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A use case model is often represented by a UML use case diagram and loosely structured textual de-
scriptions. The use case model expressed in such a form contains ambiguous and imprecise parts. This
prevents integrating it into model-driven approaches, where use case models are often taken as the source
of transformations. In this paper, we introduce a domain-specific language named the Use case Speci-
fication Language (USL) to precisely specify use cases. We define the abstract syntax of USL using a
metamodel together with OCL wellformedness rules and then provide a graphical concrete syntax for the
usability goal. We also define a precise semantics for USL by mapping USL models to Labelled Transition
Systems (LTSs). It opens a possibility to transform USL models to software artifacts such as test cases and
design models. We focus on a transformation from a USL model to a template-based use case description
in order to illustrate our method. A language evaluation of USL is also performed in this paper.

Povzetek: Zasnovan je domensko specifični jezik USL za natančno specifikacijo primerov in transformacij.

1 Introduction
Use case is a software artifact that is commonly used for
capturing and structuring the functional requirements. A
use case is defined as “the specification of sequences of ac-
tions, including variant sequences and error sequences, that
a system, subsystem, or class can perform by interacting
with outside objects to provide a service of value” [1]. As
a requirements artifact, the use case model is commonly
specified by a UML use case diagram and loosely struc-
tured textual descriptions [2]. A key benefit of this use
case specification is that it is easy for non-technical stake-
holders to learn and use. However, the use case models ex-
pressed in this form often contain ambiguous and imprecise
parts. This prevents the models from being used directly
in model-driven approaches, as a transformation source to
produce other analysis and design models. An important
challenge here is how to achieve a balance between two
seemingly conflicting goals: to specify use case sufficiently
precise for model transformation purposes, while achieving
the ease-of-use required by non-technical stakeholders.

To this end, a considerable number of works, including
[3, 4, 5, 6, 7] and those discussed in [8], have attempted to
introduce rigor into use case description. More specifically,
T. Yue et al. [3] proposed adding keywords and restriction
rules into use case descriptions and then using natural lan-
guage processing techniques in order to analyze them. Un-

like [3, 4, 9, 5, 6, 7], which used natural language descrip-
tion, the works in [10, 11] proposed a formal semantics for
use case. On the other hand, UML activity and sequence di-
agrams are proposed in [12, 13, 14, 15] to model the control
flows in use case. A number of other works [4, 16, 17] pro-
posed using a domain specific language (DSL) to specify
use case. DSL [18] is a language that is designed specif-
ically for a certain domain to ease the task of describing
concepts in the domain.

However, the main limitation of the existing work is that
they do not focus on precisely capturing the relevant use
case information. These include control flows, steps, sys-
tem actions, actor actions, and constraints on the use case
and its flows. In this paper, we propose a DSL named Use
Case Specification Language (USL) to overcome this lim-
itation. The goal of USL is to precisely specify use cases
and its model transformation abilities. The USL’s domain
consists in the task of specifying use cases that capture the
system behavior.

Our approach is to define the abstract syntax of USL
by extending the metamodels of the UML use case and
activity diagrams [2]. Our extension consists in a set of
meta-concepts needed for the following purposes: (1) to
describe the elements of a typical use case description tem-
plate; (2) to represent the basic and alternate flows of a use
case in the form of sequential, branched, repeating steps, or
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concurrent steps; (3) to categorize steps and actions based
on the interaction subjects, which include the system, ac-
tors and included/extending use cases; and (4) to represent
constraints on the use case, actions, and flows.

Our precise specification of USL makes it possible to
automatically transform USL models into other software
artifacts using model transformation techniques. In brief,
the main contributions of our work are as follows:

– A DSL named USL to precisely specify use cases. We
define the abstract syntax of USL using a metamodel
constrained by OCL wellformedness rules [19]. For
usability, we define a graphical concrete syntax for
USL.

– A formal semantics specification for USL using La-
belled Transition System [20]. This semantics en-
ables the automatic transformation of USL models
into other software artifacts, such as test cases and
class models.

– A support tool that includes a visual editor for con-
structing USL models. We use this tool and two
commonly-used case studies to illustrate our method.
We also evaluate USL by comparing it to other related
languages.

This work makes four significant improvements from
our earlier conference paper [21]. First, regarding to USL
specification, we make the abstract syntax precise with the
OCL wellformedness rules [19] and define a graphical con-
crete syntax. Second, we develop an additional case study
in order to illustrate how to apply USL in practice. Third,
we define a numqber of typical model transformation sce-
narios for USL model and explain, in more detail, the trans-
formation into template-based use case description. Fourth,
we provide an evaluation for USL.

The rest of this paper is organized as follows. Section 2
presents the background and an example for our work. Sec-
tion 3 overviews our approach. Section 4 presents the USL
abstract syntax and explains its formal semantics. Section 5
explains how USL models are transformed into other soft-
ware artifacts. Section 6 introduces our support tool and
illustrates how to apply USL to the ATM system case study.
This section also presents an evaluation of USL. Section 7
comments on the related works. The paper is closed with
the conclusions and future work.

2 Background and motivation
Figure 1 shows a simplified requirement model of a
Library system including a UML use case model de-
picted in the part (a) and a UML class diagram capturing
corresponding domain concepts of the system which is pre-
sented in the part (b). Our paper uses the use case Lend
Book in the part (a) as a motivating example. This use case
is invoked when the librarian executes the book lending

Figure 1: The simplified use case and the conceptual do-
main model of the Library system.

Table 1: A typical use case description template

Use case name: Lend Book
Brief description: The Librarian processes a book loan.
Actors: Librarian.
Precondition: The librarian has logged into the system successful.
Postcondition: If the use case successfully ends, the book loan is saved and a
complete message is shown. In the other case, the system displays an error mes-
sage.
Trigger: The Librarian requests a book-loan process.
Special requirement: There is no special requirement.
Basic flow
1. The Librarian selects the Lend Book function.
2. The system shows the Lend-book window, gets the current date and assigns it
to the book-loan date.
3. The Librarian enters a book copy id.
4. The system checks the book copy id. If it is invalid, it goes to step 4a.1
5. The Librarian enters a borrower id.
6. The system validates the borrower id. If it is invalid, it goes to step 6a.1
7. The Librarian clicks the save-book-loan button.
8. The system validates the conditions to lend book. If it is invalid, the system
goes to step 8a.1
9. The system saves the book loan record, then executing two steps 10 and 11
concurrently.
10. The system shows a complete message.
11. The system prints the borrowing bill.
Alternate flows
E1. request searched book
1. The Librarian selects the search function after step 4a.1.
2. The system executes the extending use case Search book.

4a. The book copy id is invalid
1. The system shows an error message, then going to step 3.

6a. The Borrower id is invalid
1. The system shows an error message, then going to step 5.

8a. The lending condition is invalid
1. The system shows an error message.
2. The system ends the use case.

transaction. The use case is represented in a typical tem-
plate as shown in Table 1.

A typical use case description template [22] often in-
cludes two parts, the overview information elements and
the detailed description of flows. The first part consists of
the following elements: the use case name, the use case’s
brief description, the actors participating in the use case,
the use case’s precondition and postcondition, the trigger
that initiates the use case and the special requirement that
describes the non-functional requirements of the use case.
The second part contains two types of flows, the basic flow
and alternative flows. The basic flow covers what nor-
mally happens when the use case is performed. Each use
case description has only one basic flow. The alternative
flows cover optional or exceptional behaviour as well as
the variations of the normal behaviour. Both the basic and
alternative flows are often further structured into steps or
subflows [23, 1]. Moreover, one can smooth use case flows
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to contain only a basic flow and some alternate flows.
Each step in flows consists of actions performed either

by the system or actors. We refer to actors, the system, and
other relation use cases as interactive subjects.
For example, Step 1 in the basic flow is carried out by
the Librarian actor, while Step 2 is performed by the sys-
tem. A step may also contain the information to decide the
next moving is another step or another flow or the start-
ing or finishing of concurrent actions. As illustrated in Ta-
ble 1, Step 2 includes three system actions, “The system
shows the Lend-book window”, “The system gets the cur-
rent date” and “The system assigns the current time to the
book-loan date”. Step 5 contains a branching decision, “If
it is invalid, the system goes to step 6a”. Step 9 contains
the starting point of two concurrent actions: “The system
executes two steps 10 and 11 concurrently”.

