a cavity yield a weak yet measurable attraction between the walls of the

cavity. Because the force between the walls is determined by a derivative of the free

energy of a system rather than by a derivative of its energy similar effect is expected

above absolute zero where the interaction is not just due to quantum but also due

to thermal fluctuations. In liquid crystals, the fluctuation-induced interaction is due

to thermal fluctuations of order parameter field instead of the electromagnetic field.

The main problem when calculating the pseudo-Casmir force is in fact that the

total free energy of collective excitations diverges within the continuum description.

Within the theory of the Casimir effect there are many methods for determining

the finite interacting part from the divergent total free energy, such as dimensional

regularization, the introduction of the lower limit of the wavelength of excitations,
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Zeta regularization, methods based on Green’s function of fluctuations, etc. De-

scribing techniques of calculation of the pseudo-Casmir force is beyond the scope of

this thesis. When needed, we will just quote the results already obtained by others.

To get the feeling about the pseudo-Casimir force few basic characteristics should

be known. Depending on the boundary conditions the fluctuation-induced interac-

tion can be either repulsive or attractive [27,63,64]. Its magnitude depends strongly

on the surface interaction. In general, the sign of the pseudo-Casimir interaction

is determined by the type of the boundary conditions, provided that the system

is not subject to electric or magnetic field; b(z = 0, d) = (λ/d) b′(z = 0, d),

where b′ = db/dz and d is the separation between the walls [see Section 2.3.1

and Eq. (2.66)]. Fluctuation modes constrained by strong, λ1,2 � d, or weak,

λ1,2 � d, anchoring at both substrates lead to an attractive force. In a mathemati-

cal language this corresponds to Dirichlet, b(z = 0) = b(z = d) = 0, or Neumann,

b′(z = 0) = b′(z = d) = 0, boundary conditions at both substrates. In contrast the

asymmetric situation with one surface enforcing a strong anchoring and the other

a weak anchoring yields a repulsive force (mixed boundary conditions). This is the

universal property of Casimir forces [69–71].

2.4.1 Stability of thin liquid films

Imagine a thin liquid film deposited on a solid substrate so that it has a free liquid–

air interface. Due to thermal fluctuations the free interface of the film is not flat but

rather wrinkled. The fluctuation waves of the interface are known as capillary waves.

Because of the interfacial interactions and long-range interactions, such as the van

der Waals interaction, and structural and pseudo-Casimir interaction in an ordered

liquid, the total pressure in the film depends on its thickness, being either higher

or lower than the external pressure. This difference in pressures, Π = p0 − p where

p0 is the external pressure, is denoted as a disjoining pressure. The term disjoining

pressure was first introduced by Derjaguin as a pressure due to the van der Waals

interaction [72]. Later, its use was extended also to structural interaction [59].

Here, it will denote the total pressure which is due to interactions in the film. The

disjoining pressure can be either repulsive, Π > 0, or attractive, Π < 0, and it has

to vanish in the limit of infinitely thick film. Thus, if the disjoining pressure is

characterized by a monotonic behavior the magnitude of the disjoining pressure is

larger for smaller film thicknesses. The two possible situations for the monotonic

disjoining pressure are depicted in Fig. 2.7 (top). Imagine now a film whose interface

is perturbed at a given moment. If the disjoining pressure is repulsive the repulsion

is stronger in a thinner region of film. Thus, the tendency to thicken the thinner

part of the film will be stronger than to thicken the thicker part and the differences
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(a) (b)

Figure 2.7 Schematic representation of conditions for the stability of thin
liquid films. Thermal fluctuations of the free liquid–air interface are (a) di-
minished and (b) amplified, resulting in stable film or decomposition of the
film in liquid drops and dry patches, respectively. Top: schematic representa-
tion of the disjoining pressure; middle: uniform film with a thickness equal to
its average value and a sketch of a capillary wave with a disjoining pressure
indicating the sign and the magnitude; bottom: resulting film profile.
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Figure 2.8 A liquid droplet on a solid substrate in the equilibrium; θ is the
contact angle.

in the film thickness will be smeared. On the other hand, if the disjoining pressure

is attractive the stronger attraction in thinner regions yields amplified differences

in the film thickness when finally the thickness of thinner regions drops to zero and

dry patches occur. These situations are schematically presented in Fig. 2.7 (a) and

Fig. 2.7 (b), respectively. The described mechanism of a decomposition of a film is

called the spinodal dewetting.

Once we are familiar with basic relations between the disjoining pressure and

the stability of a thin film the stability conditions will be derived quantitatively. In

the derivation we will follow the calculations made by de Gennes [73] and Brochard-

Wyart and Daillant [74].

The spreading of the liquid on the solid substrate is determined by a spreading

coefficient

S = γSO − (γSL + γ) (2.72)

where γSOA is the interfacial energy of the bare solid, γSLA is the interfacial energy

of the solid–liquid interface, and γA is the interfacial energy of the liquid–air inter-

face; A is the surface area. S > 0 leads to a complete wetting of the solid by liquid

whereas for S < 0 the wetting is only partial. On the other hand, the wettability

of the liquid is described by a contact angle θe as it is plotted in Fig. 2.8. The sub-

script e denotes that θ refers to contact angle in the equilibrium with the vapor. The

contact angle and the interfacial energies are related through the Young’s relation,

γSV − γSL − γ cos θe = 0, where γSVA is the interfacial energy of the solid–vapor

interface [75]. For organic liquids the difference γSO−γSV > 0 is usually very small.

The energy of a liquid film is

F = F0 − SA+ P(d)A, (2.73)

where P(d) represents the energy of interactions which contribute to the disjoining

pressure, Π = −∂P/∂d. The equilibrium thickness of a film, de, is defined by

the minimum of the energy while the volume V = Ad of the liquid is preserved,

S = P(de) + Π(de)de.

Imagine now a film with the average thickness d0, however, with small deviations

of the thickness with respect to the coordinate x parallel to the solid substrate, ζ(x).
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Figure 2.9 The inverse relaxation rate of capillary waves as a function of a
wavevector for (a) repulsive disjoining pressure and (b) attractive disjoining
pressure. In the latter, for q < qc the fluctuations are amplified.

The pressure distribution in a film is then

p(x) = p0 − γ
∂2ζ

∂x2
− Π(ζ), (2.74)

where the term with γ corresponds to the pressure due to the curved interface

(1/R = ∂2ζ/∂2x, where R is the radius of the curved path). In the lubrication

approximation (flat liquid film and Poiseuille type of flow), the horizontal current

in the liquid is given by

j = ζv =
ζ3

3η

(
−∂p

∂x

)
, (2.75)

where v is the average horizontal velocity. In addition, the mass conservation law

gives ∂j/∂x + ∂ζ/∂t = 0. Consider now the expansion of the deviations of the film

thickness from its average value

ζ(x) = d0 +
∑
q

uq eiqx e−t/τq . (2.76)

Here, τq is the relaxation time of the capillary wave with wavevector q and uq � d0

is the amplitude of a given capillary wave. Using the ansatz defined in Eq. (2.76) in

Eq. (2.75), considering the mass conservation, and linearizing the obtained equations

one is able to determine the relaxation times,

1

τq

=
d3

0

3η

[
γq4 − q2Π′(d0)

]
. (2.77)

For Π′(d0) < 0, which corresponds to repulsive disjoining pressure, τq > 0 for every

q and fluctuations decrease exponentially after they are excited. On the other hand,

if Π′(d0) > 0 a wavevector qc can be found so that τq<qc < 0. Negative relaxation

time means that the given fluctuation mode is amplified in time and the film is
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not stable. The obtained results confirm the arguments used at the beginning of

the Section to describe relations between the disjoining pressure and stability of the

film. The critical wavevector of capillary waves reads

qc =

√
Π′(d0)

γ
. (2.78)

The capillary wave which is the most amplified (∂τq/∂q = 0) corresponds to qM =√
Π′(d0)/2γ = qc/

√
2 , with the relaxation time

τM = −d3
0Π
′(d0)

2

12ηγ
. (2.79)

Thus, typical wavelength of drops which result from the spinodal dewetting of a film

corresponds to the capillary wave with

λM =
2π

qM

=

√√√√ 8π2γ

Π′(d0)
. (2.80)

The inverse relaxation rate of capillary waves is plotted in Fig. 2.9.
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3

Van der Waals force

In the last decades, the van der Waals interaction between macroscopic bodies was

assumed to be a solved problem. However, new technological applications demand

smaller and smaller systems whose stability is strongly influenced even by as weak

interactions as is the van der Waals interaction which, thus, should be determined

as accurately as possible [74,76]. Especially intriguing are electronic devices in-

corporating strongly confined liquid-crystalline materials, polymers, and other ma-

terials which are characterized by highly anisotropic macroscopic physical proper-

ties [77–81]. In addition, a lot of experimental and theoretical work is focused to

studies of stability of nanostructures characterized by highly uniaxial macroscopic

molecular arrangement, such as in self-assemblies of long organic molecules form-

ing films, membranes, colloids, etc [82–85]. These materials are all characterized by

anisotropic order (usually close to being uniaxial) and correspondingly by anisotropic

permittivity tensor. Therefore, the dependence of the van der Waals interaction on

the anisotropic permittivity tensor is required.

Although many decades ago Kihara and Honda [86] introduced the van der Waals

interaction energy for the three-slab system of uniaxial media, generally, the van

der Waals force for anisotropic media, such as liquid crystals, is still calculated by

use of isotropic, yet average macroscopic physical quantities. The anisotropy of

interacting media has been avoided in studies considering anisotropic media with

only few exceptions. Okano and Murakami calculated the dispersion interaction

contribution to the interfacial free energy of nematic liquid crystals taking into

account the uniaxial symmetry of the nematic order and neglecting retardation [87].

The interaction was calculated between half spaces of air and nematic liquid crystal

separated by a gap of vacuum in the limit where the thickness of the gap was 0.

The optical axis of the nematic liquid crystal was either perpendicular or parallel

to the air–liquid crystal interface. Podgornik and Parsegian studied the static part

of the van der Waals interaction energy between rodlike polyelectrolytes: regions

53
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consisting of uniaxially ordered rodlike polyelectrolytes separated by an isotropic

gap [88]. The optical axes of uniaxial media were taken to lie in the plane of the

interface and were rotated with respect to each other. In experimental studies,

the results from theoretical studies of the anisotropic van der Waals force are not

considered. Here, the reason for neglecting the anisotropy of permittivity tensor

can not be the insignificance of the anisotropy of relevant quantities but rather the

fact, that there are no known simplified expressions to calculate the van der Waals

force, whereas for the isotropic media there is a well known approximate analytic

expression (see e.g. [89]). On the other hand, the general calculation of the van der

Waals force is in the case of anisotropic permittivity tensor even more complex than

it is in the case of isotropic interacting media.

In this Chapter, the influence of anisotropy of permittivity tensor of a medium on

the van der Waals force will be discussed through the simplest example of anisotropy

— the uniaxial symmetry. In addition, the approximate expression for the van der

Waals interaction will be derived for the same symmetry of the permittivity tensor.

There are two reasons for choosing the uniaxial symmetry. First, as already noted

in the introductory paragraph, there are many important physical and biological

systems consisting of soft layers characterized by highly uniaxial molecular arrange-

ment. In these, the correct dependence of the van der Waals force on the anisotropic

refractive indices and static dielectric constants is needed for adequate explanations

of experiments. Secondly, the uniaxial symmetry is the highest symmetry yielding

the analytic solution for the surface electromagnetic fluctuation modes which deter-

mine the van der Waals force. Here the term surface electromagnetic modes is used

to emphasize the influence of the walls on the electromagnetic modes rather than to

denote the modes which would be strictly localized at the walls.

The calculation is performed for the simple planar parallel geometry: two macro-

scopic bodies separated by a layer of an uniaxial medium, as shown schematically in

Fig. 3.1. Often, the results of the study of interactions in planar parallel systems can

be applied also to curved bodies with small curvature, i.e., for locally planar parallel

systems, by using standard Derjaguin procedure [90]. Here, due to the anisotropy

of permittivity tensor the correspondence between different geometries can not be

expected to be strictly explicit as it will be evident from the following calculation,

therefore, the precision of a result obtained by Derjaguin procedure, even if only as

a rough approximation, is rather questionable. Using the same arguments as when

arguing the choice of the uniaxial symmetry of the permittivity tensor, the optical

axis of the interposed uniaxial medium is assumed to be perpendicular to the gap

between the macroscopic bodies. For optical axes lying either in the plane of the

gap or even in an arbitrary direction the van der Waals interaction can be calcu-
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Figure 3.1 Schematic representation of the system for which the van der
Waals force is calculated: two semi-infinite macroscopic bodies separated by
the third medium. The arrows denote the orientation of optical axis in each
medium, the closest distance between the two bodies d is in text referred as
the separation between the bodies, and the numbers 1,2, and 3 denote different
media.

lated only numerically and within the nonretarded approximation. Since the general

cases are beyond the scope of this thesis, the calculations for them will be omitted

here. However, at the appropriate steps the difficulties, which are encountered when

dealing with systems which do not preserve the axis of full rotational symmetry, will

be pointed out.

In the systems referred to, the uniaxial layer is surrounded by isotropic media,

either some glassy materials, liquid, or air. Often, especially when talking about

liquid crystals, the uniaxial order of the layer in question is obtained by inducing

the order with some other uniaxially ordered material. In such case, the system

consists of two or three uniaxial media with parallel optical axes. In the following

the calculation will be performed for the general case of three/four uniaxial media

with parallel optical axes. The transformation to the case of isotropic macroscopic

bodies will be evident.

In the following Section the van der Waals interaction between macroscopic bod-

ies is introduced. In Section 3.2 the electromagnetic field modes are calculated and

the secular equation, which determines the frequencies of the surface modes is de-

rived. In Section 3.3 the procedure of calculating free energy of electromagnetic

field surface modes from the secular equation is reviewed. In Section 3.4 the van der

Waals interaction mediated by uniaxial layer is calculated. The final expression can

only be calculated numerically, however, in Section 3.5 the approximate analytic

expression is calculated within the nonretarded limit. The Chapter is concluded

by a general discussion of the obtained result and by arguing its validity. Further

accounts concerning the van der Waals force follow in Sections 4.4 and 5.4 where

the obtained results for the anisotropic van der Waals force are used in specific

liquid-crystalline systems.
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(a) (b)

Figure 3.2 Schematic representation of van der Waals interaction between
(a) two neutral molecules and (b) two macroscopic bodies.

3.1 Van der Waals interaction

Van der Waals interaction is a common name for the dispersion interaction, which

originates in the pair-wise interaction of fluctuating dipoles arising from dynamic

redistribution of electrons in molecules, and the orientational interaction which re-

sults from the interaction of permanent yet fluctuating electric dipoles. The value

of the interaction is the quantum mechanic expectation value of the corresponding

interaction term in the Hamiltonian. For small separations, the interaction energy

is proportional to 1/d6, whereas for large separations the dispersion interaction falls

off faster and approaches 1/d7 behavior. The decrease of the dispersion interaction

is a consequence of finite velocity of light; when the time it takes for the elec-

tromagnetic field of one molecule to reach the second one and to return becomes

comparable to the period of the fluctuating dipole (usually, d > 100 nm) the phase

coherence between the two interacting molecules is getting lost. The effect is known

as retardation. The 1/d7 behavior of the dispersion interaction in the limit of high

retardation which was first calculated by quantum electrodynamic approach devel-

oped by Casimir and Polder [91,68]. The orientational interaction is proportional to

1/d6 for all separations. For materials with small permanent electric dipoles and for

distances up to 100 nm the dispersion interaction dominates over the orientational

one.

Several approaches have been employed to calculate the van der Waals interac-

tion between macroscopic bodies. The simplest way, known as the Hamaker ap-

proach [92], is to sum all pair-wise interactions between constituent molecules. In

condensed media these are not independent but rather strongly influenced by the sur-

rounding medium, therefore, taking into account many-body interactions becomes

essential. On the mesoscopic and macroscopic scale the many-body system can be

regarded as a continuum and can be described by macroscopic quantities, such as

permittivity, which take into account the screening of the surrounding molecules.
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The continuum approach is known as the Lifshitz approach. Lifshitz was the first

who calculated the van der Waals interaction energy between two semi-infinite di-

electric bodies separated by a gap of vacuum [93]. Later, the interaction energy for

the system with a gap filled with an isotropic dielectric medium was calculated by

Dzyaloshinskii et. al [94,95]. The basic idea of the continuum theory is that the

interaction between the bodies is considered to take place through a fluctuating elec-

tromagnetic field. The interaction arises from the change in the zero-point energy

of the electromagnetic field modes when the latter are perturbed by the coupling of

the field with the polarization currents induced on the molecules. The electromag-

netic field modes are obtained by solving Maxwell’s equations. These findings were

obtained by a quantum field theory approach based on determination of the Green’s

function for the electromagnetic field in the presence of molecules in a dielectric

media characterized by isotropic permittivities. The poles of the Green’s function

represent the electromagnetic field resonances of the system. There are two sources

of poles: the poles of the permittivity, ε(ω) = 0, and the poles of the denominator

of the Green’s function, D(ω) = 0. The former modes refer to bulk modes and they

do not depend on the separation between the macroscopic bodies. The poles arising

from the secular equation D(ω) = 0 refer to the surface modes and are responsible

for the change of the zero-point energy of the electromagnetic field modes. Once it

is recognized that the van der Waals interaction arises from the change of the elec-

tromagnetic field surface modes, the latter can be determined directly by solving

Maxwell’s equations in a classical way. The equivalence of the van der Waals force

between macroscopic bodies and the surface modes interaction was first shown by

van Kampen et. al [96] for the non-retarded interaction, and later it was extended

by Gerlach [97] and Schram [98] for the retarded interaction. The change of the free

energy of a perturbed system for temperatures T > 0 instead of the change of the

energy of a perturbed system at T = 0 was first introduced by Ninham et. al [99].

In the following Sections the continuum procedure will be used to derive the van

der Waals interaction between uniaxial macroscopic bodies.

Before we start with the derivation of the van der Waals force for uniaxial media

we shell first quote the known expression for a three-layer system of isotropic media

(see e.g. [100]),

Π =
kBT

16πd3

∫ ∞
0

dx x2 ∆̄12∆̄23 e−x

1 + ∆̄12∆̄23 e−x
(3.1)

+
kBT

πd3

∞∑
n=1

d̃3
∫ ∞
1

dp p2

 ∆R
12∆

R
23 e−2pd̃

1 + ∆R
12∆

R
23 e−2pd̃

+
∆̄R

12∆̄
R
23 e−2pd̃

1 + ∆̄R
12∆̄

R
23 e−2pd̃

 .

Here, d is a thickness of a gap between two semi-infinite media 1 and 3, and the gap is

filled with material 2; d̃ = d
√

ε2ξn/c and ∆ij’s are functions of frequency dependent
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permittivities of the media. They are defined in Section 3.2 [Eqs. (3.24) and (3.36)].

It should be noted, that in general there is no explicit separation dependence of

the van der Waals force. Except for very large separations the second term in

Eq. (3.1) is dominant. At small d’s it reduces to an expression similar to the first

term, and the force has a 1/d3 separation dependence. For intermediate separations

the force falls off quicker, and would obtain a 1/d4 dependence. However, for very

large separations the second term becomes negligible comparing to the first one, and

the 1/d3 separation dependence is recovered. In practice, the van der Waals force

is calculated by using the well-known approximate expression Π = −A/6πd3 (see

e.g. [89]), which is in a good agreement with Eq. (3.1) for separations of order of

few nanometers and provides satisfactory qualitative insight in the van der Waals

force for larger separations. Here A is a Hamaker constant,

A =
3

4
kBT

ε1 − ε2

ε1 + ε2

ε3 − ε2

ε3 + ε2

+
3h̄ωe

8
√

2

(n2
1 − n2

2)(n
2
3 − n2

2)√
n2

1 + n2
2

√
n2

3 + n2
2(
√

n2
1 + n2

2 +
√

n2
3 + n2

2)
, (3.2)

εi is the static dielectric constant of a medium i, ni is its refractive index in visible,

and ωe is the plasma frequency of a medium, taken to be equal for all media.

3.2 Electromagnetic field surface modes

In this Section the spectrum of electromagnetic field modes in the gap between

two dielectric macroscopic bodies will be calculated for the system with no external

electromagnetic field and no macroscopic electric charges and dipoles. The fluctu-

ations of the electromagnetic field are a consequence of a dynamic redistributions

of electrons in molecules due to thermal fluctuations. However, the interest is not

in fluctuations of a single molecule, but in collective behavior on the macroscopic

scale. Therefore, the electromagnetic field in the gap is to be determined. The field

obeys Maxwell’s equations

∇× ~E = −∂ ~B

∂t
, ∇ · ~D = 0, (3.3)

∇× ~H =
∂ ~D

∂t
, ∇ · ~B = 0,

and satisfies corresponding boundary conditions

∆ ~D⊥

∣∣∣∣
boundary

= 0 ∆ ~E‖

∣∣∣∣
boundary

= 0 (3.4)

∆ ~B⊥

∣∣∣∣
boundary

= 0 ∆ ~H‖

∣∣∣∣
boundary

= 0.

Here ~D = ε0ε ~E and ~B = µ0
~H; ε is permittivity tensor. It is not the subject of

this thesis to calculate the electromagnetic field modes for general geometry of the
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cavity and for general types of the wall. Therefore, as already stated in previous

Section the electromagnetic field modes are calculated for the planar geometry. The

coordinate system is set so that the z axis is perpendicular to the gap between the

macroscopic bodies and axes x and y lie in the plane of one of the interfaces. In the

lateral directions, there are no constraints for the electromagnetic field, therefore,

the x and y dependencies of the electromagnetic field are the one of the plane wave.

The dependence on the z coordinate is still to be determined. The ansatz function

for the electromagnetic field is

~A = ~A0(z) ei~κ~r e−iωt, (3.5)

where ~A stands for either electric field ~E or magnetic induction ~B and ~κ = (κx, κy, 0)

is a wavevector in the plane of the boundary. In this study, the permittivity tensors

of the macroscopic bodies as well as the permittivity of the interposed layer are

uniaxial with eigenframes coinciding with the coordinate system,

εi =

 εi⊥ 0 0
0 εi⊥ 0
0 0 εi‖

 . (3.6)

Here, index i = 1, 2, or 3, represents different media, and ε is frequency dependent.

As already stated before, the uniaxial symmetry with perpendicular optical axis with

respect to the gap is the only non-isotropic geometry, which allows one to calculate

electromagnetic field modes quite easily. Even if the eigenframe of the permittivity

tensor remains the same, but the optical axis lies in one of the lateral directions,

the eigenmodes can not be calculated analytically, except in the nonretarded limit,

which is equivalent to describing static fields. In the case of uniaxial symmetry and

optical axis parallel to the gap normal, the full rotational symmetry around the z

axis is preserved. This allows us to divide the eigenmodes in two groups: transverse

magnetic modes (TM) and transverse electric (TE), as defined by Rayleigh already

in 1897 [101].

Transverse magnetic modes

The TM waves are defined as waves with Bz = 0. By using this and the ansatz

function for the electromagnetic field introduced in Eq. (3.5) to solve the Maxwell’s

equations the wave equation is obtained,

Ψ′′ − ε⊥
ε‖

(
κ2 − ω2

c2
ε‖

)
Ψ = 0, (3.7)

with boundary conditions

∆Ψ
∣∣∣∣
boundary

= 0 and ∆
1

ε⊥
Ψ′
∣∣∣∣
boundary

= 0. (3.8)
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Here, Ψ′ = dΨ/dz and Ψ(z) defines the z dependent amplitudes of corresponding

components of the electromagnetic field,

Bx(~r, t) = B0Ψ(z) ei~κ·~r−iωt,

By(~r, t) = −B0
κx

κy

Ψ(z) ei~κ·~r−iωt,

Ex(~r, t) = −B0
c2

iωε⊥

κx

κy

Ψ′(z) ei~κ·~r−iωt, (3.9)

Ey(~r, t) = −B0
c2

iωε⊥
Ψ′(z) ei~κ·~r−iωt,

Ez(~r, t) = B0
c2

iωε‖

iκ2

κy

Ψ(z) ei~κ·~r−iωt.

