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Abstract

For an arbitrary q-polynomial f over Fqn we study the problem of finding those q-
polynomials g over Fqn for which the image sets of f(x)/x and g(x)/x coincide. For
n ≤ 5 we provide sufficient and necessary conditions and then apply our result to study
maximum scattered linear sets of PG(1, q5).

Keywords: Linearized polynomial, linear set, direction.

Math. Subj. Class.: 11T06, 51E20

∗The research was supported by the Italian National Group for Algebraic and Geometric Structures and their
Applications (GNSAGA - INdAM).
†The first author is supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sci-

ences. The first author acknowledges the support of OTKA Grant No. K 124950.
E-mail addresses: csajbokb@cs.elte.hu (Bence Csajbók), giuseppe.marino@unicampania.it,
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1 Introduction
Let Fqn denote the finite field of qn elements where q = ph for some prime p. For n > 1
and s | n the trace and norm over Fqs of elements of Fqn are defined as Trqn/qs(x) =

x+xq
s

+ · · ·+xq
n−s

and Nqn/qs(x) = x1+q
s+···+qn−s , respectively. When s = 1 then we

will simply write Tr(x) and N(x). Every function f : Fqn → Fqn can be given uniquely
as a polynomial with coefficients in Fqn and of degree at most qn − 1. The function f is
Fq-linear if and only if it is represented by a q-polynomial, that is,

f(x) =

n−1∑
i=0

aix
qi (1.1)

with coefficients in Fqn . Such polynomials are also called linearized. If f is given as in
(1.1), then its adjoint (w.r.t. the symmetric non-degenerate bilinear form defined by 〈x, y〉 =
Tr(xy)) is

f̂(x) :=

n−1∑
i=0

aq
n−i

i xq
n−i

,

i.e. Tr(xf(y)) = Tr(yf̂(x)) for any x, y ∈ Fqn .
The aim of this paper is to study what can be said about two q-polynomials f and g

over Fqn if they satisfy

Im

(
f(x)

x

)
= Im

(
g(x)

x

)
, (1.2)

where by Im(f(x)/x) we mean the image of the rational function f(x)/x, i.e. {f(x)/x :
x ∈ F∗qn}.

For a given q-polynomial f , the equality (1.2) clearly holds with g(x) = f(λx)/λ

for each λ ∈ F∗qn . It is less obvious that (1.2) holds also for g(x) = f̂(λx)/λ, cf. [2,
Lemma 2.6] and the first part of [8, Section 3], see also the proof of [18, Theorem 3.3.9].

When one of the functions in (1.2) is a monomial then the answer to the question
posed above follows from McConnel’s generalization [25, Theorem 1] of a result due to
Carlitz [7] (see also Bruen and Levinger [6]).

Theorem 1.1 ([25, Theorem 1]). Let p denote a prime, q = ph, and 1 < d a divisor of
q − 1. Also, let F : Fq → Fq be a function such that F (0) = 0 and F (1) = 1. Then

(F (x)− F (y))
q−1
d = (x− y)

q−1
d

for all x, y ∈ Fq if and only if F (x) = xp
j

for some 0 ≤ j < h and d | pj − 1.

Indeed, when the function F of Theorem 1.1 is Fq-linear, we easily get the following
corollary (see Section 2 for the proof, or [16, Corollary 1.4] for the case when q is an odd
prime).

Corollary 1.2. Let g(x) and f(x) = αxq
k

, q = ph, be q-polynomials over Fqn satisfying
Condition (1.2). Denote gcd(k, n) by t. Then g(x) = βxq

s

with gcd(s, n) = t for some β
with Nqn/qt(α) = Nqn/qt(β).

Another case for which we know a complete answer to our problem is when f(x) =
Tr(x).



B. Csajbók et al.: A Carlitz type result for linearized polynomials 587

Theorem 1.3 ([8, Theorem 3.7]). Let f(x) = Tr(x) and let g(x) be a q-polynomial over
Fqn such that

Im(f(x)/x) = Im(g(x)/x).

Then g(x) = Tr(λx)/λ for some λ ∈ F∗qn .

Note that in Theorem 1.3 we have f̂(x) = f(x) and the only solutions for g are g(x) =
f(λx)/λ, while in Corollary 1.2 we have (up to scalars) ϕ(n) different solutions for g,
where ϕ is the Euler’s totient function.

The problem posed in (1.2) is also related to the study of the directions determined by
an additive function. Indeed, when f is additive, then

Im(f(x)/x) =

{
f(x)− f(y)

x− y
: x 6= y, x, y ∈ Fqn

}
,

is the set of directions determined by the graph of f , i.e. by the point set Gf := {(x, f(x)) :
x ∈ Fqn} ⊂ AG(2, qn). Hence, in this setting, the problem posed in (1.2) corresponds
to finding the Fq-linear functions whose graph determines the same set of directions. The
size of Im(f(x)/x) (for any f , not necessarily additive) was studied extensively. When f
is Fq-linear the following result holds.

Theorem 1.4 ([1, 3]). Let f be a q-polynomial over Fqn , with maximum field of linearity
Fq . Then

qn−1 + 1 ≤ | Im(f(x)/x)| ≤ qn − 1

q − 1
.

The classical examples which show the sharpness of these bounds are the monomial
functions xq

s

, with gcd(s, n) = 1, and the Tr(x) function. However, these bounds are also
achieved by other polynomials which are not “equivalent” to these examples (see Section 2
for more details).

Two Fq-linear polynomials f(x) and h(x) of Fqn [x] are equivalent if the two graphs Gf
and Gh are equivalent under the action of the group ΓL(2, qn), i.e. if there exists an element
ϕ ∈ ΓL(2, qn) such that Gϕf = Gh. In such a case, we say that f and h are equivalent (via
ϕ) and we write h = fϕ. It is easy to see that in this way we defined an equivalence
relation on the set of q-polynomials over Fqn . If f and g are two q-polynomials such
that Im(f(x)/x) = Im(g(x)/x), then Im(fϕ(x)/x) = Im(gϕ(x)/x) for any admissible
ϕ ∈ ΓL(2, qn) (see Proposition 2.6). This means that the problem posed in (1.2) can be
investigated up to equivalence.

For n ≤ 4, the only solutions for g in problem (1.2) are the trivial ones, i.e. either
g(x) = f(λx)/x or g(x) = f̂(λx)/x (cf. Theorem 2.8).

For the case n = 5, in Section 4, we prove the following main result.

Theorem 1.5. Let f(x) and g(x) be two q-polynomials over Fq5 , with maximum field of
linearity Fq , such that Im(f(x)/x) = Im(g(x)/x). Then either there exists ϕ ∈ ΓL(2, q5)

such that fϕ(x) = αxq
i

and gϕ(x) = βxq
j

with N(α) = N(β) for some i, j ∈ {1, 2, 3, 4},
or there exists λ ∈ F∗q5 such that g(x) = f(λx)/λ or g(x) = f̂(λx)/λ.

Finally, the relation between Im(f(x)/x) and the linear sets of rank n of the projective
line PG(1, qn) will be pointed out in Section 5. As an application of Theorem 1.5 we get a
criterium of PΓL(2, q5)-equivalence for linear sets in PG(1, q5) and this allows us to prove
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that the family of (maximum scattered) linear sets of rank n and of size (qn − 1)/(q − 1)
in PG(1, qn) found by Sheekey in [27] contains members which are not-equivalent to the
previously known linear sets of this size.

2 Background and preliminary results
Let us start this section by the following immediate corollary of Theorem 1.4.

Proposition 2.1. If Im(f(x)/x) = Im(g(x)/x) for two q-polynomials f and g over Fqn ,
then their maximum fields of linearity coincide.

Proof. Let Fqm and Fqk be the maximum fields of linearity of f and g, respectively. Sup-
pose to the contrary m < k. Then | Im(g(x)/x)| ≤ (qn − 1)/(qk − 1) < qn−k+1 + 1 ≤
qn−m + 1 ≤ | Im(f(x)/x)|, a contradiction.

Now we are able to prove Corollary 1.2.