In our work, we consider sentences describing execution
of an extending or an included use case as the system’s
actions. Our previous work [21] divides use case’s actions
into nine types as follows:

Actor-Input is an actor action to enter data into the sys-
tem, e.g., the action “The Librarian enters a book copy id”
at Step 3 in Table 1 is an Actor-Input.

Actor-Request is an actor action to send requests
into the system, e.g., the action “The Librarian clicks
the save-book-loan button” at Step 7 in Table 1 is an
Actor-Request.

System-Display is a system action that the system per-
forms operations with the user interface, e.g., the action
“The system shows the lend-book window” at Step 2 in Ta-
ble 1 is a System-Display.

System-Operation is a system action to validate a re-
quest and data, or process and calculate data, e.g., the ac-
tion “The system gets the current date” at Step 2 in Table 1
is a System-Operation.

System-State is a system action to query or update its
internal states, e.g., the action “The system saves the book
loan record” at Step 9 in Table 1 is a System-State.

System-Output is a system action to send outputs to the
actors, e.g., the action “The system shows an error mes-
sage” at Step 1 of the alternate flow 4a in Table 1 is a
System-Output.

System-Request is a system action to send requests
to a secondary actor, e.g., the action “The system prints
the borrowing bill” at Step 11 shown in Table 1 is a
System-Request.

System-Include is a system action to include another
use case.

System-Extend is a system action to extend another use
case, e.g., the action “The system executes the extending
use case Search book” within Step 2 of the alternate flow
E1 in Table 1 is a System-Extend.

A use case is successfully executed only if the pre- and
postcondition of the use case as well as of the actions of the
current flow are satisfied.

Within the context of model-driven development, a use
case model, as illustrated in Fig. 1 tends to be taken as a

source model of transformations in order to obtain other
software artifacts such as analysis models, design mod-
els, and test cases. However, the ambiguous and imprecise
parts within use case descriptions prevents us from achiev-
ing such transformations. In order to integrate use cases
into model-driven approaches, we aim to tackle the follow-
ing challenges:
Capturing the overview structure. The use case model
needs to preserve the overview structure of use case de-
scriptions so that a template-based representation of use
cases might be generated for non-technical stakeholders.
Specifying precisely control follows. A use case includes
a set of scenarios, each of which corresponds to a control
flow of the use case. Therefore, the use case model needs
to preserve the information of control flows of use cases.
This allows us to automatically generate artifacts like test
scenarios and behaviour models.
Specifying precisely actions. The use case model needs
to precisely represent actions within use case scenarios.
A precise specification of actions allows us to capture use
case relationships and to generate other artifacts from use
cases such as class diagrams, test scenarios, and test ob-
jects.
Specifying use case constraints. For the aim to automat-
ically generate test data, the use case model needs to pre-
serve the constraints within use case descriptions, including
the pre- and postcondition of use cases, the pre- and post-
condition of use case actions, and their guard conditions.

3 Overview of the approach
Figure 2 illustrates our approach. First, we take as input
a use case diagram, the textual descriptions of use cases,
and a class diagram capturing the conceptual model of the
system. Then, we aim to represent each use case specifi-
cation as a model element of a so-called use-case domain.
In order to define the use-case domain, we define meta-
concepts w.r.t. the structural elements of the typical use-
case-description template and the use case concepts as ex-
plained in Sect. 2. The meta-concepts allow us (1) to rep-
resent the basic and alternate flows of a use case in form of
sequential, branched, or repeating steps, (2) to categorize
use case steps and actions based on the interactive subjects
including the system and actors, and (3) to represent con-
straints on the use case and its flows.

Figure 2: Overview of the USL Approach.

In order to represent textual descriptions of actions or
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constraints within a use case specification, we consider
them as operations on an object-oriented model w.r.t. the
input conceptual model of the system. In that way, we
could employ pairs of pre- and postcondition as contracts
on actions in order to obtain a more precise specification
of the use case. The constraints are often expressed using
constraint languages such as the OCL [24], JML [25], and
natural language as mentioned in [17]. In this research, we
employ the OCL to represent the constraints.

Specifically, our approach is realized as follows. We
propose a domain specific language named USL in order
to represent use cases within the use-case domain. Fur-
ther, we define a formal semantics of USL so that we could
transform USL models in to other artifacts such as test
cases and analysis class models. To illustrate this point, a
transformation from a USL model to a template-based use
case description will be explained in details in SubSect. 5.3.

4 The USL language
This section first explains the abstract syntax and the graph-
ical concrete syntax of USL. Here, we utilize the meta-
modeling approach as mentioned in [26] to define USL.
Then, we focus on defining a precise semantics for USL
by mapping a USL model to a Labelled Transition Sys-
tem (LTS) [20].

4.1 The USL abstract syntax
We define the USL metamodel w.r.t. the use-case domain
based on (1) UML use case specification (Chapt. 18 of [2]),
(2) the Use Case Descriptions (UCDs) [1], [23], [22], and
(3) the UML activity specification (Chapt.s 15, 16 of [2]).
We will refer to these as the domain sources (1), (2),
and (3), respectively.

Figure 3 shows the metamodel of USL. For brevity, we
divide the metamodel into four blocks: (a), (b), (c), and
(d). Figure 3-a (i.e., block (a)) presents the top-level con-
cepts. Figure 3-b presents the FlowStep hierarchy. Fig-
ure 3-c presents the ControlNode hierarchy. Figure 3-
d presents the Action hierarchy and how it is related to
the FlowStep hierarchy. Figure 3-e presents the con-
cept Constraint and how it is used to specify Action,
InitialNode, FinalNode, and FlowEdge.

To conserve space, we will not repeat here the definitions
of all of the USL concepts that are described in the three
domain sources. We will instead focus on a key sub-set of
the concepts – those that will be used later to define the
transformation of USL models. Figure 4 presents the USL
model of the Lend Book use case as shown in Table 1. We
will use this example USL model in order to illustrate our
definitions.

Action (domain sources (1, 3)) represents a action that is
performed either by an actor or by the system. An Action
is characterised by the following attributes: actionName
and parameters. The parameters are represented by
concept Parameter inherited the concept Parameter

of UML (as presented in Sect. 19.9.13 of [2]). Action is
specialized into two main types (as illustrated in Fig. 3-d):
ActorAction and SystemAction. ActorAction
is further specialized into ActorRequest and
ActorInput. SystemAction is special-
ized into SystemOperation, SystemOutput,
SystemDisplay, SystemState, SystemInclude
and SystemExtend that were explained in Sect. 2.

FlowStep (domain source (2)) is a sequence of Actions
that represents a step in a basic flow or an alternate flow of
the use case. It is characterised by the following attributes:
number (the order number of step), description (the
content of the step) and maxloop (the maximum itera-
tion of the step if existing). FlowStep is specialized
into two types (as shown in Fig. 3-b): ActorStep and
SystemStep, as mentioned in Sect. 2. We define three
utility functions as shown in Table 2.
Example 4.1.1. The USL model shown in Fig. 4 con-
sists of the FlowSteps s1, . . . , s16. Among these,
s1 is an ActorStep and s2 is a SystemStep.
Step s3 contains the ActorInput a5. Step s1
contains the ActorRequest a1. Step s2 con-
tains SystemOperation a3. Step s10 con-
tains the SystemOutput a12. Step s4 con-
tains the SystemState a6. Step s11 contains
the SystemRequest a13. Step s14 contains the
SystemExtend a16. The Action a5 has Parameter
“bcid”.