With respect to the coordinate normal to the gap, the electromagnetic field de-

cays/grows exponentially with the inverse penetrations depth

ρ̄(ω) =

[
ε⊥
ε‖

(
κ2 − ω2

c2
ε‖

)]1/2

. (3.10)

In a composed system of three dielectric media the amplitude Ψ has the following z

dependence

Ψ(z) =


A eρ̄1z ; z < 0
B eρ̄2z + C e−ρ̄2z ; 0 < z < d
D e−ρ̄3z ; z > d

. (3.11)

Taking into account the boundary conditions in Eq. (3.8) one ends up with a secular

equation, which determines the dispersion relation for the TM surface modes

DR
TM(ω) = 1 + ∆̄R

12(ω)∆̄R
23(ω)e−2ρ̄2(ω)d = 0. (3.12)

Here,

∆̄R
ij(ω) =

εi⊥(ω)ρ̄j(ω)− εj⊥(ω)ρ̄i(ω)

εi⊥(ω)ρ̄j(ω) + εj⊥(ω)ρ̄i(ω)
. (3.13)

Similarly, for the four-layer system one obtains the secular equation

DR
TM(ω) = 1 + ∆̄R

12(ω)∆̄R
23(ω)e−2ρ̄2(ω)d + ∆̄R

23(ω)∆̄R
34(ω)e−2ρ̄3(ω)t (3.14)

+∆̄R
12(ω)∆̄R

34(ω)e−2ρ̄2(ω)de−2ρ̄3(ω)t = 0,

where d and t are thicknesses of the layers of media 2 and 3, interposed between

semi-infinite surrounding media.

Transverse electric modes

The TE waves are defined as waves with Ez = 0. Using the same procedure as

when calculating TM modes the wave equation for the z dependent amplitude Ψ is
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obtained,

Ψ′′ −
(
κ2 − ω2

c2
ε⊥

)
Ψ = 0, (3.15)

with boundary conditions

∆Ψ
∣∣∣∣
boundary

= 0 and ∆Ψ′
∣∣∣∣
boundary

= 0. (3.16)

The components of the electromagnetic field depend on the function Ψ(z) as

Ex(~r, t) = E0Ψ(z) ei~κ·~r−iωt,

Ey(~r, t) = −E0
κx

κy

Ψ(z) ei~κ·~r−iωt,

Bx(~r, t) = E0
κx

κy

1

iω
Ψ′(z) ei~κ·~r−iωt, (3.17)

By(~r, t) = E0
1

iω
Ψ′(z) ei~κ·~r−iωt,

Bz(~r, t) = −E0
iκ2

κy

1

iω
Ψ(z) ei~κ·~r−iωt.

The characteristic length for the penetration of the TE waves into the dielectric

walls is then

ρ(ω) =

(
κ2 − ω2

c2
ε⊥

)1/2

. (3.18)

In a composed system of three dielectric media the amplitude Ψ has the same z

dependence as defined in Eq. (3.11), with ρi instead of ρ̄i. Taking into account

the boundary conditions in Eq. (3.16) one ends up with a secular equation, which

determines the dispersion relation for the TE surface modes

DR
TE(ω) = 1 + ∆R

12(ω)∆R
23(ω)e−2ρ2(ω)d = 0. (3.19)

Here,

∆R
ij(ω) =

ρi(ω)− ρj(ω)

ρi(ω) + ρj(ω)
. (3.20)

Similarly, for the four-layer system one obtains the secular equation

DR
TE(ω) = 1 + ∆R

12(ω)∆R
23(ω)e−2ρ2(ω)d + ∆R

23(ω)∆R
34(ω)e−2ρ3(ω)t (3.21)

+∆R
12(ω)∆R

34(ω)e−2ρ2(ω)de−2ρ3(ω)t = 0,

where d and t are the thicknesses of the layers of media 2 and 3 interposed between

semi-infinite surrounding media.

If all the media are isotropic, the electromagnetic field surface modes can still be

divided into TM and TE but they are described by the same wave equation

Ψ′′ −
(
κ2 − ω2

c2
ε

)
Ψ = 0 (3.22)
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with boundary conditions Eqs. (3.8) and (3.16) for TM and TE modes, respectively.

Here, the transformation ε⊥, ε‖ → ε has to be made. The penetration depth of the

modes is then

ρ(ω) =

(
κ2 − ω2

c2
ε

)1/2

, (3.23)

and the secular equations for the three-layer system read

DR
TM(ω) = 1 + ∆̄R

12(ω)∆̄R
23(ω)e−2ρ2(ω)d = 0, (3.24)

DR
TE(ω) = 1 + ∆R

12(ω)∆R
23(ω)e−2ρ2(ω)d = 0,

where

∆̄R
ij(ω) =

εi(ω)ρ̄j(ω)− εj(ω)ρ̄i(ω)

εi(ω)ρ̄j(ω) + εj(ω)ρ̄i(ω)
, (3.25)

∆R
ij(ω) =

ρi(ω)− ρj(ω)

ρi(ω) + ρj(ω)
.

3.3 The zero-point energy of surface modes

The roots of secular equations for TM and TE modes give frequencies of the corre-

sponding modes, ω, as a function of a wave vector ~κ, i.e., the dispersion relation for

the surface modes. At the absolute zero, the interaction energy is then given by the

difference of sums over the zero-point energies of each mode, E = h̄ω/2, for each

value of the wave vector ~κ, for the composed system of dielectric media with either

finite thickness of the interposed medium or with d→∞,

∆E =
h̄

2

∑
~κ

(∑
i

ωi −
∑
i′

ωi′

)
. (3.26)

Here, ωi’s are the zero-point frequencies of the perturbed system and ωi′ ’s are the

zero-point energies of unperturbed system (only the medium which is inbetween the

walls). Solving the secular equations for the electromagnetic field surface modes is

far from being easy, however, in the standard contour integral representation [102]

the expression in Eq. (3.26) reduces to

∆E =
1

2πi

∑
~κ

∮
dω~κ

h̄ω~κ

2

d

dω~κ

ln
D(ω~κ)

D0(ω~κ)
(3.27)

= − h̄

4πi

∑
~κ

∮
dω~κ ln

D(ω~κ)

D0(ω~κ)
,

where D(ω) = 0 and D0(ω) = 0 are the secular equations for the perturbed and

unperturbed systems, respectively. The secular equations derived in previous Sec-

tions are already the corresponding ratios, which can be easily tested by performing
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the limit d→∞. The planar system is not bounded in the lateral directions, thus,

the spectrum of wave vectors ~κ is continuous, and the sum over the wave vectors

can be replaced by an integral,
∑

~κ → A
(2π)2

∫
d2κ. Here, A is the surface area of

the interfaces. In the case of optically isotropic media and uniaxial media with the

optical axis parallel to the interface normal the frequencies ω depend only on the

magnitude of the wave vector ~κ, therefore, the zero-point energy reads

∆E = − h̄A
8π2i

∮
dω

∫ ∞
0

κdκ ln
D(ω)

D0(ω)
. (3.28)

At the absolute zero, there are no excited states and the interaction is due to

the change of the zero-point energy as derived above. At higher temperatures,

not only the zero-point energy of the electromagnetic field is changed but also the

occupancy of states. The whole information is gathered in the free energy of the

system rather than in its energy. The free energy of the electromagnetic field with

modes characterized by frequencies ωi is then

F = kBT
∑

i

ln

(
2 sinh

βh̄ωi

2

)
. (3.29)

To calculate the interaction free energy of the perturbed system one has to sub-

stitute the energy of the system with the free energy, h̄ω
2
→ kBT ln(2 sinh βh̄ω

2
) =

h̄ω
2
− kBT

∑∞
n=1

1
n

e−βh̄ωn. If a further substitution ω = iξ is made we get the final

expression for the change of the free energy of the electromagnetic field,

∆F =
h̄A
8π2

∫ ∞
0

dκκ
∫ ∞
−∞

dξ
(
1 + 2

∞∑
n=1

e−iβh̄ξn
)

ln
D(iξ)

D0(iξ)

=
h̄A
4π2

∫ ∞
0

dκκ
∫ ∞
0

dξ
[
1 + 2

∞∑
n=1

cos(βh̄ξn)
]
ln

D(iξ)

D0(iξ)

=
h̄A
4π2

∫ ∞
0

dκκ
∫ ∞
0

dξ

{
1 + 2

[
π

∞∑
n=−∞

δ(βh̄ξ − 2πn)− 1

2

]}
ln

D(iξ)

D0(iξ)

=
kBTA

2π

∫ ∞
0

dκκ
∞∑

n=−∞
ln

D(iξn)

D0(iξn)
. (3.30)

In Eq. (3.30) the second line is obtained by recognizing that D(ω) is an even function

of ω, therefore, the odd, sine, part of the function under the integral gives 0 when

integrating over the symmetric interval. The third line is obtained by using the

equality
∑∞

n=1 cos(nx) = π
∑∞

n=−∞ δ(x−2πn)− 1
2
, which is derived from the Poisson

sum formula [102]:
∑∞

n=−∞ f(n) = 2π
∑∞

m=−∞ F (2πm), where F is Fourier transform

of f . The last line is obtained by integrating over the frequencies ξ. In the final

expression, ξn = 2πkBTn/h̄.

To relate the free energy of the van der Waals interaction to the van der Waals

force we should use the thermodynamic definition of force written out in Eq. (2.67).
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In the planar parallel system consisting of two infinitely large surfaces, the force is

always perpendicular to the surfaces and, consequently,

F = −
(

∂F
∂d

)
V,A

, (3.31)

where d is the separation between the two objects. The positive value of F cor-

responds to a repulsive force and the negative value corresponds to an attractive

force.

3.4 Van der Waals force in a multi-layer system

As explained in previous Sections, the van der Waals force between macroscopic

objects is due to the change of the free energy of electromagnetic field in a system

perturbed by interfaces. By the definition of the force in Eq. (3.31) and the free

energy of electromagnetic field surface modes obtained in Eq. (3.30) the van der

Waals force per surface unit area, Π = F/A, reads

Π = −kBT

2π

∫ ∞
0

dκκ
∞∑

n=−∞

∑
α=

TM,TR

1

Dα(iξn)

∂Dα(iξn)

∂d
. (3.32)

In order to evaluate the sum in Eq. (3.32) the frequency dependence of the permittiv-

ity tensor has to be known. The permittivity varies with frequency in much the same

way as does the atomic polarizability of an atom, ε = 1+nα/ε0, where n is the density

of molecules and α is their polarizability [101]. Basic polarization processes are reori-

entation of permanent dipoles and deformation of electronic configuration due to ex-

cited electrons. These yield ε(ω) = 1+(ε−n2)/(1−iω/ωr)+(n2−1)/(1−ω2/ω2
e) [100].

Here, ε and n stand for each of the components of the corresponding tensors, ε = ε(0)

is the static dielectric constant, n is the refractive index of the medium in the visible,

ωr is the molecular rotational frequency, and ωe is the plasma frequency. Usually,

ωr < 1013 s−1 � ωe ∼ 2π · 3 · 1015 s−1. Since ξ1 = 2.5 · 1014 s−1 � ωr, the dispersion

relation is determined solely by the electronic absorption,

ε(iξn) ≈ 1 +
n2 − 1

1 + ξ2
n/ω

2
e

, (3.33)

In this case, D(iξn) = D(−iξn) and

Π = −kBT

π

∫ ∞
0

dκκ
∞∑

n=0

′ 1

D(iξn)

∂D(iξn)

∂d
, (3.34)

where prime over the sum denotes, that the term with n = 0 should be multiplied

by 1/2. From the secular equations determined in Section 3.2 the van der Waals
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force per unit area between the two interfaces in the three-layer system reads

Π(d, T ) =
kBT

16πd3

ε2‖(0)

ε2⊥(0)

∫ ∞
0

dx x2 ∆̄12∆̄23 e−x

1 + ∆12∆23 e−x
(3.35)

+
kBT

πd3

∞∑
n=1

d̃3
∫ ∞
1

dp p2

 ∆R
12∆

R
23 e−2pd̃

1 + ∆R
12∆

R
23 e−2pd̃

+
ε2‖

ε2⊥

∆̄R
12∆̄

R
23 e−2pd̃

1 + ∆̄R
12∆̄

R
23 e−2pd̃

 .

The first term in the expression corresponds to the static response of the medium

and the second term corresponds to the dynamic response. Functions ∆̄ij = ∆̄ij(0),

∆R
ij = ∆R

ij(iξn) and ∆̄R
ij = ∆̄R

ij(iξn) are determined in Eqs. (3.13) and (3.20), and

d̃ = d
√

ε2⊥ξn/c. In Eq. (3.35) the integration over the wavevector κ was substituted

by the integration over a dimensionless parameter p = ρ2(κ)c/(ξn
√

ε2⊥), so that

∆̄ij =
ε̄i − ε̄j

ε̄i + ε̄j

, ε̄i =
√

εi‖εi⊥ ,

∆R
ij =

si − sj

si + sj

, si =
√

p2 − 1 + εi⊥/ε2⊥ , (3.36)

∆̄R
ij =

ε̄is̄j − ε̄j s̄i

ε̄is̄j + ε̄j s̄i

, s̄i =
√

p2 − 1 + εi‖/ε2‖ ,

and εi = εi(iξn), unless stated otherwise.

By following the procedure of calculating the van der Waals force and by com-

paring the Eq. (3.35) to the Eq. (3.1) (or similarly, by comparing it to the limiting

case of the Eq. (3.35) where εi⊥ , εi‖ → εi), it can be seen that the influence of the

anisotropy of the permittivity tensor affects the van der Waals interaction through

the change of the penetration depths of the surface fluctuation modes and via chang-

ing the boundary conditions for the electromagnetic field at the interface between

two different media. For the uniaxial permittivity the anisotropy of the interact-

ing media 1 and 3 changes the interaction via renormalized effective permittivity,

εi → √εi‖εi⊥ . On the other hand, the uniaxiality of medium 2, which mediates

the interaction between the other two media, does not only renormalize the effec-

tive permittivity but also explicitly affects the magnitude of the interaction. Beside

these differences, the structure of van der Waals force for uniaxial media is similar

to the one for the isotropic media. The properties of the force and the differences

between the isotropic and uniaxial expressions will be discussed in more detail after

the analytic expression for the force, i.e., the Hamaker constant, will be derived.

Often, in experimental set-up the solid substrate is covered by a natural oxide

layer, a layer of condensed water, etc., and the system in question is at least four-

layered (see Fig. 3.3). For such cases, combining relations for Hamaker constants

are known [89] and are frequently used in practice. These relations are by itself

approximate and beside that, they combine Hamaker constants, which are already
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Figure 3.3 Schematic representation of the four-layer system: two
semi-infinite macroscopic bodies separated by the third medium. One of the
substrate is covered by an additional layer, e.g., a natural oxide layer or a
layer of condensed water. The thickness of the additional layer is t and the
separation between the macroscopic bodies, which is subject to change, is d.

obtained by some other approximations that will be discussed in the following Sec-

tion. Therefore, the force calculated from a combined Hamaker constant can only

serve as a qualitative measure of the force rather than a quantitative. From the

secular equations obtained for the four-layer system [Eqs. (3.14) and (3.21)] and the

definition of the van der Waals force [Eq. (3.34)], the expression for the force in a

four-layer system can be easily determined. Both, the expression in Eq. (3.34) and

the van der Waals force for the four-layer system can only be calculated numerically.

Since the results of such numerical calculations will be used in the study of stability

of thin nematic deposition, the expression for the van der Waals force acting on a

layer of media 2 with thickness d, and surrounded by semi-infinite medium 1, a layer

of medium 3 (thickness t), and semi-infinite medium 4, are written out as well,

Π =
kBT

16πd3

ε2‖(0)

ε2⊥(0)

∫ ∞
0

dx x2 ∆̄12∆̄23 e−x + ∆̄12∆̄34 e−x(1+a)

1 + ∆̄12∆̄23 e−x + ∆̄23∆̄34 e−xa + ∆̄12∆̄34 e−x(1+a)

+
kBT

πd3

∞∑
n=1

d̃3
∫ ∞
1

dp p2

 ∆R
12∆

R
23 e−2pd̃ + ∆R

12∆
R
34 e−2pd̃(1+a)

1 + ∆R
12∆

R
23 e−2pd̃ + ∆R

23∆
R
34 e−2pd̃a + ∆R

12∆
R
34 e−2pd̃(1+a)

+
ε2‖

ε2⊥

∆̄R
12∆̄

R
23 e−2pd̃ + ∆̄R

12∆̄
R
34 e−2pd̃(1+a)

1 + ∆̄R
12∆̄

R
23 e−2pd̃ + ∆̄R

23∆̄
R
34 e−2pd̃a + ∆̄R

12∆̄
R
34 e−2pd̃(1+a)

 . (3.37)

Here, d̃ = d
√

ε2⊥ξn/c, a = t/d
√

(ε2‖/ε2⊥)(ε3⊥/ε3‖), and functions ∆̄ij = ∆̄ij(0), ∆R
ij =

∆R
ij(iξn), ∆̄R

ij = ∆̄R
ij(iξn) are defined in Eq. (3.36). In a four-layer system, for small

thicknesses d the van der Waals interaction is mostly due to the interaction between

media 1 and 3 over a layer of medium 2, whereas for large separations d the effect

of the additional layer 3 is negligible and the interaction is due to the interaction of

media 1 and 4 over a medium 2. For intermediate separations the interaction is due

to the non-trivial composition of layers and is not just a superposition of the two

interactions described above. From the arguments just discussed the force can have
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a non-monotonic behavior and the turn-over of the behavior of the force occurs at

d ∼ t.

3.5 Uniaxial Hamaker constant

Frequently, one is not interested in a precise separation dependence of the van der

Waals force, but rather in its attractive/repulsive character and its order of magni-

tude. In such case, one is satisfied with the approximate analytic expression which

is far easier to analyze and calculate with. For that reason the approximate analytic

expression for the uniaxial van der Waals force is determined.

In the nonretarded limit the dependence on the separation between the two bod-

ies can be extracted from the material properties and the van der Waals interaction

can be written in a form of an explicit separation dependence and the “Hamaker”

constant. In this limit the velocity of light is assumed to be infinitely large, so

that the phase coherence between interacting fluctuating dipoles is not lost for any

separation. This is always true for static electromagnetic fields, whereas for the

dynamic electromagnetic fields it only holds approximately if the distance between

the two interacting molecules is small comparing to the wavelength of the radiation

of the fluctuating dipole. For most materials, λe = c/νe ∼ 100 nm. Neglecting the

retardation, the expression in Eq. (3.32) reduces to Π = −A/6πd3, where A is a

Hamaker constant calculated from the Lifshitz theory,

A = −3kBT

4

∞∑
n=0

′ ε2‖(iξn)

ε2⊥(iξn)

∫ ∞
0

dx x2 ∆̄12(iξn)∆̄23(iξn)e−x

1 + ∆̄12(iξn)∆̄23(iξn)e−x
. (3.38)

Here, the prime over the sum denotes that the term with n = 0 should be multiplied

by 1/2 and the function ∆̄ij = ∆̄ij(iξn) is defined in Eq. (3.36). After performing

the elementary integral in Eq. (3.38),

A = −3kBT

2

∞∑
n=0

′ ε2‖(iξn)

ε2⊥(iξn)
∆̄12∆̄23

[
1 +

∞∑
k=1

(−∆̄12∆̄23)
k

(k + 1)3

]
. (3.39)

Usually, |∆̄ij| � 1, except if ε̄i � ε̄j or vice versa, which is usually not true. There-

fore, the terms of higher orders of products ∆̄12∆̄23 can be neglected — neglecting

“many-body” interactions. Here, by analogy with the microscopic description, the

contributions from different orders in ∆12∆23 are termed as: “pair-wise” interac-

tion, if only the first order is taken into account, and as “many-body” interaction,

if the complete series of orders is considered. If the temperatures are not very high,

the sum over n can be replaced by integral with respect to the frequency ξ. (For

room temperatures, ξ1/ωe = (kBT/h̄c)λe ∼ 1/80 � 1, and the sum over discrete

spectrum of frequencies ξn can be safely replaced by an integral.) In the case of
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isotropic media, these approximations allow one to calculate the Hamaker constant

analytically. Here, it should be taken into account that from Eqs. (3.36) and (3.33)

∆̄ij(iξ) =
n2

i − n2
j

n2
i + n2

j + 2ξ2/ω2
e

. (3.40)

For uniaxial media the latter expression, with the additional transformation ni → n̄i,

is only approximately valid, since terms [(∆ni/ni‖)
2±(∆nj/nj‖)

2](ξ/ωe)
2 and higher

orders in both, (∆ni/ni‖) and (ξ/ωe), are neglected; ∆ni = ni‖−ni⊥ , and is in liquid-

crystalline systems up to 10% of ni‖ , thus, neglecting the higher orders contributes

the error not larger than few percents. With this additional approximation, the

Hamaker constant for uniaxial media can be determined:

A = Aν=0 + Aν>0 =
3

4
kBT

ε2‖

ε2⊥

ε̄1 − ε̄2

ε̄1 + ε̄2

ε̄3 − ε̄2

ε̄3 + ε̄2

(3.41)

+
3h̄ωe

8
√

2
(n̄2

1 − n̄2
2)(n̄

2
3 − n̄2

2)

 √
2(n2

2‖
− n2

2⊥
)

n2⊥(2n2
2⊥ − n̄2

1 − n̄2
2)(2n

2
2⊥ − n̄2

3 − n̄2
2)

−
2n2

2‖
− n̄2

1 − n̄2
2√

n̄2
1 + n̄2

2(2n
2
2⊥ − n̄2

1 − n̄2
2)(n̄

2
1 − n̄2

3)
+

2n2
2‖
− n̄2

3 − n̄2
2√

n̄2
3 + n̄2

2(2n
2
2⊥ − n̄2

3 − n̄2
2)(n̄

2
1 − n̄2

3)

 ,

where āi =
√

ai‖ai⊥ and a stands for either static dielectric constant ε, or the

refractive index in visible n. The first term in Eq. (3.41), Aν=0, corresponds to the

static response of the media, and the second term, Aν>0, corresponds to dynamic

response.

If the interacting macroscopic bodies are isotropic, the effective parameters ε̄

and n̄ are replaced by isotropic parameters ε and n, respectively. In the case all

three media are isotropic, the expression reduces to the well known formula written

out in Eq. (3.2). Frequently, the two semi-infinite media are the same, e.g., free-

standing liquid-crystalline film surrounded by air, membrane in a solution, etc., and

the Hamaker constant reduces to

A =
3

4
kBT

ε2‖

ε2⊥

(ε̄1 − ε̄2)
2

(ε̄1 + ε̄2)2
+

3h̄ωe

8
√

2
(n̄2

1 − n̄2
2)

2 (3.42)

×

 √
2(n2

2‖
− n2

2⊥
)

n2⊥(2n2
2⊥ − n̄2

1 − n̄2
2)

2
+

(n̄2
1 + n̄2

2)
2 + 4n̄4

2 − 2(n̄2
1 + n̄2

2)(3n
2
2‖
− n2

2⊥
)

2(n̄2
1 + n̄2

2)
3/2(2n2

2⊥ − n̄2
1 − n̄2

2)
2

 .

In the following, the derived Hamaker constant for uniaxial media [Eq. (3.41)]

will be first compared to the isotropic Hamaker constant [Eq. (3.2)] and, secondly,

its validity with respect to the full Lifshitz theory [Eq. (3.35)] will be discussed.
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Uniaxial vs. isotropic

In the derived expressions, the difference between isotropic and uniaxial media is

explicitly manifested: The relevant parameters, which determine the character of

the interaction, are in the case of isotropic interacting media ε = εiso and n = niso.

In the case of uniaxial media the relevant parameters are not the traces of the

corresponding tensors, εiso = (ε‖ + 2ε⊥)/3 and (niso)2 = (n2
‖ + 2n2

⊥)/3, but rather

products of their eigenvalues, ε̄ =
√

ε‖ε⊥ and n̄ =
√

n‖n⊥. The sign of the static

part of the Hamaker constant depends on the relative sequence of the introduced

renormalized static dielectric constants: for ε̄2 < ε̄1, ε̄3 or ε̄2 > ε̄1, ε̄3 the static

Hamaker constant is positive and static part of the van der Waals interaction is

attractive, whereas for ε̄1 < ε̄2 < ε̄3 or ε̄1 > ε̄2 > ε̄3 the static Hamaker constant is

negative and the corresponding interaction is repulsive. Similar conditions can be

determined for the dynamic part of the Hamaker constant. It can be shown that

the part in the square brackets in Eq. (3.41) is positive definite, thus, the sign of the

dynamic part of the Hamaker constant depends solely on the sign of the product

(n̄2
1− n̄2

2)(n̄
2
3− n̄2

2). For n̄2 < n̄1, n̄3 or n̄2 > n̄1, n̄3 the dynamic Hamaker constant is

positive and the dynamic part of the van der Waals interaction is attractive, whereas

for n̄1 < n̄2 < n̄3 or n̄1 > n̄2 > n̄3 the dynamic Hamaker constant is negative and the

corresponding interaction is repulsive. The sign of the isotropic Hamaker constant

has the same sequence dependence as the uniaxial Hamaker constant, however, with

isotropic parameters εiso and niso instead of effective ε̄ and n̄, respectively.

