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Abstract
A comparative study of genetic function approximation (GFA) and multiple linear regression analysis(MLR) techniques
for understanding 2D quantitative structure-activity relationship (2D-QSAR) on N-methyl-D-aspartate (NMDA) in-
hibitors was conducted using distance and connectivity based topological indices (Wiener, Balaban and Randic
Indices). Models generated were used to predict the inhibitory activity for a set of test compounds. The results indicat-
ed that the GFA method proved to be superior of the two in developing 2D QSAR model in all the cases (Uni- as well as
multi-variate). Individual topological indices have also been studied to understand their correlation potential. In all the
cases (Wiener, Balaban and Randic), the results gave a high value of correlation (R2 > 0.80, Q2 > 0.79) for the GFA
method while the MLR method yielded poor correlation (R2 < 0.60 and Q2 < 0.55). Among the three indices, Randic
connectivity index proved to be the best in describing the 2D-QSAR for this series of NMDA inhibitors (R2 = 0.893, Q2

= 0.880, F-ratio = 216.393)
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1. Introduction

Distance and connectivity based topological indices,
their correlation potential and applications in understand-
ing the quantitative structure-activity relationship (QSAR)
has been a matter of great interest to the chemistry com-
munity for the past decade or so.1–7 The beauty of these in-
dices is their easy understandability and applicability.
Actual applications of topological indices do not limit to
small-sized molecules only, but have crossed the tradi-
tional frontiers and have been successfully applied to big-
ger molecules, such as proteins and RNAs.8,9 Some recent
works studied the similarities and relationships between
different topological indices and justified in principle, the
selection of a group of arbitrary topological indices (e.g.

W, J, χ, or M1) for evaluation of a model without using all
the known indices.10 Use of topological indices has been
well illustrated in the literature.11–18 Use of topological in-
dices in understanding the Glycine/NMDA receptor inhi-
bition has not been reported so far.

It has been observed that N-methyl-D-aspartate
(NMDA) receptor play a key role in several abnormal
brain processes such as Alzheimer’s disease, Huntington’s
disease, epilepsy, and cerebral ischemia.19–23 The NMDA
receptor requires the occupation of two distinct recogni-
tion sites by glutamate and glycine, the latter at the so-
called Gly-NMDA site for activation.24,25 Glycine acts as
an endogenous coagonist at its site.26,27 Most of the selec-
tive receptor agonists available are based on NMDA, the
diagnostic ligand for these receptors. NMDA itself is an
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analogue of aspartate (can also act as a weak agonist at
most glutamate receptors). Although this compound acts
selectively at NMDA receptors, it cannot discriminate be-
tween receptor subtypes. A variety of potent and selective
agonists to NMDA receptor are present. To mention a few;
trans-ACBD,28 cis-ACPD,29 D-aspartic acid,29 L-aspartic
acid ( endogenous NMDA agonist ),29 CCMQ,30 D and L-
glutamic acid (D is less active than the L isomer),29,31 and
homoquinolinic acid.30

Auerbach et al.32 has suggested that the structural
studies indicate that the binding of agonists causes a con-
formational change in the S1–S2 binding site domains of
the protein. However, the details of the molecular events
that constitute the global conformational change in the
protein (“gating”) remain unknown. Use of binding free
energy/hydration free energy as an additional descriptor
in performing SAR studies can be of immense importance
in unraveling the chemistry of binding of molecules and
can perhaps serve as a tool for distinguishing agonists
from antagonists.33–37 A reliable method of evaluating
these free energies is by using Langevin dipoles.38,39

Some of the potent and competitive NMDA antago-
nists widely used are DL-AP5,40 D-AP5,40 DL-AP7(First
generation phosphono NMDA antagonist),41 CGP
37849,42 SDZ 220–581.43 With the discovery of the stimu-
latory action of glycine on the NMDA receptor, it was
found that these effects of glycine were blocked by
kynurenic acid KA, a weak and nonselective NMDA an-
tagonist.44,45 KA has a very weak affinity for the Gly-NM-
DA site and is not selective, having a similar potency as
that of an antagonist at both NMDA and non-NMDA re-
ceptors, kainate and AMPA. KA on chemical modifica-
tions, however, has produced compounds with very high
affinity.46–50 Recently, a structure-activity study of 5- and
7-substituted KA derivatives was presented.47 The biolog-
ical property analyzed was the functional antagonist po-
tency assessed by the determination of the apparent disso-
ciation constants for the antagonism of the depolarization
induced by NMDA. The remarkably important properties
of these compounds require more research on their struc-
ture-activity relationships (SAR).This article reports re-
sults of comparative 2D-QSAR study using two statistical
techniques namely MLR and GFA. Connectivity and dis-
tance based graph theoretical indices are used to perform
correlations with the inhibitory activity of NMDA deriva-
tives.