Control Node (domain source (3)) represents a control
action that regulates the flows across other USLNodes. A
ControlNode, as illustrated in Fig. 3-c, is specialized
into InitialNode, FinalNode, DecisionNode,
ForkNode and JoinNode. These respectively represent
the starting and ending points of use case, the branching
points of steps, and the starting and ending points of con-
current actions in steps. To ease notation, we define two
overloading functions w.r.t. ControlNode and a func-
tion w.r.t. DecisionNode as shown in Table 2.
Example 4.1.2. The USL model as shown in Fig. 4
contains nine ControlNodes c0, . . . , c8. In partic-
ular, c0 is an InitialNode, c7 and c8 are different
FinalNodes, c1, . . . , c3 and c6 are DecisionNodes,
c4 is a ForkNode, and c5 is a JoinNode.

USLNode represents all the nodes FlowStep or
ControlNode that make up a USL model.

FlowEdge (domain source (3)) is a binary directed edge
between two USLNodes. If both steps are a part of a basic
flow, we call the transition a BasicFlowEdge. On the
other hand, if both steps are a part of an alternate flow, we
call the transition an AlternateFlowEdge. As shown
in Table 2, we define two utility functions source and
target, two overloading functions guardE and a func-
tion isCompleted w.r.t. the concept FlowEdge.
Example 4.1.3. The USL model as shown in Fig.
4 contains b1, . . . , b18 as BasicFlowEdges and
al_1, . . . , al_10 as AlternateFlowEdges.

Variable (domain source (3)) represents variables that
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Figure 3: The USL metamodel.

Table 2: List of utility functions w.r.t. USL concepts

Utility function Description
firstAct: FlowStep→ Action Returning the first Actions of a FlowStep.
lastAct: FlowStep→ Action Returning the last Actions of a FlowStep.
actions: FlowStep→ Actions Returning a set of Actions of a FlowStep.
firstAct: ControlNode→ ControlNode Returning the ControlNode itself.
lastAct: ControlNode→ ControlNode Returning the ControlNode itself.
source: FlowEdge→ USLNode Returning the source USLNodes of a FlowEdge.
target: FlowEdge→ USLNode Returning the target USLNodes of a FlowEdge.
guardE: FlowEdge→ Constraint Returning the guard condition.
guardE: USLNode→ USLNode→ Constraint Taking the source and target USLNodes as input and returning the guard

condition.
isCompleted: FlowEdge→ Boolean Determining whether or not lastAct(source(e)) has completed its exe-

cution.
preA: Action→ Constraint Returning the precondition of an Action.
preA: ControlNode→ Constraint If the ControlNode is not a InitialNode, returning true, else return-

ing the Constraint of the InitialNode
postA: Action→ Constraint Returning the postcondition of an Action.
postA: ControlNode→ Constraint If the ControlNode is not a FinalNode, returning true, else returning

the Contraint of the FinalNode.
preC: USLModel→ Constraint Returning the precondition of a USLModel.
postC: USLModel→ Constraint Returning the postcondition of a USLModel.
postC: USLModel→ FinalNode→ Constraint Returning the postcondition of a particular FinalNode of a USLModel.

hold data values during the execution of a use case sce-
nario. It is inherited the concept Variable of UML pre-
sented Sect. 15.7.25 of [2].

DescriptionInfor (domain source (2)) maintains the
other textual description of use case.

Constraint (domain source (1,3)) represents constraints
that are formed by use case variables: (1) the precondi-
tion of use case associated with InitialNode; (2) the
postcondition of use case associated with FinalNodes;
(3) guard conditions of a transition; and (4) the pre- and
postcondition of an Action. This concept is inherited the
concept Constraint in UML, shown in Sect. 7.6 of [2].
As depicted in Table 2, we define utility functions w.r.t.
Constraints to get the pre- and postcondition of ac-
tions and use case.

Example 4.1.4. The USL model as shown in Fig. 4 con-
tains g1, . . . , g6 as guard conditions and p1, . . . , p6 as post-
conditions of Actions.

We define a set of OCL wellformedness rules as restric-
tions on the USL metamodel. These rules are defined in the
context of the UseCase concept and listed as follows.
Rule 1. A USL model has one InitialNode:

1 self.uslnode->selectByType(InitialNode)
2 ->size()=1

Rule 2. A USL model has at least one FinalNode:
1 self.uslnode->selectByType(FinalNode)
2 ->size() >= 1

Rule 3. A USL model has at least one FlowStep:
1 self.uslnode->selectByKind(FlowStep)
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Figure 4: Representing the Lend Book use case as a USL model.

2 ->size()>=1

Rule 4. An InitialNode has one out-going
BasicFlowEdge and does not have any in-coming
FlowEdges:

1 (self.flowedge->select(t:FlowEdge|t.source.
oclIsTypeOf (InitialNode))->size()=1)and(
self.flowedge ->select (b:FlowEdge|(b.
source.oclIsTypeOf(InitialNode)) and (b.
oclIsTypeOf(BasicFlowEdge)))->size()=1)
and (self.flowedge->select(t:FlowEdge| t

.target.oclIsTypeOf(InitialNode))->size()
=0)

Rule 5. A FinalNode has one in-coming FlowEdge
and does not have any out-going FlowEdge:

1 self.uslnode->selectByType(FinalNode)->
forAll (f:FinalNode|(self.flowedge->
select(e:FlowEdge|e.target=f) ->size()
=1) and (self.flowedge->select (e:
FlowEdge|e.source=f)->size()=0))
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Rule 6. A DecisionNode has one in-coming
FlowEdge and at least two out-going FlowEdges:

1 (d:DecisionNode|(self.flowedge->select(e:
FlowEdge|e.target=d)->size()=1)and (
self.flowedge->select(e:FlowEdge|e.
source=d)->size()>=2) )

Rule 7. A ForkNode has at least one in-coming
FlowEdge and at least two out-going FlowEdges:

1 self.uslnode->selectByType(ForkNode)->forAll(
f:ForkNode|(self.flowedge->select(e:
FlowEdge|e.target=f)->size()>=1) and (
self.flowedge->select(e:FlowEdge|e.source
=f)->size()>=2) )

Rule 8. A JoinNode has at least two in-coming
FlowEdges and one out-going FlowEdge.

1 self.uslnode->selectByType(JoinNode)->forAll
(j:JoinNode|(self.flowedge->select(e:
FlowEdge|e.target=j)->size()>=2)and(self.
flowedge->select (e:FlowEdge|e.source=j)
->size()=1)).

Rule 9. A SystemStep or ActorStep has at least one
in-coming FlowEdge and one out-going FlowEdge:

1 self.uslnode->selectByKind(FlowStep)->forAll(
f:FlowStep|(self.flowedge->select(e:
FlowEdge|e.target=f)->size()>=1)and(self.
flowedge->select(e:FlowEdge|e.source=f)->
size()=1))

Rule 10. A USL model is valid if the FlowEdges that
connect the USLNodes of the model are valid, i.e., the type
and label are correctly defined:

1 self.uslnode->forAll(n:USLNode|
2 if (n.oclIsTypeOf(InitialNode))then
3 self.flowedge->select(b:FlowEdge|
4 (b.source.oclIsTypeOf(USL::InitialNode)) and

(b.oclIsTypeOf(USL::BasicFlowEdge)))->
size()=1

5 else
6 if (self.flowedge->selectByType(

BasicFlowEdge)->select(b:BasicFlowEdge|b
.target=n))->size()>=1 then

7 if (n.oclIsTypeOf(DecisionNode))then
8 self.flowedge->selectByType(BasicFlowEdge)

->select (b:BasicFlowEdge|b.source=n)
->size()=1

9 else
10 if (n.oclIsTypeOf(ForkNode)) then
11 self.flowedge->select(f:FlowEdge|f.source

=n)->forAll(b:FlowEdge|b.oclIsTypeOf(
BasicFlowEdge))

12 else
13 if (n.oclIsTypeOf(JoinNode)) then
14 (self.flowedge->select(f:FlowEdge|f.

source=n)->forAll(b:FlowEdge|b.
oclIsTypeOf(BasicFlowEdge)))and(self
.flowedge->select(f:FlowEdge|f.
target=n)->forAll (b:FlowEdge|b.
oclIsTypeOf(BasicFlowEdge)))

15 else
16 if(n.oclIsKindOf(FlowStep)) then
17 self.flowedge->select(f:FlowEdge|(f.

source=n) and (f.oclIsTypeOf(
BasicFlowEdge)))-> size() = 1

18 else true
19 endif

20 endif
21 endif
22 endif
23 else ((self.flowedge->selectByType(

BasicFlowEdge)->select(b:BasicFlowEdge|b.
source=n))->size()=0) and if(n.
oclIsTypeOf(FinalNode))then

24 true else self.flowedge ->selectByType (
AlternateFlowEdge) ->exists (f:
AlternateFlowEdge|f.label=self.
flowedge->selectByType(
AlternateFlowEdge)->select(a:
AlternateFlowEdge|a.target=n)->first()
.label)endif)

25 endif
26 endif)

Rule 11. The number property of each FlowStep in a
Basic flow is unique:

1 self.uslnode->selectByKind(FlowStep)->select(
n:FlowStep|self.flowedge->selectByType(
BasicFlowEdge)->exists(t:BasicFlowEdge|(t
.source=n)or(t.target=n)))->forAll(n1:
FlowStep, n2:FlowStep|n1.number=n2.number
implies n1=n2).