As already noted, until now in studies concerning uniaxial layers the van der

Waals interaction has been calculated by use of the isotropic Hamaker constant and

isotropic parameters. There are two sources of mistakes when doing this. First, even

if the effective parameters are very close to the isotropic parameters, the magnitude

of obtained Hamaker constant differs from the uniaxial one because the anisotropies

∆ε2 = ε2‖−ε2⊥ and ∆n2 = n2‖−n2⊥ are neglected. (The static part is always smaller

whereas the dynamic part can be either smaller or larger.) In the static part, the

neglected dependence is easily recognized in the ratio ε2‖/ε2⊥ , which is by definition

always larger than 1, whereas in the difference of the dynamic parts the dependence

on the anisotropy is not that clear. Secondly, the difference between the isotropic and

uniaxial Hamaker constants can be even more profound if the sequences of isotropic

and effective parameters are different. In that case, the isotropic expression yields

wrong sign of the interaction. The change of the sequences is very easily obtained

with static dielectric constants, whereas the optical anisotropies are usually small

and the sequences of isotropic and effective refractive indices change only in a very

narrow range of possible combinations. Since the static Hamaker constant is about

an order of magnitude smaller than its dynamic part the effect is not very common
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in experimental set-ups. The narrowness of possible combination of materials that

satisfy the described conditions (see Fig. 3.4) could be one of the reasons why the

problem of wrong sign of the Hamaker constant in systems consisting of uniaxial

media has not been recognized before. However, it can be expected that the effect

has already been observed but not recognized and/or understood. The explained

change of the attractive/repulsive character of the van der Waals interaction to the

repulsive/attractive character due to the increased optical anisotropy can be also

one of the reasons for change in the stability of thin soft layers when crossing the

(dis)ordering transition. As an example, the Hamaker constant is calculated for a

system, which is often a part of the experimental set-up: a thin liquid-crystalline film

deposited on a solid substrate and in contact with air on the other side. For liquid

crystal 5CB (ε‖ = 18.5, ε⊥ = 7, n‖ = 1.702, and n⊥ = 1.539) on silica (ε = 14 and

n = 1.5) the van der Waals interaction is attractive in both, uniaxial and isotropic

phase; for the same liquid crystal on a material with ε = 11 and n = 1.6, which can

be found among glassy materials, the interaction is repulsive in the isotropic and

attractive in the uniaxial phase (see Fig. 3.5).

Hamaker vs. Lifshitz

After the comparison between the isotropic and uniaxial Hamaker constants the

validity of the approximations that lead from the full Lifshitz theory to the derived

Hamaker constant should be discussed. By comparing the Hamaker constants in

which either “many-body” interactions [Eq. (3.35)] or just “pair-wise” interactions

[Eq. (3.41)] are taken into account, it can be seen that in the nonretarded limit

neglecting the higher orders does not considerably alter the magnitude of the inter-
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Figure 3.5 Van der Waals force per unit area in the layer of nematic liquid
crystal (ε‖ = 18.5, ε⊥ = 7, n‖ = 1.702, and n⊥ = 1.539) in a contact with
a solid substrate — (a) silica (ε = 14, n = 1.5), (b) some glassy material
(ε = 11, n = 1.6) — and air. Solid curves correspond to full Lifshitz theory
for uniaxial media, dashed curves are the van der Waals force per unit area
calculated with uniaxial Hamaker constant, and dotted lines are calculated
with Hamaker constant for isotropic media.

action. Nevertheless, one should bear in mind that the screening of the surrounding

molecules decreases the interaction, however, for realistic parameters ∼ 5% at the

most. As already known, the main defect of the introduced “Hamaker” procedure is

not in neglecting “many-body” interactions but in neglecting the retardation. The

latter becomes important when the time it takes for the electromagnetic field of one

molecule to reach the second one and to return becomes comparable to the period

of the fluctuating dipole. Usually, this happens when the interacting molecules are

about ten nanometers apart. In Figs. 3.5 and 3.6 the van der Waals force as calcu-

lated from the full Lifshitz theory for uniaxial media is compared to the forces in

the nonretarded limit, either taking into account or neglecting the anisotropy.

Although, strictly speaking, approximation of no retardation is valid only when

the interacting bodies are in close proximity to each other one should keep in mind

that the retardation does not change the character of the interaction but only de-

creases its magnitude when the separation between the bodies is increased. If there

is another, stronger interaction, which acts in the system, and the van der Waals

interaction contributes only a correction to the primary interaction or if the van

der Waals interaction is itself the primary interaction one can be satisfied with the

approximate analytic expression which is far easier to calculate with and gives bet-

ter insight in the effect of dielectric and optical properties of constituent media on

the van der Waals interaction. Here is the opportunity for the analytic expression

derived here. Especially lately, in studies, which aim to explain the experiments of
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Figure 3.6 Van der Waals force per unit area in the layer of nematic liquid
crystal in a contact with silica and air. Solid curve corresponds to the full
Lifshitz theory for uniaxial media and dashed curve to the van der Waals
force per unit area calculated with uniaxial Hamaker constant. Parameters
used are the same as in Fig. 3.5.

spinodal dewetting of thin soft organic materials usually characterized by uniaxial

dielectric permittivity and refractive index, the correct determination of at least the

character of van der Waals interaction is very important [103,104].



4

Heterophase nematogenic system

In this study of influence of the confining substrates onto the equilibrium order and

pretransitional dynamics of the nematic liquid crystal we will first stop at substrate-

induced effects which are localized in the vicinity of confining walls. They are char-

acteristic for systems in which there is no competition between antagonistic fields

inducing preferred direction of the nematic order in different directions, such as the

surface, magnetic, etc., fields. Here, we are interested in systems that are subject to

surface-induced nematic order. Especially interesting is the case, in which the surface

potential is such as to induce a sufficiently large orientational ordering as compared

with the bulk phase — a paranematic system. Then, a mesoscopic layer of nematic

phase intervenes at the substrate–isotropic phase interface as the isotropic–nematic

transition is approached from above [see Fig. 4.1 (a)]. The described situation is

known as (orientational) wetting; the wetting can be either partial or complete.

In the case of complete wetting, a surface transition occurs prior to the isotropic–

nematic phase transition; the former being associated with the occurrence of the

well defined layer of a nematic phase. The thickness of the surface-induced ordered

layer diverges at the isotropic–nematic phase transition which, thus, becomes contin-

uous. Above the surface critical point (GSC , TSC) the surface-induced layer grows

continuously. In the case of partial wetting, the thickness of the surface-induced

layer is saturated before the isotropic–nematic phase transition and the transition

remains discontinuous. By changing the aligning power of the substrate, i.e., chang-

ing the anchoring strength and/or changing the value of the induced nematic order,

the complete wetting can change to partial wetting (or vice versa) between which

the wetting transition occurs. Temperature dependence of surface-induced wetting

layers in the case of complete and partial wetting is plotted in Fig. 4.2.

The surface interaction may also have a disordering effect if, for example, the

inner surface of the host material is rough [105–107]. In this case a reduction of the

degree of order in the boundary layer is expected below the phase transition tem-

73
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(a) (b)

Figure 4.1 Schematic representation of the order of molecules close to the
substrate in the system with surface-induced (a) nematic order and (b) disor-
der.

perature, and the substrate induces wetting by the isotropic phase [see Fig. 4.1 (b)].

Again, the complete wetting refers to the case where the thickness of the surface-

induced isotropic layer diverges on approaching the isotropic–nematic phase transi-

tion from below whereas the wetting is partial if the thickness of the wetting layer

remains finite at the transition. The divergent nature of the thickness of the wetting

layer, either isotropic in a nematic phase or nematic in isotropic phase, is associated

with the surface aligned semi-infinite nematic systems. In the case the liquid crystal

is bounded from more than one side, the thickness of the wetting layer can not di-

verge because the wetting layers get in contact before that. Still, the discontinuity of

the isotropic–nematic phase transition can be significantly reduced. In highly con-

strained surface-aligned nematic systems the transition between the isotropic and

nematic phase can be lost whereas the nematic order grows gradually on lowering

the temperature.

The interest in wetting transitions was initiated by study of Sheng in 1976 in

which it was found that above some critical film thickness the isotropic–nematic

phase transition in a surface aligned nematic can become continuous [18]. The

original study of a nematic in contact with two substrates with infinitely strong

anchoring was extended to cases of oblique anchoring strength [50]. Allender et. al

studied extensively a semi-infinite nematic wetting system for which they deter-

mined in an analytical manner the scalar order parameter profiles in stable and

metastable phases above and below the isotropic–nematic phase transition [108].

The isotropic–nematic phase transition in restricted geometries was further stud-

ied by Sluckin and Poniewierski [109,59], both, for the case of homeotropic and

planar anchoring. In the latter, the nematic order in the wetting layer is biax-

ial due to the broken symmetry in the plane of the confining substrate. Telo da

Gama et. al studied the wetting and interfacial phenomena by use of the density

functional method [110,111]. In highly restricted geometry, the pretransitional ne-

matic order and the structural force among the confining substrates was studied

by Borštnik and Žumer [60]. Studies of equilibrium order were followed by studies
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Figure 4.2 Portrait of profiles of the scalar order parameter for various tem-
peratures for the case of (a) complete wetting and (b) partial wetting (dashed
line corresponds to the metastable paranematic solution). The scalar order
parameter S is measured in units of bulk value of the order parameter at the
phase transition, SNI .

of pretransitional collective dynamics in wetting systems. First, pretransitional ex-

citations were determined for the paranematic slab above the phase transition by

Ziherl et. al [14] which was followed by an extended study in the inverse case of a

nematic sandwiched between order melting substrates [15]. The analytical solutions

in a semi-infinite system were derived by Ivanov [112]. Beside theoretical studies,

the wetting and wetting transitions were subject of series of experimental studies

since they reveal anchoring and interfacial properties of the liquid crystal in contact

with substrates. The studies performed by means of optical ellipsometry methods

are due to Miyano [113], Yokoyama [114], Moses [106], and many others, and lately,

the experiments involving the force microscopy were performed by Moreau et. al [22]

and Kočevar et. al [115,67]. Similar effect as in the case of surface-aligned nematic

order is observed also for the case of smectic order — wetting by a smectic phase —

which is associated with both, the vicinity of the transition to the smectic A phase

and with the fact that the presence of the wall breaks the continuous translational

symmetry resulting in a smectic-like order close to the confining substrate. The

former effect was studied mostly by Moses et. al [116], and the latter effect was

studied by Rosenblatt [117], Ocko et. al [118], etc.

As it can be noted from the above review of work done in the field of wetting

by isotropic or nematic phase there was not much known about the pretransitional

collective dynamics in wetting systems before our study was performed. Though, it

can be expected that the pretransitional dynamics of wetting systems should differ

significantly from pretransitional dynamics in bulk systems, especially, when the

conditions for the complete wetting are fulfilled. If the average equilibrium order in

the wetting systems reveals the anchoring properties of the confining substrates and
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the nature of the liquid crystal interface the study of pretransitional dynamics offers

insight into the evolution of the order characteristic for the low-temperature phase

in the case of paranematic system and the evolution of the disorder in the case of

a nematic confined by “order-melting” substrates. Regardless of the geometry of

the host medium, these systems are characterized by high surface-to-volume ratio

and, thus, they are very susceptible to any interaction between the constituent

molecules and the surrounding walls. The surface coupling encountered in actual

confined systems is usually not strong enough to be describable by a fixed value of

the degree of order at the wall which was assumed in the study of pretransitional

collective dynamics in the paranematic system [14], however, it reveals the basic

physics behind the phenomena studied. Secondly, as it has been already discussed,

the surface interaction may also have a disordering effect which is realized in the case

of silica and some other materials for various kinds of the surface treatment [107].

It is evident, that there are a number of parameters of wetting in liquid-crystalline

systems that seem to be pertinent to the behavior of collective excitations of the

ordering in the vicinity of the isotropic–nematic phase transition. In order to provide

a complete account of the phenomenon first discussed in a preliminary study of

Ziherl and Žumer [14], I elaborate some of them theoretically by (i) comparing

the spectra of fluctuations in geometries with surface-induced order and disorder,

and (ii) by extending the analysis to substrates with finite strength of the surface

interaction. For the case of “order-melting” substrates I present a detailed study of

both, equilibrium order determined within the phenomenological mean-field theory

and collective pretransitional dynamics.

One of the difficulties encountered in any theoretical description of confined liq-

uid crystals is the curved or even irregular and random internal geometry of the

host material, which is often not easy to model. However, in the case of wetting, the

anchoring effect of the confining surface is either partly or completely screened, and

thus the actual topology of walls is not really important: it can be expected that the

basic physics of these systems can be captured by a model planar geometry consist-

ing of a nematic liquid crystal sandwiched between two parallel substrates, which is

adopted in the present analysis. Schematic representation of the modeled system is

visualized in Fig. 4.3. Two types of walls are considered: The disordering substrate

gives rise to an isotropic boundary layer below the isotropic–nematic phase transi-

tion temperature, where the largest part of the sample is nematic, and to perfectly

isotropic phase above the transition. The system will be termed as the surface-

molten nematic system. Second type of walls pertains to the ordering substrate and

the corresponding liquid-crystalline system is paranematic. In the paranematic sys-

tem, the equilibrium configuration is nematic below TNI , and above TNI it remains
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Figure 4.3 Schematic representation of the studied system. Nematic liq-
uid crystal is sandwiched between two parallel planar substrates with equal
anchoring properties. They either induce uniaxial nematic order in the
homeotropic direction (paranematic system) or they decrease the nematic or-
der (surface-molten nematic system).

nematic within the boundary layer whereas the core melts into isotropic phase.

The forthcoming analysis is based on the Landau–de Gennes model of the phase

transition and the nematic is described by a tensorial order parameter. In the

study, the surface-induced smectic layering is not considered since in the case of

liquid crystals which can be found in nematic phase but do not form smectic layers

in the bulk (which is the case for 5CB I refer to all through the thesis) the smectic

layering is not very pronounced. Further, it is assumed that the average nematic

director is homogeneous in the system and only the scalar order parameter varies as

a function of a coordinate z perpendicular to the confining substrates. Skačej et. al

showed that when the elastic constants associated to splay and bend deformations

of the nematic director are different form the twist elastic constant (which is usual in

liquid-crystalline materials) a spatial variation of the scalar order parameter induces

variation of the director [119]. However, the coupling and the resulting variation of

the director is very small and it is safe to adopt the one-elastic-constant approxi-

mation in which this effect can not arise. In 1996 Braun et. al studied wetting in

the system where there was a competition between the surface-induced direction for

the director and the preferred orientation of the director at the nematic–isotropic

interface [120]. There are many experimental [121,122] and theoretical [123–125]

studies considering the orientation of the director at the nematic–isotropic interface

and also at the free nematic or isotropic surface. In most of them, the reported

measured directions are in the range of 40◦ to 60◦, however, from the Landau–de

Gennes theory with assuming uniaxial nematic order only homeotropic and planar

molecular arrangements can be obtained [123]. Marcus removed the assumption of

uniaxial nematic order and showed that the order at the nematic–isotropic interface

is highly biaxial and that the angle between the interface normal and the nematic

director can be oblique [124]. However, in all cases the anchoring strength at the
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nematic–isotropic interface is rather weak, ∼ 10−5 J/m2, [107] so that it can be as-

sumed that the orientation of the director is determined by the stronger anchoring

of the substrate in the case of a paranematic system whereas in the case of a nematic

in contact with disordering substrates the homeotropic direction is maintained by

the aligning action of the magnetic field. In order to compete with the anchoring

at the nematic–isotropic interface, B >∼ 0.01 T, which is very weak and, thus, its

contribution to the free energy of the system need not to be considered explicitly.

The case where the competing antagonistic preferred orientations of the director are

comparable will be studied in the following Chapter which deals with the hybrid

nematic cell.

In the following, the equilibrium profiles of the nematic order are calculated

within the phenomenological mean-field theory (Section 4.1). The pretransitional

dynamics of all five degrees of freedom of the order is determined in Section 4.2.

Structural forces which arise among the confining substrates because of their (dis)-

ordering action are discussed in Section 4.3. Last Section in the Chapter deals with

the van der Waals force acting on a wetting layer due to the inhomogeneity of the

order.

4.1 Equilibrium profiles

For a uniform director field with n̂ = êz, the base tensors Ti [Eq. (2.6)] are uniform

themselves provided that the orientation of the two arbitrary vectors ê1 and ê2 is

also position-independent, e.g., identified by êx and êy. Being uniaxial, wetting

structures are characterized by an inhomogeneous profile of the degree of order,

S/SNI = a0. The lateral dimensions of the system are much larger than its thickness,

Lx, Ly � d, thus, a0 depends only on the distance from (one of) the substrates. Since

the confining substrates are equal the profile of the degree of order is symmetric with

respect to the plane in the middle of the liquid-crystalline cell. Thus, it will only

be calculated in one half of the cell. The other four coefficients in the expansion

A =
∑2

i=−2 ai(~r)Ti are all equal to 0. The Euler–Lagrange equation [Eq. (2.62)],

which determines the profile of a0, reduces to

ζ2a′′0 − θa0 + 3a2
0 − 2a3

0 = 0, (4.1)

where prime denotes d/dz. Since QS is assumed uniaxial and homeotropic, QS =

aST0, the boundary conditions at z = 0 and z = 1/2 read

a′0 =
g

ζ2
(a0 − aS) , (4.2)

where aS is the preferred degree of order at the substrate, and

a′0 = 0, (4.3)
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Figure 4.4 Equilibrium profiles of the degree of order in the vicinity of (a)
a disordering substrate at θ = 1 − 10−1, 1 − 10−3, and 1 − 10−5, and (b) an
ordering substrate at θ = 1 + 10−1, 1 + 10−3, and 1 + 10−5. In both cases, the
surface interaction is modeled by a prescribed degree of order equal to 0 and
1.1, respectively.

respectively. This and all further differential equations are solved numerically using

the relaxation method [126].

In both wetting geometries the equilibrium profile of the degree of order exhibits

a substrate-induced variation in the boundary layer and levels off at the bulk value

in the center of the sample (Fig. 4.4). In the case the wetting is partial, the thickness

of the wetting layer dW has a very moderate temperature dependence whereas in

the case of a complete wetting it exhibits a pronounced pretransitional increase.

Since the thickness of the liquid crystal is finite the increase can not diverge like

it diverges in the semi-infinite sample [108], however, as presented in Fig. 4.5 the

actual temperature dependence is not far from the logarithmic behavior typical for

semi-infinite samples. In the case of partial wetting, the thickness of the wetting

layer levels off on approaching the bulk phase transition temperature. Temperature

dependence of the thickness of the isotropic and nematic wetting layer in the case

of complete and partial wetting is presented in Fig. 4.5.

Although the wetting behavior of liquid crystals can be quite complex as it was

discussed in the beginning of this Chapter, complete wetting is generally related to

substrates with large (dis)ordering power, whereas otherwise partial wetting is to

be expected. For the quadratic surface interaction used in present study, complete

wetting of the disordering wall occurs only if aS = 0 and G >∼ 0.0023 J/m2. In

case of an order-inducing substrate the critical value of G depends on the preferred

degree of order, which must exceed 1: for example, Gc(aS = 1.1) = 0.0006 J/m2.

The obtained results are consistent with the results of the earlier study performed by

Sheng [50], based on a somewhat different type of surface interaction. To illustrate

the role of the strength of the surface interaction in the wetting behavior, some
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Figure 4.5 Temperature dependence of the thickness of the wetting layer dW

in (a) surface-molten nematic system and in (b) paranematic system in the
case of complete (solid lines) and partial (dashed line) wetting. Dotted lines
correspond to the thickness in the semi-infinite sample. Parameters used in
the calculation of finite samples are for the surface-molten nematic system:
aS = 0, d = 792 nm, and G → ∞ in the case of complete wetting and
G = 0.001 J/m2 in the case of partial wetting, and in the case of a paranematic
system: aS = 1.1, d = 792 nm, and G → ∞ in the case of complete wetting
and G = 0.0006 J/m2 in the case of partial wetting. In the semi-infinite
sample: G → ∞ and aS = 0 and aS = 1.1, respectively. In (c) and (d), the
curves are plotted in logarithmic scale.
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Figure 4.6 Some profiles of the degree of order in the finite anchoring model:
(a) a disordering substrate at θ = 1−10−5 with G→∞ (solid line), 0.001 J/m2

(dashed line), and 0.0003 J/m2 (dotted line), (b) an ordering substrate at
θ = 1 + 10−5 with G → ∞ (solid line), 0.0007 J/m2 (dashed line), and
0.0006 J/m2 (dotted line).

equilibrium profiles of the degree of order in the two wetting systems are shown in

Fig. 4.6.

As the thickness of the liquid-crystalline sample is varied the thickness of the

wetting layer changes even though it looks like the two wetting layers do not in-

teract with each other. In an earlier study within the Landau–Ginzburg theory,

Gompper et. al studied a heterophase system of water confined with hydrophobic

substrates. They derived the asymptotic behavior for the thickness dependence of

the wetting layer thickness, ∂dW /∂d ∼ −const. × exp(−d/ξ) [127], where ξ is the

correlation length of the degree of order in the bulk phase. In Fig. 4.7 the tem-

perature dependence is presented for the case of complete and partial wetting in

surface-molten nematic and paranematic systems. In both, dW is a decreasing func-

tion of d and approaches the thickness corresponding to the semi-infinite sample.

The behavior differs from the predicted asymptotic behavior, however, the latter is

valid in the limit of large d’s and small dW ’s. On decreasing the sample thickness,

the bulk-like core of the sample is more and more affected by the presence of the

wall and finally the two wetting layers merge.

In a confined geometry, the transition between a surface-induced heterophase

ordering and a homophase structure occurs at a temperature somewhat different

from the clearing point. In case of disordering walls, the transition from the low-

temperature phase characterized by molten boundary layer to the high-temperature

isotropic phase is shifted below the nematic-isotropic phase transition temperature.

Conversely, in the order-inducing geometry the transition from nematic to parane-

matic phase takes place above θNI . The actual magnitude of the shift depends on

the size of the sample and on the parameters of the surface interaction, and is prac-
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Figure 4.7 Thickness of the wetting layer as a function of the thickness
of the (a) nematic and (b) paranematic sample. Solid lines correspond to
the regime of the complete wetting and dashed lines correspond to partial
wetting. In semi-infinite sample, the corresponding thicknesses are in the
nematic case 50.6 nm and 16.3 nm, and in the paranematic case 81.1 nm and
9.4 nm, respectively. Parameters used in calculation are in the surface-molten
nematic case: aS = 0, θ = 1 − 10−5, and G → ∞ (complete wetting) and
G = 0.001 J/m2 (partial wetting), and in the paranematic case: aS = 1.1,
θ = 1 + 10−5, and G → ∞ (complete wetting) and G = 0.0006 J/m2 (partial
wetting).

tically negligible in micron-size cavities: For example, for ζ = 0.01 (d = 792 nm)

and perfectly disordering wall with G → ∞ and aS = 0, the transition occurs at

θ = 0.99274. In the paranematic system with the same thickness and anchoring

strength but with aS = 1.1, the transition occurs at θ = 1.0073. Both examples

indicate that the shifts do not exceed 0.01 K. However, in smaller cavities the ef-

fect can be far more prominent. Below some cell thickness, which depends on the

anchoring properties of the confinement, the phase transition is lost and the order

grows continuously which is in agreement with experimental studies [128,129].

