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Abstract. Variations of the basic string-alignment algorithm are commonly used for the detection and

classification of speech-recognition errors. In this procedure, reference and system-output hypothesis speech

transcriptions are first aligned using the string-alignment algorithm that is based on primitive edit operations. The

edit operations needed to transform one transcription into the other are then tallied as speech-recognition errors.

The algorithms normally detect approximately the same total number of errors; however, they can produce
different error classifications. This paper investigates these differences and several criterion functions that can be

used for the comparison and evaluation of the algorithms for the detection and classification of speech-recognition

errors. The proposed criterion functions were used for the experimental evaluation of the standard algorithms that
are implemented as part of the CUED HTK and the NIST SCTK, and were used for the detection and
classification of phone-recognition errors from the TIMIT speech database.
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Kriteriji za ovrednotenje samodejnih postopkov ocenjevanja

razpoznavalnikov govora

Povzetek. Za odkrivanje in razvr§¢anje napak pri samodej-
nem razpoznavanju govora se uporablja ve¢ razli¢ic osnovnega
postopka poravnave nizov simbolov. Pri tem postopku se naj-
prej poravna referenéne in samodejno tvorjene govorne prepise
in nato se ugotavlja razlike med njimi v smislu napak vrivanja,
izbrisa in zamenjave govornih enot. Omenjene razli¢ice pona-
vadi odkrijejo priblizno isto skupno Stevilo napak, vendar se
med sabo razlikujejo po kon¢ni razvrstitvi odkritih napak. V
¢lanku raziskujemo te razlike in tudi kriterijske funkcije, ki bi
jih bilo mogoce uporabiti za primerjavo in ocenjevanje postop-
kov za odkrivanje in razvr$¢anje napak pri samodejnem razpo-
znavanju govora. S predlaganimi kriterijskimi funkcijami smo
ocenili razlike med tovrstnimi postopki, ki so del programskih
paketov CUED HTK in NIST SCTK ter so bili uporabljeni za
odkrivanje in razvr§€anje napak pri samodejnem razpoznavanju
glasov iz govorne zbirke TIMIT.

Kljuéne besede: razpoznavanje govora, postopek ocenjevanja,
razvrianje napak, ujemanje razvrstitev, matrika razvrstitev

1 Introduction

The evaluation of automatic speech-recognition (ASR)
systems relies on the automated scoring procedures that
detect and classify ASR errors by comparing the refer-
ence and system-output hypothesis transcriptions of test
utterances. The comparison is performed using the string-
alignment algorithm that computes the string-edit dis-
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tances [14, 8, 1, 7] between pairs of speech transcrip-
tions. The algorithm produces the optimum alignment
between a pair of speech transcriptions and determines
the minimum-cost sequence of the basic edit operations
needed to transform one transcription into the other. The
basic edit operations are then tallied as ASR errors in
terms of speech-unit substitutions, deletions and inser-
tions [4].

The optimum alignment is usually assigned so as to
minimize the total ASR-error rate (TER), which is the
sum of insertion, deletion and substitution errors, di-
vided by the number of speech units in the reference tran-
scriptions. The minimum number of substitutions, dele-
tions and insertions needed to transform one speech tran-
scription into the other is known as the Levenshtein dis-
tance [9] between the two transcriptions. A well-known
feature of this distance is that multiple different optimum
alignments may exist for the same pair of transcriptions
with the same distance value [7]. Consequently, multiple
different ASR errors may be detected and classified from
the same pair of transcriptions. This reduces the diagnos-
tic value of examining the resulting ASR-error classifica-
tions, and it can even hinder the understanding of ASR
failure mechanisms.

A variation of the basic string-alignment algorithm
that computes the so-called weighted string-edit dis-
tance [11] is often used to improve the ASR-error classi-
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fication. This distance model assumes that the basic edit
operations are weighted by some edit costs that are sym-
bol dependent. These edit costs can be assigned accord-
ing to some prior knowledge about the ASR errors. For
instance, the edit costs can be assigned according to the
a-priori probability of the individual ASR errors, or even
according to the time distance between the speech units
in a pair of speech transcriptions [2].