Rule 12. The number property of each FlowStep in an
Alternate flow is unique:

1 self.uslnode->selectByKind(FlowStep)->select
(n:FlowStep|self.flowedge->selectByType(
AlternateFlowEdge)->exists(t:
AlternateFlowEdge|(t.source=n)or(t.target
=n)))->forAll(n1:FlowStep,n2:FlowStep|(n1
.number=n2.number)and(self.flowedge->
selectByType(AlternateFlowEdge)->select(
t1:AlternateFlowEdge|t1.target=n1)->first
().label=self.flowedge->selectByType(
AlternateFlowEdge)->select(t2:
AlternateFlowEdge|t2.target=n2)->first().
label) implies n1=n2).

Example 4.1.5. Let us focus on the USL model as shown
in Fig. 4:

– If we remove c0 from or add a new InitialNode
to this model then it will violate Rule 1.

– If we remove both c7, c8 from the model then it will
violate Rule 2.

– If the model only has ControlNodes then it will
violate Rule 3.

– If FlowEdge b1 is not a BasicFlowEdge but an
AlternateFlowEdge then the model will violate
Rule 4.

– If we connect b17 to c8 and remove c7 then the model
will violate Rule 5.

– If we add an AlternateFlowEdge to connect s4
to c6 then the model will violate Rules 6 and 9.

– If we remove b14, s11, b16, p3 then the model will
violate Rules 7 and 8.
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– If either FlowEdge b6 is not a BasicFlowEdge
but an AlternateFlowEdge or the value of the
label property of AlternateFlowEdge al_1 is
not “4a” then the model will violate Rule 10.

– If the value of the number property of s2 is not 2 but
1 then the model will violate Rule 11.

– If the value of the number property of s14 is not 2
but 1 then the model will violate Rule 12.

4.2 The USL concrete syntax
In order to help the user to easily create USL models, we
propose a concrete syntax for USL with the graphical no-
tations as shown in Table 3. We have implemented this
syntax in a visual editor for USL modelling. A detailed
explanation of this tool will be presented in Sect. 6.

4.3 Formal semantics of USL
We formally define a USL model as follows. Here, we
consider a USL model as a graph consisting of nodes and
edges. A node represents either a step or a control action
performed by the system. Further, we will take into account
the fact that the underlying use case references the domain
concepts captured in a UML class diagram.
Definition 1. A USL Model of a use case is the tuple
D = 〈DC , A,E,C〉 such that:

– DC is a class diagram to represent the underlying do-
main;

– A is the set of USLNodes;

– E is the set of FlowEdges;

– C = G∪CpreUC ∪CpostUC ∪CpreA ∪CpostA is the
set of Constraints,

where:

– A = AcNode ∪Af ;

– AcNode = NI ∪NF ∪Nd ∪Nj ∪Nf , where
NI = {a | a ∈ A, InitialNode(a)}
NF = {a | a ∈ A,FinalNode(a)},
Nd = {a | a ∈ A,DecisionNode(a)},
Nj = {a | a ∈ A, JoinNode(a)}, Nf = {a | a ∈
A,ForkNode(a)};

– |NI | = 1; |NF | ≥ 1;

– Af = Aa ∪As, where
Af = {a | a ∈ A,FlowStep(a)}, Aa = {a | a ∈
A,ActorStep(a)},
As = {a | a ∈ A,SystemStep(a)};

– |As| ≥ 1; ∀s ∈ Af .|actions(s)| ≥ 1;

– E = Eb ∪ Ea and Eb ∩ Ea = ∅, where
Eb = {e | e ∈ E,BasicFlowEdge(e)},
Ea = {e | e ∈ E,AlternateFlowEdge(e)}.

Table 3: The graphical notations of USL

Concepts Presentation Notation

DescriptionInfor A borderless text box that properties
are listed in the text box

InitialNode An unfilled circle

FinalNode A circle with a crosshairs symbol

DecisionNode
A filled diamond with one in-coming
arrowed line and at least two
out-going arrowed lines

ForkNode
A solid line segment with one
in-coming arrowed line and at least
two out-going arrowed lines

JoinNode
A solid line segment with at least two
in-coming arrowed lines and one
out-going arrowed line

BasicEdge A thick arrowed line

AlternateEdge A labelled, thin arrowed line (the label
is the name of the flow)

ActorStep

A labeled, 2-part rectangle. The first
part contains the label <Actor> and
two properties numberStep and
description of the ActorStep.
The second part contains the
ActorActions of the ActorStep

SystemStep

A labelled, 2-part rectangle. The first
part contains the label <System> and
two properties numberStep and
description of the
SystemStep. The second part
contains the SystemActions of the
SystemStep

Action
Information of a Action are
presented by textual form in the
second part of FlowSteps

Example 4.1.5. The USL model as shown in
Fig. 4 contains the following elements: NI = {c0};
NF = {c7, c8}; AcNode = {c0, . . . , c8};
Aa = {s1, s3, s5, s7, s13}; As = {s2, s4, s6, s8,
. . . , s12, s14, s15, s16}; Eb = {b1, . . . , b17};
Ea = {al_1, . . . , al_10}; G = {g1, . . . , g6}; CpreUC = ∅;
CpostUC = ∅; CpreA = ∅; and CpostA = {p1, . . . , p6}. DC

corresponds to the conceptual model shown in the part (b)
of Fig. 1. There are sixteen constraints for guard conditions
and pre- and postconditions, e.g., the postcondition p1 of
Action a11 is expressed by the following OCL contraint:
BookLoan.allInstances()->exists(b:BookLoan|

(b.bcid = bcid) and (b.bid = bid) and

(b.payed=0)).

We use LTS [20] to formally define the operational se-
mantics of USL. Conceptually, the execution of a USL
model is modelled by an LTS, whose transitions are caused
by the execution of use case actions, and whose states are
defined by variable assignments during the execution. We
define the LTS of a USL model recursively from the basic
USL concepts. The semantics of these concepts are defined
as summarized in Table 4. Definition 2 formalizes the no-
tion of the LTS of the USL model.

Definition 2. Given a USL model D = 〈DC , A,E,C〉,
an LTS that results from the execution of D is the tuple
〈Σ(V),P(G ×A× P), T , αinit,F〉 such that:
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Table 4: LTS-based semantics of the basic USL concepts

USL
concepts

Notation LTS-based semantics

Step a1 ... an
α α1 ... αn

g1|a1|r1 gn|an|rn
where gi = preA(ai), ri = postA(ai) (∀i = 2, . . . , n).

Flow
edge

n1 n2
α α1 α2

g1|a1|r1 g2|a2|r2
where a2 = firstAct(n2), g2 = guardE(n1, n2) ∧ preA(a2)
r2 = postA(a2).

Decision
node

c

nd

n1

...

nm

α αd αc α′

gd|ad|rd gc|c|true ga|a|ra
where ad = lastAct(nd); gc = guardE(nd, c), a =
firstAct(n),
ga = guardE(c, n) ∧ preA(a) s.t n ∈ {n1, . . . , nm}.