4.2 Pretransitional dynamics

Once the relevant equilibrium structures in the two wetting geometries have been

described, the scene is set for the analysis of fluctuations. The dynamics of the five

scalar components of collective excitations — introduced by the expansion B(~r, t) =∑2
i=−2 bi(~r, t)Ti — is derived by projecting the equation of motion [Eq. (2.64)] onto

the base tensors. Because the equilibrium order is characterized by only one nonzero

amplitude, a0, the five fluctuation modes are uncoupled. In addition, due to the

uniaxial symmetry of the system the two biaxial modes are degenerate and so are

the two director modes. Since the mean-field equilibrium profiles depend on the
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z-coordinate only, the normal modes can be factorized as follows:

bi(~r, t) = ei(kxx+kyy)βi(z) e−µit, (4.4)

where µi’s are the dimensionless relaxation rates of the eigenmodes measured in

units of τ−1
a ∼ 108 s−1 [Eq. (2.60)]. Their normal components βi are uncoupled and

determined by

ζ2β′′0 −
(
θ − 6a0 + 6a2

0 − λ0

)
β0 = 0,

ζ2β′′±1 −
(
θ + 6a0 + 2a2

0 − λ±1

)
β±1 = 0, (4.5)

ζ2β±2 −
(
θ − 3a0 + 2a2

0 − λ±2

)
β±2 = 0,

where β′i = dβi/dz and λi = µi − ζ2(k2
x + k2

y) are the reduced relaxation rates of

the modes. The in-plane components of the wave vector, kx and ky, are assumed

to be subject to periodic boundary conditions. In terms of correlation lengths λi =

ξ−2
i /ξ−2

NI + ζ2q2
z , where ξi’s are the corresponding correlation lengths introduced in

Eq. (2.35) and qz is the wavevector of the deformation parallel to the substrate

normal. In case of finite anchoring strength, the corresponding boundary condition

at the substrate is given by

β′i(0) =
g

ζ2
βi(0), (4.6)

and otherwise βi(0) = 0. Due to symmetry arguments, the normal modes must be

either even or odd with respect to the center of the sample, thus, β′i(1/2) = 0 in the

former case and βi(1/2) = 0 in the latter case. (Since the equilibrium mean-field

profile a0 is even with respect to the plane in the middle of the cell and parallel to

the confining substrates the corresponding potentials for the fluctuation modes are

even as well. In the case of even potential the modes are know to be of the two

types — either even or odd with respect to the same symmetry plane [130].)

Homophase ordering

If a nematic layer is bounded by the walls characterized by strong surface interaction

and a bulk-like value of the preferred degree of order, βi’s reduce to sine waves, and

their relaxation rates may be cast into

λ̃i = ξ−2
N,i/ξ

−2
NI + ζ2 [(n + 1) π]2 , (4.7)

which is the same as in bulk except that due to the finite dimension in the z direction

the wavevector qz can only have discrete values, qz,n = ζ(n + 1)π, where n is the

number of nodes of the sine function between the two substrates. In confined sample,

the minimum wavevector is ζπ 6= 0, thus, even the relaxation rate of the Goldstone
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director mode is finite, though, it is very small. ξN,i’s are defined in Eq. (2.37) and

their temperature dependence is presented in Fig. 2.5.

Above the clearing point, a disordering wall produces a perfectly isotropic phase.

In this case, all five types of fluctuations are degenerate, and their relaxation rate is

determined by

λ̃i = ξ−2
I /ξ−2

NI + ζ2 [(n + 1) π]2 . (4.8)

ξI is introduced in Eq. (2.36) and its temperature dependence is plotted in Fig. 2.5.

It should be stressed again that the hardness of a given type of fluctuations can

be characterized by its correlation length: the shorter the correlation length, the

higher the energy of fluctuations. To understand the pretransitional behavior of

the system, it is important to know how the energy levels of excitations in nematic

phase compare with those in isotropic phase. In the vicinity of the phase transition,

fluctuations of the degree of order are equally hard in both phases. In nematic

phase, the biaxial modes are energetically far more costly than in isotropic phase —

as opposed to the director modes, which are characterized by an infinite correlation

length in nematic phase, whereas ξI is finite at the phase transition temperature.

At the phase transition, the correlation lengths of the scalar order parameter are

equally hard in both, nematic and isotropic phase, because at the transition both

phases are in equilibrium.

In general, the surface-induced degree of order differs form the bulk value and the

profile of the degree of order is inhomogeneous. Thus, the generalized correlation

lengths of the fluctuation modes are spatially dependent and the eigenmodes of

fluctuations in the two wetting geometries can only be determined numerically. In

the following, the spectra of collective excitations in nematic phase with molten

boundary layers and in paranematic phase are interpreted simultaneously.

Fluctuations of Degree of Order

In both systems, the primary effect of wetting is related to the existence of a slow

mode characterized by soft dispersion of its relaxation rate, whereas the upper part

of the spectrum remains more or less the same as in homophase system (Figs. 4.8

and 4.9). The elementary mode of fluctuations of the degree of order is localized

at the phase boundary between the wetting layer and the bulk phase, and since it

is even with respect to the center of the sample, it corresponds to fluctuations of

thickness of the central part of the slab. Similarly, the lowest odd mode — also

localized at the nematic-isotropic interface — represents fluctuations of position of

the core. However, the relaxation rates of these two modes are the same within

numerical accuracy, indicating that the two wetting layers are effectively uncoupled.
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Figure 4.8 Disordering substrate: (a) spectrum of fluctuations of the degree
of order, illustrated by the portraits of a few typical modes labeled by the
number of nodes (b); θ = 1 − 10−5. The lowest mode characterized by soft
dispersion of the relaxation rate corresponds to fluctuations of the thickness
of the wetting layer, whereas the upper part of the spectrum is basically the
same as in purely nematic sample and the corresponding fluctuations disturb
the whole sample. Red line in (a) represents the lower limit of the spectrum of
a homophase system and the dashed line in (b) corresponds to the equilibrium
profile of the degree of order; G→∞ and aS = 0.

This is directly related to the thickness of the sample, which is much larger than

ξN,0, the typical length scale of the variation of the degree of order. Were the

system thinner, the correlation between the (dis)ordered regions induced by the two

substrates would be stronger and the degeneracy of the lowest two normal modes

would be removed.

In the complete wetting regime, the relaxation rate of the elementary excitations

of the degree of order exhibits a linear critical temperature dependence typical for

soft modes:

λ0,0 = ±C±(θ − 1), (4.9)

where ’−’ and ’+’ correspond to nematic phase with molten boundary layer and

paranematic phase, respectively. The difference between the coefficients C− and

C+, which are approximately equal to 5.6 and 3.0, can be attributed to the fact

that the thickness of the isotropic wetting layer at the disordering wall at θ = 1− δ

is half of the thickness of the nematic wetting layer at the ordering substrate at

θ = 1 + δ; cf. Fig. 4.4 (a) and Fig. 4.4 (b). The slowdown of the relaxation rates of

the surface-induced soft modes, i.e., the divergence of their relaxation times, at the

phase transition temperature is a well-known and clear signature of the continuity of

the transition, which is actually just another face of the advancing phase boundary

in any complete wetting geometry [18,113]. In a finite system, however, a wetting-

driven phase transition can never be truly continuous, because the heterophase
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Figure 4.9 Ordering substrate: (a) relaxation rates of fluctuations of the
degree of order in paranematic phase, and (b) some typical modes for
θ = 1 + 10−5. As in Fig. 4.8, the soft mode represents fluctuations of the
thickness of the wetting layer, and the upper part of the spectrum is more or
less the same as in perfectly isotropic sample, which is also reflected in the
sinusoidal behavior of β0,n>1(z). Again, the red line is (a) is associated to the
lower limit of the spectrum in a homophase system and in (b) the equilibrium
profile of the degree of order is plotted with the dashed line; G → ∞ and
aS = 1.1.

configuration eventually becomes unstable in the immediate vicinity of the clearing

point — but in samples of thickness >∼ 100 nm this effect is detectable only if the

temperature resolution of the experimental method is better than ∼ 0.01 K.

In both wetting geometries, the upper part of the spectrum is more or less the

same as its homophase (i.e., nematic and isotropic) counterpart, which is reflected

in its regularity as well as in the sinusoidal profiles of the normal modes (Figs. 4.8

and 4.9). This also means that the upper, quasi-homophase modes are more or

less independent on the strength of the surface interaction, which has been verified

numerically. On the other hand, the behavior of the wetting-induced elementary

mode does depend strongly on the magnitude of the anchoring strength, G: if the

wetting is partial instead of complete, the pretransitional decrease of the localized

modes’ relaxation rates is less pronounced. They do not drop to 0 but remain fi-

nite at θNI = 1, so that the transition from surface-molten nematic to isotropic

phase or from nematic to paranematic phase is discontinuous even in semi-infinite

systems. Though, the corresponding latent heat may be reduced considerably com-

pared to the bulk isotropic–nematic transition. The temperature variation of the

relaxation rates of the lowest modes remains linear, implying that the underlying

mechanism is basically the same as in the complete wetting geometry. These find-

ings are quantitatively summarized in Fig. 4.10, where the lowest mode’s relaxation

rate at the isotropic–nematic phase transition temperature is plotted as a function

of the anchoring strength. In the partial wetting regime, which corresponds to small
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Figure 4.10 Relaxation rate of fluctuations of the thickness of the boundary
layer in disordering (solid line) and ordering wetting geometry (dashed line)
as a function of the strength of the surface interaction. In both cases, λ0,0 is
finite for G < Gc (partial wetting) and 0 otherwise (complete wetting), the
critical values of G being equal to 0.0023 J/m2 for disordering substrates and
0.0006 J/m2 for order-inducing walls. Note that the two geometries differ in
the type of the behavior of λ0,0 in the vicinity of Gc.

G’s, λ0,0 is finite; in the complete wetting regime, on the other hand, it is (within

numerical accuracy) equal to 0. The two geometries give rise to slightly different

behavior of λ0,0 in the vicinity of the critical strength of the surface interaction: in

case of disordering wall, λ0,0 approaches 0 somewhat more slowly than in case of an

order-inducing wall which is due to the fact that in the former case the regime of

the complete wetting is bounded to the very edge of the phase diagram (G, aS), i.e.,

to aS = 0.

In addition to the two elementary modes corresponding to fluctuations of thick-

ness of the boundary layers there are actually two more localized modes with re-

laxation rates that do depart from the quasi-homophase spectrum although not as

distinctly as the soft dispersion of λ0,0. These modes represent fluctuations of the

shape of the phase boundaries: the even one is related to simultaneous sharpen-

ing/flattening of the phase boundaries, whereas the odd one describes out-of-phase

fluctuations of their slope. The relaxation rates of these two modes are degenerate,

which is, as it has already been established, related to the fact that the system

considered is rather thick, so that the correlation between the two wetting layers is

very weak. These modes are depicted in Fig. 4.11.

There are, therefore, two localized modes associated to each interface between

nematic and isotropic phase: one of them corresponds to fluctuations of the position

of the phase boundary, and the other one changes its profile. Since the theoretical

approach used in this analysis is quite universal in its very nature, it seems that the
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Figure 4.11 Portrait of the second-lowest order parameter modes in the case
of (a) disordering and (b) ordering substrates. The even mode is responsible for
simultaneous sharpening/flattening of the phase boundaries and the odd one
describes out-of-phase fluctuations of their shape. The modes are degenerate
within the numerical accuracy.

same should hold true for any interface that can be described by a scalar variable.

However, in case of a phase boundary with a more complex structure, additional

and more sophisticated localized modes are expected.

As the mean-field structures discussed here are characterized by inhomogeneous

profiles of the degree of order and homogeneous profiles of the degree of biaxiality

and director fields, the wetting-specific dynamics is primarily related to fluctuations

of the degree of order. On the other hand, any critical behavior of the biaxial

and director modes is merely an indirect effect of the surface-induced heterophase

ordering.

Biaxial fluctuations

Biaxial modes are the hardest type of fluctuations in uniaxial nematic phase, which

is related to the fact that thermal excitations of transverse molecular order have to

compete with the existing uniaxial alignment. In systems with intrinsic biaxiality,

biaxial fluctuations are much softer which will be evident in the hybrid nematic

system studied in the following Chapter. At the phase transition temperature, the

lower limit of the relaxation rates of biaxial fluctuations in nematic phase is 9 times

larger than in isotropic phase [cf. Eqs. (4.7), (4.8) and Eqs. (2.37), (2.36)]. This

considerable difference in the energy levels of biaxial modes in the two phases is

reflected in their spectra in the two wetting geometries.

In case of nematic phase confined by a disordering wall, the lowest modes are

bounded to the isotropic wetting layer. A strong elastic deformation of the modes in

the thin isotropic region of the sample is energetically more favorable than a moder-
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Figure 4.12 Biaxial modes in a nematic sample bounded by disordering sub-
strates: (a) the lowest modes exhibit pretransitional slowdown on approach-
ing the clearing point and are confined to the isotropic wetting layer (b);
θ = 1−10−5, aS = 0, G→∞. The upper part of the spectrum is more or less
nematic-like, the modes being spread over the whole slab. Red line represents
the lower limit of the spectrum in a homophase system and the dashed line
corresponds to the equilibrium profile.

ate deformation in the thick nematic core (see Fig. 4.12). The number of bounded

modes depends on the thickness of the wetting layer and, thus, on temperature:

as the sample is heated towards the clearing point, more and more levels depart

from the upper, nematic-like part of the spectrum, which corresponds to modes

that disturb the whole sample.

In paranematic phase induced by the ordering substrate, biaxial fluctuations

are, conversely, expelled from the ordered boundary layer (see Fig. 4.13), so that

the allowed wavelengths of the normal modes are determined by the thickness of

the central isotropic part, not by the actual thickness of the sample. The difference

between these two is not significant except in the vicinity of the phase transition

temperature, where the nematic wetting layers squeeze the isotropic core and speed

up the relaxation rates of the biaxial modes.

Director fluctuations

Director modes are, as opposed to biaxial fluctuations, excited very easily in nematic

phase, where their Hamiltonian is purely elastic, whereas in isotropic phase they are

characterized by finite correlation length [Eqs. (2.37) and (2.36)]. This implies that

their wetting-induced behavior should be quite the inverse of what is predicted for

the biaxial modes.

In the disordering geometry, the director modes are forced out of the substrate-

induced isotropic boundary layer into the nematic core (see Fig. 4.14) just like the

biaxial modes are expelled from the nematic boundary layer into the isotropic core



90 Heterophase nematogenic system

1.00 1.02 1.04 1.06 1.08 1.10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

λ ±1
,n

θ
0.0 0.1 0.2 0.3 0.4 0.5

-1.0

-0.5

0.0

0.5

1.0

14
0

β ±1
,n

z/d

(a) (b)

Figure 4.13 Biaxial modes in paranematic phase are all expelled from the
quasi-nematic boundary layer (b); θ = 1+10−5, aS = 1.1, and G→ 0; and on
approaching θNI their relaxation rates must therefore increase along with the
thickness of the boundary layer (a). Red line represents the lower limit of the
spectrum of a homophase system and the dashed line depicts the equilibrium
profile.
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Figure 4.14 Director modes in a nematic sample bounded by disordering
substrates: (b) director fluctuations are forced out of the boundary layer;
θ = 1 − 10−5, aS = 0, and G → ∞; and must speed up on approaching the
clearing point (a), just like the biaxial modes in paranematic phase (Fig. 4.13).
Red line represents the lower limit of the corresponding spectrum in a ho-
mophase system and the dashed line depicts the equilibrium profile.
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Figure 4.15 Director modes in paranematic phase: (a) the relaxation rates
of the lowest modes, which are restricted to the nematic wetting layer (b);
θ = 1+10−5, aS = 1.1, and G→∞; decrease to 0 as θ → 1 due to the growth
of the wetting layer (cf. Fig. 4.13). Red line represents the lower limit of the
corresponding spectrum in a homophase system and the dashed line depicts
the equilibrium profile.

of the paranematic phase induced by the ordering substrate. Far from the phase

transition temperature, their relaxation rates are temperature-independent, whereas

in the vicinity of the clearing point they all increase because of rapid growth of the

wetting layer.

In paranematic phase a few lowest director modes are confined to the nematic

boundary layer, whereas the upper ones extend over the whole sample and are more

or less the same as in perfectly isotropic phase (see Fig. 4.15). The relaxation

rates of the lowest modes exhibit a cusplike slowdown similar to that observed in

biaxial modes in a disordering geometry (Fig. 4.12). Moreover, their pretransitional

slowdown resulting from the increase of the thickness of the wetting layer is actually

critical, since in this case the fluctuations confined to the wetting layer are Goldstone

modes.

The discussed results correspond to infinitely strong surface interaction. For G’s

which are large enough to induce complete wetting, the spectra of fluctuations re-

main qualitatively the same, whereas otherwise the slow modes are no longer critical.

Eventually, if the strength of the surface interaction is very weak, all fluctuations

become cosine-like and their spectrum is described by Eqs. (4.7) and (4.8).

The analysis has revealed a close relationship between the wetting regime induced

by (dis)ordering substrates and the pretransitional behavior of thermal fluctuations

of the ordering in confined liquid crystals. Both geometries are characterized by

a wetting-induced interface between nematic and isotropic phase, which gives rise

to two localized normal modes: the first one represents fluctuations of the position
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of the phase boundary and is characterized by a soft dispersion of its relaxation

rate (provided that the wetting is complete), and the second one corresponds to

fluctuations of the shape of the interface. Moreover, there are a few additional slow

modes, which are restricted to the wetting layer and whose pretransitional behavior

is related to its growth. If the wetting is partial, the slowdown of the localized

modes is not as pronounced as in complete wetting regime, but the underlying

physics remains the same.

The wetting-induced pretransitional behavior of the fluctuations of the liquid-

crystalline ordering is certainly not limited to geometries discussed in this study. A

similar phenomenon is expected in nematic and isotropic samples with substrate-

stabilized smectic boundary layer, which should exhibit critical slowdown in the

vicinity of the nematic–smectic and isotropic–smectic phase transition, respectively.

But the analogy with the substrate-stabilized nematic layer above the isotropic–

nematic phase transition is not complete due to layered structure of the smectic

ordering, which presumably gives rise to nontrivial features of the wetting-induced

fluctuations in this system.

It seems possible that the effect described here has already been detected exper-

imentally in some microconfined liquid-crystalline systems, where a huge increase

of the decay time of fluctuations has been observed in the vicinity of isotropic–

nematic [9] and nematic–smectic A phase transition [131]. However, conclusive

evidence could only be provided by a detailed and comprehensive analysis of the

existing data or by an experiment designed to probe the dynamics within the bound-

ary layer. The latter could be based on, for example, the evanescent light scattering

technique [132,24].

The results of the study can be extrapolated beyond the geometries discussed

once it has been realized that the slow dynamics of the localized modes is actually

directly related to the existence of the phase boundary and that the wetting itself is

merely a mechanism which introduces a heterophase structure — and, therefore, a

phase boundary — into the system. In confined liquid crystals, heterophase order-

ing is very often induced by topological constraints imposed by curved walls, which

result in singularities of the director field, where very strong elastic deformation

of the nematic phase is avoided by reducing the degree of order. Since the dis-

ordered regions called defects are more complex than the planar nematic-isotropic

interface [133–135], they should be accompanied by several localized modes related

to fluctuations of their structure as well as those corresponding to fluctuations of

their size, position, and shape. This indicates that the defects should be considered

as possible generators of slow nondirector fluctuations in confined liquid crystals.

Another aspect of structure and pretransitional dynamics applicable to defects in
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Figure 4.16 Structural force in a nematic system confined with (a) disorder-
ing substrates (θ = 0.9, aS = 0, and G → ∞) and (b) ordering substrates
(θ = 1.1, aS = 1.1, and G → ∞). Solid lines correspond to the force in the
nematic phase and dashed lines correspond to the force in the isotropic phase.
Dotted verticals denote the thickness at which the isotropic phase becomes
metastable in the surface-molten nematic system (94.6 nm) and the nematic
phase becomes metastable in the paranematic system (91.3 nm), respectively.

nematic liquid crystals is given in Chapter 5.

4.3 Structural and pseudo-Casimir forces

Structural force

The structural force in nematogenic heterophase systems studied in this thesis arises

from the deformation of the scalar order parameter. Thus, the force is short-range

and attractive. A detailed study of structural forces in a paranematic system was

performed by Borštnik and Žumer [60]. Similarly, the structural force can be cal-

culated also for the nematic system with molten wetting layers. Typical thickness

dependence of the structural forces in both nematogenic systems is presented in

Fig. 4.16.

The order in thin cells is determined by the surface interaction. If the cell

thickness is increased the corresponding amount of the liquid-crystalline material

enters the cell and its order is changed from the bulk order to the one induced by

the substrates. Thus, the free energy of the system changes for (f − fbulk)V which

produces a constant force between the confining walls. The force is attractive,

because in the given systems the surface-induced order corresponds to higher free

energy. In thick enough cells, the order parameter profile is characterized by a bulk-

like core and surface-induced wetting layers. Now the change of the free energy of

the system when changing the cell thickness is due to the minor changes in the order

parameter profile while most of the material enters the core of the cell, thus, its free
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energy is not changed. In this regime, the structural force decays exponentially with

respect to the cell thickness,

Π ∝ exp(−d/ξ), (4.10)

where ξ = ξN,0 in the case of a nematic with molten wetting layers and ξ = ξI in

the case of a paranematic cell. In Fig. 4.16 hysteresis loops can be clearly seen —

they are the evidence of the metastable phases. Details of the profile of structural

force depend on details of the surface-induced interaction, whereas the existence of

the hysteresis depends on the temperature.

Pseudo-Casimir force

For the sake of completeness, in this Section, I will quote the main results of

fluctuation-induced force in the paranematic phase which were obtained by Zi-

herl et. al [28]. As we have seen, there is a strong correspondence between the

paranematic system and the surface-molten nematic system. Thus, the main fea-

tures of the pseudo-Casimir force in the surface-molten nematic system, as they can

be predicted from the anchoring properties and fluctuation modes, will be discussed

at the end of this Section.

The pseudo-Casimir force in a heterophase system can be interpreted in terms of

two contributions: (i) the interaction between the substrates and the phase bound-

aries and (ii) the interaction between the two phase boundaries.

Interaction between solid substrate and phase boundary consists of three

contributions corresponding to three non-degenerated fluctuation modes. The fluc-

tuations of the degree of order and biaxial fluctuations give rise to a short-range re-

pulsion between the substrate and the phase boundary proportional to exp(−2dW /ξ),

where dW is the thickness of the wetting layer and ξ = ξN,0 or ξN,±1 for order pa-

rameter and biaxial fluctuations, respectively. The short-range of the interaction is

a consequence of finite correlations in both nematic and isotropic phase. The repul-

sion between the substrate and the phase boundary can be understood in terms of

boundary conditions. The anchoring at the substrates is strong, whereas the max-

ima of the order fluctuation modes at the phase boundaries (see Fig. 4.9) indicate

that these modes experience effectively weak “anchoring” conditions. Because of

the dissimilarity of the boundary conditions the interaction due to fluctuation of the

degree of order is repulsive. A similar argument applies to biaxial fluctuations. Here

weak “anchoring” condition at the phase boundary can be understood as a conse-

quence of the fact that biaxial fluctuations are much more favorable in the isotropic

phase than in the nematic phase. The main contribution to the interaction between

the solid substrate and the phase boundary is induced by the director fluctuations,
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which are characterized by an infinite correlation length in the nematic phase. The

leading term of this interaction reads

−kBTSζ(3)

4πd2
W

, (4.11)

where ζ is the Riemann zeta function. This long-range interaction is attractive which

can again be interpreted in terms of (dis)similarity of boundary conditions. In the

isotropic phase, the director fluctuations are very “hard” compared to the ones in

the nematic phase, therefore, as we have seen (Fig. 4.15), the lowest normal modes

are actually confined to the nematic surface layer. The effective boundary condition

at the phase boundary is very similar to strong anchoring at the solid substrate, and

the force induced by director fluctuations is attractive.

Interaction between phase boundaries gives rise to an attractive fluctuation-

induced force which is proportional to exp (−2(d− 2dW )/ξI). The attraction is

due to the identical boundary conditions. Except in the vicinity of the metasta-

bility limit of the paranematic phase, the distance between the substrate and the

phase boundary is much smaller than the distance between the two boundaries,

and the interaction between the phase boundaries is very weak. The range of the

pseudo-Casimir interaction between the phase boundaries is half of the range of

the structural interaction [Eq. (4.10)]. Thus, for dW � d the attractive structural

contribution is dominant. In very thin cells the distance between the two phase

boundaries becomes comparable to the thickness of the wetting layers and in this

range the attractive fluctuation-induced interaction between the phase boundaries

becomes dominant.

Effective interaction between solid substrates is a superposition of the two

contributions discussed above. In the range of stable paranematic phase (θ > 1,

dW � d) the fluctuation-induced force between the two substrates is governed by

the interaction between the solid substrate and the phase boundary. It is mediated

by the structural interaction which determines functional dependence of the wetting

layer thickness on the sample thickness which has already been discussed to be

∂dW /∂d ≈ −const.×exp(−d/ξI) [127]. Therefore, the leading term in the substrate-

to-substrate fluctuation-induced force

FCAS ≈ −
kBTSζ(3)

2πd3
W

∂dw

∂d
∝ e−d/ξI (4.12)

is repulsive and short-range. Its range, ξI , is identical to the range of the structural

force, whereas its magnitude is smaller but comparable to the magnitude of the

structural attraction. Since the two forces have the same range, the structural force

is proportionally diminished by fluctuation-induced contribution.
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The pseudo-Casimir force in a surface-molten nematic system: From the

knowledge of general properties of the pseudo-Casimir force and by being familiar

with fluctuations in the system the force can be predicted also for the case opposite

to the paranematic, for the nematic in contact with disordering walls. Here, the

wetting layers are in the isotropic phase where all fluctuations modes are character-

ized by the same, finite correlation length, thus, all the corresponding contributions

to the fluctuation-induced force are short-range and proportional to exp(−2dW /ξI).