In any case, different variations of the string-
alignment algorithm produce different resulting ASR-
error classifications, and determining which of them are
more correct is not a trivial task [2]. Usually, it is not
feasible to manually examine all the ASR errors and to
make a decision about which of them are detected and
classified correctly and which are not. A system for the
automated evaluation of hypothesis ASR-error classifica-
tions would require a database of the reference ASR-error
classifications that are produced from the same pairs of
speech transcriptions as the hypothesis ones. To the best
of our knowledge, there is no such database that could be
used for this purpose.

We decided to investigate whether any indication of
which scoring algorithm produces more correct ASR-
error classifications can be drawn directly from the clas-
sifications themselves. We examined several criterion
functions that are well-known in statistics and are com-
monly used for measuring the agreements between differ-
ent classifications or clusterings of the same set of objects.
We conducted several experiments using different scor-
ing algorithms that produced different ASR-error classifi-
cations from the same pairs of speech transcriptions and
the obtained classifications were then evaluated using the
proposed criterion functions.

2 Background

Conventional ASR systems rely on subword acoustic
models, such as the phonetic hidden Markov mod-
els (HMMs), where each HMM represents a context-
dependent allophone. Such models are often developed
and evaluated separately using the phone-recognition er-
ror rate as a performance measure. The phone-recognition
error rate is obtained by aligning the reference and hy-
pothesis phonetic transcriptions of the test utterances and
tallying the phone-recognition errors in the same manner
as discussed above. The scoring algorithms used for the
classification of phone-recognition errors are normally
the same as those used for the classification of word-
recognition errors.

We limited ourselves to an analysis of the phone-
recognition-error classifications produced by different
scoring algorithms. The reason for this decision was
that certain assumptions about phone-recognition errors
can undoubtedly be derived from general psycho-acoustic
knowledge about the human system of speech production

L

ASR
Speech System
Database ( 4

Reference Transcriptions «IIIMIIII* Hypothesis Transcriptions )

Scoring Algorithm 2 '

Scoring Algorithm 2

Evaluation?

TER =45.51 % TER =48.67 %

Figure 1. An illustration of the problem investigated in this pa-
per. The two graphically represented confusion matrices were
obtained using two different scoring algorithms from the same
pairs of phonetic transcriptions of the TIMIT speech recordings.
Their different levels of gray correspond to the frequencies of
the confusion pairs. The columns and rows of the two matrices
correspond to the 48 TIMIT phonetic units. These phonetic units
are ordered by their classification into the phone classes (vow-
els, sonorants, plosives, etc). The bottom row and the right—
most column of both matrices correspond to the null symbol,
i.e., phone insertions and deletions.

and perception, and these assumptions are the basis for
the evaluation of the proposed criterion functions that are
more general and can also be used for the evaluation of
the word-recognition-error classifications.

The usual ASR-scoring algorithms normally provide
not only the total ASR-error rate but also a detailed list of
ASR-error classifications, where the individual errors are
classified as speech-unit substitutions, insertions or dele-
tions. Each ASR error can be represented as a confusion
pair, where the speech-unit deletions are considered to be
simply substitutions of speech units with a null unit, and
vice verse for insertions. The frequencies of all the con-
fusion pairs are often presented in a matrix form that is
called a confusion matrix.

Fig. 1 illustrates the investigated problem. Two differ-
ent scoring algorithms, which are actually implemented
as part of the NIST SCTK [12], calculated similar to-
tal phone-recognition error rates from the same pairs of
phonetic transcriptions, however, they produced two very
different confusion matrices. The two matrices represent
two different phone-recognition error classifications and
there are several reasons why we would like to evaluate
which of them is more correct. One of the reasons is that
the more correct error classification has a higher diagnos-
tic value and can thus help in improving the developed
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ASR system. Another reason would be that certain ASR
error-correction algorithms can improve their ability to
correct errors if these are classified more correctly.

