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Dynamics of Polymer Sheets Cutting Mechanism
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In the paper the dynamics of a cutting mechanism for polymer sheets is analyzed. The mechanism contains two connected slider-crank 
mechanisms which transform the rotating motion of the leading element into a straightforward motion of the output slider. The mechanism 
is driven by an electro motor and the slider represents the cutting tool. The cutting force is required to be constant. Using this assumption 
the kinematic and dynamic properties of the mechanism are determined. In particular, the influence of the cutting force on the input angular 
velocity of the leading element is analyzed. In addition, the interaction of geometrical and dynamical properties of the mechanism and of the 
cutting force is investigated. Angular velocity is a function of the cutting force, damping and inertia properties of the system. Variation of the 
angular velocity of the driving motor are calculated analytically and numerically. Analytically obtained results are in a good agreement with 
numerical ones.
Keywords: two joined slider-crank mechanism, kinematic and dynamic analysis, cutting force, non-ideal forcing

0 INTRODUCTION

A great variety of mechanisms, tools and devices are 
made for cutting through materials based on specific 
requirements connected with the properties of the 
cutting object, its dimensions and form or strength 
and elasticity, as well as on the characteristics of the 
cutting tool and the driving motor [1]. Most of these 
tools are analysed, discussed and shown in textbooks 
for mechanical engineers and technicians. They all 
have a simple construction in common. For example, 
for cutting of the parts of strings, rods or bands, which 
represent the continual cutting object, the cutting 
mechanism may be based on the four-bar one (see 
[2]). 

In this paper a mechanism for throughout cutting 
of the polymer sheet, which represents the discontinual 
cutting object, is considered. Due to elastic properties 
of the polymer sheet and its tendency to crumple, and 
also to sheet dimensions, it was required that cutting 
be done with a one-direction cutting force. This 
was possible by a translatory motion of the cutting 
tool. As the driving was with an electro motor, the 
mechanism had to transform the rotating motion of 
the leading element into a translatory motion of the 
leaded element. The mechanism which transforms 
the rotation into straight motion is the slider-crank 
mechanism. This mechanism and its modifications 
have been widely analyzed and applied to internal 
combustion engines and other various purposes 
(see for example [3] to [6]). In this paper, due to its 
simplicity the slider-crank mechanism is assumed as 
a basic one for the cutting device. Joining together 
two slider-crank mechanisms an appropriate device 
is obtained which also transforms the rotating motion 
of the leading element into translatory motion of the 
slider which is connected with a cutting tool. The idea 

of joining of two slider-crank mechanisms is not a new 
one. The double-slider crank mechanisms are already 
used in air compressors [7], two piston pumps [8], in 
the cutting machine for elliptical cylinder [9], in the 
two-side piston engine [10], in the haptic devices to 
generate pulling or pushing motion [11] and [12], in 
robotics [13] to [16], and also as a continuous casting 
mold oscillation device [17]. 

In Section 1 the structural synthesis of the 
cutting mechanism is considered. The advantages 
and disadvantages of the cutting mechanism based 
on the two slider-crank mechanism in comparison to 
the slider-crank mechanisms (simple and eccentric) 
are discussed. In Section 2 kinematic properties of 
the cutting mechanism are analyzed. In Section 3 the 
mathematical description of the mechanism’s motion 
is given and in Section 4 a dynamic analysis is done. 
The obtained results are discussed in Section 5.

1 STRUCTURAL SYNTHESIS OF THE CUTTING MECHANISM

The structure of the cutting mechanism is required to 
satisfy the following:
•	 the mechanism has to transform the input rotating 

motion into a translatory one,
•	 the cutting element has to move translatorily,
•	 the cutting process has to be during motion of the 

cutting element from up to down.
To fulfill these requirements, in this paper a 

device which contains two slider-crank mechanisms 
is suggested (see Fig.1). The system is designed to 
have an eccentric O1AB and a simple O2DE slider-
crank mechanism both of which are connected with 
a rod BC. The leading element of the mechanism is 
the crankshaft O1A, while the slider is the cutting tool 
at point E. The suggested mechanism converts the 
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rotating motion of the crankshaft O1A into a straight-
line motion of the slider E. 