Fork node nf

n1

...

nmc

α αf αc

α′1

...

α′m

gf |af |rf gc|c|true
g1|a1|r1

gm|am|rm

where af = lastAct(nf ); gc = guardE(nf , c), ai =
firstAct(ni),
gi = preA(ai), ri = postA(ai) (∀i = 1, . . . ,m).

Join node

n1

...

nm

nj

c

α1

...

αm

αc αj α

g1|a1|r1

gm|am|rm

gw|c|true gj |aj |rj where ai = lastAct(ni), (∀i = 1, . . . ,m);
gw =(∧

(e∈D.E,target(e)=c)isCompleted(e)∧guardE(e)
)

;

aj = firstAct(nj),
gj = guardE(c, nj) ∧ preA(aj),
rj = postA(aj).

Initial
node

c n
α αi α′

ru|c|true g|a|r
where α = αinit, ru = preC(D);
a = firstAct(n), g = guardE(c, n) ∧ preA(a), r = postA(a).

Flow final
node

n c
α αf α′

g|a|r gc|c|rf
where α′ ∈ F , rf = postC(D, c), gc = guardE(n, c); a =
lastAct(n),

USL
model
with

include
action

n1 n n2

DI

≡
n1

nI1 ... nIm

n2
where n ∈ As, |actions(n)| = 1,
SystemInclude(a) (a ∈ actions(n)), t =
(α, (ga|a|ra), α′);
nI1 , . . . , nIm ∈ DI .A, ga = guardE(n1, n) ∧
preA(a) ∧ preC(DI),
ra = postC(DI)

USL
model
with

extend
action

n1 n n2

DX

≡
n1

nX1 ... nXm

n2 where n ∈ As, |actions(n)| = 1,
SystemExtend(a) (a ∈ actions(n)), t =
(α, (ga|a|ra), α′);
nX1

, . . . , nXm ∈ DX .A, ga = preA(a) ∧
preC(DX),
ga = guardE(n1, n) ∧ preA(a) ∧ preC(DX),
ra = postC(DX)

Legend
a

a action in a step;
s

a step;
Du

use case;
α

a state

– V is a finite set of variables whose types include the
basic types and the classes of the DC ;

– Σ(V) is the set of states (α), each of which is a set of
value assignments to a subset of variables in V;

– P ⊆ CpostA ∪CpostUC is the set of constraints as the
postconditions of D;

– A = AcNode ∪Aact is the set of actions;

– G ⊆ G∪CpreUC∪CpreA is the set of guard conditions
of the transitions;

– T ⊆ Σ(V) × P(G × A × P) × Σ(V) is the tran-
sition relation defined as follows: A transition t =

(α, (g, a, d), α′) ∈ T , written as α
g|a|r−→ α′, where

a ∈ A is the action that causes t, g = defGuard(a) ∈
G is the guard condition to execute a, r ∈ P is the
postcondition of a, and α, α′ ∈ Σ(V) are the pre- and
post-states of t (resp.) such that α′ satisfies r;

– αinit ∈ Σ(V) is the initial state;

– F ⊂ Σ(V) is the set of final states,

where:

– Aact =
⋃
s∈Af actions(s);

– defGuard is defined as follows (summarized from Ta-
ble 4).
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preC(D), ifInitialNode(a)

guardE(e)(e ∈ D.E, target(e) = a), ifDecisionNode(a)

∨ ForkNode(a) ∨ FinalNode(a)∧
(e∈D.E,target(e)=a) isCompleted(e) ∧ guardE(e),

if JoinNode(a)

preC(DI) ∧ preA(a) ∧ guardE(e)(e ∈ D.E, target(e) = a),

if SystemInclude(a)

preC(DX) ∧ preA(a) ∧ guardE(e)(e ∈ D.E, target(e) = a),

if SystemExtend(a)

preA(a) ∧ guardE(e)(s ∈ Af , target(e) = s),

if((a ∈ Aact) ∧ (a = firstAct(s))

preA(a)(s ∈ Af , a ∈ actions(s)), ifotherwise

Figure 5: A snapshot of the Lend Book use case.

Example 4.3.1. We assume that the snapshot shown
in Fig. 5 is captured when the USL model as shown
in Fig. 4 is executed at Step a8. We have the follow-
ing value assignments: (bcid, “001”) ≡ bcid = “001”,
(lid, “110”) ≡ lId = “100”, (ldate, “25/8/17”) ≡ ldate =

“25/8/17”, (bid, “1234”) ≡ bcid = “1234”. The objects of the
snapshot are as follow: BookCopy:“001”, BookCopy:“002”,
Borrower:“123”, Borrower:“124”, Librarian:“100”,
Librarian:“111”, BookLoan:“1”. Then, we have
αa8 = {(bcid, “001”), (ldate, “001”), (lid, “110”),
(bid, “124”), (bLoan, (“2”, “001”, “124”, “110”, “25/8/17”, 0)),
BookCopy:“001”, BookCopy:“002”, Borrower:“123”,
Borrower:“124”, Librarian:“100”, Librarian:“111”,
BookLoan:“1”}.

Certain use case actions are concurrent actions, whose
executions cause concurrent transitions between
states. The next two definitions define precisely what this
means.
Definition 3. Given a current state α of an LTS L of a USL
model D and a transition t = α

g|a|r−→ α′ ∈ L.T , we define
the following terms:

– preT(t) = α, postT(t) = α′, guard(t) = g,
postC(t) = r, and act(t) = a.

– eval(g) is the evaluation of Constraint g.

– reachable(α) = {t | preT(t) = α} is the set of
transitions that start from α.

– firable(α) = {t ∈ reachable(α),
eval(guard(t)) = true} is the set of transitions that
can be fired from α.

Example 4.3.2. When the USL model as shown in Fig. 4
executes at action a11, we have αa11 = {(bcid, “001”),
(lDate, “001”), (lid, “110”), (bid, “124”), (bLoan, (“2”,
“001”, “124”, “110”, “25/8/17”,0)), BookCopy:“001”,
BookCopy:“002”,Borrower:“123”, Borrower:“124”,

Librarian:“100”, Librarian:“111”, BookLoan:“1”,
BookLoan:“2”}.

Transition ta11,c4 = αa11
true|c4|true−→ αc4.

reachable(αa11) = {ta11,c4} and firable(αa11)=
{ta11,c4}.
Definition 4. Given a current state α of an LTS L of a USL
model D, a concurrent transition τ ∈ L.T is a
set of transitions t1, t2, . . . , tn ∈ firable(α).
Example 4.3.3. When the USL model as shown
in Fig. 4 executes at Step c4, we have two transi-

tions tc4,a12 = αc4
true|a12|p2−→ αa12 and tc4,a13 =

αc4
true|a13|p3−→ αa13, reachable(αc4) = {tc4,a12, tc4,a13}

and firable(αc4) = {tc4,a12, tc4,a13}. Hence, {tc4,12,
tc4,13} is a concurrent transition and αa12, αa13 satisfy p2,
p3, respectively.

Within our approach the LTS of a USL model may con-
tain both concurrent and non-concurrent transitions. We
next define the semantics of a use case scenario.
Definition 5. Given a use case scenario of a USL
model D that consists of the following sequence of actions
(a0, . . . , an−1). The execution of this scenario is realized

as a path in the LTS L of D: p = α0
t0→ α1

t1→ · · · tn−1→ αn,

where ti = αi
gi|ai|ri−→ αi+1 (∀i = 0, . . ., n − 1), α0 =

L.αinit, αn ∈ L.F , and ti ∈ L.T .
Example 4.3.4. When the USL model as shown in Fig.4
executes at Step αa11 as mentioned above and eval(g1),
eval(g3), and eval(g5) are true, then the use case sce-
nario is as follows:
p = αinit

true|a1|true−→ αa1
true|a2|true−→ αa2

true|a3|true−→
αa3

true|a4|true−→ αa4
true|a5|true−→ αa5

true|a6|true−→
αa6

true|c1|true−→ αc1
g1|a7|true−→ αa7

true|a8|true−→
αa8

true|c2|true−→ αc2
g3|a9|true−→ αa9

true|a10|true−→
αa10

g5|a11|true−→ αa11
true|c4|true−→ αc4

{true|a12|p2,true|a13|p3}−→
αa12−a13

true|c5|true−→ αc5
true|c7|true−→ αc7 (αc7 ∈ F ).