Fluctuations of the degree of order and director fluctuations yield a repulsive in-

teraction because they both experience effectively weak “anchoring” at the phase

boundary. In the case of former fluctuations, this is indicated by the position of their

maxima whereas in the case of the latter, the “weak” anchoring is due to the fact

that the director fluctuations are much more favorable in the nematic core. Biaxial

fluctuations give rise to a short-range attraction because they experience effectively

strong “anchoring” at the phase boundary which results from the fact that biaxial

fluctuations are extremely “hard” in the nematic phase and, thus, they are local-

ized to the wetting layers. On the other hand, the fluctuation-induced interaction

between the two phase boundaries is dominated by Goldstone director fluctuations

which give rise to a long-range attractive interaction proportional to (d − 2dW )−2.

Fluctuations of the degree of order and biaxial fluctuations yield short-range attrac-

tion. From this, it can be expected that the pseudo-Casimir force in the nematic

system with molten wetting layers should be long-range and attractive and it should

dominate the structural force since the range of the latter is finite, i.e., ξN,0.

4.4 Van der Waals force in heterophase liquid-

crystalline systems

As it has been derived in previous Chapter dealing with the van der Waals force,

two media with the same “isotropic” dielectric and optical properties (here, isotropic

quantities are aiso ∝ tr a and a is the corresponding tensor), however, with differ-

ent symmetry of relevant tensors, have different effect on the electromagnetic field

modes. In a heterophase system, the two phases — the nematic and isotropic phase

— have the described properties. Therefore, the isotropic–nematic phase boundary

acts as an additional wall in the system and it forms, together with the solid–liquid-

crystalline interface, a cavity which perturbs the electromagnetic field modes. The

van der Waals interaction originating in different symmetries of the phases together

with the pseudo-Casimir interaction, thus, yields a correction to the equilibrium

thickness of the (dis)ordered wetting layer.

In Chapter 3, the van der Waals force was determined for a system characterized
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(a) (b)

Figure 4.17 Cartoon of the nematic–isotropic heterophase system:
semi-infinite nematic liquid crystal in a contact with a solid substrate which
(a) induces high uniaxial homeotropic nematic order or (b) melts the nematic
order. In a graph, the solid line corresponds to the spatial dependence of
the scalar order parameter S and the dotted line corresponds to the modeled
function. dW is the thickness of the (a) disordered isotropic wetting layer in
the bulk uniaxial nematic liquid crystal or (b) ordered uniaxial wetting layer
in the bulk isotropic liquid.

by sharp, discontinuous changes in the dielectric (and optical) properties at the walls

whereas these properties were constant between two walls. The obtained results are

applicable to the systems where the thickness of the interface between two distinct

media is finite, however, much smaller than typical dimensions in the system, i.e.,

the gap between the walls, and the wavelength λe. In wetting system close to

the isotropic–nematic phase transition, the interface between the two phases is well

defined and the order parameter profile can be approximated by a step-like function,

as is schematically represented in Fig. 4.17. The approximation is the better the

closer is the temperature to the phase transition. (In the immediate proximity of

the phase transition, the thickness of the region where the nematic order falls off

to the isotropic phase or, similarly, where the isotropic order grows to the nematic

phase, is well below the thickness of the wetting layer as it is shown in Figs. 4.2

and 4.4.)

In the case of a two-phase system the separation dW between the two “semi-

infinite” media — solid substrate and the bulk liquid-crystalline phase — is not

a directly controllable parameter, instead, it corresponds to the minimum of the

free energy of the system; it can be changed by changing the temperature of the

system. In Section 4.1 only the mean-field part of the free energy was taken into

account to determine the equilibrium state of the heterophase system. However,

there are at least two sources of correction to that description. The fluctuations of
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Figure 4.18 Van der Waals force per unit area acting on a wetting layer in a
surface-molten nematic system (solid line) or in a paranematic system (dashed
line).

the order parameter tensor contribute to the pseudo-Casimir interaction between

the interfaces; the leading term of the interaction energy in the paranematic system

is written out in Eq. (4.11) [28]. Another contribution to the free energy of a

heterophase system is due to the spatial dependence of the permittivity tensor which

yields nonzero van der Waals interaction. The interaction is very weak, because the

difference in the permittivities of two of the media — the isotropic and nematic

part of the system — is only due to different eigenvalues of the permittivity tensors,

whereas the traces of the tensors are the same.

In Fig. 4.18 the van der Waals force acting on a wetting layer is plotted for a

typical liquid-crystalline heterophase system. Although the thickness of the wetting

layer is not subject to direct change, the force has been calculated as it has been de-

fined in Eq. (3.31), i.e., as a derivative of the corresponding free energy with respect

to the gap between the walls. One can imagine that due to thermal order parameter

fluctuations the thickness of the wetting layer can change. The van der Waals force

acting on such wetting layer is then the change of the interaction free energy of the

system because of the changed separation between the walls. In a system with silica

as a solid substrate the van der Waals force between solid–liquid-crystalline and

nematic–isotropic interface is attractive in the surface-molten nematic system and

it is repulsive in the paranematic system. In the surface-molten nematic system the

thickness of the equilibrium isotropic wetting layer is decreased due to the nonzero

van der Waals interaction; in the paranematic system, the thickness of the ordered

wetting layer is increased.

To determine quantitatively the change of the equilibrium wetting layer thick-

ness the van der Waals free energy should be included in the total free energy which

is subject to minimization. However, the van der Waals interaction is very weak.
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Figure 4.19 (a) Van der Waals force (solid line) and structural force per unit
area in the wetting layer of a nematic liquid crystal at the order-inducing solid
substrate for various temperatures close to the isotropic–nematic phase tran-
sition: T −TNI = 10−2 K (dashed line), T −TNI = 10−3 K (dash-dotted line),
and T − TNI = 10−4 K (dotted line). The nonzero van der Waals force yields
the increase of the equilibrium wetting layer thickness. (b) Close to the phase
transition, the temperature dependence of the correction of the equilibrium
wetting layer thickness exhibits power-law behavior, ∆dW ∝ (T − TNI)−ν ,
where ν = 0.42 is obtained from fitting the corresponding data (red line). In
the limit T − TNI → 0, ν = 0.5.

Therefore, the forces acting on the wetting layer will be compared rather than the

corresponding free energies. Here again, one should imagine that due to thermal

fluctuations a heterophase structure with different wetting layer thickness is estab-

lished. Since that structure is not the equilibrium one its mean-field counterpart

of the free energy is raised with respect to the equilibrium value and an effective

structural force starts acting in the system in order to reestablish the equilibrium

state. In Fig. 4.19 (a) the structural force acting on the ordered wetting layer in

the paranematic system is plotted together with the van der Waals force. The effec-

tive structural force is repulsive if the layer thickness is smaller than the equilibrium

thickness, and it is attractive if the thickness is larger than the equilibrium thickness.

In the equilibrium, there is no force acting on the layer. If the van der Waals force is

taken into account the point of zero force is moved towards larger layer thicknesses.

The increase of the equilibrium layer thickness is in the range of few nanometers.

In 5CB in contact with order-inducing silica, at T − TNI = 10−2 K the equilib-

rium layer thickness determined from the phenomenological mean-field approach,

dMF = 28.13 nm, is increased by 0.34 nm, at T − TNI = 10−3 K the equilibrium

layer thickness dMF = 45.28 nm is increased by 0.51 nm, and at T−TNI = 10−4 K the

equilibrium layer thickness dMF = 63.39 nm is increased by 1.29 nm. Temperature

dependence of the van der Waals induced correction is presented in Fig. 4.19 (b). On

approaching the bulk phase transition temperature ∆dW exhibits critical power-law
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behavior, ∆dW ∝ (T −TNI)
−ν , where ν = 0.5. Due to the van der Waals interaction

between the solid–liquid-crystalline and two phase interface the critical behavior

of the growth of the wetting layer changes — critical behavior determined from

the mean-field phenomenological approach is characterized by a critical exponent 0

(logarithmic divergence).

Except in immediate proximity of the phase transition where ∆dW diverges the

correction due to the van der Waals force is rather small and, thus, experimen-

tally undetectable. However, it should be noted that for the sake of simplicity the

structural force has been determined in the limit of infinitely strong surface an-

choring which yields larger deformations and therefore larger forces and stronger

thickness dependence as compared to more realistic values of the surface coupling.

On the other hand, in calculation of the van der Waals force the usual experimen-

tally determined values of dielectric permittivity and refractive indices have been

used [136]. Therefore, in real wetting systems the effect of the van der Waals force is

stronger and can be estimated to contribute up to 10% to the structural force and,

therefore, also to the equilibrium wetting layer thickness. In the immediate vicinity

of the phase transition, the order parameter fluctuations become critical and the

fluctuation-induced interaction exceeds the structural interaction. Thus, to probe

the critical exponent due to the effect of the van der Waals interaction the mean-field

theory should be renormalized also by the fluctuationg-induced contribution.

Further from the phase transition, the effect of the van der Waals interaction

should be more prominent in systems with substrate-induced smectic layering. In

such systems, the layer of the surface-induced order and the corresponding phase

interface are better defined even further from the phase transition. In the case of

presmectic layering in the isotropic phase the two phases — smectic A and isotropic

phase — differ more than do the smectic A and nematic phase in the case of pres-

mectic layering in the nematic phase. Thus, in the former case the van der Waals

interaction between the solid substrate and the phase boundary is stronger than it

is in the latter case.



5

Hybrid nematic cell

In hybrid nematic cells the liquid crystal is confined by substrates inducing nematic

order in different directions, often close to being perpendicular. In such systems the

nematic order can not be unperturbed. Due to the frustrating boundary conditions

the equilibrium order usually results in a nonlocally perturbed, both, director field

and degree of nematic order. Hybrid nematic cells are mainly used for studying

anchoring properties of the confining substrates but also as optical switches.

In practice the hybrid frustration can be achieved by several ways: (i) If the

nematic liquid crystal is confined with substrates that have been prepared in a way

to induce nematic order one in homeotropic direction and the other in one of the

lateral directions. (ii) If the nematic liquid crystal is deposited on the solid substrate

whereas on the other sides it has free liquid-crystalline–air interface. In many liquid

crystals the free liquid-crystalline–air interface induces rather strong homeotropic

anchoring of the nematic liquid crystal. Thus, in combination with a solid substrate

which induces nematic order in a direction in the plane of the substrate such liquid

crystal is subject to frustrating hybrid conditions. (iii) The hybrid situation can also

be a result of geometrical constraints such as in cylindrical cavity with homeotropic

anchoring at the wall whereas the geometry of the cavity prefers orientation along

the symmetry axis. Different possibilities of achieving hybrid nematic cells are

schematically represented in Fig. 5.1.

Possible technological applications have stimulated the increase of interest in

hybrid nematic geometries [137]. Using a quasi-elastic light scattering method Wit-

tebrood et. al experimentally studied thickness dependence of the nematic-isotropic

phase transition temperature and stability of ordered structures in a hybrid nematic

film obtained after a spread of a liquid crystal droplet on a solid substrate [138].

In their experimental setup with unequal anchoring strengths of the confining sub-

strates (solid substrate and a free liquid crystal interface) they were able to determine

the critical cell thickness for the hybridly aligned order which was in good agreement

101
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Figure 5.1 Schematic representation of different systems characterized by
hybrid frustration: (a) Confining substrates prepared in a different way, so
that one induces homeotropic anchoring and the other homogeneous planar
anchoring. (b) Hybrid frustration due to opposing geometry induced direction
of order and the direction induced by anchoring. (c) Liquid crystal in a contact
with a solid substrate and with a free liquid-crystalline–air interface.

with the theoretical expression obtained long ago by Barbero and Barberi [19]. In

their study an approximate director picture omitting positional dependence of the

scalar order parameter and biaxiality was used. In the framework of Frank elas-

tic theory an extensive study of pretransitional director dynamics in a hybrid cell

was done by Stallinga et. al [12]. Using the director description of the nematic

liquid-crystalline ordering they calculated relaxation times for tilt and twist fluc-

tuations in hybridly aligned structure and director fluctuations in uniform director

field structure. However, in their study they neglected spatial dependence of the

uniaxial and biaxial degrees of nematic order, which are quite important in the case

of strong anchoring and thin cells. A couple of years ago, Palffy-Muhoray et. al

[20] showed that in highly constrained hybrid cells the nematic order can be either

biaxial with the steplike profile of the director’s tilt angle or the director field can

be bent continuously. They predicted a structural transition between the two pos-

sible ordered configurations but did not probe the stability of both configurations.

A more detailed description of the nematic order in planar hybrid geometry has

been provided by Galabova et. al [139]. They calculated the phase diagrams for

a hybrid cell in relation to film thickness and anchoring strength of one of the sur-

faces. Another aspect of a nematic liquid crystal in a planar hybrid geometry are

stripe domains studied by Pergamenshchik [140]. In his study, using Frank elastic

theory with surface terms, it was shown that equilibrium modulated structures can

appear. However, in that study only spatial dependence of the nematic director was

taken into account whereas other degrees of freedom of the nematic order have been

neglected. In a cylindrical geometry Ziherl and Žumer [13] studied director fluctu-

ations in the vicinity of a disclination line of strength 1 whose structure is similar
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to structures in hybrid cells. They extended the approach based on Frank elastic

theory by introducing spatially dependent rotational viscosity and elastic constants.

More extensive study of structure of point and line defects in a capillary was carried

out by Kralj et. al [25]. They described the nematic order in an infinite cylindrical

cavity with three parameters, scalar order parameter, parameter of biaxiality, and

the angle between the local director and capillary long axis. However, they assumed

tr Q2 to be a constant, which leaves only one, either the scalar order parameter or

the parameter of biaxiality, independent. Furthermore, they neglected the third

order term in the expansion of the free energy density. The obtained results have

the expected resemblance to results of our study [21]. Lately, an increased interest

was focused in the field of fluctuation-induced forces. Ziherl et. al determined the

pseudo-Casimir force in the hybrid cell with degenerate planar anchoring in the most

simple case, where the equilibrium nematic director is not perturbed. The force was

calculated within the bare director picture and the Frank elastic theory.

This brief review shows that there was a lack of information on the dynamics re-

lated to the structural transition between different nematic configurations in highly

constrained systems when nondirector degrees of freedom are crucial. This moti-

vated us to start our analysis. In order to provide a simple but detailed description

of a highly frustrated system a thin planar film with hybrid surface conditions was

examined. In contrast to previous studies [19,12,13] we have focused our attention

on highly constrained films where biaxiality and nonhomogeneous degree of nematic

order play an important role. Although the origins of the high frustration in a

system can be different, i.e., specific confining substrates in planar geometry or ge-

ometry induced hybrid properties (see Fig. 5.1), its effects on the liquid-crystalline

order and pretransitional dynamics are similar [25,21,134,135,141]. Therefore one

can study the basic effects of high frustration within the analysis of a planar system.

Our model system is a very thin hybrid film consisting of a nematic liquid crys-

tal confined by two parallel substrates inducing uniaxial nematic order in mutu-

ally perpendicular directions. The hybrid frustration can be also achieved if both

substrates induce order with the nematic director perpendicular to the substrates,

however, with positive scalar order parameter at one of the substrates and with a

negative scalar parameter at the other. The latter case — the degenerate planar

anchoring — corresponds to molecules lying in the plane of the substrate, but being

randomly distributed around the substrate normal. A system with such boundary

conditions possesses full rotational symmetry around the substrate normal, whereas

the equilibrium bent director structure breaks this symmetry. Breaking of the sym-

metry results in an infinite number of equilibrium states with the same energy and
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Figure 5.2 Schematic representation of the model system. The substrate at
z = 0 induces uniaxial nematic order in a particular direction in the plane
of the confining substrate, say parallel to the x axis. The other substrate,
in the plane z = d, is then characterized by a homeotropic anchoring. k̂i

is the easy axes of the i-th substrate, aS i is the induced degree of uniaxial
nematic order, and Gi is the free energy associated with the anchoring of the
i-th substrate. The lateral dimensions of the cell are much larger than its
thickness, Lx, Ly � d.

characterized by a mirror plane, which contains the previous axis of full rotational

symmetry. Such system is easily described within a director picture and Frank elas-

tic theory. In that way Lavrentovich et. al have studied point defects which are due

to infinite degeneracy of equilibrium states [142,143]. On the other hand, the same

system is hard to handle within the phenomenological description and the tensorial

order parameter which favors the nonfrustrated solution because it preserves the

original symmetry on expense of varying the scalar order parameter. In practice

the full rotational symmetry at the planar substrate is never ideally realized and

there exists a locally preferred direction. Therefore, if one is interested in defect

free structures even the hybrid situation with degenerate planar anchoring can be

described by a hybrid cell with two well defined preferred directions.

In order to simplify the description it is assumed that there is no surface in-

duced smectic order although at least partial formation of smectic layers is often

observed [117,144]. Suppose that the first substrate (z = 0) induces uniaxial ne-

matic order in a particular direction in the plane of the confining substrate (say

parallel to the x axis); the other substrate (in the plane z = d) is then characterized

by a homeotropic anchoring. Here, d is the thickness of the nematic film which

is much smaller than the lateral dimensions of the system, d � Lx, Ly. Since the

liquid crystal is not confined in the lateral dimensions and we are not interested in

modulated stripe domain structures which are sometimes observed [43] the nematic

order is not perturbed with respect to the coordinates x and y. Thus, describing

the planar hybrid film reduces to solving a one-dimensional problem. The geometry

of the model hybrid film is shown schematically in Fig. 5.2.
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Usually, the elastic distortions in such films are studied within the Frank elastic

theory [42], where the nematic order is assumed to be uniaxial with the director

field continuously bent from one substrate to the other; the scalar order parameter

and the elastic constants are assumed to be temperature dependent only. However,

long ago Barbero and Barberi [19] showed that in a hybrid film with different sur-

face anchoring strengths the bent-director configuration can only exist if the film is

thicker than the critical thickness, dc ≡ K(1/W2 − 1/W1), where K is the elastic

constant in the one-elastic-constant approximation (Kii = K), and W2 < W1 are

the out-of-plane strengths of the surface interaction at the two confining substrates,

respectively. In thinner films the director field is uniform with the nematic direc-

tor in the direction of the easy axis of the substrate with stronger anchoring. For

a typical liquid-crystalline material (such as 8CB; K ≈ 4.4 × 10−12 N) in a con-

tact with an in-plane aligning substrate yet homeotropically ordered at free surfaces

(W1 � W2 ≈ 1.1 × 10−5 J/m2) the critical film thickness is found to be approxi-

mately 0.4 µm [138]. However, in the case of two confining substrates (without free

surface) with very different surface anchorings (such as substrates modified with

different aliphatic acids with, e.g., W1 ≈ 10−3 J/m2 and W2 ≈ 10−4 J/m2 [51]) the

critical value would be as small as dc ≈ 40 nm. As implied by the above expres-

sion for the critical film thickness this value would be even smaller if the anchoring

strengths of the confining substrates would be comparable, therefore, in such hy-

brid films the order would always be distorted. However, in the case of hybrid yet

equally strong anchoring conditions the director field is uniform below a finite criti-

cal film thickness, whereas the boundary conditions are fulfilled with the eigenvalue

or director exchange [20,21]. Here the term “uniform director field” refers to the

corresponding uniform orthonormal triad, whereas the director’s tilt angle exhibits

a steplike change [see Fig. 5.3(b)]. The other interesting consequence of equivalent

confining substrates is a geometry induced biaxial ordering of a uniaxial nematic liq-

uid crystal. The effect is interesting because in thermotropic nematic liquid crystals

biaxiality cannot be observed very often.

In the following Sections first different possible equilibrium structures in a hy-

brid film are described in detail, and the structural transition toward the bent di-

rector structure is discussed. In Section 5.1.1 the comparison between the phe-

nomenological description and the results from the Monte Carlo simulations is pro-

vided [145,146]. Next, in Section 5.2 the pretransitional orientational dynamics is

determined for the biaxial structure, which is characteristic for highly constrained

hybrid systems. The perturbed equilibrium nematic order and the changed spec-

trum of thermal fluctuations give rise to structural forces discussed in Section 5.3.

Once acquainted with the forces acting on a slab of a nematic liquid crystal the
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stability of thin liquid-crystalline depositions are discussed in Section 5.4.

5.1 Equilibrium structures

The free energy of liquid-crystalline system consists of terms of three different types.

The bulk-like terms control the melting/growing of the nematic order. If the order is

smaller or larger than its bulk value these terms contribute to the increase of the free

energy. If the nematic order is spatially dependent the free energy of the system in-

creases due to the elasticity related to deformations of the tensorial order parameter.

The elastic part of the free energy corresponds either to variations of the uniaxial

and biaxial parameters of the order around the director or to elastic deformations of

the director field. The larger the nematic order the bigger the resistance of the sys-

tem toward the elastic deformations of the director field; the elastic energy related

to deformations of the director scales as S2, if S is the degree of the nematic order.

The third contribution to the free energy of a confined nematic liquid-crystalline

system is the free energy associated with (dis)obeying the substrate-induced order.

The system reaches its thermal equilibrium when its free energy is minimal. In

a hybrid cell the confinement induces deformation of the director field. If other de-

grees of freedom of the tensorial order parameter are neglected, the minimum of the

free energy is reached by the interplay of energetic penalty for violating the surface-

induced order and the energy due to elastic distortions. In a one-elastic-constant

approximation, for d > dc elastic deformations are more favorable than severe vio-

lation of the surface anchoring, whereas for d < dc it is energetically more favorable

to disobey surface anchoring than to be submitted to elastic deformation. However,

the nematic order has also other degrees of freedom. If these are taken into account

the increase of the free energy due to elastic deformations can be compensated by

localization of elastic deformation together with melting the nematic order in the

region of high deformations. The violation of the surface-induced order can be also

balanced by decreased nematic order at the surface with the mismatched director

and the surface easy axis. In addition to melting of the nematic order the uniaxial

distribution of molecules around the director can become biaxial.

The equilibrium ordering of a hybrid nematic film can exhibit either distorted

(hybridly bent) or undistorted director structure (see Fig. 5.3). The undistorted

structure is characterized by either biaxial director exchange configuration in the

case of equally strong but hybrid surface anchorings or uniform director field in

the case of hybrid confining substrates characterized one by a strong anchoring and

other by a weak anchoring. Which of the two possible configurations — distorted or

undistorted — will actually occur depends on the temperature and film thickness.
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Figure 5.3 Schematic representation of three possible ordered configurations
in a hybrid film: (a) the bent-director structure, (b) biaxial structure with
director exchange, and (c) uniform director structure.

However, the existence of either of the two undistorted structures depends on the

strength of the surface coupling.

Both distorted and undistorted structures are studied using the same free en-

ergy density expansion [Eqs. (2.32) and (2.33)]. By comparing the total free energy

dependencies on temperature and film thickness the structural transition is deter-

mined. The nematic order is described by a tensorial order parameter, however,

only the nontrivial degrees of freedom are actually taken into account. Each partic-

ular parametrization of the order parameter tensor is described when describing the

corresponding structure. The obtained differential equations are solved numerically

using the relaxation method [126].