The mechanism has the following elements: O1A 
= a, AB = b, BC = c, O2C = r, O2D = g, DE = h.

Fig. 1. Model of the cutting mechanism

From Fig.1 the position of the slider B of the 
eccentric slider-crank mechanism O1AB (see Fig. 1) is 
given with the coordinates:

	 xB = a cosφ + b cosθ ≡ l ,	 (1)

	 yB = –a sinφ + b sinθ .	 (2)

Eliminating θ in Eqs. (1) and (2) the position of the 
slider B as a function of the leading angle φ is obtained:

	 y a b l a
bB = − + −

−





sin cos .ϕ

ϕ1
2

	 (3)

For the simple slider-crank mechanism O2DE 
(see Fig. 1) the translatory motion of the slider is 
described as:
	 yE = g cosγ + h cosψ ,	 (4)

where the relation between the angles γ and ψ is given 
with the expression:
	 g sinγ = h sinψ .	 (.)

Substituting Eq. (5) into Eq. (4) the following is 
obtained:

	 y g h g
h

g
hE = + −









 +cos cos ,γ γ1

2

2

2

2
2 	 (6)

which describes the position of the slider E as a 
function of the leading angle γ of the slider-crank 
mechanism O2DE.

Let us make a connection between these two 
slider-crank mechanisms. Due to the fact that after 
the connection with the rod BC the two slider-crank 
mechanism remains an one-degree-of-freedom system 
(as it was the case for the simple and eccentric slider-
crank mechanisms), the relation between the position 
of the slider E and leading angle φ of the crankshaft 
O1A needs to be determined. 

From Fig. 1 it is evident that the position of the 
slider E in the coordinate system xO1y is:

	 y = p + yE .	 (7)

Moreover, 
	 w = c cosχ + r sinγ .	 (8)

	 yB + c sinχ = p + r cosγ .	 (9)

Eliminating c in Eqs. (8) and (9) the yB – γ i.e., 
φ–γ expression is obtained as:

	 (c2 – w2 – r2 – (p – yB)2 – 2r (p – yB) cosγ)2 = 
	 = 4w2 r2 (1 – cos2 γ) ,	 (10)

i.e.,
	 A2 cos2 γ – A1 cos γ + A0 = 0 ,	 (11)

where

	 A = c2 – w2 – r2 – (p – yB)2 ,  A0 = A2 – 4 w2 r2 , 	
	 A1 = 4 A r (p – yB) ,  A2 = 4 r2 ((p – yB)2 + w2 ),	

(12)

and p is a constant distance between fixed points O1 
and O2 in y direction. Solving the quadratic equation 
(11) for cosγ and substituting into Eqs. (7) with (6), the 
y–φ relation follows.

1.1 Comparison of the Simple, Eccentric and Two Slider-
Crank Mechanisms

In Fig. 2 the displacement-angle relations for: a) 
simple (Eq. (6)), b) eccentric (Eq. (3)) and c) two 
slider-crank (Eq. (7)) mechanisms are plotted. It is 
assumed that for the simple and eccentric slider-
crank mechanism the length of the leading shaft (0.8 
m) and of the connecting rod (0.32 m) are equal for 
both mechanisms and the eccentricity is 0.20 m. The 
dimensions of the two joined slider-crank mechanisms 
in m are: a = 0.8, b = 0.32, c = 0.14, r = 0.20, g = 
0.24, h = 0.18, l = 0.20, p = 0.12, w = 0.16 and the 
cutting depth is δ = 0.12. In our consideration the 
common assumption used for comparing the three 
mechanisms is that the cutting depth has to be equal 
and the cutting angle is calculated from the lowest 
position of the slider. In Fig. 2 the full line indicates 
the motion of the slider in the sheet (where the shaded 
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area is for cutting) and the dotted line shows the 
motion of the slider out of the sheet. Comparing the 
diagrams in Fig. 2, it can be concluded:
•	 Cutting takes longer with the simple and eccentric 

slider-crank mechanism than with the two joined 
slider-crank mechanism.