Proof. The maximum field of linearity of f(x) is Fqt , thus, by Proposition 2.1, g(x) has
to be a qt-polynomial as well. Then for t > 1 the result follows from the t = 1 case
(after substituting q for qt and n/t for n) and hence we can assume that f(x) and g(x)

are strictly Fq-linear. By (1.2), we note that g(1) = αzq
k−1

0 , for some z0 ∈ F∗qn . Let
F (x) := g(x)/g(1), then F is a q-polynomial over Fqn , with F (0) = 0 and F (1) = 1.
Also, from (1.2), for each x ∈ F∗qn there exists z ∈ F∗qn such that

F (x)

x
=

(
z

z0

)qk−1
.

This means that for each x ∈ F∗qn we get N
(F (x)

x

)
= 1. By Theorem 1.1 (applied to

the q-polynomial F with d = q − 1 | qn − 1 and using the fact that F is additive) it
follows that F (x) = xp

j

for some 0 ≤ j < nh. Then Proposition 2.1 yields pj = qs with
gcd(s, n) = 1. We get the first part of the statement by putting β = g(1). Then from the
assumption (1.2) it is easy to deduce N(α) = N(β).

We will use the following definition.

Definition 2.2. Let f and g be two equivalent q-polynomials over Fqn via the element
ϕ ∈ ΓL(2, qn) represented by the invertible matrix(

a b
c d

)
and with companion automorphism σ of Fqn . Then{(

x
g(x)

)
: x ∈ Fqn

}
=

{(
a b
c d

)(
xσ

f(x)σ

)
: x ∈ Fqn

}
. (2.1)

Let
Kϕ
f (x) = axσ + bf(x)σ

and
Hϕ
f (x) = cxσ + df(x)σ.
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Proposition 2.3. Let f and g be q-polynomials over Fqn such that g = fϕ for some
ϕ ∈ ΓL(2, qn). Then Kϕ

f is invertible and g(x) = Hϕ
f ((Kϕ

f )−1(x)).

Proof. It easily follows from (2.1).

From (2.1) it is also clear that

Im

(
fϕ(x)

x

)
=

{
c+ dzσ

a+ bzσ
: z ∈ Im

(
f(x)

x

)}
(2.2)

and hence
| Im(fϕ(x)/x)| = | Im(f(x)/x)|. (2.3)

From Equation (2.3) and Theorem 1.4 the next result easily follows.

Proposition 2.4. If two q-polynomials over Fqn are equivalent, then their maximum fields
of linearity coincide.

Note that | Im(g(x)/x)| = | Im(f(x)/x)| does not imply the equivalence of f and
g. In fact, in the last section we will list the known examples of q-polynomials f which
are not equivalent to monomials but the size of Im(f(x)/x) is maximal. To find such
functions was also proposed in [16] and, as it was observed by Sheekey, they determine
certain MRD-codes [27].

Let us give the following definition.

Definition 2.5. An element ϕ ∈ ΓL(2, qn) represented by the invertible matrix(
a b
c d

)
and with companion automorphism σ of Fqn is said to be admissible w.r.t. a given q-
polynomial f over Fqn if either b = 0 or −(a/b)σ

−1

/∈ Im(f(x)/x).

The following results will be useful later in the paper.

Proposition 2.6. If Im(f(x)/x) = Im(g(x)/x) for some q-polynomials over Fqn , then
Im(fϕ(x)/x) = Im(gϕ(x)/x) holds for each admissible ϕ ∈ ΓL(2, qn).

Proof. From Im(f(x)/x) = Im(g(x)/x) it follows that any ϕ ∈ ΓL(2, qn) admissible
w.r.t. f is admissible w.r.t. g as well. Hence Kϕ

f and Kϕ
g are both invertible and we may

construct fϕ and gϕ as indicated in Proposition 2.3. The statement now follows from
Equation (2.2).

Proposition 2.7. Let f and g be q-polynomials over Fqn and take some ϕ ∈ ΓL(2, qn)
with companion automorphism σ. Then gϕ(x) = fϕ(λσx)/λσ for some λ ∈ F∗qn if and
only if g(x) = f(λx)/λ.

Proof. First we prove the “if” part. Since g(x) = f(λx)/λ = (ω1/λ ◦ f ◦ ωλ)(x), where
ωα denotes the scalar map x ∈ Fqn 7→ αx ∈ Fqn , direct computations show that Hϕ

g =
ω1/λσ ◦ Hϕ

f ◦ ωλ and Kϕ
g = ω1/λσ ◦ Kϕ

f ◦ ωλ. Then gϕ = ω1/λσ ◦ fϕ ◦ ωλσ and the
first part of the statement follows. The “only if” part follows from the “if” part applied to
gϕ(x) = fϕ(λσx)/λσ and ϕ−1; and from (fϕ)ϕ−1 = f and (gϕ)ϕ−1 = g.
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Next we summarize what is known about problem (1.2) for n ≤ 4.

Theorem 2.8. Suppose Im(f(x)/x) = Im(g(x)/x) for some q-polynomials over Fqn ,
n ≤ 4, with maximum field of linearity Fq . Then there exist ϕ ∈ GL(2, qn) and λ ∈ F∗qn
such that the following holds.

• If n = 2 then fϕ(x) = xq and g(x) = f(λx)/λ.

• If n = 3 then either

fϕ(x) = Tr(x) and g(x) = f(λx)/λ

or
fϕ(x) = xq and g(x) = f(λx)/λ or g(x) = f̂(λx)/λ.

• If n = 4 then g(x) = f(λx)/λ or g(x) = f̂(λx)/λ.

Proof. In the n = 2 case f(x) = ax+ bxq , b 6= 0. Let ϕ be represented by the matrix(
1 0
−a/b 1/b

)
.

Then ϕ ∈ GL(2, q2) maps f(x) to xq . Then Proposition 2.6 and Corollary 1.2 give
gϕ(x) = fϕ(µx)/µ and hence Proposition 2.7 gives g(x) = f(λx)/λ for some λ ∈ Fqn . If
n = 3 then according to [21, Theorem 5] and [8, Theorem 1.3] there exists ϕ ∈ GL(2, q3)
such that either fϕ(x) = Tr(x) or fϕ(x) = xq . In the former case Proposition 2.6 and
Theorem 1.3 give gϕ(x) = fϕ(µx)/µ and the assertion follows from Proposition 2.7. In
the latter case Proposition 2.6 and Corollary 1.2 give gϕ(x) = αxq

i

where i ∈ {1, 2} and
N(α) = 1. If i = 1, then gϕ(x) = fϕ(µx)/µ where µq−1 = α and the assertion follows
from Proposition 2.7. Let now i = 2 and denote by(

A B
C D

)
the matrix of ϕ−1. Also, let ∆ denote the determinant of this matrix and recall that fϕ(x) =
xq , with ϕ ∈ GL(2, q3). Then by Proposition 2.3

Kϕ−1

fϕ
(x) = Ax+Bxq

is invertible and its inverse is the map

ψ(x) :=
Aq+q

2

x−Aq2Bxq +B1+qxq
2

N(A) + N(B)
.

Also, by Proposition 2.3 we have

(fϕ)ϕ−1 (x) = Cψ(x) +Dψ(x)q,

which gives f(x) = (fϕ)ϕ−1 (x).
Using similar arguments, since N(α) = 1, direct computations show

g(x) = (gϕ)ϕ−1(x) =
(Aq+q

2

C +Bq+q
2

D)x−Bq2∆αq
2+1xq +Aq∆αxq

2

N(A) + N(B)
,

and hence g(x) = f̂(λx)/λ for each λ ∈ F∗q3 with λq−1 = ∆1−q/αq .
The case n = 4 is [8, Proposition 4.2].
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Remark 2.9. Theorem 2.8 yields that there is a unique equivalence class of q-polynomials,
with maximum field of linearity Fq , when n = 2. For n = 3 there are two non-equivalent
classes and they correspond to the classical examples: Tr(x) and xq . Whereas, for n = 4,
from [8, Sec. 5.3] and [5, Table on p. 54], there exist at least eight non-equivalent classes.
The possible sizes for the sets of directions determined by these strictly Fq-linear functions
are q3+1, q3+q2−q+1, q3+q2+1 and q3+q2+q+1 and each of them is determined by at
least two non-equivalent q-polynomials. Also, by [13, Theorem 3.4], if f is a q-polynomial
over Fq4 for which the set of directions is of maximum size then f is equivalent either to
xq or to δxq + xq

3

, for some δ ∈ F∗q4 with N(δ) 6= 1 (see [23]).