3 Statistical analysis of confusion matrices

Many different statistical measures were proposed to
measure the degree of association between two categorial
variables and most of them are derived from the contin-
gency table [5]. These measures include the chi-squared,
phi-squared and G-test, Cramer’s V and the lambda statis-
tics, joint entropy, mutual information, etc.

Our confusion matrices are special examples of con-
tingency tables, where the two corresponding variables
range over the same set of categories (i.e., speech units).
One variable is associated with the reference speech tran-
scriptions and the other with the hypothesis ones. The
null symbol, which is used for the representation of dele-
tion and insertion errors, is also considered as a cate-
gory by itself in the same way as all the other speech
units. Measuring the association between two such vari-
ables can be interpreted as measuring the agreement be-
tween two (speech) classifications, and such an agree-
ment is generally assessed using statistical measures like
the raw agreement, the chance-corrected agreement x, the
chance-independent agreement ¢, etc.

We studied many of the mentioned measures and later
in the paper we present some of those that seem to be
the most appropriate for the analysis of the ASR scoring
results.

Let us focus now on the basic features of the ASR-
related confusion matrices. Suppose that we obtained dif-
ferent total phone-recognition-error rates and also differ-
ent confusion matrices using two different ASR scoring
algorithms from the same pairs of reference and hypoth-
esis phonetic transcriptions, as illustrated in Fig.1. From
the illustration it is clear that in the left-hand matrix the
phone-recognitions errors are distributed more uniformly
(randomly) over the pairs of phonetic units than is the
case with the right-hand matrix. Considering the nature
of the system of human speech production and perception,
one would intuitively expect that the less random distribu-
tion of phone-recognition errors should be the more cor-
rect. This intuition is based on the general psychoacous-
tic observation that confusions between the phonetic units
within the same broad-phonetic classes are more likely to
happen than confusions between the phonetic units from
different broad-phonetic classes, e.g., it is more likely that
a sonorant is confused with another sonorant than with a
non-sonorant|3].

On the other hand, the first scoring algorithm a de-
tected considerably lower total number of errors (TER =
45.51%) than the second one (TER = 48.67%). How-
ever, only from these two values we cannot make any
obvious assumption about which of the two algorithms
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Figure 2. Two ASR scoring algorithms produced two different
alignments of the reference and hypothesis phonetic transcrip-
tions. The alignments are represented as the sequences of the
vertically aligned confusion pairs. The symbol *-’ denotes the
null symbol that is used for the representation of deletion and
insertion errors. The highlighted confusion pairs represent the
phone-recognition errors that were detected and classified by the
two ASR scoring algorithms.

produces the more correct error classification. More pre-
cisely, a smaller number of detected errors does not nec-
essarily indicate that the corresponding algorithm detects
errors more correctly.

Let us illustrate this with an example. Fig 2 shows
the two phonetic alignments of the reference and hypoth-
esis phonetic transcriptions that were produced by the two
ASR scoring algorithms from Fig.1. The first algorithm
detected fewer errors than the second one; however, if
the two phonetic segmentations are considered, the sec-
ond confusion pairs are obviously more correct than the
first ones. In other words, it is obvious from the two pho-
netic segmentations that the vowel [ao] is not substi-
tuted with the plosive [p]; itis inserted and then the plo-
sive is deleted.

4 Measuring the agreement between two
classifications

The total ASR error rate is the only nominal measure that
we have for now, and it is derived directly from the confu-
sion matrix. This measure is normally used for the eval-
uation of ASR systems, and, as it is clear from the above
example, it cannot be used for the evaluation of the ASR
scoring algorithms that are used for the evaluation of ASR
systems. The total error rate depends only on the sum of
all the detected errors; it does not consider their distribu-
tion, which is arguably important. We studied many other
nominal measures that can also be derived from the confu-
sion matrix and consider the distribution of errors. These
measures are well known in statistics and are used for
measurements of the agreement between two partitions
(classifications/clusterings) of a set of objects [6, 10].