•	 The interval in which the slider (cutting tool) is 
above the cutting object is much longer for the 
two joined slider-crank mechanism than for the 
simple and eccentric one. During this period 
the manipulation with the cutting sheet may be 
completed. This, however, is not the case for the 
simple and eccentric slider-crank mechanisms. 
Namely, the ‘resting’ period for the simple and 
eccentric slider-crank mechanisms is extremely 
short and does not give the opportunity to finish 
the manipulation with the sheet: setting and its 
removing from the machine.

Fig. 2. y–φ diagrams for a) simple slider-crank mechanism, b) 
eccentric slider-crank mechanism, c) two-joined slider-crank 

mechanism (shaded area-cutting, dotted line-slider in the sheet, 
full line-slider out of sheet)

It is the reason that the joined two-slider-crank 
mechanism is introduced and assumed for the cutting 
process. During one period of motion of the two-
joined slider-crank mechanism the manipulation 
with the polymer sheet and also the cutting proces is 
possible to be finished. 

2 KINEMATICS OF THE CUTTING MECHANISM

Let us determine the velocity vE of the cutting tool as 
a function of the angular velocity ϕ  of the leading 
crankshaft. Using the relations Eqs. (6) and (7) the 
velocity of the cutting tool is:

	 v y gy
y gE

E

E
≡ = −

−
 γ

γ
γ

sin
cos

. 	 (13)

The time derivative of (10) gives  γ yB( )  as:

	




γ γ γ

γ

r w p y

p y r y
B

B B

cos sin

cos ,

− −( )( ) =
= − +( )

	 (14)

where according to Eq. (3)

	  y a y l
y aB
B

B
= −

+
+

ϕ
ϕ ϕ

ϕ
cos sin

sin
. 	 (15)

Substituting Eq. (14) with Eq. (15) into Eq. (13) 
the velocity of the slider as the function of the angular 
velocity of the leading crankshaft is obtained:

	 v a fE = ( )ϕ ϕ , 	 (16)

	
f g

r
y

y g
p y r

w p y
y

E

E

B

B

B

( ) sin
cos

cos
cos ( )sin

cos

ϕ
γ
γ

γ
γ γ

ϕ

= ⋅
−

⋅

⋅
− +
− −

⋅
+ ll

y aB

sin
sin

.ϕ
ϕ+

	 (17)

Function f(φ) is periodical with a period of 2π.

3 MATHEMATICAL MODEL OF THE MECHANISM

The considered two slider-crank mechanism has one 
degree of freedom and the generalized coordinate is 
the angle φ of the leading crank O1A. The Lagrange 
differential equation of motion of the mechanism for 
the generalized coordinate φ is in general:

	 d
dt

T T Q∂
∂

−
∂
∂

+
∂
∂

=
 ϕ ϕ ϕ ϕ

Φ , 	 (18)

where T is the kinetic energy of the mechanism, F 
is the dissipative function and Qφ is the generalized 
force.

It is assumed that the mass of the cutting tool is m 
and the moment of inertia of the leading element is J. 
The inertial properties of other elements in mechanism 
can be omitted in comparison to the previous. Then, 
the kinetic energy of the mechanism is a sum of the 
kinetic energy of the cutting tool and of the leading 
element:

	 T J mvE= +
1
2

1
2

2 2
ϕ , 	 (19)

where vE is the velocity of cutting tool given with Eq. 
(16). Substituting Eq. (16) into Eq. (19) we obtain:

	 T J ma f= +
1
2

1
2

2 2 2 2
 ϕ ϕ , 	 (20)

where the kinetic energy is the function of the angular 
velocity ϕ .
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Since all the mechanism members are rigid, the 
elastic energy of the system is zero.

The mechanism is driven by an electro motor 
whose characteristics is that the driving torque M is 
the function of the velocity ϕ , [18]:

	 M M= −








0

0
1

ϕ
ω

, 	 (21)

where M0 = const. and ω0 is the synchrone angular 
velocity of the motor. Thereby, the driving load is 
expressed as a function of the angular coordinate 
describing the crank rotation. Physically this means 
that the motion of the mechanism has an influence on 
the motor torque. Such a mechanism is subjected to 
non-ideal forcing (see [19 to 21]). 