3 Preliminary results about Tr(x) and the monomial q-polynomials
over Fq5

Let q be a power of a prime p. We will need the following results.

Proposition 3.1. Let f(x) =
∑4
i=0 aix

qi and g(x) = Tr(x) be q-polynomials over Fq5 .
Then there is an element ϕ ∈ ΓL(2, q5) such that Im(fϕ(x)/x) = Im(g(x)/x) if and only
if a1a2a3a4 6= 0, (a1/a2)q = a2/a3, (a2/a3)q = a3/a4 and N(a1) = N(a2).

Proof. Let ϕ ∈ ΓL(2, q5) such that Im(fϕ(x)/x) = Im(g(x)/x). By Proposition 2.4,
the maximum field of linearity of f is Fq and by Theorem 1.3 there exists λ ∈ F∗q5 such
that fϕ(x) = Tr(λx)/λ. This is equivalent to the existence of a, b, c, d, ad − bc 6= 0 and
σ : x 7→ xp

h

such that{(
y

Tr(y)

)
: y ∈ Fq5

}
=

{(
a b
c d

)(
xσ

f(x)σ

)
: x ∈ Fq5

}
.

Then cxσ + df(x)σ ∈ Fq for each x ∈ Fq5 . Let z = xσ . Then

cz + d

4∑
i=0

aσi z
qi = cqzq + dq

4∑
i=0

aσqi z
qi+1

,

for each z. As polynomials of z, the left and right-hand sides of the above equation coincide
modulo zq

5 − z and hence comparing coefficients yield

c+ daσ0 = dqaσq4 ,

daσ1 = cq + dqaσq0 ,

daσk+1 = dqaσqk ,

for k = 1, 2, 3. If d = 0, then c = 0, a contradiction. Since d 6= 0, if one of a1, a2, a3, a4
is zero, then all of them are zero and hence f is Fq5 -linear. This is not the case, so we have
a1a2a3a4 6= 0. Then the last three equations yield(

a1
a2

)q
=
a2
a3
,(

a2
a3

)q
=
a3
a4
,
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and by taking the norm of both sides in daσ2 = dqaσq1 we get N(a1) = N(a2).
Now assume that the conditions of the assertion hold. It follows that a3 = aq+1

2 /aq1
and a4 = aq+1

3 /aq2 = aq
2+q+1

2 /aq
2+q

1 . Let αi = ai/a1 for i = 0, 1, 2, 3, 4. Then α1 = 1,
N(α2) = 1, α3 = αq+1

2 and α4 = α1+q+q2

2 . We have α2 = λq−1 for some λ ∈ F∗q5 . If(
a b
c d

)
=

(
1 0

1− λ1−q4a0/a1 λ1−q
4

/a1

)
,

then(
a b
c d

)(
x

f(x)

)
=(

x

x+ λ1−q
4

xq + λq−q
4

xq
2

+ λq
2−q4xq

3

+ λq
3−q4xq

4

)
=

(
x

Tr(xλq
4

)/λq
4

)
,

i.e. fϕ(x) = Tr(λq
4

x)/λq
4

, where ϕ is defined by the matrix(
a b
c d

)
.

Proposition 3.2. Let f(x) =
∑4
i=0 aix

qi , with a1a2a3a4 6= 0. Then there is an element
ϕ ∈ ΓL(2, q5) such that Im(fϕ(x)/x) = Im(xq/x) if and only if one of the following
holds:

1. (a1/a2)q = a2/a3, (a2/a3)q = a3/a4 and N(a1) 6= N(a2), or

2. (a4/a1)q
2

= a1/a3, (a1/a2)q
2

= a3/a4 and N(a1) 6= N(a3).

In both cases, if the condition on the norms does not hold, then

Im(fϕ(x)/x) = Im(Tr(x)/x).

Proof. We first note that the monomials xq
i

and xq
5−i

are equivalent via the map

ψ :=

(
0 1
1 0

)
.

Hence, by Corollary 1.2, the statement holds if and only if there exist a, b, c, d, ad−bc 6= 0,
σ : x 7→ xp

h

and i ∈ {1, 2} such that{(
y

yq
i

)
: y ∈ Fq5

}
=

{(
a b
c d

)(
xσ

f(x)σ

)
: x ∈ Fq5

}
. (3.1)

If Condition 1 holds then let αj = aj/a1 for j = 0, 1, 2, 3, 4. So α1 = 1, N(α2) 6= 1,
α3 = αq+1

2 , α4 = α1+q+q2

2 and it turns out that(
1 αq

4

2

α1+q+q2+q3

2 1

)(
1 0
−α0 1/a1

)(
x

f(x)

)
=(

1 αq
4

2

α1+q+q2+q3

2 1

)(
x

xq + α2x
q2 + α3x

q3 + α4x
q4

)
.
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Hence (3.1) is satisfied with i = 1, σ : x 7→ x and(
a b
c d

)
=

(
1 αq

4

2

α1+q+q2+q3

2 1

)(
1 0
−α0 1/a1

)
.

If condition (1.2) holds then let αj = aj/a3 for j = 0, 1, 2, 3, 4. So α3 = 1, N(α1) 6=
1, α2 = α1+q+q3

1 , α4 = α1+q3

1 and (3.1) is satisfied with i = 2, σ : x 7→ x and(
a b
c d

)
=

(
α1+q+q3+q4

1 1

1 αq
2

1

)(
1 0
−α0 1/a3

)
.

Suppose now that (3.1) holds and put z = xσ . Then

(
za+ b

4∑
j=0

aσj z
qj
)qi

= cz + d

4∑
j=0

aσj z
qj

for each z ∈ Fq5 and hence, as polynomials in z, the left-hand side and right-hand side
of the above equation coincide modulo zq

5 − z. The coefficients of z, zq
i

and zq
k

with
i ∈ {1, 2} and k ∈ {1, 2, 3, 4} \ {i} give

bq
i

aσq
i

−i = c+ daσ0 ,

aq
i

+ bq
i

aσq
i

0 = daσi ,

bq
i

aσq
i

k−i = daσk ,

respectively, where the indices are considered modulo 5. Note that db 6= 0 since otherwise
also a = c = 0 and hence ad − bc = 0. With {r, s, t} = {1, 2, 3, 4} \ {i}, the last three
equations yield: (

ar−i
as−i

)qi
=
ar
as
,(

as−i
at−i

)qi
=
as
at
.

First assume i = 1. Then we have(
a1
a2

)q
=
a2
a3

and
(
a2
a3

)q
=
a3
a4
.

If N(a1) = N(a2), from Proposition 3.1 and Equation (2.3) it follows that | Im(xq/x)| =
| Im(Tr(x)/x)|. Since | Im(xq/x)| = (qn − 1)/(q − 1) and | Im(Tr(x)/x)| = qn−1 + 1,
we get a contradiction.

Now assume i = 2. Then we have (a4/a1)q
2

= a1/a3 and(
a1
a2

)q2
=
a3
a4
. (3.2)
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Multiplying these two equations yields aq
2+1

4 = a1a
q2

2 and hence

a2 = a1+q+q
3

1 /aq
3+q

3 . (3.3)

By (3.2) this implies

a4 = aq
3+1

1 /aq
3

3 . (3.4)

If N(a1) = N(a3), then also N(a1) = N(a2) = N(a3) = N(a4). We show that in this
case Im(fϕ(x)/x) = Im(Tr(x)/x), so we must have N(a1) 6= N(a3). According to
Proposition 3.1 it is enough to show (a1/a2)q = a2/a3 and (a2/a3)q = a3/a4. By (3.2)
we have (a1/a2)q = (a3/a4)q

4

, which equals a2/a3 if and only if (a2/a3)q = a3/a4, i.e.
a1+q3 = a4a

q
2. Taking into account (3.3) and (3.4), this equality follows from N(a1) =

N(a3).

4 Proof of the main theorem
In this section we prove Theorem 1.5. In order to do this, we use the following two results
and the technique developed in [8].