The first group of measures is derived directly from
the confusion matrix. Among many such measures we
focused on the following:

e the chance-corrected agreement k,
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Cramer’s V measure of association,
Goodman-Kruskal’s A,

the normalized mutual information NM I,
the likelihood ratio G-test.

The Cohen’s x coefficient is a statistical measure of
inter-classifier agreement. If the two classifiers are in
complete agreement then x = 1. If there is no agree-
ment between the two classifiers then x < 0. Cramer’s
V is a measure of association that is based on adjusting
the Pearson 2 significance to factor out sample size. It
ranges from O to 1, where 1 indicates a strong relationship
between variables and 0 indicates no relationship. The
Goodman-Kruskal’s A is a measure of the proportional
reduction in error. The values for A range from zero (no
association between two variables) to one (perfect asso-
ciation). The normalized mutual information is used for
the test of independence. If one variable is completely
dependent on the other, then the NMI takes its maximum
value of 1. If the two variables are independent, then the
NMI equals 0. The likelihood ratio G-test is a test for
goodness of fit to a distribution and for independence in
contingency tables: the higher the value the more depen-
dent are the two variables. When one variable is unrelated
(i.e., only randomly related) to the other variable the like-
lihood ratio equals 0.

Among the above measures only « takes its maximum
value of 1 if and only if the total error rate equals zero. In
this case the confusion matrix is diagonal. The other three
measures take their maximum value of 1 when the confu-
sion matrix has exactly one non-zero element in each row
and column. This means that they can also take the value
of 1 when the total error rate is not zero and some speech
units are always confused with the same, other speech
units.

The next group of measures is normally used for mea-
suring the agreement between two observers that make
statistical decisions on a given hypothesis [10]. One of
them is considered as a reference observer and the other
can make Type I and Type II errors, also known as false-
positive and false-negative decisions. The results of their
decisions are recorded and analysed using 2 X 2 contin-
gency tables. For our evaluation problem, such a table is
defined as shown in Fig. 3.

We examined two hypotheses that one could formu-
late in the context of the discussed evaluation problem.
The first hypothesis is used for the strict comparison of
two speech classifications, i.e., the measure of agreement
between two classification takes its maximum value if and
only if the total number of errors is zero. The hypothesis
is formulated as follows:

H §a): The given speech unit is classified
in the selected speech class.

The decisions on the above hypothesis are assumed to
be taken individually for each of the considered speech

Automatic classifier

Hypothesis
test [

accepted J[ rejected |
true positive | false negative
ted
Reference @ (Nyy) (N10)
classifier : false positive true negative
rejected
_ No1) (Noo)

Figure 3. The 2 x 2 contingency table that is defined with the
second group of statistical measures.

classes and the results are summed over all of them. Such
a hypothesis is, for instance, used for the statistical anal-
ysis of confusion matrices that is implemented as part of
the LingPipe suite of Java libraries for the linguistic anal-
ysis of human language.

The number of true/false positive/negative decisions
on the above hypothesis can be derived directly from
the usual confusion matrix. Let C denote a k x k con-
fusion matrix, whose elements m;; denote the number
of detected confusions between the i-th and j-th speech
classes. Let then n = Zi, ;i denote the total number
of all the classified speech units, including the number
of all the null units that are associated with insertion and
deletion errors. The number of all the four possible deci-

sions on H ]("') are then defined as follows:

N1y :Zimu’ , Nig=Nopp=n—Ny ,
Noo = kn — (N11 + N1io + Not)

~
e

The second hypothesis is normally used for the com-
parison of two clusterings of the same set of objects. The
hypothesis is formulated as follows:

H {b).‘ The given two speech units are classified
in the same speech class.