The cutting process is required to be managed 
during the motion of the cutting tool from up to down 
in the angle interval [φK, φM] where φM corresponds to 
the lowest position of the cutting tool which satisfies 
the relation dy(φM) / dφ = 0 and φK is the angle position 
for which the cutting starts and has to be adopted to 
the thickness of the sheet δ: y(φK) = y(φM) + δ. In this 
interval the cutting force is required to be constant and 
sufficiently strong to provide the cutting without 
folding of the sheet. Otherwise, the cutting force is 
assumed to be zero. Mathematically, for φ ∈  [φK, φM]  
the constant force is F = F0 and for  
φ ∈  [0, φK) ∪  (φM, 2π] it is F = 0.

Fig. 3. y–φ and F – φ diagrams of the cutting tool

As the cutting process is periodical, the cutting 
force is modeled as a UnitStep function:

	

F F F F

F K

≡ ( ) = ( ) =
= ( ) −( ) −(
− (

ϕ ϕ

ϕ π ϕ

ϕ π

0

0 2

2

UnitStep mod

UnitStep mod

,

, )) −( ))ϕM ,

	 (22)

where the unit step function is defined as:

	 UnitStep x
x
x

( ) = ≥
<





1 0
0 0
,
,

. 	

The force distribution is plotted in Fig. 3 (φK = 
2.06379, φM = 2.55591, δ = 0.03).

The driving torque M and the cutting force F give 
the virtual works for a virtual angle and displacement 
variations, respectively, i.e.,

	 δA = Mδφ + Fδy .	 (23)

According to Eq. (16) the variation of the variable 
y is:

	 δy = afδφ .	 (24)

Substituting Eq. (24) into Eq. (23) we obtain  
δA = Qφδφ where the generalized force is: 

	 Qφ = M +afF .	 (25)

During cutting the damping force acts. For energy 
dissipation during the slider motion through various 
materials of the polymer sheet, the damping force 
is assumed to be proportional to the velocity of the 
cutting tool, i.e., 

	


F q vw E= − . 	 (26)

The corresponding dissipative function is:

	 Φ =
1
2

2qvE , 	 (27)

where q is the damping coefficient. According to Eq. 
(16), the dissipative function Eq. (24) is:

	 Φ =
1
2

2 2 2q a f ϕ . 	 (28)

Substituting Eqs. (15), (20) and (28) and the 
corresponding derivatives calculated in Appendix 
into Eq. (18), the differential equation of motion is 
obtained:

	
J ma f ma f df

d
qa f

M a f F

+( ) + + =

= ( ) + ( )

2 2 2 2 2 2
  



ϕ
φ
ϕ ϕ

ϕ ϕ ,
	 (29)

where f and (df/dφ) are φ - periodical functions with 
period of 2π. (see Eqs. (17) and (A.5)). 

According to Eqs. (17) and (A.5), the functions 
f(φ), df(φ)/dφ and f(φ)(df(φ)/dφ) are plotted in Fig. 4.

Introducing the dimensionless values:

	
τ ω

ω ω

λ
ω

µ
ω

= = =

= = =

0
0
2

0

0
2

0

0

0

2
0

0

2
0
2

0

t I
J
M

I
J
M

F a
M

Q
qa
M

ma
M

, , ,

, , ,
	 (30)
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the differential equation (29) transforms into:

	
I f f df

d
Q f

fF

+( ) + ( ) + =

= −( ) + ( )

µ ϕ µ
ϕ

ϕ ϕ

ϕ λ ϕ

2 2 2

1

" ' '

' ,
	 (31)

	 φ' = dφ / dτ ,

where  φ' = dφ / dτ  and  φ'' = d2φ / dτ2 , μ is dimension-
less mass of the cutting tool, I is dimensionless 
moment of inertia of the leading crank O1A, Q is the 
dimensionless damping coefficient, λ is dimensionless 
cutting force and τ is the dimensionless time. 
Differential equation (31) is strong nonlinear one and 
only for some special parameter values the closed 
form analytical solution is possible to be obtained. 
Otherwise, the Eq. (31) is solved numerically using 
the Runge-Kutta procedure.