Uniform director field

If the antagonistic anchorings are very different in magnitude it is energetically

more favorable to disobey one of the surface anchorings than to be subject to elastic

deformation. In order to minimize the surface contribution to the free energy the

nematic director will lie in the direction of the easy axis of the substrate with

stronger anchoring, say the substrate at z = d, i.e., G2 > G1. Thus the nematic

order can be described with a scalar order parameter S and, in general, with the

additional parameter P measuring biaxiality of the order; Q = ST0 + PT1, with

the orthonormal triad n̂ = êz, ê1 = êx, and ê2 = êy. Usually, the biaxiality of

the nematic order is neglected in calculations but in highly frustrated systems such

an approximation is not justified. The positional dependence of the two chosen
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Figure 5.4 Uniform director structure in a hybrid film with unequal anchoring
strengths. Equilibrium profile is characterized by a spatially dependent degree
of nematic order and increasing biaxiality profile when approaching the sub-
strate with weaker anchoring. Parameters used in calculation were θ = 0.9,
ζ2 = 0.03, aS = 1.1, G1 = 1.2× 10−3 J/m2, and G2 = 1.2× 10−4 J/m2 (solid
line), G2 = 4× 10−4 J/m2 (dashed line).

parameters can be obtained by solving Euler-Lagrange equations

ζ2S ′′ − θS + 3S2 − 2S3 − 3P 2 − 2SP 2 = 0,

ζ2P ′′ − θP − 2P 3 − 6SP − 2S2P = 0, (5.1)

where the prime denotes d/dz, S = S(z), and P = P (z). The corresponding

boundary conditions are determined by

S ′ = −g1

ζ2

(
S +

aS

2

)∣∣∣∣∣
z=0

,

P ′ = −g1

ζ2

(
P +

aS

√
3

2

)∣∣∣∣∣
z=0

, (5.2)

S ′ =
g2

ζ2
(S − aS)

∣∣∣∣
z=1

,

P ′ =
g2

ζ2
P

∣∣∣∣
z=1

,

where aS is the preferred value of the scalar order parameter which is taken to be

equal at both substrates and gi = (ξ2
NI/Ld)Gi is the dimensionless strength of the

surface interaction. The dimensionless parameters used in this calculation are the

same as introduced in Eqs. (2.32) and (2.33) and discussed on page 33.

Since the confining substrates induce uniaxial order the biaxiality is small, espe-

cially near the substrate whose easy axis is parallel to the nematic director (Fig. 5.4).

By increasing the weaker anchoring the biaxiality increases as well. Progressively

increasing biaxiality and simultaneously decreasing degree of nematic order along
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the director lead to transformation of the uniform structure to the biaxial structure.

The transformation does not correspond to a structural transition. If one of the con-

fining substrates is characterized by very weak anchoring (g → 0) the parameter of

biaxial order can be omitted and the equations reduce to ζ2S ′′−θS +3S2−2S3 = 0,

i.e., describing Sheng’s surface aligned nematic ordered structures [18].

Bent-director structure

The discussion of the bent-director configuration is only slightly simplified by the

assumption that the order is uniaxial but it allows both positionally dependent

scalar order parameter and director field, whereas in most previous studies only the

variation of the director field has been taken into account. The effect of biaxiality

can be neglected since it is very small comparing to the scalar order parameter,

especially, deep in the nematic phase. If one minimizes the free energy of the hybrid

system with constant parameters S, P , and φ′ ≈ π/2, deep in the nematic phase, the

value of biaxiality can be estimated to be no larger than P = (π2/4
√

3)ζ2 � S ∼ 1.

The biaxiality is negligible for hybrid cells with d >∼ 100 nm (P < 0.01).

Using the dimensionless form of the free energy density expansion [Eq. (2.32)]

and the ansatz Q(z) = S(z)(3n̂ ⊗ n̂ − I)/
√

6, where the nematic director has the

form n̂ = (sin φ, 0, cos φ) and φ = φ(z), the two independent parameters S — the

scalar order parameter — and φ — the angle between the nematic director and the

substrate normal — are determined by the equations

ζ2S ′′ − θS + 3S2 − 2S3 − 3ζ2S(φ′)2 = 0,

(S2φ′)′ = 0. (5.3)

In the case of a very strong surface anchoring the boundary values of S and φ are

set to the values preferred by the confining substrates [S = aS and φ(z = 0, d) =

φS1,2 , where φS1 = π/2 and φS2 = 0] otherwise they are determined with boundary

conditions

S ′ = ± gi

2ζ2

[
2S + aS − 3aS cos2(φ− φSi

)
] ∣∣∣∣

z=0,1
,

Sφ′ = − gi

2ζ2
aS sin 2φ

∣∣∣
z=0,1

, (5.4)

where the signs + and −, and the subscripts i = 1, 2 correspond to z = 0 and z = 1,

respectively. If spatial variations of the scalar order parameter are neglected the

Eq. (5.3) reduces to the well known equation for the director’s tilt angle which can

be derived from the Frank elastic description within the director picture, φ′′ = 0.

Resulting director field is characterized by a linearly varying director’s tilt angle

with boundary conditions φ′(z = 0, 1) = −(g1,2/2ζ
2) sin 2φ(z = 0, 1). Meanwhile,
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Figure 5.5 Equilibrium bent-director structure in a hybrid film. The solid
line corresponds to the scalar order parameter and the dashed line represents
the a−1 = (

√
3/2)S sin 2φ amplitude of the tensor order parameter, which

describes the bending of the director field in the plane (x, z). Parameters used
in calculation are θ = 0.9, ζ2 = 0.01258, g1 = g2 →∞, and aS = 1.1.

the scalar order parameter is constant through the liquid-crystalline film and its

temperature dependence is described by the equation θeffS − 3S2 + 2S3 = 0, where

θeff = θ + (3π2/4)ζ2. (5.5)

Thus, the scalar order parameter corresponds to its bulk value at the increased

temperature [cf. Eqs. (2.15) and (5.5)]. Due to elastic deformation of the director

field the temperature of the hybrid system effectively increases. The increase of the

effective temperature results in a smaller degree of order along the director with

respect to the degree of order in bulk where there are no elastic deformations. The

latter fact is often forgotten in studies within the bare director description. However,

these difference is in micron-size cells, which are usually studied within the bare

director description, negligible; for a typical liquid crystal Teff − T ≈ 0.5 mK.

As suggested, above the critical film thickness or below the critical temperature

(with constant temperature or film thickness, respectively) the order in a hybrid

nematic film can be described by a bent-director field. Since we allow the scalar

order parameter to vary with the distance from one of the substrates the director

tilt angle is not changing linearly as it would in the case of the uniform scalar order

parameter (see Figs. 5.5 and 5.6). However, the difference is very small and, as

expected, decreases further with the increasing film thickness and when the bound-

ary value of the scalar order parameter is getting closer to the value Sb(θeff). Here,

Sb(θ) = 0.75(1 +
√

1− 8θ/9) is the bulk degree of the nematic order and θeff is the

renormalized dimensionless temperature defined in Eq. (5.5). In the case of strong

surface anchoring the discrepancies from the case of uniform scalar order parameter
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Figure 5.6 Spatial dependence of the tilt angle (top) and its derivative (bot-
tom) for the bent-director structure. Dashed lines correspond to the appropri-
ate parameters in the case of the uniform scalar order parameter. Parameters
used in calculation are θ = 0.9, ζ2 = 0.0126, aS = 1.1, and g1 = g2 →∞.

are ∆S = S(0)−S(1/2) ≈ aS−Sb and ∆φ′ = φ′(0)−φ′(1/2) ≈ π(a2
S−S2

b )/(a
2
S +S2

b ),

where Sb = Sb(θeff). On approaching the transition to either of the uniform director

structures, i.e., by increasing the temperature or decreasing the film thickness, the

discrepancies become larger. Simultaneously, the biaxiality becomes larger and the

assumption of its negligibility is not justified anymore.

Biaxial configuration

As already mentioned in the introduction of the Chapter, the biaxial configuration

was introduced by Palffy-Muhoray et. al [20] and later discussed by Galabova et. al

[139]. However, their studies were made for a special case where the temperature

corresponded to the bulk supercooling limit (T = T ∗), whereas some other choices

of temperature give rise to different physical phenomena. In order to better under-

stand the pretransitional dynamics in such biaxially ordered structure, a detailed

description of the biaxial configuration is presented.

In general, in the case of a hybrid film the director field is not uniform. However,

the easy axes of the confining substrates are one in the direction of the x axis and

the other parallel to the z axis; therefore it can be assumed that the director will

lie in the plane (x, z), i.e., perpendicular to the y axis. Thus n̂ = êy, ê1 = êz, and

ê2 = êx can form a suitable uniform orthonormal triad.

The biaxial configuration is determined by using the expansion of the tensor

order parameter in terms of the base tensors, A(~r) =
∑2

i=−2 ai(z)Ti. Due to the

symmetry reasons and boundary conditions, the configuration can be described by

two amplitudes, a0 and a1. The former refers to the scalar order parameter with
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respect to the y axis, whereas the latter denotes biaxiality of the order in perpen-

dicular directions. In our case, the negative/positive sign of the amplitude a1 tells

whether the actual director is in the direction of the x or z axis, respectively. Both

nonzero amplitudes are the solutions of two coupled equations arising from mini-

mization of the free energy [Eqs. (2.28) and (2.62)] and the expansion of the tensor

order parameter in terms of the base tensors,

ζ2a′′0 − θa0 + 3(a2
0 − a2

1)− 2a0(a
2
0 + a2

1) = 0,

ζ2a′′1 − θa1 − 6a0a1 − 2a1(a
2
0 + a2

1) = 0, (5.6)

where the prime denotes d/dz. The boundary conditions are determined by the

surface interaction. In our case, the induced order is assumed to be uniaxial at both

substrates but in mutually perpendicular directions, therefore QS(0) = aS(3êx⊗ êx−
I)/
√

6 and QS(1) = aS(3êz ⊗ êz − I)/
√

6, where aS ≥ Sb(θ) is the preferred degree of

order at the substrates (and is assumed to be equal at both substrates). Thus, the

boundary conditions read

a′0 = ±g1,2

ζ2

[
a0 + aS/2

] ∣∣∣
z=0,1

,

a′1 = ±g1,2

ζ2

[
a1 ± aS

√
3/2

] ∣∣∣
z=0,1

, (5.7)

where the signs + and −, and the subscripts 1 and 2 correspond to z = 0 and z = 1,

respectively. If the anchoring is very strong (g → ∞), the order at the surface is

the same as the one preferred by the confining substrate, otherwise, the parameters

can differ from the preferred ones.

The actual significance of the two nonzero amplitudes is obvious when they are

rewritten into ax
0 = −(a0 +

√
3a1)/2 and az

0 = (−a0 +
√

3a1)/2, where the former

sum refers to the scalar order parameter with respect to the director n̂ = êx and the

latter sum denotes the scalar order parameter with respect to the director n̂ = êz.

As shown in Fig. 5.7, on the average, near the first surface (z = 0) the liquid-crystal

molecules are oriented parallel to the x axis while they are parallel to the z axis close

to the other substrate (z = 1). In the vicinity of the surfaces the order is uniaxial,

however, with increasing distance from the substrates it becomes slightly biaxial. In

the case of equal anchoring strengths, both, biaxiality and order parameter profiles

are symmetric with respect to the middle of the film (plane z = 1/2). The biaxiality

profile has two maxima near the symmetry plane. In between them the molecular

ordering can be described with a director perpendicular to the plane of the molecules

(n̂ = êy), yet the scalar order parameter is negative. In the region of negative scalar

order parameter the director or eigenvalue exchange occurs.

The maximum biaxiality and the thickness of the exchange region depend on the

film thickness, the temperature, and the anchoring strength. The biaxiality is more
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Figure 5.7 (a) Equilibrium profiles of the nonzero degrees of freedom. Thin
solid line refers to the scalar order parameter with respect to the uniform direc-
tor êy, whereas thicker lines represent scalar order parameters with respect to
the easy axes x and z, ax

0 = −(a0 +
√

3a1)/2 and az
0 = (−a0 +

√
3a1)/2, respec-

tively. Dashed lines correspond to scalar order parameter [S = (
√

6/2)|Qii|,
where Qii has a sign opposite to that of the two other eigenvalues of Q] and
biaxiality of the order (P = |Qjj −Qkk|/

√
2, where j, k 6= i), respectively. (b)

Magnified detail of the profiles in the exchange region. Parameters used in
calculation are θ = 0.9, ζ2 = 0.01258, aS = 1.1, and g1 = g2 →∞.

pronounced in thinner films and when the temperature is closer to the phase tran-

sition temperature. From the point where the surface wetting layers are in contact

the exchange region thickness is — within the numerical accuracy — independent

of temperature. On the other hand, the relative exchange region increases with de-

creasing film thickness, however, the absolute exchange region thickness decreases.

The biaxially ordered configuration is typical for highly constrained nematic

liquid crystals, i.e., systems with high surface-to-volume ratio and strong surface

anchoring (G >∼ 10−3 J/m2). In such systems the surface wetting layers may be in

contact with each other, thus, the structure they form becomes progressively ordered

on approaching the phase transition temperature. Because of the continuous growth

of the ordered biaxial structure there is no nematic-isotropic phase transition. How-

ever, there is the transition to the low-temperature bent-director field configuration.

Because the initial structure is ordered too, the transition between the two phases

is structural rather than the phase one.

In the case of unequal but strong surface anchorings the high-temperature phase

is biaxial as well, but the exchange region is located closer to the surface with weaker

anchoring (Fig. 5.8). As already discussed before, biaxial structure reduces to the

uniform director field state with spatially dependent degree of nematic order and

negligible biaxiality (except at the substrate where the nematic director is perpen-
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Figure 5.8 The degree of nematic order with respect to mutually perpen-
dicular directors n̂ = êx and n̂ = êz. Different lines correspond to different
anchoring strengths: G1, G2 → ∞ (solid line), G1 = G2 = 1.2 × 10−3 J/m2

(dashed line), G1 = 1.2× 10−3 J/m2 and G2 = 1.1× 10−3 J/m2 (dotted line),
and G1 = 1.2 × 10−3 J/m2 and G2 = 0.6 × 10−3 J/m2 (dash-dotted line).
Parameters used in calculation are θ = 0.9, ζ2 = 0.03, and aS = 1.1.

dicular to the easy axis) if one of the confining substrates is characterized by weaker

anchoring (G <∼ 10−4 J/m2).

Structural transition between bent-director structure and biaxial struc-
ture

By comparing the total free energies of the two ordered configurations we determine

the structural transition film thickness. However, the bent-director structure was

determined approximately, therefore, the total free energy of the actual configuration

is lower than the one obtained in our calculations. Since the neglected biaxiality

is of order of P ∼ cζ2, where 0 < c < 1, the difference between the actual and

approximated free energy should be very small, i.e., F−Fapprox ∼ −ζ4[c(π2
√

3/4)S−
c2(θ/2 + 3S + S2)], where S = Sb(θ) is the bulk degree of nematic order parallel to

the director. As expected, the correction is getting smaller as the film thickness is

increased.

Near the isotropic–nematic phase transition temperature (TNI −T = 0.1 K) and

in a hybrid film of a typical liquid-crystalline material (such as 5CB) the nematic

order is distorted if the film is thicker than dt ≈ 47 nm, whereas the metastable

biaxial structure ceases to exist if the film thickness is larger than ds ≈ 71 nm. The

latter critical thickness is determined by pretransitional dynamics, which will be

discussed in detail in Section 5.2. As the temperature is decreased both values are

decreased too and so is the difference between them. The same structural transition

can be realized if the film thickness is held constant and the temperature is varied.
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Figure 5.9 Temperature dependence of the total free energy of biaxial and
bent-director structure. The structural transition occurs at the point where
the free energies of the two configurations are equal (θt = 0.951), whereas
θs = 0.869 represents the “supercooling” limit of the biaxial structure. In a
typical liquid-crystalline material, the difference between the two temperatures
is very small, ∆T = Ts−Tt ∼ 0.09 K, and the corresponding latent heat is by
an order of magnitude smaller than the latent heat of the nematic-isotropic
phase transition. The dashed continuation of the total free energy represents
the region where the given structure is metastable. Parameters used in calcu-
lation are ζ2 = 0.02, aS = 1.1, and g1 = g2 →∞.

A typical temperature dependence of the free energies of both ordered phases at

constant film thickness (ζ2 = 0.02) is shown in Fig. 5.9. It is obvious that the slopes

of the functions are not equal at the transition point, so that the structural transition

is discontinuous. However, the corresponding latent heat, ql = ∆(∂F/∂T )Tt =

∆(∂F/∂θ)[θt + T ∗/(TNI − T ∗)] ≈ 8× 104 J/m3, is even smaller than the isotropic–

nematic phase transition latent heat (≈ 1.5×106 J/m3) [147], therefore the structural

transition is only weakly discontinuous.

The (dis)continuity of the structural transition can be changed if the temperature

and film thickness are low enough. Within our approximation, in such case the

free energies of bent and biaxial structures do not intersect and the free energy of

the bent structure exceeds the biaxial one at the “supercooling” limit. This can

be understood if one considers the approximate determination of the bent-director

structure in which the biaxiality was omitted. However, even a rough calculation

such as the one introduced at the beginning of this section shows that taking into

account the estimated biaxiality lowers the free energy of the bent structure so that

the transition becomes continuous. Such nature of the structural transition was

found also in studies of Palffy-Muhoray et. al [20] and Galabova et. al [139]. The two

different regimes are separated with a tricritical point (tricritical temperature and

film thickness) below which the transition is continuous. Because of the approximate
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Figure 5.10 Temperature dependence of the total free energy of biaxial and
bent-director structure at the “supercooling” film thickness [ζs = ζs(θ)]. Be-
cause of the approximate determination of bent director structure the corre-
sponding free energy is too high but even rough calculation shows that the
correction (dotted line) would cause the transition to become continuous be-
low some critical temperature and film thickness (tricritical point). Above the
tricritical point (the upper limit θTP = 0.746 and ζ2

TP = 0.054) the transition
becomes progressively discontinuous.

description of the bent-director structure only its upper limit has been determined:

θTP = 0.746 and ζ2
TP = 0.054, which corresponds to TNI − TTP = 0.28 K and

dTP = 34 nm for a typical nematic liquid crystal, such as 5CB. In Fig. 5.10 the

temperature dependence of total free energies of both ordered structures at the

“supercooling” film thickness is shown. One should notice that the dimensionless

total free energies are decreasing functions of temperature. That indicates that in

the range of film thicknesses where biaxial structure can be realized the elastic part

of the free energy is dominant over the ordering terms. The elastic term whose

magnitude is determined by ζ2 ∝ 1/d2 is decreasing with temperature because the

“supercooling” film thickness is an increasing function of temperature.

5.1.1 Monte Carlo simulations of a hybrid cell

Theoretical description of physical phenomena has its purpose when the results can

be related to the observed phenomena. In the case of hybrid nematic cell, the dis-

torted bent-director structure and undistorted uniform structure have been probed

by many experimental methods taking advantage of the effect of certain ordered

structure on physical observables, such as dielectric and optical properties, etc. On

the other hand, the experimental evidence of biaxial structure is rather limited since

the existence of this structure is very delicately tuned by the anchoring properties of

the confining substrates and since it is only realized in a very narrow temperature in-
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terval. However, the results can also be compared to the ones obtained by computer

simulations which act not only as a bridge between microscopic and macroscopic

length and time scales but also as a bridge between a theory and experiment.

In computer simulations we provide a guess for the interactions between molecules

and probe it by comparing predicted macroscopic physical properties of a system

with its actual properties. Once the model interactions between molecules are set

the computer simulations can be used as an “experimental” method which may also

reveal hidden details behind macroscopic observables. There are two basic types

of computer simulations, molecular dynamics and Monte Carlo simulations. The

former method consists of a brute-force solution of Newton’s equations of motion,

therefore, it corresponds to what happens in “real life” — it generates configurations

time step after time step in their natural time sequence. On the other hand, the

latter method can be thought of as a prescription for sampling configurations from

a statistical ensemble; on achieving the equilibrium the system goes from one state

to the next, not necessarily in a proper order [148,149].

Here, I present results obtained from the Monte Carlo simulation of the hy-

brid nematic film which was performed by the group of Pasini and prof. Zannoni

in Bologna in collaboration with me and prof. Žumer. Further, I suggest some

preliminary correspondence between outcome of the phenomenological theory and

computer simulation.

The hybrid nematic film is simulated using a well known cubic-lattice spin system

put forward by Lebwohl and Lasher [150]. It is based on modeling the interactions

between the molecules through a second rank Lebwohl-Lasher potential

Uij = εijP2(cos βij), (5.8)

where εij equals ε > 0 for nearest-neighbor particles i and j, and it is zero elsewhere.

P2 is the second rank Legendre polynomial and βij is the angle between the long

axes of the corresponding spins; spin denotes either a single molecule or a cluster

of molecules whose short-range order is maintained in the examined temperature

interval [151]. The only free parameter of the model is the temperature of the

system, TMC = kBT/ε. The model reproduces well the behavior of bulk nematic

liquid crystals, particularly, it reproduces a weakly discontinuous phase transition

and the correct temperature dependence of the order parameter [150,152]. The

bulk isotropic–nematic phase transition occurs at TMC
NI = 1.1232 [152], which yields

for 5CB with TNI = 308.3 K the inter-spin interaction strength ε = 0.0237 eV

(comparing this to the phenomenological estimate A(TNI −T ∗)V0 one would get for

the volume of correlated molecules V0 ∼ 26 nm3 with the corresponding correlation

length 3
√
V ∼ 3 nm which is comparable to the phenomenological value ξNI ∼ 8 nm).
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Figure 5.11 Schematic representation of the model system: the system con-
sists of N layers of nematic spins and two additional layers of fixed spins which
mimic the confining substrates. The layer distance l represents the extrapo-
lation length λ — the distance on which the order is extrapolated to the one
preferred by the substrates.

In the last decade, the Lebwohl-Lasher model has been successfully employed in

simulations of confined nematic systems [149]. In the case of hybrid nematic system

it has already been used in the study of point defects in hybrid nematic film [143].

The confinement is introduced as an additional layer of fixed spins whose orientation

corresponds to the direction preferred by the confinement. The interaction between

the fixed “substrate’s” spins and the nematic spins is taken to be equal to the

nematic–nematic interaction, therefore, the separation between the fixed layer and

the first nematic layer has a clear physical significance — it is the extrapolation

length. Its value is closely related to the number of molecules representing one spin

— it is assumed that if a volume belonging to each molecule is V1 (for a typical liquid-

crystalline molecule with a length ∼ 2 nm, V1 ∼ 8 nm3) then the corresponding

volume of one spin is V0 = NV1 = l3 where l is the layer separation. Variation of

anchoring strength can be obtained either by changing the strength of the substrate-

nematic spin interaction or as in our case by changing the number of layers. As it is

known, what determines the strength of the surface-induced interaction is not just

the absolute value of the corresponding energy but rather the ratio between surface-

induced interaction and energy of elastic deformations; this is equivalent to the ratio

λ/d. With equal λ the anchoring is effectively stronger in thicker films. Schematic

representation of the model system is represented in Fig. 5.11. Large dimensions in

the lateral directions are obtained by periodic boundary conditions. In the present

study, the simulation boxes have dimensions 30×30×N ′ particle, where N ′ = N +2

corresponds to N layers of “nematic” spins and to 2 parallel layers of fixed spins on

each side.

In order to determine the type of the ordered configuration obtained after the

equilibration with the Monte Carlo method the components of the order parameter
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Figure 5.12 Schematic representation of a spin in the coordinate system:
coordinate axes x and y lie in the plane of a substrate with the preferred
orientation of the director parallel to x, and the other substrate is located at
z = Nl = d. “Layers” are planes parallel to the substrates. The order in a
film is measured with respect to the fixed orthonormal triad n̂ = êz, ê1 = êx,
and ê2 = êy.

tensor are calculated as an average over distinct layers. The relevant parameters are

the order with respect to the film normal which is measured by the degree of order

az
0 =

1

2
〈3 cos2 β − 1〉 = −1

2
a0 +

√
3

2
a1 (5.9)

and parameter of biaxiality

az
1 =

√
3

2
〈sin2 β cos 2α〉 = −

√
3

2
a0 −

1

2
a1, (5.10)

whereas the parameter

a−1 =
3

2
〈sin 2β cos α〉 (5.11)

measures the possible bending of the director field in the plane of the two easy

axes. Here 〈· · ·〉 represent the average over the spins in a layer over several MC

steps after the equilibrium has been reached. The amplitudes ai correspond to the

same parametrization of the order parameter tensor as used in the phenomenological

description. In Fig. 5.12, a spin is shown with respect to the layer and coordinate

system together with representative parameters.