Let n;. and n.; be the i-th row and j-th column sums of
C, respectively. The number of the four possible deci-
sions H 1(b) can also be derived directly from the confusion

matrix and they are then defined as follows:

Nu=3; ("),
Nio=>, (") =Nu, Noo=>;("y)—Nu,
Noo = (5) = (N11 + Nig + Noy)

Many different measures of agreement between two clas-
sifications/clusterings are defined as functions of the num-
ber of all the four possible decisions [5, 6]. We focused
on the following most widely used:

the Fowlkes-Mallows’s index,
the Jaccard index,

the Adjusted Rand index,

the Yules Q and Yules Y indexes.

All the above indexes take their maximum value of 1
when the number of false-positive and false-negative de-
cisions both equal 0, i.e., the two classifications are in
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complete agreement. On the other hand, if the number
of true-positive and true-negative decisions both equal 0,
then the values of these indexes are equal to or less than
zero, i.e., the two classifications are in complete disagree-
ment.

We computed and compared all the presented statis-
tical measures from the confusion matrices obtained by
the different ASR scoring algorithms from the same pairs
of phonetic speech transcriptions. Our basic assumption
here is that these measures should indicate which ASR
scoring algorithm produces the more correct ASR-error
classification; the higher the value, the less randomly the
ASR errors are distributed over the confusion pairs and
thus, the more correct is the ASR-error classification.

Besides the above statistical measures and the usual
total error rate, TER, we also observed several simple ra-
tios that provide additional information about the distri-
bution of the classified ASR errors. These ratios are the
following:

e the broad-class error rate (BCER),
e the Levenshtein error ratio (LER),
e the indels error ratio (IDER),

The broad-class error rate, BCER, is derived from the
usual TER, where the ASR errors that occur within the
broad speech classes are considered as ASR hits. The
BCER is thus always lower or equal to the TER. Ac-
cording to the mentioned psychoacoustic observations, a
lower value of the BCER may indicate more correct ASR-
error classifications. The Levenshtein error ratio, LER, is
simply the relative ratio between the TER obtained by a
given ASR scoring algorithm and the TER obtained by
the ASR scoring algorithm that is based on the computa-
tion of the Levenshtein distance. The LER thus provides
information on how many more ASR errors than the min-
imum possible number of detected ASR errors the given
ASR scoring algorithm detected. The last ratio, IDER, is
the sum of all the detected insertion and deletion errors
divided by the sum of all the detected errors.

We cannot make any obvious assumptions about the
expected values of the LER and IDER; however, one
would naturally expect that the ASR scoring algorithm
should not detect too many additional ASR errors and
that the majority of detected errors are substitutions and
not perhaps insertions and deletions. This means that low
values are preferred for the LER and IDER.

5 ASR scoring algorithms

The ASR scoring algorithm that is based on the compu-
tation of the Levenshtein distance between speech tran-
scriptions detects the minimum possible number of er-
rors that can, in general, be detected from given pairs of
speech transcriptions. Let us denote this basic variant of
the scoring algorithm as LSED.
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The ASR scoring algorithms implemented in some
widely used ASR scoring packages, like the NIST
SCTK [12] and CUED HTK HResults [15], are based on
the string-edit distance that assigns a cost value to substi-
tutions that is higher than the cost value assigned to in-
sertions and deletions. The original motivation for using
such costs is in the redistribution of the classified ASR
errors from substitutions, on one hand, to insertions and
deletions on the other. This redistribution increases the
so-called ASR correctness, which is defined as the per-
centage of all the speech units in the reference transcrip-
tions classified as ASR hits.

The basic NIST SCTK scoring algorithm assigns a
cost value of 4 to substitutions and 3 to insertions and
deletions. Similarly, the CUED HTK HResults assigns
10 to substitutions and 7 to insertions and deletions. Let
the SCTK algorithm be denoted as NSED and the HTK
one as HSED.