5 Transforming USL models to
other software artifacts

This section explains how USL models can be transformed
to software artifacts including test cases, structural and be-
havioral models, and textual template-based use case de-
scriptions (TUCDs). We particularly focus on the last
transformation (to obtain TUCDs) and show how the trans-
formation could be realized.

5.1 Generating test cases
A test scenario is used to create a set of test cases [27]. A
test case results from combining a test scenario with some
test data. According to the use case-driven testing approach
[27], a use case scenario identifies one test scenario (a use
case description consists of one or more use case scenar-
ios). The constraints of a use case scenario help identifying
the test data of the corresponding test scenario.
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The model-based testing (MBT) method [28] presents a
specific technique for automatically generating test cases
from a use case model. Specifically, the control flows of
a use case model are used to generate the use case scenar-
ios. For example, Linzhang [29] first presents a technique
to represent the control flows using UML activity diagram.
He then proposes an algorithm to traverse all the possible
basic paths of the activity diagram to generate the test sce-
narios.

Two other works [30, 31] focus on the problem of auto-
matically generating test data from the test scenario con-
straints, written in OCL. They develop OCL constraint
solvers for this task.

Since our USL captures the necessary information ele-
ments of the use case description, we argue that USL mod-
els can also be used as an input to generate test cases. More
specifically, USL has meta-concepts for representing the
different control nodes of the UML activity diagram. Fur-
ther, the Constraint meta-concept of USL captures the
different types of constraints that are needed to generate
test data.

5.2 Generating structural and behavioural
models

In the requirement analysis activity, the behaviours de-
scribed in a use case description are analysed in order to
create other structural and behavioural models. The target
models are often represented using UML diagrams, includ-
ing activity diagram, class diagram, collaboration diagram,
and sequence diagram.

D. Savić et al. [16] and M. Smialek et al. [17] propose
a specific method for the above. In particular, they first
use different types of actions to precisely model the use
case behaviours. They then present a model transformation
technique that automatically transforms the behaviours and
other relevant model elements into a class diagram. Ex-
amples of these elements that are discussed in [28] include
sender and receiver objects, messages, and parameters.

Our USL specification was inspired by this work.
Specifically, we use Action meta-concept to represent
use case behaviours and the relevant model elements dis-
cussed above. Regarding to behavioural modelling, a USL
model can be used as input to generate activity and se-
quence diagrams. The reason is because USL represents
all the control nodes of UML activity diagram. For exam-
ple, a specific technique for generating sequence diagram
is presented in [12].

5.3 Generating TUCDs
According to [32, 33, 34], textual template-based use case
descriptions (TUCDs) [1, 22, 8] enable the customer to
positively participate in requirement analysis, to identify
and resolve conflicts in the requirement drafts, and to en-
sure that it is consistent with their intention. Table 1 shown
earlier is an example of such a template.

In order to automatically generate a TUCD from a USL
model, we develop a transformation USL2TUCD using
the model-to-text transformation language Acceleo [18].
The transformation USL2TUCD is shown in Listing 1.
We illustrate this transformation using the USL model of
the use case named Withdrawal (shown in Fig. 9). The
output TUCD is a text file named Withdrawal.txt that
is shown in Fig. 10.

Briefly, the USL2TUCD transformation uses five
queries to extract information from the input USL model
(uc). The first query is getBasicFlow(uc) at line
19. It is used is to find all the BasicFlowSteps in uc.
The second query is getDecisionNode (uc) at line
25. It is used to get all the DecisionNodes in uc. The
third query is getPreAlternateFlowLabel(uc,d)
at line 27. It is used to get the label of the in-coming
AlternateFlowEdge of some DecisionNode d in
uc. It returns empty if no such AlternateFlowEdges
exist. The fourth query is getAFEdges(uc,d) at
lines 29 and 37. This query is used to get the out-going
AlternateFlowEdges from a DecisionNode d in
uc. The fifth query is getAlternateFlow(uc, l) at
lines 30 and 39. This query is used to find the FlowSteps
in the AlternateFlow in uc that is labeled l.

The definitions of all five queries are written in another
transformation named libraryUCD. The transformation
is shown in Listing 2.

Listing 1: The USL2TUCD transformation

1 [module GenUCDescription(’http://eclipse
.USLModel/USL’)]

2 [import org::eclipse::acceleo::module::
sample::service::libraryUCD]

3 [template public generateElement(uc:
UseCase)]

4 [comment @main/]
5 [file (uc.descriptioninfor->r at(0).

useCaseName.concat(’.txt’), false, ’
UTF-8’)]

6 [let d:DescriptionInfor =uc.
descriptioninfor-> at(0)]

7 ----------------------------------
8 UC name: [d.useCaseName/]
9 Description: [d.description /]

10 Actor: [for(a:String|d.actor)] a, [/for]

11 Level abstract: [d.levelAbstract /]
12 Precondition: [d.preCondition /]
13 Postcondition: [d.postCondition /]
14 SpecialRequirement: [d.

specialRequirement/]
15 [/let]
16 ----------------------------------
17 BasicFlow
18 ----------------------------------
19 [let Bsteps:OrderedSet(FlowStep)=

getBasicFlow(uc)]
20 [for(s:FlowStep|Bsteps)]
21 [s.number/]. [s.description/]
22 [/for] [/let]
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23 ----------------------------------
24 AlternateFlow
25 [let dList:OrderedSet(DecisionNode)=

getDecisionNode(uc)]
26 [for(d:DecisionNode|dList)]
27 [let preALabel:String=

getPreAlternatFlowLabel(uc, d)]
28 [if(preALabel=’’)]
29 [for(af:AlternateFlowEdge|getAFEdges(

uc, d))]
30 [let Asteps:OrderedSet(FlowStep)=

getAlternateFlow(uc, af.label)]
31 [af.label/]. [af.description]
32 [for(s:FlowStep|Asteps)]
33 [s.number/]. [s.description/]
34 [/for] [/let]
35 [/for]
36 [else]
37 [for(af:AlternateFlowEdge|getAFEdges(

uc, d))]
38 [if(af.label <>preALabel)]
39 [let Asteps:OrderedSet(FlowStep)=

getAlternateFlow(uc, af.label)]
40 [af.label/]. [af.description/]
41 [for(s:FlowStep|Asteps)]
42 [s.number/]. [s.description/]
43 [/for] [/let]
44 [/if]
45 [/for]
46 [/if] [/let]
47 [/for] [/let]
48 ----------------------------------
49 [/file]
50 [/template]

Listing 2: The libraryUCD transformation

1 [comment encoding = UTF-8 /]
2 [module libraryUCD(’http://eclipse.

USLModel/USL’)]
3 [query public getBasicFlow(uc:UseCase):

OrderedSet(FlowStep)=uc.uslnode->
select (n:USLNode|uc.flowedge->
selectByType (BasicFlowEdge)->exists(
b:BasicFlowEdge|(n=b.source) or (n=b.
target)))->selectByKind(FlowStep)/]

4

5 [query public getAlternateFlow(uc:
UseCase,l:String): OrderedSet(
FlowStep)=uc.uslnode->select(n:
USLNode|uc.flowedge->selectByType(
AlternateFlowEdge)->select(a:
AlternateFlowEdge|a.label=l)->exists(
f:AlternateFlowEdge|(f.target=n)or(f.
source=n)))->selectByKind(FlowStep)/]

6

7 [query public getAFEdges(uc:UseCase, d:
DecisionNode): OrderedSet(
AlternateFlowEdge) =uc.flowedge->
select(f:FlowEdge|(f.source=d)and(f.
oclIsTypeOf(AlternateFlowEdge)))->
selectByType (AlternateFlowEdge) /]

8

9 [query public getDecisionNode(uc:UseCase
): OrderedSet(DecisionNode)=uc.
uslnode->selectByType(DecisionNode)
/]

10

11 [query public getPreAlternatFlowLabel (
uc:UseCase,d:DecisionNode):String=

12 if uc.flowedge->selectByType(
AlternateFlowEdge)->select(f:
AlternateFlowEdge| f.target=d)->size
()>0 then

13 uc.flowedge->selectByType(
AlternateFlowEdge)->select(f:
AlternateFlowEdge| f.target=d)->at
(0).label

14 else
15 ’’
16 endif /]

6 Tool support and evaluation
In this section, we first describe a USL tool that we have
developed for visually creating USL models. After that, we
explain two case studies for USL. We conclude this section
with an evaluation of USL.