2. Molecular Modeling Methods

A series of 55 NMDA inhibitors51 with their inhibi-
tion data is taken to perform 2D-QSAR studies. In an at-
tempt to have a precise and detailed understanding of
QSAR, graph theoretical descriptors namely Wiener (W),
Randic (1χR) and Balaban (J) were used to describe 2D
QSAR for the aforementioned series of NMDA inhibitors.

In developing QSAR, logIC50 value was used as the de-
pendent variable. MLR and GFA methods are used for
performing correlation analysis.

Transformation of the chemical structures of these
NMDA inhibitors into a mathematical graph makes it pos-
sible to express their chemical structures by a single nu-
merical index. As it is well known, such a numerical index
characterizing a molecule (or a corresponding molecular
graph) is called a topological index.12–15 Therefore; a
topological index expresses topological information for a
given chemical structure. The advantage of the topologi-
cal indices is that they may be directly used as single mo-
lecular descriptors in QSAR as well as QSPR studies.
These relationships are mathematical models that enable
the prediction of activity or properties from their structur-
al parameters. The structures for the compounds were
generated and energy minimization procedures were car-
ried out using Sybyl 6.952 while Gasteiger Marsili charges
were assigned using Tripos force field. Cerius2®53 was
used to calculate the topological descriptors as well as to
perform Multiple Linear Regression (MLR) and Genetic
Function Approximation (GFA) analysis for the 2D
QSAR studies on Silicon Graphics® Octane2 duel proce-
ssor workstation.

2. 1. 2D-QSAR: Topological Indices Used

All the three topological indices, namely Wiener in-
dex (W), Randic (1χR) and Balaban (J) are well presented
in the literature.14,15 Therefore, they will be described here
rather briefly.

2. 1. 1. The Wiener Index (W)

In 1947 Wiener16 developed a number: Wiener num-
ber (W) that could characterize molecular branching.
Wiener himself correlated a number of properties with W
including boiling points and various thermodynamic pa-
rameters. Stiel and Thodos54 used W to predict critical
constant. Rouvray and Crafford55 correlated W with den-
sity, viscosity and surface tension. Popazova and Bon-
chev56 correlated W with chromatographic retention ti-
mes. The index has also been used in the prediction of an-
tibacterial activity.57

The Wiener index, W=W (G), of a graph is defined
as the half the sum of the elements of the distance matrix

(1)

where (dij) is the ijth element of the distance matrix D,
which denotes the shortest graph theoretical distance be-
tween vertices i and j in G. All the graphs are hydrogen
suppressed.
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2. 1. 2. The Randic Connectivity Index (1χχR)

In 1975 Randic proposed a topological index,17 that
has most wide utility in both QSPR and QSAR studies. It
makes use of vertices present in the chemical graph and is
therefore sensitive to the shape of the chemical cluster.
This is also known as molecular connectivity index.
Molecular connectivity has been extensively employed in
the QSPR and QSAR studies, by Keir and Hall. 12,56

The connectivity index χ = χ(G), of G is defined17 as

(2)

where δi and δj are the valences of the vertices i and j,
equal to the number of bonds connected to the atoms i and
j in G, representing the graph of a compound.

2. 1. 3. The Balaban Index (J)

The topological index of Balaban is based on the
distance matrix of the graph G and is known as averaged
distance sum connectivity index.10

The Balaban index J = J (G) of G is defined as:

(3)

where b is the number of bonds in G,  is the cyclomatic
number of G and di and dk (i or j = 1,2,3....N the number of
vertices in G) are the distance sums. Balaban Index has
been successfully used in the various QSAR and QSPR
studies.59,60

For understanding the quantitative structure-activity
relationships, statistical analysis using uni- as well as
multi-variate correlations were performed using multiple
linear regression (MLR) and genetic function approxima-
tion (GFA) techniques and the results were then com-
pared. First, a correlation matrix was derived, and then re-
gression parameters were obtained. The results were sum-
marized for comparison. In the case of GFA analysis lin-
ear, spline, quadratic, offset-quadratic and quadratic-
spline terms were used, with a population size of 100 and
number of generations as 10000. The value of add-new
term was kept at 25, keeping all the other values as default
with the initial length of equation at 4.