The last investigated ASR scoring algorithm is also
implemented as part of the NIST SCTK and is based on
the so-called time-mediated string-alignment algorithm.
This algorithm is the only one that also considers the
time-of-occurrence of individual speech units. In this al-
gorithm, the costs that are assigned to the basic string-edit
operations are time dependent and are based on the begin-
ning and ending times of the speech units. Let this algo-
rithm be denoted as NTMA. A more detailed explanation
of this algorithm is given in the documentation that is part
of this toolkit

6 Experimental results

For the experiments we built a simple phone recognizer
using the CUED HTK toolkit [15] and the TIMIT speech
database [13]. The recognizer was deliberately designed
to be simple and to produce a relatively high error rate.
This is because our goal was not to improve the ASR ac-
curacy, but to study the differences in the ASR-error clas-
sifications obtained by different ASR scoring algorithms.

The structure of the phone recognizer is very con-
ventional. The left-to-right three-state HMMs with mix-
tures of eight Gaussian densities per state were used for
all 48 context-independent monophone models. No lan-
guage model was used. The parameters of the monophone
HMMs were estimated from the training set of the TIMIT
database using the Baum-Welch algorithm, as proposed
in [15]. Hypothesis phonetic transcriptions and segmenta-
tions were then generated for all the speech recordings in
the TIMIT database using the usual Viterbi beam-search
algorithm without pruning.

All the confusion matrices that were obtained using
the four ASR scoring algorithms mentioned above were
then analysed using all the considered statistical measures
and ratios.

The obtained results are given in Table 1. The val-



ASR scoring algorithm
LSED HSED NSED | NTMA
K 0.548 0.552 0.553 0.523
I ()Y 0.564 0.579 0.578 0.560
A 0.530 0.537 0.538 0.510
NMI 0.500 0.519 0.518 0.541
GT || 360533 || 378426 | 376703 | 394888
FM 0.562 0.566 0.567 0.540
J 0.391 0.395 0.396 0.369
Ia AR 0.553 0.557 0.558 0.530
YQ 0.985 0.986 0.986 0.983
YY 0.844 0.845 0.846 0.833
FM 0.411 0.403 0.407 0.384
J 0.256 0.253 0.256 0.237
b AR 0.390 0.382 0.386 0.361
YQ 0.942 0.937 0.939 0.929
YY 0.705 0.695 0.698 0.679
TER 45.51 45.70 45.52 48.67
BCER 28.03 28.76 28.35 25.20
LER - 0.42 0.02 6.94
IDSR 29.28 36.23 34.77 34.42

Table 1. The values of all the considered evaluation measures
(given in abbreviations) obtained by different ASR scoring al-
gorithms.

ues in bold are those that are considered to be the best
for a given measure. As discussed earlier, intuitively, the
LSED algorithm should produce the least, and NTMA the
most, correct ASR-error classifications. However, as it is
clear from the table, only three measures, i.e., the NMI,
BCER and the G-test, are considered to be the best for
the NTMA, and the LSED obtained the best values in the
IIb group of statistical measures. We attributed this to the
fact that the NTMA detected considerably more ASR er-
rors (LER = 6.94%) than any other algorithm, and this
may be reflected in most of the proposed statistical mea-
sures, especially in the group IIb.

From this perspective it seems that the most relevant
evaluation measures are those in the first group. Their val-
ues indicate that the HSED, NSED, NTMA produce more
correct ASR-error classifications than the basic LSED al-
gorithm. However, these results also indicate that the
NTMA is perhaps not an optimal ASR scoring algorithm
and that some further improvements are possible.

7 Conclusions and future work

Several statistical measures were investigated that may be
used for the development and evaluation of ASR scoring
algorithms. The presented results of the evaluation of the
four widely-used ASR scoring algorithms indicate that
further improvements are possible in this research area.
The presented measures provide an evaluation tool that
can help with such improvements. We believe that any
improvements will be indicated at least by an increase in
the values of the NMI, BCER and the G-test and a de-
crease in the value of the LER.

In our future work we will focus on the development
of an improved ASR-scoring algorithm that is based on
the string-edit costs that are time and symbol dependent,
and we will use the presented measures for its evaluation.
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