Lemma 4.1 ([8, Lemma 3.4]). Let f and g be two linearized polynomials over Fqn . If
Im(f(x)/x) = Im(g(x)/x), then for each positive integer d the following holds

∑
x∈F∗

qn

(
f(x)

x

)d
=
∑
x∈F∗

qn

(
g(x)

x

)d
.

Lemma 4.2 (See for example [8, Lemma 3.5]). For any prime power q and integer d we
have

∑
x∈F∗q

xd = −1 if q − 1 | d and
∑
x∈F∗q

xd = 0 otherwise.

Proposition 4.3. Let f(x) =
∑4
i=0 aix

qi and g(x) =
∑4
i=0 bix

qi be two q-polynomials
over Fq5 such that Im(f(x)/x) = Im(g(x)/x). Then the following relations hold between
the coefficients of f and g:

a0 = b0, (4.1)
a1a

q
4 = b1b

q
4, (4.2)

a2a
q2

3 = b2b
q2

3 , (4.3)

aq+1
1 aq

2

3 + a2a
q+q2

4 = bq+1
1 bq

2

3 + b2b
q+q2

4 , (4.4)

a1a
q+q3

2 + a1+q
3

3 aq4 = b1b
q+q3

2 + b1+q
3

3 bq4, (4.5)

a1+q+q
2

1 aq
3

2 + a1+q2 aq
2+q3

3 + aq1a
1+q2+q3

3 + aq
2

1 a2a
q3

3 a
q
4 + a1+q+q

3

2 aq
2

4 +

aq1a
q3

2 a3a
q2

4 + a1a
q
2a
q2

3 a
q3

4 + a1+q
2

1 aq+q
3

4 + a3a
q+q2+q3

4 =

b1+q+q
2

1 bq
3

2 + b1+q2 bq
2+q3

3 + bq1b
1+q2+q3

3 + bq
2

1 b2b
q3

3 b
q
4 + b1+q+q

3

2 bq
2

4 +

bq1b
q3

2 b3b
q2

4 + b1b
q
2b
q2

3 b
q3

4 + b1+q
2

1 bq+q
3

4 + b3b
q+q2+q3

4 ,

(4.6)
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N(a1) + N(a2) + N(a3) + N(a4) + Tr(aq1a
q2+q3+q4

2 a3 + aq+q
3

1 aq
4

2 a
1+q2

3 +

aq+q
2

1 aq
3+q4

2 a4 + aq+q
2+q4

1 aq
3

3 a4 + aq2a
q2+q3+q4

3 a4 + aq
2

1 a
q3+q4

3 a1+q4 +

aq+q
3

2 aq
4

3 a
1+q2

4 + aq
2

1 a
q4

2 a
1+q+q3

4 ) =

N(b1) + N(b2) + N(b3) + N(b4) + Tr(bq1b
q2+q3+q4

2 b3 + bq+q
3

1 bq
4

2 b
1+q2

3 +

bq+q
2

1 bq
3+q4

2 b4 + bq+q
2+q4

1 bq
3

3 b4 + bq2b
q2+q3+q4

3 b4 + bq
2

1 b
q3+q4

3 b1+q4 +

bq+q
3

2 bq
4

3 b
1+q2

4 + bq
2

1 b
q4

2 b
1+q+q3

4 ).

(4.7)

Proof. Equations (4.1) – (4.5) follow from [8, Lemma 3.6]. To prove (4.6) we will use
Lemma 4.1 with d = q3 + q2 + q + 1. This gives us∑

1≤i,j,m,n≤4

aia
q
ja
q2

ma
q3

n

∑
x∈F∗

q5

xq
i−1+qj+1−q+qm+2−q2+qn+3−q3 =

∑
1≤i,j,m≤4

bib
q
jb
q2

mb
q3

n

∑
x∈F∗

q5

xq
i−1+qj+1−q+qm+2−q2+qn+3−q3 .

By Lemma 4.2 we have
∑
x∈F∗

q5
xq

i−1+qj+1−q+qm+2−q2+qn+3−q3 = −1 if and only if

qi + qj+1 + qm+2 + qn+3 ≡ 1 + q + q2 + q3 (mod q5 − 1), (4.8)

and zero otherwise. Suppose that the former case holds. The right-hand side of (4.8) is
smaller than the left-hand side, thus

qi + qj+1 + qm+2 + qn+3 = 1 + q + q2 + q3 + k(q5 − 1),

for some positive integer k. We have qi + qj+1 + qm+2 + qn+3 ≤ q4 + q5 + q6 + q7 <
1 + q+ q2 + q3 + (q2 + q+ 2)(q5− 1) and hence k ≤ q2 + q+ 1. If i = 1, then q2 | 1− k
and hence k = 1, j = m = 1 and n = 2, or k = q2 + 1, n = 4 and either j = 2 and
m = 3, or j = 4 and m = 1. If i > 1, then q2 divides q + 1 − k and hence k = q + 1,
or k = q2 + q + 1. In the former case i = j = n = 2 and m = 4, or i = j = 2 and
n = m = 3, or i = 3, j = 1, m = 4 and n = 2, or i = 3, j = 1 and m = n = 3, or
m = 1, i = 2, j = 4 and n = 3. In the latter case i = 3 and n = m = j = 4. Then (4.6)
follows.

To prove (4.7) we follow the previous approach with d = q4 + q3 + q2 + q + 1. We
obtain ∑

aia
q
ja
q2

ma
q3

n a
q4

r =
∑

bib
q
jb
q2

mb
q3

n b
q4

r ,

where the summation is on the quintuples (i, j,m, n, r) with elements taken from {1, 2, 3,
4} such that Li,j,m,n,r := (qi−1)+(qj+1−q)+(qm+2−q2)+(qn+3−q3)+(qr+4−q4)
is divisible by q5 − 1. Then

Li,j,m,n,r ≡ Ki,j′,m′,n′,r′ (mod q5 − 1),

where

Ki,j′,m′,n′,r′ = (qi − 1) + (qj
′
− q) + (qm

′
− q2) + (qn

′
− q3) + (qr

′
− q4),
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such that j′ ≡ j + 1, m′ ≡ m+ 2, n′ ≡ n+ 3, r′ ≡ r + 4 (mod 5) with

j′ ∈ {0, 2, 3, 4}, m′ ∈ {0, 1, 3, 4}, n′ ∈ {0, 1, 2, 4}, r′ ∈ {0, 1, 2, 3}. (4.9)

For q = 2 and q = 3 we can determine by computer those quintuples (i, j′,m′, n′, r′)
for which Ki,j′,m′,n′,r′ is divisible by q5 − 1 and hence (4.7) follows. So we may assume
q > 3. Then

3− q2 − q3 − q4 = (q − 1) + (1− q) + (1− q2) + (1− q3) + (1− q4) ≤
Ki,j′,m′,n′,r′ ≤

(q4 − 1) + (q4 − q) + (q4 − q2) + (q4 − q3) + (q3 − q4) = 3q4 − 1− q − q2,

and hence Li,j,m,n,r is divisible by q5 − 1 if and only if Ki,j′,m′,n′,r′ = 0. It follows that

qi + qj
′
+ qm

′
+ qn

′
+ qr

′
= 1 + q + q2 + q3 + q4. (4.10)

For h ∈ {0, 1, 2, 3, 4} let ch denote the number of elements in the multiset {i, j′,m′, n′, r′}
which equals h. So

4∑
h=0

chq
h = 1 + q + q2 + q3 + q4

for some 0 ≤ ch ≤ 5 with
∑4
h=0 ch = 5. We cannot have c0 = 5 since q > 1. If

ci = 5 for some 1 ≤ i ≤ 4 then the left hand side of (4.10) is not congruent to 1 modulo
q, a contradiction. It follows that ch ≤ 4. Thus for q > 3 (4.10) holds if and only if
ch = 1 for h = 0, 1, 2, 3, 4 and we have to find those quintuples (i, j′,m′, n′, r′) for which
i ∈ {1, 2, 3, 4}, {i, j′,m′, n′, r′} = {0, 1, 2, 3, 4} and (4.9) are satisfied. This can be done
by computer and the 44 solutions yield (4.7).