3. Results and Discussion

The structural descriptors (namely W, 1χR, and J) for
the NMDA inhibitors (training set) are given in Table 1-A.
It also records their biological inhibitory activities, ex-
pressed as logIC50. Table1-B reports the biological activi-
ty and the graph theoretical indices of the test set.

No. COMPOUND logIC50 W J 1χχR

01 3.037 761.0 2.0674 9.5754

02 3.182 881.0 2.0394 9.9692

03 2.980 881.0 2.0424 9.9692

04 2.236 658.0 2.1633 9.1647

05 2.547 559.0 2.1538 8.6647

06 2.624 908.0 2.0693 10.0966

07 2.592 773.0 2.1359 9.5586

08 2.818 773.0 2.1244 9.5586

09 2.310 882.0 2.1160 10.0966

10 0.301 1699.0 1.7016 12.6142

11 1.083 1790.0 1.6286 12.6142

12 1.086 1956.0 1.6115 13.1140

13 0.290 2036.0 1.7484 13.5629

14 0.602 1699.0 1.7168 12.6142

15 2.682 657.0 2.1308 9.0586

16 2.873 559.0 2.1472 8.6647

17 0.556 1842.0 1.7592 13.0417

18 0.653 2160.0 1.6523 13.5460

Table 1-A: Topological Indices and Biological (Inhibitory)
Activity of NMDA Inhibitors (Training set).
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No. COMPOUND logIC50 W J 1χR

37 2.004 226.0 2.4656 6.1647

38 2.004 269.0 2.5180 6.4880

39 0.260 1640.0 1.5886 11.9524

40 0.422 1900.0 1.5800 12.4524

41 0.418 2186.0 1.5065 12.9524

42 0.852 1622.0 1.6791 11.9692

43 0.467 1658.0 1.6540 11.9524

44 1.439 1456.0 1.6747 11.5586

45 –0.367 2051.0 1.4227 13.0249

46 –0.569 2132.0 1.6572 12.9904

47 2.004 488.0 2.4093 8.1471

48 2.004 572.0 2.4331 8.5409

49 2.004 566.0 2.4692 8.5577

50 1.021 1122.0 2.5847 10.7730

51 2.004 400.0 2.5770 7.5029

52 2.004 1242.0 1.8045 11.0586

53 2.004 400.0 2.5693 7.5029

No. COMPOUND logIC50 W J 1χR

19 0.892 1916.0 1.6780 13.0080

20 0.982 1956.0 1.6181 13.1142

21 0.903 2080.0 1.6988 13.5629

22 0.949 1505.0 1.7231 12.6142

23 0.556 3820.0 1.4348 16.0460

24 1.037 1357.0 1.9716 11.4524

25 0.342 2432.0 1.6148 14.0460

26 0.380 2160.0 1.6539 13.5460

27 0.954 4071.0 1.2735 16.5637

28 1.879 1006.0 2.1265 10.4693

29 1.068 2120.0 1.6419 13.5249

30 1.009 1997.0 1.6255 13.6142

31 0.778 1997.0 1.5811 13.6142

32 0.519 1738.0 1.6308 12.6142

33 1.806 403.0 2.4711 7.4861

34 0.602 1504.0 1.7732 11.9356

35 2.751 674.0 1.9440 9.1479

36 2.004 423.0 2.2261 7.6134
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Table 2 summarizes the comparison of uni- and mul-
tivariate analysis using GFA and MLR methods. The bi-
variate results have not shown any significant improve-
ment in the correlation coefficient and thus are excluded
from the table.

Table 2: Regression parameters, Quality of correlation of logIC50)
with the Structural Descriptors for NMDA Inhibitors.