Fig. 4. f(φ)–φ, (df/dφ)–φ and f(φ)(df(φ)/dφ)–φ curves

4 DYNAMIC ANALYSES

Solving Eq. (31) for various values of F (φ) the 
influence of the cutting force on the angular velocity 
of the motor is obtained. In Fig. 5 the φ' – τ curves for 
various values of F (φ) are plotted. (Dimensionless 
parameters are λ = 0.033, I = 1.4557·10-4,  
μ = 1.051·10-3, Q = 0.00134 and the initial conditions 
φ(0) = 0 and φ'(0) = 1). 

Fig. 5. φ' – τ curves for various values of  F (φ):  
I:  F (φ) = 0, II:  F (φ) = 1, III: UnitStep function

From the analysis of the curves in Fig. 5 it can be 
concluded:
•	 For the case when the cutting force is zero,  

F (φ) = 0, and the motion of the mechanism 
is without loading, the angular velocity of the 
leading crank O1A varies as it is shown in Fig. 
5 (curve I). Variation of the angular velocity is 
periodical. 

•	 If it is assumed that the mechanism is loaded with 
a force F (φ) = 1 for all positions of the leading 
crank, the influence of the force on the angular 
velocity of the motor motion is extremely high 
(see curve II in Fig. 5).

•	 For the case when the cutting process is 
discontinual and the cutting force has the form 
Eq. (22) there is a jump in the angular velocity 
curve (see curve III, Fig. 5).

Fig. 6. φ' – τ curves for various values of λ

For this case the influence of the cutting parameter 
λ on the φ' – τ  is evident (see Fig. 6). The higher the 
cutting force the higher the velocity variation. 

4.1 Analytical

Let us consider the case when M0 is significantly 
larger than the parameters I, μ, Q and λ which for the 
small parameter ε << 1 have the form:

	 I = εI1 ,    μ = εμ1 ,    Q = εQ1 ,    λ = ελ1 ,	 (32)

Substituting Eq. (32) into Eq. (31) we have:

1 1 1
2

1
2

1
2

−( ) = + ( )( ) + ( ) ( )
+

+ ( ) − (

ϕ ε µ ϕ ϕ εµ ϕ
ϕ
ϕ

ϕ

ε ϕ ϕ ε ϕ

' '' '

'

I f f
df
d

Q f f )) ( )λ ϕ1F .

 (33)

Using the series expansion of the variable φ and 
its time derivatives up to the first order of the small 
parameter, we obtain:

	 φ = φ0 + εφ1 + ... ,
	 φ' = φ0' + εφ1' + ... ,
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	 φ'' = φ0'' + εφ1'' + ... ,

	

f f f f

df d df d

df

ϕ ϕ εϕ ϕ ε ϕ ϕ

ϕ ϕ ϕ εϕ ϕ

ϕ

( ) = + ≈ ( ) + ( )

( ) = + ≈

≈

( ) ' ,

/ ( ) /

0 1 0 0 1

0 1

(( )







 +

( )











( ) ≈ ( )

d
d f
d

F F

ϕ
εϕ

ϕ

φ

ϕ ϕ

ϕ ϕ0 0

1

2

2

0

,

.

	 (34)

Substituting Eq. (34) into Eq. (33) and separating 
the terms with the same order of small parameter ε 
up to the small value of second order, the system of 
equations follows:

	 ε ϕ0
00 1: = − ', 	 (35)

ε ϕ ϕ λ ϕ µ ϕ ϕ

µ ϕ
ϕ ϕ

1
1 0 1 0 1 1

2
0 0

1 0
0

: ' ''= ( ) ( ) − + ( )( ) −

− ( )








f F I f

f df
d

ϕϕ ϕ ϕ0
2

1
2

0 0' ' .− ( )Q f
	(36)

Solution of Eq. (35) is φ0' = 1 = const. which after 
integration gives:

	 φ0 = τ .	 (37)

Substituting Eq. (37) into Eq. (36) we obtain:

	
ϕ µ ϕ

φ
ϕ

ϕ λ ϕ

φ
1 1 0 1

2
0

0 1 0

0

'

.