4.1 Proof of Theorem 1.5

Proof. Since f has maximum field of linearity Fq , we cannot have a1 = a2 = a3 = a4 = 0.
If three of {a1, a2, a3, a4} are zeros, then f(x) = a0x + aix

qi , for some i ∈ {1, 2, 3, 4}.
Hence with ϕ represented by (

1 0
−a0/ai 1/ai

)
we have fϕ(x) = xq

i

. Then Proposition 2.6 and Corollary 1.2 give gϕ(x) = βxq
j

where
N(β) = 1 and j ∈ {1, 2, 3, 4}. Now, we distinguish three main cases according to the
number of zeros among {a1, a2, a3, a4}.

Two zeros among {a1, a2, a3, a4}

Applying Proposition 4.3 we obtain a0 = b0. The two non-zero coefficients can be chosen
in six different ways, however the cases a1a2 6= 0 and a1a3 6= 0 correspond to a3a4 6=
0 and a2a4 6= 0, respectively, since Im(f(x)/x) = Im(f̂(x)/x). Thus, after possibly
interchanging f with f̂ , we may consider only four cases.

First let
f(x) = a0x+ a1x

q + a4x
q4 , a1a4 6= 0.
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Applying Proposition 4.3 we obtain 0 = b2b
q2

3 . Since b1b4 6= 0, from (4.4) we get b2 =
b3 = 0 and hence (4.7) gives

N(a1) + N(a4) = N(b1) + N(b4).

Also, from (4.2) we have N(a1) N(a4) = N(b1) N(b4). It follows that either N(a1) =
N(b1) and N(a4) = N(b4), or N(a1) = N(b4) and N(a4) = N(b1). In the first case
b1 = a1λ

q−1 for some λ ∈ F∗q5 and by (4.2) we get g(x) = f(λx)/λ. In the latter case

b1 = aq4λ
q−1 for some λ ∈ F∗q5 and by (4.2) we get g(x) = f̂(λx)/λ.

Now consider
f(x) = a1x

q + a3x
q3 , a1a3 6= 0.

Applying Proposition 4.3 and arguing as above we have either b2 = b4 = 0 or b1 = b3 = 0.
In the first case from (4.6) we obtain

aq1a
1+q2+q3

3 = bq1b
1+q2+q3

3

and together with (4.4) this yields N(a1) = N(b1) and N(a3) = N(b3). In this case g(x) =

f(λx)/λ for some λ ∈ F∗q5 . If b1 = b3 = 0, then in ĝ(x) the coefficients of xq
2

and xq
4

are
zeros thus applying the result obtained in the former case we get λĝ(x) = f(λx) and hence
after substituting y = λx and taking the adjoints of both sides we obtain g(y) = f̂(µy)/µ,
where µ = λ−1.

The cases

f(x) = a1x
q + a2x

q2 and f(x) = a2x
q2 + a3x

q3

can be handled in a similar way, applying Equations (4.2) – (4.7) of Proposition 4.3.

One zero among {a1, a2, a3, a4}

Since Im(f(x)/x) = Im(f̂(x)/x), we may assume a1 = 0 or a2 = 0.
First suppose a1 = 0. Then by (4.2) either b1 = 0 or b4 = 0. In the former case

putting together Equations (4.3), (4.4), (4.5) we get N(ai) = N(bi) for i ∈ {2, 3, 4} and
hence there exists λ ∈ F∗q5 such that g(x) = f(λx)/λ. If a1 = b4 = 0, then in ĝ(x) the

coefficient of xq is zero thus applying the previous result we get g(x) = f̂(µx)/µ, where
µ = λ−1.

Now suppose a2 = 0. Then by (4.3) either b2 = 0 or b3 = 0. Using the same approach
but applying (4.2), (4.4) and (4.5) we obtain g(x) = f(λx)/λ or g(x) = f̂(λx)/λ.

Case a1a2a3a4 6= 0

We will apply (4.1) – (4.6) of Proposition 4.3. Note that Equations (4.2) and (4.3) yield
a1a2a3a4 6= 0⇔ b1b2b3b4 6= 0. Multiplying (4.4) by a2 and applying (4.3) yield

a22a
q+q2

4 − a2(bq+1
1 bq

2

3 + b2b
q+q2

4 ) + aq+1
1 bq

2

3 b2 = 0.

Taking (4.2) into account, this is equivalent to

(a2a
q+q2

4 − bq+1
1 bq

2

3 )(a2a
q+q2

4 − b2bq+q
2

4 ) = 0.
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Multiplying (4.5) by a1 and applying (4.2) yield

a21a
q+q3

2 − a1(b1b
q+q3

2 + b1+q
3

3 bq4) + a1+q
3

3 bq4b1 = 0.

Taking (4.3) into account, this is equivalent to

(a1a
q+q3

2 − b1bq+q
3

2 )(a1a
q+q3

2 − b1+q
3

3 bq4) = 0.

We distinguish four cases:

Case 1. a2a
q+q2

4 = bq+1
1 bq

2

3 and a1a
q+q3

2 = b1b
q+q3

2 ,

Case 2. a2a
q+q2

4 = bq+1
1 bq

2

3 and a1a
q+q3

2 = b1+q
3

3 bq4,

Case 3. a2a
q+q2

4 = b2b
q+q2

4 and a1a
q+q3

2 = b1b
q+q3

2 ,

Case 4. a2a
q+q2

4 = b2b
q+q2

4 and a1a
q+q3

2 = b1+q
3

3 bq4.

We show that these four cases produce the relations:

N

(
b1
a4

)
=
a1a

q+q3

2

aq4a
q3+1
3

=
b1b

q+q3

2

bq4b
q3+1
3

, (4.11)

N

(
b1
a4

)
= 1, (4.12)

N

(
b1
a1

)
= 1, (4.13)

N

(
b1
a1

)
=
aq

3+1
3 aq4

a1a
q+q3

2

=
b1b

q+q3

2

bq
3+1

3 bq4
, (4.14)

respectively.
To see (4.11) observe that from a2a

q+q2

4 = bq+1
1 bq

2

3 and (4.2) we get

N

(
b1
a4

)
=

(
bq+1
1

aq+q
2

4

)q2+1
bq

4

1

a4
=

(
aq

2+1
2

bq
2+q4

3

)
aq

4

1

b4
=
a1a

q+q3

2

bq4b
q3+1
3

, (4.15)

where the last equation follows from N(b1/a4)q = N(b1/a4). Hence by a1a
q+q3

2 =

b1b
q+q3

2 and (4.5) we get (4.11).
Equation (4.12) immediately follows from (4.15) taking a1a

q+q3

2 = b1+q
3

3 bq4 into ac-
count.

Now we show (4.14). By (4.2), we get

N

(
b1
a1

)
= N

(
a4
b4

)
=

(
a4
b4

)q+q2 ((
a4
b4

)q+q2)q2 (
a4
b4

)
. (4.16)

Since N(b1/a1)q = N(b1/a1), by a2a
q+q2

4 = b2b
q+q2

4 , the previous equation becomes

N

(
b1
a1

)
=
bq

3+q
2

aq
3+q

2

aq4
bq4

(4.17)
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and taking a1a
q+q3

2 = b1+q
3

3 bq4 and (4.3) into account we get (4.14).
Equation (4.13) immediately follows from (4.17) taking a1a

q+q3

2 = b1b
q+q3

2 and (4.2)
into account.

• In Case 3 by (4.13) we get b1 = a1λ
q−1 for some λ ∈ F∗q5 and by (4.2) and (4.3) we

have g(x) = f(λx)/λ.

• Analogously, in Case 2 g(x) = f̂(λx)/λ.

• Case 4 is just Case 3 after replacing g by ĝ since Im(g(x)/x) = Im(ĝ(x)/x).

This allows us to restrict ourself to Case 1.