The results of the simulation of the hybrid nematic film with mutually per-

pendicular preferred orientations at the substrates, however, with equal anchoring

strength, reveal three different states: disordered phase with progressively growing

order in layers close to the substrates and two ordered structures, biaxial and bent-

director structure. In ordered structures, the liquid crystal is ordered in the whole

film, whereas in the high temperature disordered phase there is no order in the core

of the film. Order in the middle of the film develops below TMC
1 ; in a 14-layer hybrid

film TMC
1 ≈ 1.17. Temperature dependence of the degree of order with respect to the

distance from (one of) the substrates is presented in Fig. 5.13 (a). Due to the high
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Figure 5.13 (a) Scalar order parameter in a 14-layer hybrid film as a function
of distance from (one of) the substrates for various temperatures below (full
squares and triangles) and above (full circles) the ordering transition to the
biaxial phase; TMC ∈ [0.90, 1.18] and the temperature step is 0.02. Curves
with triangles correspond to the ordered phase with undistorted director field
— biaxial structure — which is stable between TMC

2 and TMC
1 . Lines are

guides to the eye. (b) Transition temperatures TMC
1 and TMC

2 as a function
of number of layers; dotted line corresponds to the bulk ordering transition
temperature.
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Figure 5.14 Bending parameter a−1 in a 14-layer hybrid film: (a) a−1 as a
function of temperature for distinct layers of the film (the upper the curve the
closer the layer to the middle of the film). (b) a−1 as a function of distance
from (one of) the substrates for various temperatures below (circles) and above
(squares) the transition to the bent-director structure; TMC ∈ [0.89, 1.40] and
the temperature step is 0.01. The corresponding transition temperature is
denoted as TMC

2 . Lines are guides to the eye.
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surface-induced order the ordering-transition temperature TMC
1 is higher than the

ordering-transition temperature in bulk which has already been discussed in the case

of heterophase nematogenic systems. This surface-induced effect is weaker in larger

films, thus, TMC
1 is a decreasing function of the film thickness [see Fig. 5.13 (b)].

On the other hand, in very thin films (d >∼ ξNI) the order in the middle of the film

is subject to a continuous evolution and the ordering transition is lost.

On lowering the temperature, first the order in the middle of the film grows and

then, below some temperature the director field starts to bend. The corresponding

temperature of the structural transition between undistorted biaxial and distorted

bent-director structure is denoted as TMC
2 ; in a 14-layer hybrid film TMC

2 ≈ 1.12.

Temperature dependence of the bending parameter a1 as a function of temperature

and distance from (one of) the substrates is presented in Fig. 5.14. Structural

transition temperature is lower than the bulk transition temperature. This difference

with respect to the TMC
NI is a consequence of the elastic deformations which are due to

the frustrating boundary conditions. The effect has already been discussed within

the phenomenological theory. Elastic deformations are stronger in thinner films,

thus, the temperature TMC
2 is an increasing function of the film thickness which is

presented in Fig. 5.13 (b). Increasing the film thickness the temperature interval

of the stable biaxial structure decreases and in very thick films the two transitions

would merge; the remaining transition would correspond to a direct change from

the disordered to ordered bent-director structure.

The existing transitions can also be recognized as peaks in the heat capacity of

the film. In Fig. 5.15, the temperature dependence of the internal energy of the

14-layer film and the corresponding heat capacity are shown. The well developed

peak corresponds to the transition to the bent-director structure. Smaller peak,

which is to some extent hidden by the higher one, is associated with the change of

the ordering in the core of the film.

The results obtained from the Monte Carlo simulation confirm the existence of

the biaxial structure and the corresponding transitions between (dis)ordered config-

urations. In some other simulation study of a hybrid film [153], the biaxial structure

was not found which was due to the choice of the surface potential which yielded

extremely unsymmetric properties for the homeotropic and planar anchoring. Still,

some further work is needed to establish the closer quantitative correspondence be-

tween the results obtained from Monte Carlo simulations and from the phenomeno-

logical description.
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5.2 Pretransitional dynamics

Once we have calculated and tested the equilibrium profiles we can begin with the

analysis of fluctuations. Here, the analysis is restricted to fluctuations in the biaxial

(director exchange) structure with equal anchoring strengths. We study their tem-

perature/film thickness dependence when approaching the structural transition to

the bent-director configuration and the “supercooling” limit. The same approach

can be used also with the uniform director structure. This analysis is not performed

here because due to very small biaxiality the fluctuations do not differ much from

fluctuations in homogeneous systems which are discussed in Section 2.2.2 and Sec-

tion 4.2 on page 83. The detailed analysis of the pretransitional dynamics of all five

degrees of freedom around the bent-director configuration is somewhat more compli-

cated because of the nonuniformity of the base tensors. The simplified description

within the director picture was studied in detail by Stallinga et. al [12], however,

the results are not quoted here.

The Gaussian dynamics of five scalar components of collective excitations —

introduced by the expansion B(~r, t) =
∑2

i=−2 bi(~r, t)Ti — is derived by projecting

the linearized form of the relaxation equation [Eq. (2.64)] onto the base tensors.

Since the equilibrium profiles depend on the z coordinate only, the normal modes

can be factorized as follows,

bi(~r, t) = ei(kxx+kyy)βi(z) e−µit, (5.12)

where kx and ky are the in-plane components of dimensionless wave vector of fluc-
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tuations which are assumed to be subject to periodic boundary conditions, µi’s are

the dimensionless relaxation rates of the eigenmodes, and time is measured in units

of τa = (27C/B2)Γ ∼ 10−8 s [32]. Considering the introduced ansatz [Eq. (5.12)]

and the equilibrium profiles of the system the amplitudes βi(z) are determined by

the equations

ζ2β′′0 − (θ − λ0,1 − 6a0 + 6a2
0 + 2a2

1)β0 − 2a1(3 + 2a0)β1 = 0,

ζ2β′′1 − (θ − λ0,1 + 6a0 + 2a2
0 + 6a2

1)β1 − 2a1(3 + 2a0)β0 = 0,

ζ2β′′−1 − (θ − λ−1 + 6a0 + 2a2
0 + 2a2

1)β−1 = 0, (5.13)

ζ2β′′±2 − (θ − λ±2 − 3a0 ∓ 3
√

3a1 + 2a2
0 + 2a2

1)β±2 = 0,

where β′i = dβi/dz and λi = µi− ζ2(k2
x + k2

y) are the reduced relaxation rates of the

modes. When deriving these equations, one must consider that the modes which

are coupled relax with the same relaxation rate, therefore λ0 = λ1 = λ0,1. In the

case of a very strong surface anchoring (g →∞) no fluctuations are allowed at the

substrate, thus βi(z = 0, 1) = 0, otherwise the boundary conditions read

β′i = ±g1,2

ζ2
βi

∣∣∣
z=0,1

, (5.14)

where the signs + and −, and the subscripts 1 and 2 refer to z = 0 and z = 1,

respectively.

In the case of a purely uniaxial nematic ordering and uniform director field (ai =

0, i 6= 0) the five fluctuating modes are independent, therefore the two equations for

the amplitudes β0(z) and β1(z) are uncoupled. Furthermore, due to the symmetry

reasons the two biaxial modes (bi with indices i = ±1) are degenerate and so are

the two director modes (indices i = ±2). The system reduces to the one studied in

Chapter 4.

As implied by equations in Eq. (5.13) this is not the case when dealing with

fluctuations in a biaxially ordered hybrid film. Since the equilibrium profiles are de-

scribed by two nonzero amplitudes, a0 and a1, the corresponding fluctuation modes,

β0 and β1, are coupled. The significance of these modes is transparent when consid-

ering their linear combinations βx
0,1 = −(β0 +

√
3β1)/2 and βz

0,1 = −(β0 −
√

3β1)/2,

which denote the order parameter fluctuations with respect to the nematic director

parallel to the x and z axis, respectively. The other three fluctuation modes are un-

coupled and represent either director fluctuations (β−1 modes and low β±2 modes)

or biaxial fluctuations, high β±2 modes.

Due to the inhomogeneous equilibrium profiles the eigenmodes of fluctuations can

only be determined numerically. In the following, the spectra of collective excitations

and the eigenamplitudes for different fluctuating modes will be interpreted.
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Figure 5.16 Spatial dependence of the lowest order parameter mode. Solid
lines correspond to coupled fluctuations of the degree of order with respect
to the two mutually perpendicular easy axes. Dashed lines correspond to the
equilibrium profiles (Fig. 5.7). Parameters used in calculation are θ = 0.9,
ζ2 = 0.01258, aS = 1.1, and g1 = g2 →∞.

Order parameter fluctuations

The term order parameter fluctuations denotes coupled fluctuations of the two

nonzero equilibrium amplitudes. As it is well known the eigenfunctions of an op-

erator invariant to the space reflection are either symmetric or antisymmetric with

respect to the same transformation [130]. Since the operator which governs the order

parameter fluctuations [see Eq. (5.13) and the results for the equilibrium profiles a0

and a1] is symmetric with respect to the plane z = 1/2 the eigenfunctions of the sys-

tem can be divided into two classes, i.e., the symmetric and antisymmetric functions

with respect to the symmetry plane. The lowest symmetric mode is associated with

fluctuations of the thickness of the central director exchange region and therefore

also with the fluctuations of the magnitude of biaxiality of the nematic order. How-

ever, the lowest antisymmetric mode corresponds to fluctuations of the position of

the boundary between the two parts of the film which are determined by mutually

perpendicular nematic directors. The portrait of the lowest antisymmetric order pa-

rameter mode is plotted in Fig. 5.16. It can be noticed that the two corresponding

profiles, βx
0,1 and βz

0,1, are “localized” at the part of the film with director êx and êz,

respectively. The positions of their maxima coincide with the position of maximum

slope of the scalar order parameter. Thus, the lowest antisymmetric order param-

eter mode is responsible for the growth of the surface wetting layers. The same

fluctuation mode was found also in heterophase systems (see Section 4.2). Higher

symmetric and antisymmetric modes change the shape of the exchange region in a

symmetric or an antisymmetric manner, respectively.

The lowest relaxation rate corresponds to the lowest antisymmetric mode. When
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Figure 5.17 (a) Lower part of the spectrum of collective order parameter
excitations with respect to the film thickness. Dotted and dashed verticals
denote the “supercooling” and the structural transition film thickness, respec-
tively. (b) Magnified detail of the lowest order parameter relaxation rate.
Notice that the relaxation rate remains finite even at the “supercooling” limit
and approaches the limit with the zero slope. Parameters used in calculation
are θ = 0.9, aS = 1.1, and g1 = g2 →∞.

increasing the film thickness toward the structural transition thickness (decreasing

the parameter ζ2) all the relaxation rates are decreased, especially the lowest one

(see Fig. 5.17). However, it stays finite (λ0,1;n=0 > 0) even at the “supercooling”

limit/transition point above/below the tricritical point, respectively. Similarly, the

relaxation rates decrease with decreasing temperature. At this point it should be

emphasized again that the film thickness turns out to be a parameter that rescales

the temperature [Eq. (5.5)].

Director fluctuations

Director fluctuations β−1 represent changes of the orientation of the nematic director

in the plane of the two easy axes. They bend the nematic director in the n̂ = êx half

of the film toward the direction êz and the n̂ = êz director in the other half toward the

perpendicular x direction. The corresponding eigenmodes are spread over the whole

sample and are similar to the sine functions as it is shown in Fig. 5.18. The lowest

director mode represents the change of the tensor order parameter that is similar

to the one characteristic for the bent-director configuration plotted in Fig. 5.5. Its

relaxation rate exhibits a critical slowdown when the film thickness approaches the

“supercooling” limit/transition point above/below the tricritical point, respectively.

In the case of discontinuous structural transition the lowest director mode is almost

critical even at the structural transition, which is in agreement with our previous
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by the number of nodes. Dashed lines correspond to the equilibrium profiles
plotted in Fig. 5.7. Parameters used in calculation are θ = 0.9, ζ2 = 0.01258,
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Figure 5.19 A few lowest relaxation rates of director modes versus film thick-
ness. The rates are decreasing with increasing film thickness, especially the
lowest mode’s rate which drops to zero as the film thickness approaches the
“supercooling” limit. Dotted and dashed verticals denote the “supercooling”
and the structural transition film thickness, respectively. Parameters used in
calculation are θ = 0.9, aS = 1.1, and g1 = g2 →∞.
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Figure 5.20 Portrait of two typical biaxial fluctuation modes β2 (the β−2

modes are just their mirror images with respect to the symmetry plane
z = 1/2). The lowest modes are expelled from the part of the film where these
fluctuations represent biaxial fluctuations. Higher modes are spread over the
whole sample. Labels denote the number of nodes of the mode and the dashed
lines correspond to the equilibrium profiles of biaxial structure. Parameters
used in calculation are θ = 0.9, ζ2 = 0.01258, aS = 1.1, and g1 = g2 →∞.

conclusion that the transition is only weakly discontinuous. Therefore, in both

regimes the soft director mode can be assumed to govern the structural transition

between the two ordered configurations. As shown in Fig. 5.19, higher modes relax

faster and do not contribute essentially to the pretransitional change in the director

field.

Biaxial fluctuations

Biaxial fluctuations β±2 are described by the last two equations in Eq. (5.13). If

these equations are rewritten in more appropriate form

ζ2β′′±2 − [θ − λ±2 + 6ax,z
0 + 2(a2

0 + a2
1)]β±2 = 0, (5.15)

and the symmetry relations between the equilibrium amplitudes ax
0 and az

0 are con-

sidered (see Fig. 5.7) it can be easily seen that the spectra for the two biaxial modes

are degenerated, whereas the eigenfunctions are just mirror images with respect to

the plane z = 1/2.

As shown in Fig. 5.20 the few lowest modes of fluctuations β2(z) and β−2(z)

are expelled from the part of the film which is characterized by directors êx and

êz, respectively. This can be easily understood if we consider that β±2 represent

amplitudes of the projection of the tensor order parameter along the base tensors

T±2 which couple directions y and z or y and x, respectively. That means that

β2 refers to director fluctuations in the n̂ = êz part of the film but to biaxial
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Figure 5.21 The lowest part of the spectrum of relaxation rates of biaxial
fluctuations. Note that the relaxation rates are higher than the relaxation
rates of other modes (cf. Figs. 5.17 and 5.19). Since the biaxial fluctua-
tions represent deformations of the order parameter in the y direction they do
not play any important role at the structural transition. Dotted and dashed
verticals denote the “supercooling” and the structural transition film thick-
ness, respectively. Parameters used in calculation are θ = 0.9, aS = 1.1, and
g1 = g2 →∞.

fluctuations in the other part, and vice versa for the β−2 fluctuation modes. Since

in the uniaxial nematic phase director fluctuations are much more favorable than

biaxial fluctuations [15], β±2 fluctuations tend to be localized at the appropriate

half of the film only. Higher modes are spread over the whole film whereas the

unfavorable manner of biaxial fluctuations is compensated by the shorter wave vector

of a deformation. In addition, it is well known that the higher the modes, the smaller

the effect of the shape of the potential on them.

The biaxial relaxation rates are higher than the rates of other fluctuation modes,

therefore the biaxial fluctuations do not play any important role in the structural

transition discussed. The spectrum of biaxial relaxation rates is plotted in Fig. 5.21.

5.3 Structural and pseudo-Casimir forces

Structural force

The common feature of all ordered structures in hybrid nematic cell is the repul-

sive character of the structural force for separations above a few nanometers. The

repulsion is due to the antagonistic boundary conditions, which always lead to at

least small deformation, and to the fact that within certain ordered structure the

frustration is stronger if the confining substrates are brought closer to each other.

The magnitude of the force is tuned by the anchoring strength at both substrates
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whereas its functional form depends on the structure in question.

The uniform director structure is characterized by a weak localized deformation

of the nematic scalar order parameter whereas the director field is undeformed. The

corresponding structural force is short-range and very weak comparing to the struc-

tural forces characteristic for other configurations in a hybrid film. Depending on

the details of the induced order the force can be either monotonically repulsive or

can exhibit a nonmonotonic behavior characterized by attraction at very small film

thicknesses and a weak repulsion for larger separations (see Fig. 5.22). The latter

case corresponds to the substrates that induce strong order, higher than charac-

teristic for given temperature. (E.g., the excess order at the free surface of some

nematic liquid crystals observed by Kasten et. al [122] and studied theoretically by

means of density functional approach by Martin del Rio et. al [125].) Here, the

turn-over between the regime of the increasing/decreasing force with the increasing

film thickness is related to the fact that above certain film thickness the order at

the side with stronger anchoring is above its bulk value whereas it is below it on

the other side. If the spatial variation of the scalar order parameter is neglected

the free energy of the uniform director structure corresponds only to the penalty for

violating the induced order at the substrate with weaker anchoring,

F =
3

2
GS2A, (5.16)

where G is related to the substrate with weaker anchoring, S is the uniform degree

of the nematic order, and A is the surface area of the confining substrate. This free

energy does not depend on the separation between the two confining substrates and,

thus, does not give rise to the structural force.

Within the bare director picture there is no structural force in the uniform di-

rector structure, however, the elastic deformation of the director field in the bent-

director structure gives rise to strong structural repulsion even within the simplified

description. In this structure, in the limit of infinitely strong surface anchorings the

elastic contribution to the free energy reads

F =
3

2
LS2Ad

∫ 1

0
dz(φ′)2 =

3π2LS2A
8d

, (5.17)

which is only slightly perturbed by the coupling with the deformed field of the scalar

order parameter. From Eq. (5.17) in the bent director structure the structural force

per unit area is roughly given by

Π =
3π2LS2

8d2
. (5.18)

For finite anchorings the structural pressure becomes Π ≈ (3/2)LS2(φ1 − φ2)
2d−2,

where φ1 and φ2 are the director’s tilt angles at the substrates located at z = 0 and
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Figure 5.22 (a) Structural force per unit area in a hybrid cell characterized by
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Figure 5.23 (a) Structural force per unit area in the bent-director structure
(dashed line) and in the biaxial structure (solid line). In (b) the same plot in
the logarithmic scale where it can be clearly seen that for large cell thicknesses
the localization of the deformation in the biaxial structure results in shortened
range of the structural force.

z = d, respectively. They are determined by Eq. (5.4) and depend on the separation

between the two confining substrates. The structural force in the bent-director

structure is plotted in Figs. 5.23 (a) and 5.23 (b).

In biaxial structure, the force is repulsive and exhibits 1/d2 behavior at small

cell thicknesses whereas at large d’s the exponent of the power law is smaller than

−2 which is clearly evident from Fig. 5.23 (b). For small cell thicknesses, the elastic

deformation, although of the scalar fields rather than the director field, is spread

over the whole cell and the force exhibits typical elastic dependence. The decrease of

the range of the force for larger cell thicknesses is a consequence of the localization

of the deformation when approaching the stability limit of this structure.

Pseudo-Casimir force

As we have seen, depending on the temperature, surface anchorings, and the thick-

ness of the cell the nematic liquid crystal in a hybrid cell can be found in one of the

three ordered structures described in previous Sections. Unlike in the case of the

heterophase nematic system, where a systematic study of the pseudo-Casimir force

was performed by Ziherl et. al [154,28], in the hybrid cell the pseudo-Casimir force

has only been calculated for the simplest ordered configuration, i.e., the uniform

director structure (Ziherl et. al [65]). The studied hybrid cell was characterized by

stronger homeotropic and weaker degenerate planar boundary conditions yielding

homeotropic director field below the critical thickness dc which preserves the full ro-

tational symmetry with respect to the normal to the planar parallel cell. The study

was performed within the bare director description. In the cell with the uniform

nematic order the effective correlation length in the Hamiltonian of the correspond-
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ing fluctuating mode [Eq. (2.69)] is a constant and the partition function of the

fluctuation modes can be derived analytically.

In this thesis, we do not intend to present any new results for the pseudo-Casimir

force in the hybrid cell although to complete the description of the nematic liquid

crystal in a hybrid geometry pseudo-Casimir force should be determined also in

other possible structures, i.e., the bent-director structure and biaxial structure. De-

termination of the force in the latter structure is more complex due to deformed

equilibrium order.

In the following Section the stability of thin nematic depositions subject to hybrid

boundary conditions will be studied. In the system, the pseudo-Casimir force plays

crucial role for the mechanical stability of the film and, thus, has to be taken into

account. In the study, we will use the results obtained by Ziherl et. al [65], however,

in this Section, we present in short the calculation of the pseudo-Casimir force in

the given system and we discuss the obtained results.

In the uniform director structure with homeotropic and planar boundary condi-

tions the Hamiltonian of the liquid-crystalline system consists of elastic and surface

terms. As already done in previous studies of order parameter fluctuations, the cal-

culation is restricted to harmonic approximation, therefore, the director is expanded

around the equilibrium configuration and only the lowest-order terms are kept. The

corresponding Hamiltonian of fluctuations is diagonal

H[nx, ny] = H[nx] +H[nx], (5.19)

where in the one-elastic-constant approximation

H[n] =
K

2

[∫
(∇n)2dV − λ−1

P

∫
n2dSP + λ−1

H

∫
n2dSH

]
. (5.20)

Here, n is either of the two fluctuating scalar director fields, K = 3LS2, and λP,H

are the extrapolation lengths of the degenerate planar and homeotropic substrate,

respectively. The negative sign of the planar surface term indicates the frustrating

role of the two competing substrates, which eventually destabilizes the uniform

structure.

The interaction free energy of the two degenerate director modes is determined

by the partition function written out in Eq. (2.71). Due to the in-plane trans-

lational invariance of the system the modes can be Fourier decomposed, n(~r) =∑
~q exp (i~q · ~r⊥)ñ~q(z) — ~q is the in-plane wavevector and ~r⊥ is the projection of the

vector ~r onto the plane of the confining substrate —, in to the ensemble of indepen-

dent one-dimensional harmonic oscillators. The corresponding partition function is
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factorized, Ξ = Π~qΞ~q, where

Ξ~q =
∫
Dñ~q e−βH[ñ~q ] (5.21)

and

H[ñ~q] =
KA
2

[∫ d

0

(
ñ′2~q + q2ñ2

~q

)
dz − λ−1

P ñ2
~q,− + λ−1

H ñ2
~q,+

]
. (5.22)

Here, A is the substrate surface area, the prime denotes d/dz, and ñ± = ñ(z =

0, d). Further calculation of the partition function is based on the analogy with the

calculation of the probability for a particle with the Hamiltonian H to remain at a

given point within a certain time interval [155]. According to this,

Ξ~q ∝
∫ ∞
−∞

dñ~q,−

∫ ∞
−∞

dñ~q,+ exp
(

KA
2kBT

(
λ−1

P ñ2
~q,− − λ−1

H ñ2
~q,+

))
Ξ~q;ñ~q,−,ñ~q,+

(5.23)

and

Ξ~q;ñ~q,−,ñ~q,+
∝
√

1

sinh(qd)
exp

(
− KA

2kBT

[(
ñ2

~q,− + ñ2
~q,+

)
coth(qd)− 2ñ~q,−ñ~q,+

sinh(qd)

])
,

(5.24)

where we have disposed of irrelevant multipliers. Here, Ξ~q;ñ~q,−,ñ~q,+
is the partition

function associated with the fluctuation modes with boundary conditions ñ~q,− and

ñ~q,+, and Ξ~q in Eq. (5.23) is obtained by an extension of a point-to-point Green func-

tion to a region-to-region Green function, where the width of each region is defined

by a characteristic length scale analogous to the extrapolation length [155]. In prac-

tice this means, that a finite surface interaction with a given easy axis is represented

by a superposition of strong surface interactions each characterized by some easy

axis and multiplied by a statistical weight corresponding to the energetic penalty

for the deviation from the given easy orientation. The integrals in Eq. (5.23) can be

calculated analytically and by omitting further irrelevant multipliers we obtain the

final expression for the interaction free energy,

F = −kBT
∑
~q

Ξ~q

∝ −kBT
∑
~q

 q2 − λ−1
P λ−1

H

q
(
−λ−1

P + λ−1
H

) sinh(qd) + cosh(qd)

−1/2

. (5.25)

Here, we stress that by replacing −λP with λH′ the obtained result corresponds also

to the free energy of fluctuations between two substrates with homeotropic anchoring

and with different anchoring strengths characterized by extrapolation lengths λH′

and λH .

Rather than in the free energy of the interaction we are interested in the force

acting between the two confining substrates. The force is, like in the case of the



134 Hybrid nematic cell

0.0 0.2 0.4 0.6 0.8 1.0
-10

-8

-6

-4

-2

0

2

4

6

8

10

Λ      1

Λ      0

0.5
0.1

0.01

~
Π

/Π

d/d
c

Figure 5.24 Pseudo-Casimir force for different values of Λ = λH/λP in unit
of Π̃ = (kBT/d3

c). Dotted lines correspond to the pseudo-Casimir force in the
two analytical limits, Λ→ 0 (only the zeroth-order) and Λ→ 1.
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Figure 5.25 Relation between the cell thickness and the effective anchoring
strength in hybrid cell below the critical thickness dc. (a) For d < λH , λP both
anchorings are effectively weak whereas for λH < d < λP the homeotropic
anchoring becomes effectively strong. (b) For λH/λP ≥ 0.5 both anchorings
are effectively weak for all thicknesses d < dc.
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structural force, obtained by the derivative of the corresponding part of the free

energy of the system with respect to the distance between the substrates. According

to this and by replacing the sum over ~q by an integral,
∑

~q → (2π)−2
∫

d2q, the

pseudo-Casimir force per unit area reads

Π = −kBT

πd3
c

∫ ∞
0

p2dp
p−1+Λ
p+1−Λ

p+Λ−1−1
p−Λ−1+1

e2px − 1
, (5.26)

where Λ = λH/λP and x = d/dc. The shape of the pseudo-Casimir force depends

on the ratio between the two extrapolation lengths whereas its magnitude is tuned

by the difference between them, i.e., the critical thickness dc for the existence of the

uniform director configuration.