= − ( )






 − ( ) +

+ ( ) ( )

f df
d

Q f

f F

	 (38)

According to Eqs. (37), (38) and (34) the first 
order approximate analytical solution is:

ϕ τ µ τ
ϕ

τ τ λ τ
τ

' .( ) = + − ( )






 − ( ) + ( ) ( )









1 2f df

d
Qf f F 	(39)

The influence of mass and damping parameters, 
and also of the cutting force on the angular velocity 
of the leading element is obtained. In Fig. 7 the 
analytical result Eq. (39) is compared with a numerical 
one which is valid for differential equation (33). The 
difference between the results is negligible. 

5 RESULTS

Let us analyze Eq. (33) and the analytically obtained 
solution (39). It follows: 

•	 For the mechanism with omitted mass 
of the leading crank and of the cutting 
tool, the angular velocity variation is 
ϕ λ ϕ' /= + ( )( ) +( )1 1 2fF Qf . For higher values 
of coefficient of damping the angular velocity is 
smaller. The influence of the cutting force λ on 
the angular velocity φ' is significant: the higher 
the cutting force, the larger the angular velocity 
variation. 

•	 If the mass of the cutting tool and the damping 
coefficient during cutting are omitted, the 
differential equation depends on the moment of 
inertia I of the leading crankshaft and on the 
cutting force λ and is I fFϕ ϕ λ ϕ" '= −( ) + ( )1 .

Fig. 7. Comparison of the analytical and numerical φ' – τ functions

•	 For the case when damping is neglected and 
the cutting force is zero, for the initial angular 
velocity φ0' the angular velocity of the leading 
element varies as φ' = 1 + (φ0' – 1) exp(–τ/I). 
For the steady state motion when time τ tends 
to infinity, the angular velocity of the leading 
element tends to a constant value: φ' = 1 = const.

•	 If the dimensionless driving torque M0 is 
significant in comparison to other parameters 
of the mechanism, the angular velocity in the 
first approximation is obtained as φ' ≈ 1 + εφ1', 
where ϕ µ ϕ λ1

2' ( / )= − − +f df d Qf fF . For 
certain parameter values the analytically obtained 
result is  compared with exact numerical one 
(see Fig. 7). The difference between the results is 
negligible. 

6 CONCLUSIONS

The following is concluded: 
•	 The damping during cutting has a significant 

influence on the angular velocity of the leading 
element of the cutting mechanism. If the mass of 
the leading crank and of the cutting tool is quite 
small it is obvious that for higher values of the 
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damping, the angular velocity of the leading 
crank is smaller. 

•	 The influence of the cutting force on the angular 
velocity is also significant: the higher the cutting 
force, the larger is the angular velocity variation.

•	 The angular velocity variation affects the stability 
of motion and also the quality of the cutting 
process. Namely, for high values of angular 
velocity variation of the leading element, the 
motor can get from the steady state stable motion 
into an unstable one. In addition, the higher the 
cutting force, the cutting process is retarded due 
to the fact that the averaged velocity is smaller. 
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Appendix.  
DERIVATIVES OF THE KINETIC ENERGY FUNCTION

The derivatives of kinetic energy function Eq. (20) 
suitable for Lagrange equation (18) are:
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where ( )
.

= d dt/ . The time derivative of the function 
f expressed with Eq. (17) is:
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As f explicitely and implicitely depends on the 
angle φ the total derivative of f is:
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Introducing the notation: 
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and substituting into Eq. (17), the function f is:
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The corresponding derivatives of Eq. (A.7) 
according to Eq. (A.5) are
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For Eqs. (3), (6) and (10) the derivatives in angle 
φ are:
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Substituting Eqs. (A.8) to (A.11) and the also 
Eqs. (3), (6) and (10) into Eq. (A.5) the (df/dφ)relation 
is calculated. 
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