6.1 Tool support

We developed a support tool for our approach as illustrated
in Fig. 6. This USL tool provides three main functions. The
first function (displayed on the left of the figure) is called
the “Loading function”. It is responsible for loading the
use cases and domain concepts of a system from a UML
use case diagram and a class diagram. The second function
(shown on the right of the figure) is called “USL Editor”. It
is used to create the USL models for the loaded use cases.
This editor has a user-friendly GUI. The third function is
called “Generating Artifacts”. It automatically generates
other software artifacts.

In our tool, the “Loading function” was developed using
a Java project. The “USL Editor” was implemented using
an EMF project and an GMF project within the Eclipse tool
[26]. Specifically, the EMF project is to build the abstract
syntax of USL and the GMF project is to build the concrete
syntax and to implement the OCL constraint rules on the
metamodel. The “Generating artifacts” function was writ-
ten using model transformation languages, such as M2T
and M2M [18]. To illustrate, Fig. 8 shows a USL model
for the use case Session, that is created by the “USL Edi-
tor”. Figure 10 shows a TUCD text file that is automatically
generated by a transformation that was specified earlier in
Listings 1 and 2. This transformation was written in the
Acceleo M2T language.

Note that when working with a generation relationship
between use cases, the modeler needs to create USL models
only for the specific use cases rather than for the abstract
ones.
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Figure 6: The USL tool.

6.2 Case study
In order to demonstrate the applicability of our method, we
chose another system case study named ATM, which is de-
scribed in Bjork [35]. The system includes three actors,
seven specific use cases, one abstract use case, and two
use case relationships. Figure 7 shows the use cases of the
ATM system. Figure 8 and Fig. 9 show two USL models
corresponding to these two use cases: Session and With-
drawal. Figure 10 and Fig. 11 show two TUCD text files
that are generated from these two USL models, by apply-
ing the function “Generating Artifact”. These files are the
use case descriptions of the two corresponding use cases.

Figure 7: The use case diagram of the ATM system.

6.3 Language evaluation
This section presents our evaluation of USL’s expressive-
ness, compared to five languages: RUCM [3], UC-B [10],
MBD-L1 [4], SiLabReq [16] and RSL [17]. We use the
following four sub-criteria of expressiveness:

C1. Template-based representation of use case descrip-
tions

C2. Control flow-based representation of use case be-
haviour

1‘MBD’ stands for the author’s names, ‘L’ for language.

C3. Action specification
C4. Use case constraint representation

Table 5 lists the evaluation results for the above criteria.
In the table, we use three letters ‘F’, ‘I’, ‘N’ to denote the
specification method that is used for each language: ‘F’
denotes formal specification method, ‘I’ denotes informal
specification method and ‘N’ denotes that the specification
method is not discussed.

Table 5: Expressiveness comparison between use case
specification languages
Use case
information

RUCM
[3]

UC-B
[10]

MBD-L
[4]

SelabReq
[16]

RSL
[17] USL

(c1) Overview
elements I N F N N F

(c1) Flows of use
case I I F N N F

(c1) Use case
scenarios N N N F F N

(c2) Control flows I N F N F F
(c2) Concurrent
actions N N N N N F

(c3) Action types I N F F F F
(c4) Use case
scenario’s pre-
and postcondition

I F F N I F

(c4) Guard
conditions I F F N I F

(c4) Action’s pre-
and postcondition N F N N N F

We will discuss in detail the results shown in the table in
the first five subsections that follow. In the last subsection,
we discuss the possibility of applying USL in practice.

6.3.1 Template-based representation of use case
descriptions

As discussed in Sect. 4, USL enables us to cap-
ture all the information elements of the use case de-
scription template shown in Table 1. In particu-
lar, the elements of overview information are described
by the properties of the DescriptionInfo object
in the model. The steps in a basic flow are rep-
resented by FlowSteps (including ActorStep and
SystemStep) and are connected by BasicFlowEdges
and ControlNodes. Similarly, steps in an alter-
nate flow are represented by FlowSteps (including
ActorStep and SystemStep) and are connected by
ControlNodes and AlternateFlowEdges. USL
represents this template precisely using the corresponding
USL meta-concepts. Briefly, we draw the following con-
clusions from Table 5:

– USL is more expressive and more precise than three
other languages, namely UC-B, SilabReq, and RSL.

– USL is more precise than RUCM.

– USL is as expressive and precise as MBD-L.

Specifically, our USL is more expressive than UC-B,
SilabReq, and RSL because of the following reasons. First,
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Figure 8: Modelling use case Session in the USL Editor tool.

the use case information elements that are captured in USL
are more formal than what are represented in UC-B. UC-
B provides a GUI for informally describing use case sce-
narios. Second, UC-B only represents the steps of a use
case scenario and the trigger of a use case. SilabReq and
RSL only capture flows corresponding to use case scenar-
ios. With USL, we can express more use case information,
such as the pre- and postcondition of an action.

On the other hand, USL captures information elements
as expressively as RUCM. The RUCM method proposes a
Restricted Use Case Modeling (RUCM) language, using a
set of keywords and restricted description rules. Specifica-
tions in USL are more formal than those in RUCM, because
RUCM’s specifications are expressed in natural language.

In comparison with MBD-L, USL lacks concepts for
specifying sub-flows. However, as discussed in Sect. 2, use
cases containing sub-flows can be smoothed so that they are
suitable for modelling in USL. On the other hand, MBD-L
is only specified with the abstract syntax. Unlike USL, it
does not contain a concrete syntax and a formal semantic.

6.3.2 Control flow representation for use case
behaviour

Our USL language is built on UML activity diagram. A
USL model includes USLNodes (corresponding to Nodes
in UML activity diagram) and FlowEdges (correspond-
ing to Edges in UML activity diagram) to specify con-
trol flows which pass through steps in the use case’s flows.
USL captures the different control flow types of UML ac-
tivity diagram (such as sequence, branch, loop, and con-
currence flow). In addition, USL also specifies steps with a
limited number of iterations. For example, in the use case
Session in SubSect. 6.2, Step 4 executes a maximum of
three times. Briefly, we draw the following conclusions
from Table 5:

– USL can represent concurrent steps, while the other lan-
guages do not.

– USL directly represents control flows using USLNodes
and FlowEdges, while the other languages do not
model the flows directly.
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Figure 9: Modelling use case withdrawal in the USL Editor tool.

Figure 10: The TUCD generated from the use case With-
drawal.

In comparison with all other works [10, 3, 4, 16, 17], our
method can additionally specify concurrent steps. More-

over, these works do not directly specify control flows.
They only capture rejoin points or refer to other steps.

6.3.3 Action specification

As discussed in Sect. 4, USL precisely specifies use case
behaviors using nine action types. These action types are
represented by meta-concepts in the USL metamodel. The
action type of each behavior enables us to identify sender
objects, receiver objects, messages, parameters of actions
and object types. Briefly, we draw the following conclu-
sions from Table 5:

– Action type coverage:

– USL represents all the action types that are supported
in other languages.

– USL complements several action types, compared
to four related languages, MBD-L, SiLabReq, RSL,
and RUCM. USL employs two new action types
IncludeAction and ExtendAction to repre-
sent use case relationships.



340 Informatica 42 (2018) 325–343 C.T.M. Hue et al.

Figure 11: The TUCD generated from the use case Session.

– Precise specification:

– USL uses the USL meta-concepts to represent actions.