The above expression can not be calculated analytically except in few limit-

ing cases. For the finite but similar extrapolation lengths (Λ → 1) the force is

attractive and decreases as d−3 which is a typical behavior for equal boundary con-

ditions [27,63],

Π (Λ→ 1) ≈ −kBT

2π

ζ(3)

2d3
, (5.27)

where ζ(r) =
∑r

m=1 m−r is the Riemann zeta function. In the case of infinitely strong

homeotropic anchoring (Λ → 0) the system reduces to mixed boundary conditions

for the fluctuation modes and the zeroth-order of the pseudo-Casimir force has a

typical monotonic repulsive behavior with the characteristic separation dependence

1/d3,

Π (Λ→ 0) ≈ kBT

2π

[
3ζ(3)

8d3
+

ln 2

λP d2

]
. (5.28)

The second term in Eq. (5.28) is related to the fact that the substrate with weak

planar anchoring promotes fluctuations and therefore enhances the discrepancy be-

tween the two effective boundary conditions which gives rise to an additional re-

pulsion. In real hybrid systems with both λP and λH > 0, the fluctuation-induced

force is attractive at small d/dc’s, then it becomes repulsive and may reach a local

maximum before the pretransitional logarithmic singularity, which is common for

all combinations of extrapolation lengths in the hybrid geometry [65]. However,

it should be stressed that in the vicinity of the structural transition to the bent-

director structure the anharmonic fluctuations may also play an important role.

Nevertheless, the higher-order corrections are expected not to modify the diver-

gent pretransitional behavior qualitatively [65]. The portrait of the pseudo-Casimir

force for few values of the ratio λH/λP is plotted in Fig. 5.24. The nonmonotonic

behavior of the pseudo-Casimir force can be simply understood by means of the

influence of the type of the boundary conditions for the fluctuating modes on to



136 Hybrid nematic cell

the fluctuation-induced force which we have already met in the introductory Sec-

tion 2.4. At very small thicknesses (d/dc � 1) both extrapolation lengths are larger

than the thickness of the cell, therefore both surface interactions are effectively weak

resulting in an attractive pseudo-Casimir interaction. On increasing the distance,

the fluctuation-induced force becomes repulsive when the homeotropic extrapolation

length becomes smaller than the cell thickness: for λH < d < λP , the homeotropic

anchoring is strong whereas the planar anchoring is weak. For λH/λP > 0.5 both

extrapolation lengths are larger than the cell thickness for all thicknesses yielding

the uniform director configuration and the nonmonotonic behavior of the pseudo-

Casimir force is lost. The numerical calculation gives for this critical ratio of the two

extrapolation lengths the value 0.7; above this, the pseudo-Casimir force is attrac-

tive almost right up to the structural transition to the bent-director configuration.

The described relations between extrapolation lengths and the effective strength of

the anchorings are schematically represented in Fig. 5.25.

5.4 Stability of thin hybrid nematic films

In this Section the stability of a thin liquid-crystalline film is discussed in terms of

enhanced/diminished capillary waves which cause the film to decompose through

a process known as spinodal dewetting. As discussed in Section 2.4.1 the possible

enhancement of thermal fluctuations of a free liquid–air interface is driven by dis-

joining force of the interactions acting between the two confining surfaces. The sum

of all forces per unit area acting on a thin film is therefore denoted as a disjoining

pressure. As already noted, the relevant physical quantity is the slope of the disjoin-

ing pressure rather than its sign. In the liquid-crystalline film the disjoining pressure

consists of van der Waals interaction discussed in Chapter 3, and structural force

and pseudo-Casimir force discussed in this Chapter. The electrostatic interactions

are neglected here, since we assume that there are no free charges.

Lately, there has been an increased interest in the study of stability of thin films,

not only liquid-crystalline films but also depositions of liquid metal [156], poly-

mers [103,76], and protein solutions [157]. The reason for that is both, technological

interest in stability of thin depositions and the interest in basic physical phenomena

involved in the process of spinodal decomposition. Our study was stimulated by

the results of the experiment performed by Vandenbrouck et. al [104,158]. In their

experimental set-up the system consisted of a nematic liquid crystal 5CB spun cast

on a silicon wafer bearing a natural oxide layer. Depending on the initial thickness

of the liquid-crystalline film the film either remained stable for days or it dewetted

into islands of liquid-crystalline drops and dry patches. The dewetting was moni-
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Figure 5.26 Photograph of a film after it has decomposed via spinodal dewet-
ting. The picture was taken by F. Vandenbrouck et. al and is published in
Phys. Rev. Lett. 82, 2693 (1999).

tored using a polarized optical microscopy. A typical picture of a film after it has

decomposed via spinodal dewetting is shown in Fig. 5.26. The original experiment

was performed at the room temperature and the main conclusion was that the dis-

joining pressure exhibits nonmonotonic behavior with the marginal thickness for the

dewetting of the film larger than 17 nm and smaller than 20 nm [104]. Later, the

experiment was repeated for various temperatures within the nematic phase [158].

As we have seen in Sections 3.4 and 5.3 all forces contributing to the disjoining

pressure can exhibit a nonmonotonic behavior. The portrait of the van der Waals

force for the system in question is plotted in Fig. 5.27. Since the silicon wafer

bears a natural oxide layer of silica the system is at least four-layered. As discussed

in Section 3.4 in that case the van der Waals force can exhibit a nonmonotonic

behavior if the van der Waals forces in different three-layer systems composed of

the given materials have different signs. Here, the interaction between silicon and

air across the nematic liquid crystal is repulsive whereas the interaction between

silica and air across the same liquid crystal is attractive. Roughly speaking, one

would expect that for film thicknesses below the thickness of the oxide layer the

interaction would be mostly due to the interaction of silica and air whereas for large

film thicknesses the existence of the additional layer would be negligible. Indeed, in

Fig. 5.27 we can recognize the explained behavior. The marginal thickness (turn-

over thickness) is comparable to the thickness of the oxide layer, which is considered

to be approximately 2 nm thick. Actually, the value of the marginal thickness can

differ from the thickness of the additional layer if the two competing interactions are

very different in magnitude. The dielectric and optical parameters characteristic for

the given materials are written out in Table 5.1.
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Figure 5.27 Van der Waals force per unit area acting on the liquid-crystalline
film in contact with a solid substrate bearing an additional layer and a free
liquid–air interface. Dashed and dotted lines correspond to the van der Waals
force for the partial three-layer systems silicon–5CB–air and silica–5CB–air,
respectively.

Although the van der Waals force possesses the needed nonmonotonic behavior

the marginal thickness is an order of magnitude smaller than the observed value

and can not be increased to the appropriate value just by small corrections due

to better precision of the input parameters. Similar arguments can be stated also

for the structural force which is in addition far too weak to have any significant

influence on the disjoining pressure. On the contrary, the pseudo-Casimir force

together with the van der Waals force yields suitable set of interactions to describe

the process of spinodal decomposition. This was first recognized by Ziherl et. al

[28]. In their study they determined the van der Waals and pseudo-Casimir forces

acting in the described system and obtained the appropriate marginal thickness

within the reasonable set of parameters describing optical and anchoring properties

of the materials in question. Here, we present the results of a similar study, however,

Table 5.1 Material properties of the media constituting the system for study-
ing spinodal dewetting. ε is the static dielectric constant and n is the refractive
index of the medium in visible. All parameters are given at the room temper-
ature.

material ε n

silicon 12 3.5
silica 14 1.5

5CB
ε‖ ε⊥ n‖ n⊥

18.5 7 1.71 1.53
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behavior of the disjoining pressure in the vicinity of the marginal thickness.

20 22 24 26 28 30 32 34 36

20

40

60

80

100

d*
 [

nm
]

T [°C]

Figure 5.29 Temperature dependence of the marginal thickness for the spin-
odal dewetting of 5CB obtained by Valignat et. al [158].

with the improved determination of the van der Waals force which in the original

study suffered from some defects. Since the van der Waals force is relatively strong

in the interval of relevant film thicknesses its best determination is most important.

The disjoining pressure on a slab of a liquid-crystalline material subject to spinodal

dewetting together with the individual forces taking part in the total force is plotted

in Fig. 5.28. In the calculation of the pseudo-Casimir force the extrapolation lengths

were taken to be λH = 33 nm and λP = 133 nm which yields Λ = 0.25. The

parameters used are comparable to the ones reported in previous studies [159,43,28].

As the temperature is varied the observed marginal thickness changes [158]: Deep

in the nematic phase the marginal thickness only slightly increases with the increased

temperature. On approaching the isotropic–nematic phase transition temperature
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the marginal thickness exhibits a pretransitional singular-like behavior. The exper-

imental values obtained by Valignat et. al are plotted in Fig. 5.29. The pretransi-

tional “singularity” of the marginal thickness for the stability of a film is not just

a consequence of the changed occupancy of the fluctuation states, either of thermal

fluctuations of order parameter or fluctuations of the instantaneous electromagnetic

fields. This explicit temperature dependence induces only weak temperature depen-

dence of the corresponding forces, far from being singular. Within the mean-field

theory used in this thesis only the order parameters change with the temperature.

They indeed affect the tensorial physical quantities like the permittivity tensor,

however, this again only weakly perturbs the van der Waals force through the tem-

perature dependent refractive indices. The extrapolation lengths, being the ratio

of the free energy related to elastic deformations and the energetic penalty for vi-

olating boundary conditions, are constant within the mean-field description and,

thus, do not yield any temperature dependence of the pseudo-Casimir force. How-

ever, in experimental studies the extrapolation lengths were found to have a strong

temperature dependence characterized by a “critical” increase on approaching the

isotropic–nematic phase transition [17,46–48,16]. In their study, Mertelj et. al re-

port this temperature dependence to be approximately λ ∝ (TNI − T )−1 where TNI

corresponds to the bulk isotropic–nematic phase transition [16]. The power law in-

dicates that the extrapolation lengths are inversely proportional to the square of the

degree of nematic order. As already noted, within the mean-field theory and with

lowest nontrivial terms, both, the elastic free energy and free energy corresponding

to the interaction of the nematic liquid-crystalline material with solid substrate, are

proportional to S2(T ), thus, the corresponding extrapolation length is temperature

independent. The observed temperature dependence of the extrapolation length in-

dicates that close to the phase transition higher orders in the interaction between

nematic liquid crystal and solid substrate should be taken into account. Considering

the quadrupolar symmetry of the constituting molecules up to the fourth order term

the surface part of the free energy reads

Fsur =
LA
2

λ−1
{

tr (Q− QS)2 + α
[
tr (Q− QS)2

]2}
, (5.29)

where α is the ratio of the free energies associated with the second and fourth order

terms. For the uniaxial nematic order Q = (S/
√

6)(3n̂⊗ n̂− I) and, correspondingly,

QS = (aS/
√

6)(3k̂ ⊗ k̂ − I) if the confining substrate induces uniaxial nematic order

with the easy axis k̂ and the preferred degree of nematic order aS. In the case with

the uniform degree of nematic order through the film, S = aS = Sb(T ), the effective

extrapolation length reads approximately

λeff (T ) =
λ

1 + α′S2
b (T )

, (5.30)
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Figure 5.30 (a) Temperature dependence of the extrapolation length for var-
ious values of the parameter α′. Large values of α′ correspond to dominant
fourth-order term which fits well the experimentally obtained behavior. Pa-
rameter λ is chosen in a way to fit the value of the extrapolation length deep
in the nematic phase. (b) Experimental data for extrapolation length in 5CB
in polycarbonate Nucleopore membrane reported by Mertelj and Čopič [Phys.
Rev. Lett. 81, 5844 (1998)].

where α′ is related to α. On approaching the nematic–isotropic phase transition

the nematic order decreases and, effectively, the anchoring strength decreases as

well. Therefore, the effective extrapolation length increases on approaching the

transition to the disordered phase. In Fig. 5.30 the temperature dependence of the

extrapolation length is plotted for various values of the parameter α′. There are,

however, some other approaches which lead to the increase of the extrapolation

length in the vicinity of phase transition. They are based on the renormalization of

the anchoring energy due to variations of the degree of nematic order [17] or due to

thermal fluctuations [160].

To model the temperature dependence of the marginal thickness for the stability

of a thin nematic liquid-crystalline film we have assumed the simplest temperature

dependence of the extrapolation lengths: both extrapolation lengths are assumed

to change with temperature in the same way, λ ∝ S−2(T ). In that case, the rele-

vant ratio which changes the pseudo-Casimir interaction, Λ = λH/λP , is constant

whereas the critical thickness for the structural transition between uniform and bent

director configuration changes with temperature. As shown in Fig. 5.31, depending

on the value of this ratio, however, with the same extrapolation lengths deep in the

nematic phase, temperature dependence can vary from a very weak temperature

dependence up to the dependence characterized by a pronounced pretransitional

increase. Comparing the results from our model with the experimental results pre-

sented in Fig. 5.29 the best fit was obtained for Λ = 0.25, and λH = 33 nm and

λP = 133 nm at T = 293 K. The used parameters fit well with the reported values
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Figure 5.31 Temperature dependence of the marginal thickness for different
Λ’s. Squares correspond to experimental results obtained by Valignat et. al
[158].

of extrapolation lengths at free nematic surface of 5CB and with the extrapolation

length of 5CB in contact with silica, respectively. Within this, depending on the

temperature the marginal thickness of the disjoining pressure is in the interval from

10 nm deep in the nematic phase up to 100 nm close to the transition to the isotropic

phase. It should be stressed that the extrapolation lengths and the marginal thick-

ness exhibit a pronounced increase in the vicinity of the phase transition, however,

they do not diverge at the phase transition. In the literature this increase is often

denoted as a pretransitional singularity although there is no reason for that at the

discontinuous transition form the nematic to the isotropic phase.
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Conclusion

The primary aim of my thesis was to study the effects of the confinement onto the

nematic order parameter fluctuations. These are affected directly by the changed

boundary conditions for the fluctuation modes and indirectly through the changed

potential arising from the average equilibrium order. The surface-induced effects

can be either localized at the confining substrates or the surface-induced deforma-

tion can extend over the whole liquid-crystalline sample. On the other hand, the

spectrum of fluctuations indicates whether the corresponding transition is contin-

uous or discontinuous, which is the mechanism responsible for the change of the

order at the transition, etc. The variation of order on the macroscopic scale can

be monitored through changed optical properties of the system, by its influence on

the NMR response, etc. One of the principal physical observables are, however,

the forces. Forces acting among the walls that confine the liquid crystal can be

monitored either directly by force spectroscopy methods, such as with surface force

apparatus, atomic force microscopy, etc., or indirectly via the effect of the interac-

tions in the system onto the mechanical stability of liquid films — via their ability

to wet solid substrates. It was found out by other authors that experiments taking

advantage of spinodal dewetting of liquid-crystalline depositions are most promising

for the observation of fluctuation-induced forces [161]. However, the fluctuation-

induced force is just one of the forces among all that are acting on a film and it

is far from being the only one relevant. Thus, other forces have to be considered

as accurately as possible in order to provide an adequate mechanism for observing

the fluctuation-induced forces. There was a lack of knowledge of the influence of

the anisotropy of order onto the electromagnetic field fluctuations which give rise

to the van der Waals interaction. Although they are not strictly related to the or-

der parameter fluctuations they were studied here because of their relevance for the

observation of fluctuation-induced forces and because they are too affected by the

ordering power of the confining walls.

143
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First, the collective fluctuations were studied in a heterophase system in which

the surface-induced change of the order is localized at the confining wall. The

analysis has revealed a close relationship between the wetting regime induced by

disordering substrates and the pretransitional behavior of thermal fluctuations of

the ordering in confined liquid crystals. The disordering action of the confining

surface results below the isotropic–nematic phase transition in a heterophase struc-

ture consisting of an isotropic wetting layer and a nematic core. The system is

characterized by a wetting-induced interface between nematic and isotropic phase,

which gives rise to two localized normal modes: the first one represents fluctuations

of the position of the phase boundary and is characterized by a soft dispersion of

its relaxation rate (provided that the conditions for the complete wetting are ful-

filled), and the second one corresponds to fluctuations of the shape of the interface.

Moreover, there are a few additional softened biaxial modes, which are restricted to

the wetting layer and whose pretransitional behavior is related to its growth. The

spectrum of director fluctuations is Goldstone like and the corresponding fluctuation

modes are accommodated by the nematic core. If the wetting is partial, the slow-

down of the localized modes is not as pronounced as in complete wetting regime,

but the underlying physics remains the same. In systems with complete wetting the

isotropic–nematic phase transition becomes continuous provided that the thickness

of the nematic cell is large compared to the nematic correlation length.

The surface-induced influence which perturbs the whole system was studied on

the example of the hybrid nematic film. The analysis of nematic liquid crystals

confined to highly constrained hybrid films with a biaxial structure has revealed

a soft-mode or soft-mode-like dynamics in the vicinity of the structural transition

toward hybridly aligned bent-director structure. The soft fluctuation manner is

related to the bending director fluctuations which deform the undistorted director

profile in biaxial configuration toward the continuously bent-director field in a usual

hybridly distorted structure. In addition to this fluctuation mode the lowest order

parameter mode exhibits similar slowdown of the relaxation rate, however, it remains

finite even at the “supercooling” limit of the biaxial configuration. This mode is

related to fluctuations of the position of the interface between the two uniaxial parts

of the film. Other fluctuation modes do not contribute to the structural transition.

However, low biaxial modes are interesting because they are localized in one half of

the film only. The structural transition between the biaxial and bent-director phase

can be either continuous or discontinuous — the two regimes are separated by a

tricritical point (TTP, dTP). Above the tricritical point, the continuous structural

transition becomes progressively discontinuous. The results of the phenomenological

description were compared to the ones obtained by the computer simulation of the
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hybrid nematic cell and a good qualitative agreement was found between the two

approaches. Another test for the phenomenological description was the study of

stability of thin hybrid films. It has revealed that the van der Waals and pseudo-

Casimir forces are both important for the stability of the film. We managed to model

the temperature dependence for the marginal thickness which is in good agreement

with the observed dependence.

In order to study the stability of thin hybrid nematic depositions we have de-

rived an improved analytic expression for the van der Waals interaction between

macroscopic bodies, characterized by uniaxial permittivity tensor. We have shown

that neglecting the anisotropy of static dielectric constants and refractive indices

can yield wrong character of the interaction leading to incorrect interpretation or

prediction of stability of thin uniaxial depositions. The anisotropic van der Waals

interaction yields also a correction to the equilibrium order in heterophase nematic

and smectic systems. In paranematic systems this changes the critical exponent of

the wetting layer thickness.

Open problems

There are, however, some aspects of the surface-induced influence on the nematic

order fluctuations which are not discussed here.

Due to the broken translational symmetry of the phases caused by the presence of

walls surface-induced layering is expected in the vicinity of walls. The effect is more

pronounced in systems with spontaneous smectic layering, however, to some extent

it is observed also in nematogenic liquid crystals. The effect of smectic layering onto

the fluctuations of the nematic order parameter is still to be investigated.

Another influence on the nematic order fluctuations, especially in heterophase

systems, is due to the van der Waals interaction which yields a correction to the

equilibrium order. This is quite substantial in the vicinity of the phase transition and

even changes the critical exponent for the wetting layer thickness. In the complete

wetting regime, this behavior is critical even within the phenomenological description

used in our study, therefore, the basic properties of the fluctuation spectra are not

expected to be changed. It might, however, change the behavior in the regime of

partial wetting or at least renormalize the conditions for the complete wetting.

In the description of fluctuations it was assumed that the energy is dissipated only

in the interior of the system whereas the dissipation at the surfaces was neglected.

In order to provide the complete account of the influence of the surfaces the surface

viscosity should be discussed in the future.

The studied behavior of the nematic ordering and pretransitional dynamics of a

liquid crystal is certainly not limited to the simple planar geometry discussed in this
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thesis. Similar phenomena are expected in systems where the heterophase or hybrid

order of the nematic liquid crystal is induced by topological constraints imposed by

curved walls, such as in cylindrical cavities, in the vicinity of line and point defect,

etc. In these, the equilibrium order is already recognized to be characterized by

partially molten nematic order characteristic for either of the two systems discussed

in the thesis instead of exhibiting deformations of the director field. Thus, it can

be expected that the collective modes associated with these geometries are basically

the same as described here. However, in curved geometry in both of the discussed

systems the director field can not be uniform due to the shape of the confinement.

In order to make a quantitative analysis of collective modes in the vicinity of defects

and, thus, of their growth, the analysis should be performed from the beginning.

? ? ?

The nature of the research work is such as to always open new questions and

so the work seems to be never finished and the aim never fulfilled. On my way to

prepare this thesis, many new interesting aspects of confined liquid crystals were

raised; some of them gave the results presented in this work, some of them led to

the dead end, and some of them still have to be investigated. However, this is what

makes the research work interesting and what gives the assurance that there will

be always something new to work on. Working on this thesis helped in deriving or

becoming familiar with certain theories, methods, and models to describe physical

phenomena of confined systems and provided some basic concepts characteristic for

them.
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[23] A. Šarlah, P. Ziherl, and S. Žumer, Mol. Cryst. Liq. Cryst. 329, 413 (1999).
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[85] A. Borštnik, H. Stark, and S. Žumer, Phys. Rev. E 61, 2831 (2000).

[86] T. Kihara and N. Honda, J. Phys. Soc. Jap. 20, 15 (1965).

[87] K. Okano and J. Murakami, J. Phys. Coll. 40, 525 (1979).

[88] R. Podgornik and V. A. Parsegian, Phys. Rev. Lett. 80, 1560 (1998).

[89] J. Israelachvili, Intermolecular & Surface Forces (Academic Press, London,
1985).

[90] B. V. Derjaguin, Kolloid Z. 69, 155 (1943).

[91] H. B. G. Casimir and D. Polder, Nature 158, 787 (1946).

[92] H. Hamaker, Physica 4, 1058 (1937).



150 Bibliography

[93] E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1955), [Sov. Phys. JETP 2, 73,
(1956)].

[94] I. E. Dzyaloshinskii and L. P. Pitayevskii, Zh. Eksp. Teor. Fiz. 36, 1797 (1959),
[Sov. Phys. JETP 9, 1282 (1959)].

[95] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitayevskii, Advan. Phys. 10,
165 (1961).

[96] N. G. van Kampen, B. R. A. Nijboer, and K. Schram, Phys. Lett. 26A, 307
(1968).

[97] E. Gerlach, Phys. Rev. B 4, 393 (1971).

[98] K. Schram, Phys. Lett. 43, 282 (1973).

[99] B. W. Ninham and V. A. Parsegian, Biophys. J. 10, 646 (1970).

[100] J. Mahanty and B. W. Ninham, Dispersion Forces (Academic Press, London,
1976).

[101] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2 ed.
(Butterworth-Heinemann, Oxford, 1984), first published in English by Perga-
mon Press plc 1960.

[102] P. M. Morse and H. Feshbach, Methods of theoretical physics (Mc Graw Hill,
Boston, 1953).

[103] G. Reiter, Phys. Rev. Lett. 68, 75 (1992).

[104] F. Vandenbrouck, M. P. Valignat, and A. M. Cazabat, Phys. Rev. Lett. 82,
2693 (1999).

[105] R. Barberi and G. Durand, Phys. Rev. A 41, 2207 (1990).

[106] T. Moses and Y. R. Shen, Phys. Rev. Lett. 67, 2033 (1991).

[107] H. Yokoyama, in Handbook of Liquid Crystal Research, edited by P. J. Collings
and J. S. Patel (Qxford University Press, New York, 1997).

[108] D. Allender, G. L. Henderson, and D. L. Johnson, Phys. Rev. A 24, 1086
(1981).

[109] T. J. Sluckin and A. Poniewierski, Phys. Rev. Lett. 26, 2907 (1985).

[110] M. M. Telo da Gama, Mol. Phys. 52, 611 (1984).

[111] M. M. Telo da Gama, Phys. Rev. Lett. 59, 154 (1987).

[112] N. B. Ivanov, Phys. Rev. E 60, 7596 (1999).

[113] K. Miyano, Phys. Rev. Lett. 43, 51 (1979).

[114] H. Yokoyama, S. Kobayashi, and H. Kamei, Mol. Cryst. Liq. Cryst. 99, 39
(1983).
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