Taking (4.2) and (4.3) into account, it will be useful to express a1, a2, a3 as follows:

a1 =
b1b

q
4

aq4
, a2 =

bq+1
1 bq

2

3

aq+q
2

4

, a3 =
bq

3

2 b
1+q4

4

aq
3+q4

1

. (4.18)

We are going to simplify (4.6). Using Equations (4.18) and (4.2) it is easy to see that

a1+q2 aq
2+q3

3 = b1+q2 bq
2+q3

3 , a1+q
2

1 aq+q
3

4 = b1+q
2

1 bq+q
3

4 ,

aq
2

1 a2a
q3

3 a
q
4 = b1b

q
2b
q2

3 b
q3

4 , aq1a
q3

2 a3a
q2

4 = bq1b
q3

2 b3b
q2

4 ,

a1a
q
2a
q2

3 a
q3

4 = bq
2

1 b2b
q3

3 b
q
4

and hence

a1+q+q
2

1 aq
3

2 + aq1a
1+q2+q3

3 + a1+q+q
3

2 aq
2

4 + a3a
q+q2+q3

4 =

b1+q+q
2

1 bq
3

2 + bq1b
1+q2+q3

3 + b1+q+q
3

2 bq
2

4 + b3b
q+q2+q3

4 .
(4.19)

The following equations can be proved applying (4.2), (4.3) and (4.18):

N

(
b1
a4

)
b3b

q+q2+q3

4 = aq
3

2 a
1+q+q2

1 , (4.20)

N

(
a4
b1

)
bq

2

4 b
1+q+q3

2 = aq1a
1+q2+q3

3 , (4.21)

N

(
b1
a4

)
bq1b

1+q2+q3

3 = a1+q+q
3

2 aq
2

4 , (4.22)

N

(
a4
b1

)
bq

3

2 b
1+q+q2

1 = a3a
q+q2+q3

4 . (4.23)

Then (4.19) can be written as

(N(b1/a4)− 1)
(
b3b

q+q2+q3

4 + bq1b
1+q2+q3

3

)
=

N(b1/a4)− 1

N(b1/a4)

(
bq

2

4 b
1+q+q3

2 + bq
3

2 b
1+q+q2

1

)
.

If N(b1/a4) = 1, then (4.15) equals 1 and hence a1a
q+q3

2 = bq4b
q3+1
3 which means that we

are in Case 2. Then again g(x) = f̂(λx)/λ.
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Otherwise dividing by N(b1/a4)−1 and substituting N(b1/a4) = b1b
q+q3

2 /bq4b
q3+1
3 we

obtain

b1b
q+q3

2 (b3b
q+q2+q3

4 + bq1b
1+q2+q3

3 ) = bq4b
q3+1
3 (bq

2

4 b
1+q+q3

2 + bq
3

2 b
1+q+q2

1 ).

Substituting N(b1/a4)bq4b
q3+1
3 /bq+q

3

2 for b1 and using the fact that N(b1/a4) ∈ Fq we
obtain (

1−N

(
b1
a4

)2

N

(
b3
b2

))(
N

(
b1
a4

)
bq+q

3

4 b3 − b1+q+q
3

2

)
= 0.

This gives us two possibilities:

N

(
b1
a4

)
bq+q

3

4 b3 = b1+q+q
3

2 , (4.24)

or

N

(
b2
b3

)
= N

(
b1
a4

)2
. (4.25)

First consider the case when (4.25) holds.
We show N(a1) = N(b1), that is, (4.13). We have a2a

q+q2

4 = bq+1
1 bq

2

3 from (4.18) and
hence N(a2) N(a4)2 = N(b1)2 N(b3). It follows that

N

(
b1
a4

)2
= N

(
a2
b3

)
.

Combining this with (4.25) we obtain N(b2) = N(a2). Then N(b1) = N(a1) follows from
a1a

q+q3

2 = b1b
q+q3

2 since we are in Case 1.
From now on we can suppose that (4.24) holds.
Then (4.11) yields (

b1
b2

)q2
=
b3
b4
. (4.26)

Multiplying both sides of (4.24) by bq
2

4 and applying (4.20) gives

aq
3

2 a
1+q+q2

1 = b1+q+q
3

2 bq
2

4 . (4.27)

Then multiplying (4.20) by (4.21) and taking (4.27) into account we obtain

aq1a
1+q2+q3

3 = b3b
q+q2+q3

4 . (4.28)

Multiplying (4.22) and (4.23) yield

(bq1b
1+q2+q3

3 )(bq
3

2 b
1+q+q2

1 ) = (a1+q+q
3

2 aq
2

4 )(a3a
q+q2+q3

4 ).

On the other hand, from (4.19), and taking (4.27) and (4.28) into account, it follows that

bq1b
1+q2+q3

3 + bq
3

2 b
1+q+q2

1 = a1+q+q
3

2 aq
2

4 + a3a
q+q2+q3

4 .

Hence
bq1b

1+q2+q3

3 = a1+q+q
3

2 aq
2

4 and bq
3

2 b
1+q+q2

1 = a3a
q+q2+q3

4 ,
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or
bq1b

1+q2+q3

3 = a3a
q+q2+q3

4 and bq
3

2 b
1+q+q2

1 = a1+q+q
3

2 aq
2

4 .

In the former case (4.22) yields N(b1/a4) = 1, which is (4.12). In the latter case (4.11)
and (4.23) gives

bq4b
q3+1
3

b1b
q+q3

2

bq
3

2 b
1+q+q2

1 = N(a4/b1)bq
3

2 b
1+q+q2

1 = bq1b
1+q2+q3

3 ,

and hence
b4
b2

=

(
b3
b1

)q
. (4.29)

Equation (4.26) is equivalent to
b4b

q2

1 = b3b
q2

2 , (4.30)

while (4.29) is equivalent to
b4b

q
1 = bq3b2.

Dividing these two equations by each other yield

bq
2−1

2 = bq−13 bq
2−q

1 .

It follows that there exists λ ∈ F∗q such that

bq+1
2 = λb3b

q
1, (4.31)

thus
b3 = bq+1

2 /(bq1λ) (4.32)

and by (4.30)
b4 = b1+q+q

2

2 /(bq+q
2

1 λ). (4.33)

Then (4.11) can be written as

N

(
b1
a4

)
=
b1b

q+q3

2

bq4b
q3+1
3

= N

(
b1
b2

)
λ3,

and hence

N

(
b2
a4

)
= λ3. (4.34)

By (4.2), (4.34) and (4.33) we get

N(a1) = N(b2)2/(N(b1)λ2). (4.35)

By (4.18), (4.32) and (4.34) we have

N(a2) = N(b1)λ. (4.36)

By (4.18), (4.35) and (4.33) we get

N(a3) = N(b2)3/(N(b1)2λ6), (4.37)
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and by (4.34) we have
N(a4) = N(b2)/λ3. (4.38)

Before we go further, we simplify (4.7) and prove

N(a1) + N(a2) + N(a3) + N(a4) = N(b1) + N(b2) + N(b3) + N(b4). (4.39)

It is enough to show

Tr(

A1︷ ︸︸ ︷
aq1a

q2+q3+q4

2 a3 +

A2︷ ︸︸ ︷
aq+q

3

1 aq
4

2 a
1+q2

3 +

A3︷ ︸︸ ︷
aq+q

2

1 aq
3+q4

2 a4 +

A4︷ ︸︸ ︷
aq+q

2+q4

1 aq
3

3 a4 +

A5︷ ︸︸ ︷
aq2a

q2+q3+q4

3 a4 +

A6︷ ︸︸ ︷
aq

2

1 a
q3+q4

3 a1+q4 +

A7︷ ︸︸ ︷
aq+q

3

2 aq
4

3 a
1+q2

4 +

A8︷ ︸︸ ︷
aq

2

1 a
q4

2 a
1+q+q3

4 ) =

Tr(

B1︷ ︸︸ ︷
bq1b

q2+q3+q4

2 b3 +

B7︷ ︸︸ ︷
bq+q

3

1 bq
4

2 b
1+q2

3 +

B3︷ ︸︸ ︷
bq+q

2

1 bq
3+q4

2 b4 +

B8︷ ︸︸ ︷
bq+q

2+q4

1 bq
3

3 b4 +

B5︷ ︸︸ ︷
bq2b

q2+q3+q4

3 b4 +

B6︷ ︸︸ ︷
bq

2

1 b
q3+q4

3 b1+q4 +

B2︷ ︸︸ ︷
bq+q

3

2 bq
4

3 b
1+q2

4 +

B4︷ ︸︸ ︷
bq

2

1 b
q4

2 b
1+q+q3

4 ),

which can be done by proving Tr(Ai) = Tr(Bi) for i = 1, 2, . . . , 8. Expressing a3 with
a4 in (4.18), and using (4.2) as well, we get a3 = bq

3

2 a
q4+1
4 /bq

3+q4

1 . Then a1, a2, a3 can be
eliminated in all of the Ai, i ∈ {1, 2 . . . , 8}. It turns out that this procedure eliminates also
a4 when i ∈ {2, 4, 7, 8} and we obtain

A2 = Bq
2

2 , A4 = Bq
2

4 , A7 = Bq
3

7 and A8 = Bq
2

8 .