– The actions in USL are precisely specified using pre-
and postconditions. Some languages, e.g., MBD-L,
SiLabReq, and RSL also support this feature. Others,
namely UC-B and RUCM, do not support it.

We use more action types to classify behaviors and we
capture the behavior’s information more precisely. More
specifically, by using different concepts in USL to spec-
ify action types our approach captures behaviors more for-
mally than UC-B. In UC-B, behaviors are not precisely
specified and are divided into different action types. Simi-
larly, behaviors are better captured in USL than in RUCM,
because the latter only uses keywords and restricted rules
in natural language to divide behaviors into action types.
Moreover, RUCM does not support the action type named
SystemDisplay, that is captured in USL.

In comparison with MBD-L, SiLabReq, and RSL, ac-
tions in USL are better classified with nine action types.
MBD-L uses only four categories of action types: Re-
quest, DataValidate, Expletive and Response. Similarly,
SeLabReq divides actions into four groups: Actor pre-
pares Data (APDExecuteSO), Actor calls System (ACSExe-
cuteSO), System executes SystemOperation (SExecuteSO),
and System replies and returns Result (SRExecutionSO).
The classification method of RSL is less specific than
USL’s, because it does not support the type of system ac-
tion that sends a request to a primary actor. This system
action type is specified in USL by SystemRequest.

6.3.4 Constraint representation

USL employs OCL to define constraints in use case.
Specifically, a use case’s precondition is specified by
a Constraint associated with the InitialNode.
A use case scenario’s postcondition is specified by a
Constraint associated with a FinalNode of scenario.
Similarly, guard conditions on flows and actions’ pre- and
postconditions are captured by Constraint associated
with FlowEdges and actions, respectively. Briefly, we
draw the following conclusions from Table 5:

– USL supports a more complete set of constraints
than four other languages, namely RUCM, MBD-L,
SiLabReq, and RSL.

– Constraint representation in USL (using OCL) is more
precise than two other languages, RUCM and RSL (these
languages use natural language to write constraints).

USL specifies more constraint types than four other lan-
guage: RUCM, MBD-L, SiLabReq, and RSL. Unlike USL,
these languages do not support actions’ pre- and postcon-
dition. Moreover, USL is better than RUCM and RSL
in terms of precision, because several languages, such as
MBD-L, SiLabReq, and RSL, also support this feature.
The other languages, UC-B and RUCM, do not support it.

It is worth mentioning that constraints specified in USL
are quite similar to constraints in UC-B. In the latter, con-
straints are specified using Event-B’s mathematical lan-
guage. However, this language is rather inconvenient and
difficult for non-technical stakeholders to understand.

6.3.5 Applying USL in practice

It is possible to apply USL in practice for two main reasons.
First, as discussed in Sect. 5, use cases are precisely spec-
ified and represented in USL as models, which conform
to a metamodel. This enables them to be automatically
transformed into other software artifacts, such as textual
use case descriptions, structural and behavioral models and
test cases. These generated models are necessary artifacts
in software development.

Second, the USL tool realizes our USL approach as an
Eclipse modeling project (DSL toolkit) [26]. This tool en-
ables the modeler to visually create USL models and to in-
tegrate these models into the existing UML use case models
and class model (the latter captures the domain concepts of
a system). Moreover, our DSL toolkit provides the meta-
metamodel language MOF to build USL. It also enables
the definition of model transformation languages in order
to realize the transformations discussed in Sect. 5.

However, USL is not without limitations. The graphical
concrete syntax of the language might be inconvenient for
modelers who prefer writing use cases in the textual form.
In order to accommodate for this, the USL tool would be
extended with a textual editor, similar to one used in the
RSL approach [17]. This textual editor would enable a
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modeler to specify use cases by entering descriptive sen-
tences about actions in steps, constraints, and relations be-
tween steps. The tool would then process these to create
the corresponding USL model.

7 Related work

We position our work in the intersection between use
case-driven development [1] and model-driven develop-
ment [18]. Within this context, a use case model is usually
represented as a combination of a UML use case diagram
and a textual description written in natural language. Such
a use case specification tends to be ambiguous, unclear, and
inconsistent. In order to precisely specify use cases several
approaches as in [10], [4], [16], [17], [3] have been pro-
posed.

T. Yue et al. [3] proposed a use case modeling language
called Restricted Use Case Modeling (RUCM), which is
composed of a use case description template, a set of key-
word, and a set of well-defined restrictions for a restricted
natural language to specify use cases. However, the RUCM
is semi-formal textual language and it does not mention
some important information such as concurrent actions,
the pre- and postcondition of actions. Hence, in other
work that use RUCM to express use case specifications
to automatically generate other artifacts, they have to use
NLP(Natural Language Processing) technique to extract in-
formation. For example, C. Wang et al. [30] uses use case
specifications expressed in RUCM in order to generate test
cases. After use NLP technique to extract test scenarios and
constraints described in natural language, they use OCL to
precisely specify constraints and use these precise specifi-
cations to automatically generate test data.

R. Murali et al. [10] proposed using a mathematical lan-
guage w.r.t. Event-B in order to formalize the pre- and
postcondition of triggers and actions within use case flows.
However, other descriptions of a use case are still infor-
mal. Their proposition only focus automatically generates
a corresponding Event-B model that is then amenable to the
Rodin verification tools that enable system-level properties
to be verified.

M. Misbhauddin et al. [4] extended the metamodel of
UML use case models in order to capture both the structural
and behavioural aspects of use cases. To specify a use case,
they developed a prototype tool called UCDest. However,
concurrent actions, pre- and postcondition of actions have
not been mentioned. Moreover, action types are defined
inadequately.

D. Savić et al. [16] and M. Smialek et al. [17] proposed
the DSLs named SilabReq and RSL in order to capture
use cases as the functional requirements models. The DSLs
only focus on flows describing use case scenarios while
other description information of use case is omitted. In ad-
dition, the RSL does not define distinguish actions insert-
ing an extending use case and an included use case, both
are defined <invoke> action. Furthermore, the DSLs do

not mention concurrent actions, pre and postcondition of
actions.

In comparison with all the work above, We provide for
USL a formal semantic which use LTS to express , while
other works lack a formal semantics.

Our previous work in [36, 9] proposed a metamodel to
specify use cases. In that work we also tried to define a pre-
cise semantics for use cases based on graph transformation.
Our work here continues it by enhancing the use case meta-
model as well as proposing a new LTS-based technique in
order to characterize the operational semantics of use case.

Furthermore, all above mentioned approaches still lack
a method specifying use cases satisfying all relevant infor-
mation of use cases including flows, steps, system actions,
actor actions, control flows, relationships, and constraints
on the use case and its flows.

The USL language, introduced in this work, aims to
cover all relevant information of a use case including both
structural and behavioural aspect. Comparing to the cur-
rent works in literature, USL could obtain the following ad-
vantages: (1) to specify concurrent actions in flows; (2) to
capture and represent nine action types in which there are
the system action including another use case and the sys-
tem action extending another use case that have not been
mentioned in other research; (3) to present not only con-
straints on the use case and its flows but pre- and postcon-
dition of each action in flows; (4) to present control flows
of steps within the use case. In addition, in this paper we
also defined operational semantics of USL to specify dy-
namic information when use case scenarios execute. In that
way, from USL models we could obtain software artifacts
by transformations.

8 Conclusion

This paper proposed a DSL named USL to specify use
cases. A USL model can cover the relevant information
of a use case description including flows, steps, system ac-
tions, actor actions, relationships, control flows, and con-
straints. We built the abstract using a metamodel together
with wellformedness rules and the graphical concrete syn-
tax of USL. Moreover, we defined precise semantic for the
USL by mapping USL models to LTSs. We also developed
a USL Editor to create the USL models visually. In ad-
dition, we explained how USL models can be transformed
to some software artifacts and developed a model transfor-
mation program to automatically generate textual template-
based use case descriptions. Moreover, we evaluated USL’s
expressiveness.

In the future work, we will focus on realizing transfor-
mations from USL models in order to generate test cases as
well as other software artifacts automatically. In addition,
we will enrich the abstract syntax and enhance the concrete
syntax of USL in order to support better for modelers.
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