Index Correlation Parameter MLR GFA
W R2 0.537 0.891

Q2 0.459 0.887
F-ratio 61.593 154.289

1χR R2 0.565 0.893
Q2 0.527 0.880

F-ratio 68.722 216.393

J R2 0.461 0.818
Q2 0.419 0.796

F-ratio 45.271 117.103

W, 1χR ,J R2 0.566 0.932
Q2 0.429 0.923

F-ratio 22.197 233.431

The logIC50 for the NMDA inhibitors were estimat-
ed using the best correlation obtained from both MLR as
well as GFA techniques, and such estimated logIC50 val-
ues are recorded in Table- 3 for both MLR and GFA. The
residuals demonstrate the quality of correlations, i.e. dif-
ference between the observed and estimated logIC50 val-
ues and are given in Table-3. Table-4 presents the results
obtained for the test set. Also, it records the regression pa-
rameters estimated for the test set. The correlation param-
eters obtained also indicate that GFA performs better as
compared to MLR. In the training set, the prediction pow-
er of GFA was very high and also it performed better in
estimating the activity values for the test set. As seen in
equation 2, the spline terms used in the case of GFA are
truncated power splines and are denoted by angle brackets
(<, >).

Table 3: Observed and Estimated logIC50 values of NMDA
Inhibitors (training set) from the regression equations (1) (MLR)
and (2) (GFA)

(MLR) logIC50= 8.43042 – 0.00025036W – 
1.24785J – 0.377459(1χR) (1)

(GFA) logIC50= 0.668898 + 0.011932 <1505 – W> 
+ 6.90507<J – 2.11598>2 – 0.010232<1250 – W> 
– 5.69173<J-1.77322> (2)

Linear GFA

No. logIC50 logIC50 Resd. logIC50 Resd.
(Obs) (Pred) (Pred)

01 3.04 1.89 1.15 2.78 0.26
02 3.18 1.78 1.41 2.85 0.33
03 2.98 1.78 1.20 2.85 0.13

No. COMPOUND logIC50 W J 1χR

54 1.041 1456.0 1.6852 11.5585

55 0.602 1504.0 1.8140 11.9356

No. COMPOUND logIC50 W J 1χχR

01 1.585 1930 1.7385 11.9356

02 2.004 1456 1.6734 11.5586

03 3.348 1261 1.8248 11.5586

04 1.561 1568 1.7981 11.9524

05 1.535 1956 1.7249 13.1142

06 3.477 1275 1.6921 11.0585

07 1.446 2509 1.534 14.5974

08 1.630 2574 1.675 14.3294

09 1.513 2078 1.6368 13.4356

10 2.913 644 2.171 9.0754

Table 1-B: Structure and Experimental logIC50 values of NMDA
Inhibitors (Test Set).
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Linear GFA

No. logIC50 logIC50 Resd. logIC50 Resd.
(Obs) (Pred) (Pred)

04 2.24 2.00 0.24 2.60 –0.36
05 2.55 2.14 0.41 2.57 –0.03
06 2.62 1.74 0.88 2.64 –0.02
07 2.59 1.89 0.71 2.67 –0.08
08 2.82 1.89 0.93 2.69 0.13
09 2.31 1.74 0.57 2.57 –0.26
10 0.30 1.03 –0.73 0.66 –0.36
11 1.08 1.02 0.06 0.66 0.42
12 1.09 0.88 0.21 0.66 0.42
13 0.29 0.74 –0.45 0.66 –0.37
14 0.60 1.03 –0.43 0.66 –0.06
15 2.68 2.03 0.66 2.64 0.04
16 2.87 2.14 0.74 2.59 0.29
17 0.56 0.90 –0.34 0.66 –0.11
18 0.65 0.74 –0.08 0.66 –0.01
19 0.89 0.90 –0.01 0.66 0.23
20 0.98 0.88 0.11 0.66 0.32
21 0.80 0.74 0.06 0.66 0.14
22 0.95 1.18 –0.23 0.66 0.29
23 0.56 –0.12 0.67 0.66 –0.11
24 1.04 1.35 –0.31 1.03 0.01
25 0.34 0.57 –0.23 0.66 –0.32
26 0.38 0.74 –0.36 0.66 –0.28
27 0.95 –0.27 1.22 0.66 0.29
28 1.88 1.63 0.25 2.07 –0.19
29 1.07 0.75 0.32 0.66 0.40
30 1.01 0.75 0.26 0.66 0.35
31 0.78 0.75 0.03 0.66 0.11
32 0.52 1.03 –0.51 0.66 –0.14
33 1.81 2.42 –0.62 1.99 –0.18
34 0.60 1.22 –0.62 0.66 –0.06
35 2.75 2.02 0.73 2.94 –0.19
36 2.00 2.41 –0.40 2.38 –0.38
37 2.00 2.77 –0.77 1.90 0.11
38 2.00 2.68 –0.68 1.84 0.16
39 0.26 1.21 –0.95 0.66 –0.40
40 0.42 1.05 –0.63 0.66 –0.24
41 0.42 0.89 –0.47 0.66 –0.25
42 0.85 1.20 –0.35 0.66 0.19
43 0.47 1.20 –0.74 0.66 –0.20
44 1.44 1.33 0.11 1.15 0.29
45 0.37 0.90 –0.53 0.66 –0.30
46 0.57 0.88 –0.31 0.66 –0.09
47 2.00 2.25 –0.25 2.14 –0.13
48 2.00 2.14 –0.14 2.13 –0.13
49 2.00 2.14 –0.13 2.08 –0.07
50 1.02 1.50 –0.48 0.96 0.06
51 2.00 2.41 –0.41 1.83 0.18
52 2.00 1.47 0.53 1.80 0.20
53 2.00 2.41 –0.41 1.84 0.17
54 1.04 1.33 –0.29 1.15 –0.11
55 0.60 1.22 –0.62 0.65 –0.05