In each of the other cases what remains is N(a4) times an expression in b1, b2, b3, b4. Then
by using (4.11) we can also eliminate N(a4) and hence Ai can be expressed in terms of
b1, b2, b3, b4. This gives A1 = B1 and A5 = B5. Applying also (4.26) and (4.29) we
obtain A3 = Bq

2

3 and A6 = B6.
Let x = N(b2/b1). Multiplying both sides of (4.39) by λ6/N(b1), taking into account

(4.35), (4.36), (4.37) and (4.38) for the left hand side and (4.32) and (4.33) for the right
hand side we get the following equation

x2λ4 + λ7 + x3 + xλ3 = λ6 + xλ6 + x2λ+ λx3.

After rearranging we get:

(1− λ)(x− λ)(x− λ2)(x− λ3) = 0.

First suppose λ 6= 1. Then we have three possibilities.

1. If
x = λ,

in which case N(b2) = N(a2) follows from (4.36). Since gcd(q − 1, q5 − 1) =
gcd(q2−1, q5−1), in F∗q5 the set of (q−1)-th powers is the same as the set of (q2−1)-

th powers and hence there exists and element ν ∈ F∗q5 such that b2 = νq
2−1a2.

Therefore, since we are in Case 1, from a1a
q+q3

2 = b1b
q+q3

2 we obtain b1 = νq−1a1.
Equations (4.2) and (4.3) give g(x) = f(νx)/ν.
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2. If
x = λ3,

thenN(a4) = N(b1) follows from (4.38). Then (4.15) equals 1 and hence a1a
q+q3

2 =

bq4b
q3+1
3 which means that we are in Case 2, thus g(x) = f̂(µx)/µ.

3. If
x = λ2,

then we show that there exists ϕ ∈ ΓL(2, q5) such that either

Im(gϕ(x)/x) = Im(xq/x) or Im(gϕ(x)/x) = Im(Tr(x)/x).

In the former case by Proposition 2.6 and Corollary 1.2 we get fϕ(x) = αxq
i

and
gϕ(x) = βxq

j

for some i, j ∈ {1, 2, 3, 4}, with N(α) = N(β) = 1. In the latter
case, by Theorem 1.3 and by Propositions 2.6 and 2.7, there exists µ ∈ F∗q5 such that
g(x) = f(µx)/µ.

According to part 2 of Proposition 3.2, it is enough to show

(b4/b1)q
2

= b1/b3, (b1/b2)q
2

= b3/b4.

(Note that there is no need to confirm N(b1) 6= N(b3) since otherwise the result follows
from the last part of Proposition 3.2 and from Theorem 1.3.) The second equation is just
(4.26), thus it is enough to prove the first one.

First we show
b2b

q+q3

3 = b1+q+q
3

1 . (4.40)

From (4.31) we have

N

(
b2
b1

)
= λ2 =

(
bq+1
2

b3b
q
1

)2

,

and hence after rearranging
bq

2+q3+q4

2 b3

b1+q
2+q3+q4

1

=
bq+1
2

b3b
q
1

.

On the right-hand side we have λ, which is in Fq , thus, after taking q-th powers on the left
and q3-th powers on the right, the following also holds

bq
3+q4+1

2 bq3

bq+q
3+q4+1

1

=
bq

3+q4

2

bq
3

3 b
q4

1

.

After rearranging we obtain (4.40).
Now we show that (b4/b1)q

2

= b1/b3 is equivalent to (4.40). Expressing b4 from (4.26)
we get

(b4/b1)q
2

= b1/b3 ⇐⇒ b1+q
2

3 bq
4

2 = b1+q
2+q4

1 ,

where the equation on the right-hand side is just the q4-th power of (4.40).

Finally, consider the case λ = 1. Then

b3 = bq+1
2 /bq1, b4 = b1+q+q

2

2 /bq+q
2

1
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and it follows from Proposition 3.2 that there exists ϕ ∈ ΓL(2, q5) such that either

Im(gϕ(x)/x) = Im(xq/x) or Im(gϕ(x)/x) = Im(Tr(x)/x).

As above, the assertion follows either from Proposition 2.6 and Corollary 1.2 or from The-
orem 1.3 and by Propositions 2.6 and 2.7.

This finishes the proof when
∏4
i=1 aibi 6= 0.

5 New maximum scattered linear sets of PG(1, q5)

A point set L of a line Λ = PG(W,Fqn) = PG(1, qn) is said to be an Fq-linear set of Λ
of rank n if it is defined by the non-zero vectors of an n-dimensional Fq-vector subspace
U of the two-dimensional Fqn -vector space W , i.e.

L = LU := {〈u〉Fqn : u ∈ U \ {0}}.

One of the most natural questions about linear sets is their equivalence. Two linear sets
LU and LV of PG(1, qn) are said to be PΓL-equivalent (or simply equivalent) if there
is an element in PΓL(2, qn) mapping LU to LV . In the applications it is crucial to have
methods to decide whether two linear sets are equivalent or not. This can be a difficult
problem and some results in this direction can be found in [8, 12]. If LU and LV are two
equivalent Fq-linear sets of rank n in PG(1, qn) and ϕ is an element of ΓL(2, qn) which
induces a collineation mapping LU to LV , then LUϕ = LV . Hence the first step to face
with the equivalence problem for linear sets is to determine which Fq-subspaces can define
the same linear set.

For any q-polynomial f(x) =
∑n−1
i=0 aix

qi over Fqn , the graph

Gf = {(x, f(x)) : x ∈ Fqn}

is an Fq-vector subspace of the 2-dimensional vector space V = Fqn × Fqn and the point
set

Lf := LGf = {〈(x, f(x))〉Fqn : x ∈ F∗qn}

is an Fq-linear set of rank n of PG(1, qn). In this context, the problem posed in (1.2)
corresponds to find all Fq-subspaces of V of rank n (cf. [8, Proposition 2.3]) defining
the linear set Lf . The maximum field of linearity of f is the maximum field of linearity
of Lf , and it is well-defined (cf. Proposition 2.1 and [8, Proposition 2.3]). Also, by the
Introduction (Section 1), for any q-polynomial f over Fqn , the linear sets Lf , Lfλ (with
fλ(x) := f(λx)/λ for each λ ∈ F∗qn ) and Lf̂ coincide (cf. [2, Lemma 2.6] and the first
part of [8, Section 3]). If f and g are two equivalent q-polynomials over Fqn , i.e. Gf and
Gg are equivalent w.r.t. the action of the group ΓL(2, qn), then the corresponding Fq-linear
sets Lf and Lg of PG(1, qn) are PΓL(2, qn)-equivalent. The converse does not hold (see
[12] and [8] for further details).

The relation between the problem posed in (1.2) and the equivalence problem of linear
sets of the projective line is summarized in the following result.

Proposition 5.1. Let Lf and Lg be two Fq-linear sets of rank n of PG(1, qn). Then Lf
and Lg are PΓL(2, qn)-equivalent if and only if there exists an element ϕ ∈ ΓL(2, qn)
such that Im(fϕ(x)/x) = Im(g(x)/x).
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Linear sets of rank n of PG(1, qn) have size at most (qn− 1)/(q− 1). A linear set LU
of rank n whose size achieves this bound is called maximum scattered. For applications of
these objects we refer to [26] and [19].

Definition 5.2 ([15, 22]). A maximum scattered Fq-linear set LU of rank n in PG(1, qn) is
of pseudoregulus type if it is PΓL(2, qn)-equivalent to Lf with f(x) = xq or, equivalently,
if there exists an element ϕ ∈ GL(2, qn) such that

LUϕ = {〈(x, xq)〉Fqn : x ∈ F∗qn}.

By Proposition 5.1 and Corollary 1.2, it follows

Proposition 5.3. An Fq-linear set Lf of rank n of PG(1, qn) is of pseudoregulus type if
and only if f(x) is equivalent to xq

i

for some i with gcd(i, n) = 1.