Table 4: Observed and Estimated log(1/C) values of NMDA
Inhibitors (Test Set) from the regression equations EQ1(MLR) and
EQ2 (GFA)

Linear GFA

No. logIC50 logIC50 Resid- logIC50 Resid-
(Obs) (Calc) uals (Calc) uals

01 1.59 1.91 –0.32 1.57 0.02
02 2.00 2.40 –0.40 1.98 0.03
03 3.35 2.42 0.93 3.39 –0.05
04 1.56 2.25 –0.69 1.47 0.09
05 1.54 1.83 –0.29 1.57 –0.03
06 3.48 2.58 0.89 3.48 0.00
07 1.45 1.29 0.15 1.57 –0.12
08 1.63 1.35 0.28 1.57 0.06
09 1.51 1.72 –0.21 1.57 –0.06
10 2.91 3.26 –0.34 2.84 0.07

Linear GFA

R2 0.544 0.993

Q2 0.318 0.990

4. Conclusions

The present 2D-QSAR study related to NMDA in-
hibitors leads us to make the following conclusions:
(i) Of the two methods of correlations, namely MLR

and GFA, GFA proved to be better in its predicting
ability.

(ii) In MLR as well as GFA case of uni-variate analysis,
Randic index (1χR) showed the best correlation,
even though its predicting power was comparatively
very poor in MLR.

(iii) The best correlation was obtained with the multi-
variate correlation, i.e. all the indices combined to-
gether, where the prediction power was very high
for GFA (R2 = 0.932 and Q2 = 0.923) but was com-
paratively lower in the case of MLR (R2 = 0.566, Q2

= 0.429).
(iv) The results of the test set support the findings.

On the basis of the results obtained from these stud-
ies, it is evident that GFA should be used in preference to
MLR for performing statistical analysis which will help in
predicting the properties of novel molecules and thus nov-
el molecules could be designed possessing better biologi-
cal/inhibitory activity.
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Povzetek
Opravljena je bila primerjalna raziskava uporabe dvodimenzionalnega modeliranja povezav med kemijsko strukturo in
biolo{ko aktivnostjo (2D-QSAR) na primeru N-metil-D-aspartatnih (NMDA) inhibitorjev. V {tudiji smo primerjali mo-
deliranje z uporabo genetske funkcijske aproksimacije (GFA) in multiple linearne regresije (MLR). Za opis kemijske
struktur smo uporabili topolo{ke povezovalne indekse in indekse razdalj (Wienerjev, Balabanov, in Randi}ev indeks). Z
izdelanimi modeli smo napovedovali inhibicijske sposobnosti testnega podatkovnega seta. GFA metoda generira bolj{e
2D QSAR modele tako pri modeliranju ob uporabi ene kot tudi ve~ih spremenljivk. V {tudiji smo primerjali tudi mode-
lirne sposobnosti posameznih indeksov. V vseh primerih (Wienerjev, Balabanov, Randi}ev indeks) smo dobili dobre ko-
relacijske parametre (R2 > 0.80, Q2 > 0.79) ob uporabi GFA tehnike, medtem ko je MLR tehnika dala slab{e korelacije
(R2 < 0.60, Q2 < 0.55). Med tremi indeksi je najbolj{i 2D-QSAR model za napovedovanje aktvnosti NMDA inhibitor-
jev dal Randi}ev indeks (R2 = 0.89, Q2 = 0.88, F-ratio = 216).