For the proof of the previous result see also [20].
The known pairwise non-equivalent families of q-polynomials over Fqn which define

maximum scattered linear sets of rank n in PG(1, qn) are

1. fs(x) = xq
s

, 1 ≤ s ≤ n− 1, gcd(s, n) = 1 ([4, 11]),

2. gs,δ(x) = δxq
s

+ xq
n−s

, n ≥ 4, Nqn/q(δ) /∈ {0, 1}1, gcd(s, n) = 1 ([23] for s = 1,
[24, 27] for s 6= 1),

3. hs,δ(x) = δxq
s

+ xq
s+n/2

, n ∈ {6, 8}, gcd(s, n/2) = 1, Nqn/qn/2(δ) /∈ {0, 1}, for
the precise conditions on δ and q see [9, Theorems 7.1 and 7.2]2,

4. kb(x) = xq + xq
3

+ bxq
5

, n = 6, with b2 + b = 1, q ≡ 0,±1 (mod 5) ([10]).

Remark 5.4. All the previous polynomials in cases 2, 3, and 4 above are examples of
functions which are not equivalent to monomials but the set of directions determined by
their graph has size (qn − 1)/(q − 1), i.e. the corresponding linear sets are maximum
scattered. The existence of such linearized polynomials is briefly discussed also in [16,
p. 132].

For n = 2 the maximum scattered Fq-linear sets coincide with the Baer sublines. For
n = 3 the maximum scattered linear sets are all of pseudoregulus type and the correspond-
ing q-polynomials are all GL(2, q3)-equivalent to xq (cf. [21]). For n = 4 there are two
families of maximum scattered linear sets. More precisely, if Lf is a maximum scattered
linear set of rank 4 of PG(1, q4), with maximum field of linearity Fq , then there exists
ϕ ∈ GL(2, q4) such that either fϕ(x) = xq or fϕ(x) = δxq + xq

3

, for some δ ∈ F∗q4 with
Nq4/q(δ) /∈ {0, 1} (cf. [13]). It is easy to see that Lf1 = Lfs for any s with gcd(s, n) = 1,
and fi is equivalent to fj if and only if j ∈ {i, n− i}. Also, the graph of gs,δ is GL(2, qn)-
equivalent to the graph of gn−s,δ−1 .

In [23, Theorem 3] Lunardon and Polverino proved that Lg1,δ and Lf1 are not
PΓL(2, qn)-equivalent when q > 3, n ≥ 4. This was extended also for q = 3 [10,
Theorem 3.4]. Also in [10], it has been proven that for n = 6, 8 the linear sets Lf1 , Lgs,δ ,
Lhs′,δ′ and Lkb are pairwise non-equivalent for any choice of s, s′, δ, δ′, b.

In this section we prove that one can find for each q > 2 a suitable δ such that Lg2,δ
of PG(1, q5) is not equivalent to the linear sets Lg1,µ of PG(1, q5) for each µ ∈ F∗q5 , with
Nq5/q(µ) /∈ {0, 1}. In order to do this, we first reformulate Theorem 1.5 as follows.

1This condition implies q 6= 2.
2Also here q > 2, otherwise the linear set defined by hs,δ is never scattered.
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Theorem 5.5 (Theorem 1.5). Let f(x) and g(x) be two q-polynomials over Fq5 such that
Lf = Lg . Then either Lf = Lg is of pseudoregulus type or there exists some λ ∈ F∗q5 such

that g(x) = f(λx)/λ or g(x) = f̂(λx)/λ holds.

From [27, Theorem 8] and [24, Theorem 4.4] it follows that the family of Fq-subspaces
Ugs,δ , s /∈ {1, n − 1}, gcd(s, n) = 1, contains members which are not ΓL-equivalent to
the previously known Fq-subspaces defining maximum scattered linear sets of PG(1, qn).
Our next result shows that the corresponding family Lgs,δ of linear sets contains (at least
for n = 5) examples which are not PΓL-equivalent to the previously known maximum
scattered linear sets.

Theorem 5.6. Let g2,δ(x) = δxq
2

+ xq
3

for some δ ∈ F∗q5 with N(δ)5 6= 1. Then Lg2,δ is
not PΓL(2, q5)-equivalent to any linear set Lg1,µ and hence it is a new maximum scattered
linear set.

Proof. Suppose, contrary to our claim, that Lg2,δ is PΓL(2, q5)-equivalent to a linear set
Lg1,µ . From Proposition 5.1 and Theorem 5.5, taking into account that Lg1,µ is not of
pseudoregulus type, it follows that there exist ϕ ∈ ΓL(2, q5) and λ ∈ F∗q5 such that either
(g2,δ)ϕ(x) = g1,µ(λx)/λ or (g2,δ)ϕ(x) = ĝ1,µ(λx)/λ. This is equivalent to say that there
exist α, β, A, B, C, D ∈ Fq5 with AD−BC 6= 0 and a field automorphism τ of Fq5 such
that {(

A B
C D

)(
xτ

g2,δ(x)τ

)
: x ∈ Fq5

}
=

{(
z

αzq + βzq
4

)
: z ∈ Fq5

}
,

where N(α) 6= N(β) and αβ 6= 0. We may substitute xτ by y, then

α(Ay +Bδτyq
2

+Byq
3

)q + β(Ay +Bδτyq
2

+Byq
3

)q
4

= Cy +Dδτyq
2

+Dyq
3

for each y ∈ Fq5 . Comparing coefficients yields C = 0 and

αAq + βBq
4

δq
4τ = 0, (5.1)

βBq
4

= Dδτ , (5.2)
αBqδqτ = D, (5.3)

αBq + βAq
4

= 0. (5.4)

Conditions (5.2) and (5.3) give

Bq
4−q = δ(q+1)τα/β. (5.5)

On the other hand from (5.4) we get Aq = −Bq3αq2/βq2 and substituting this into (5.1)
we have

Bq
3−q4 = δq

4τβq
2+1/αq

2+1. (5.6)

Equations (5.5) and (5.6) give N(β/α) = N(δ)2τ and N(α/β)2 = N(δ)τ , respectively.
It follows that N(δ)5τ = 1 and hence N(δ)5 = 1, a contradiction.
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6 Open problems
We conclude the paper by the following open problems.

1. Is it true also for n > 5 that for any pair of q-polynomials f(x) and g(x) of Fqn [x],
with maximum field of linearity Fq , if Im(f(x)/x) = Im(g(x)/x) then either there
exists ϕ ∈ ΓL(2, qn) such that fϕ(x) = αxq

i

and gϕ(x) = βxq
j

with N(α) = N(β)
and gcd(i, n) = gcd(j, n) = 1, or there exists λ ∈ F∗qn such that g(x) = f(λx)/λ

or g(x) = f̂(λx)/λ?

2. Is it possible, at least for small values of n > 4, to classify, up to equivalence, the
q-polynomials f(x) ∈ Fqn [x] such that | Im(f(x)/x)| = (qn − 1)/(q − 1)? Find
new examples!

3. Is it possible, at least for small values of n, to classify, up to equivalence, the q-
polynomials f(x) ∈ Fqn [x] such that | Im(f(x)/x)| = qn−1 + 1? Find new exam-
ples!

4. Is it possible, at least for small values of n, to classify, up to equivalence, the q-
polynomials f(x) ∈ Fqn [x] such that in the multiset {f(x)/x : x ∈ F∗qn} there is a
unique element which is represented more than q − 1 times? In this case the linear
set Lf is an i-club of rank n and when q = 2, then such linear sets correspond to
translation KM-arcs cf. [14] (a KM-arc, or (q + t, t)-arc of type (0, 2, t), is a set of
q+t points of PG(2, 2n), such that each line meets the point set in 0, 2 or in t points,
cf. [17]). Find new examples!

5. Determine the equivalence classes of the set of q-polynomials in Fq4 [x].

6. Determine, at least for small values of n, all the possible sizes of Im(f(x)/x) where
f(x) ∈ Fqn [x] is a q-polynomial.
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[9] B. Csajbók, G. Marino, O. Polverino and C. Zanella, A new family of MRD-codes, Linear
Algebra Appl. 548 (2018), 203–220, doi:10.1016/j.laa.2018.02.027.
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