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Abstract

This document contains an appendix to the paper On the rank two geometries of the
groups PSL(2, q): part I, Ars Math. Contemp. 6 (2013), 365-388.

Appendix
Proof of Lemma 9

Proof. In order to determine all subgroups H of PSL(2, q) such that (H, Dy¢) is a two-
transitive pair we scan the list of maximal subgroups of PSL(2,¢q). For each maximal
subgroup we analyse its subgroup lattice. There are six cases to consider.

1. The group E,: % contains a subgroup D1g & FEs:2 if 5|q. In this situation and
in view of (1) in Proposition 7, H = FEs : 4 which is not a subgroup of PSL(2, q),
under the given conditions.

2. Take Dyq with d | qiTl. In view of (16)-(18) in Proposition 7, Doy acts two-
transitively on the cosets of Dy if and only if the index of Dig in Doy equals 2
or 3 (d = 10 or 15). Therefore (D2g, D1¢) and (D3, D10) are two-transitive pairs.

3. A4 and S4 do not contain any subgroup of order 10.

4. In view of (6) in Proposition 7 (As, D1g) is a two-transitive pair.

5. In view of (6), (7), (8) and (10) in Proposition 7, PSL(2, ¢') acts two-transitively on
the cosets of D1g = Ey : % only if ¢’ = 5, therefore ¢ = 5" for r an odd prime.
(PSL(2,5), D1g) is a two-transitive pair.
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6. In view of (12) in Proposition 7, PSL(2, ¢') acts two-transitively on the cosets of

Dyy=FE

O

Proof of Lemma 10

Proof. In order to determine all subgroups H of PSL(2, ¢) such that (H, A4) is a two-
transitive pair we scan the list of maximal subgroups of PSL(2,¢). For each maximal
subgroup we analyse its subgroup lattice. There are six cases to consider.

1.

If ¢ = 5", the group E, : 15~ L does not contain any subgroup isomorphic to A5 =
E,:3because 4 | ¢ is in contradlctlon w1th the condition ¢ = 5".

If ¢ = p = £1(5), the group E, : 15— L does not contain any subgroup isomorphic
to E, : 3 because 4 | p implies that 4 = p, which is in contradiction with p an odd
prime, the same argument holds for ¢ = p? = —1(5).

If ¢ = 4" with r prime, the (27"); condition, the maximality and the conditions
given on ¢ imply that the only candidate of the form F, : 45—~ is Ei5 : 3. Now
(E16:3, E4:3) is a two-transitive pair.

Take Doy with d | (2 1) We know that dihedral groups only contain cyclic groups
and dihedral groups, they do not contain an Ay.

. If ¢ = 4" with r prime, the group PSL(2, ¢) does not contain a subgroup isomorphic

to Sy, because this is in contradiction with ¢ = +1(8). The same argument holds for
q = 5" with r an odd prime.

If g =p = +1(5) or ¢ = p> = —1(5), in view of (11) in Proposition 7 (Sy, A4) is a
two-transitive pair provided ¢ = £1(8).

In view of (6) in Proposition 7 (A5, A4) is a two-transitive pair.

5. If ¢ = p = £1(5), the group PSL(2, ¢) cannot contain any PSL(2, ¢') with ¢'™ = ¢,

m an odd prime, the same argument holds for ¢ = p* = —1(5).

If ¢ = 5" with r an odd prime; orif ¢ = 4" with r prime, the only candidates ¢’
for PSL(2,q’) are 4 and 5. In this situation we have PSL(2,¢") = PSL(2,4) &
PSL(2,5) = As. This situation has been treated in (4).

If ¢ = p = £1(5); or ¢ = 5" with r an odd prime, the group PSL(2, ¢q) cannot
contain any PGL(2, ¢') with ¢'? = q.

If ¢ = p?> = —1(5) in view of (12) in Proposition 7 PGL(2, ¢') with ¢'> = q acts
two-transitively on the cosets of A4 if ¢" = 4. In this situation we have PSL(2, ¢’) =
PGL(2,4) = As. This situation has been treated in (4).

If ¢ = 4" with 7 prime, the group PSL(2, q) contains PGL(2, ¢) if ¢’ = ¢ which
implies that ¢’ = 2". In view of (12) in Proposition 7, (PGL(2,4), E4:3) is a two-
transitive pair provided ¢’ = 2" with r = 2.

O

Part of proof of Proposition 13.

Proof. Subcase 1: Go1 = Gog NGy = Dqg.

By Lemma 9 the four possibilities for G are Dy provided 10 \

2q 1) D3 provided
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15 | (2 1), PSL(2,5) = Aj; provided ¢ = 5" and As.

1.1 We consider the case where G = Dsy, provided 10 | (2 = 1)

The given conditions imply that either ¢ = p = 41(20) or ¢ = p?> = —1(20). In both
situations there are two conjugacy classes of As in PSL(2, ¢). Since ff) is even there are
two conjugacy classes of D1g in PSL(2, ¢). The index of Djq in Dyg equals two, therefore
the D1 in a Dy are not all conjugate. The number of conjugacy classes of Do depends on
whether 2L is even or odd. In order to determine all geometries under the given conditions

20
we distinguish the cases where qgél is even or odd.

° qziol is even. This implies that Npgr,(2,q)(D10) = D2o and Npgr(2,q)(D20) = Dao,
with two conjugacy classes of Dyg. Therefore the number of Dy containing a given Dy
is one.

There are two classes of A5 and D1q and the latter is contained in one Dog; therefore
there exist exactly two RWPRI and (27'); geometries I'(PSL(2, q); As, D2g, D1g) up to
conjugacy, prov1ded 4£1 s even.

Let us deal with the fusion of non-conjugate classes. Following Lemma 8 the two
classes of Dg, Dyg and As are fused under the action of PGL(2, ¢) and thus also under
the action of PT'L(2, ¢). Therefore, there exists exactly one RWPRI and (27"); geometry

I'(PSL(2, q); As, D29, D19) up to isomorphism provided % qi—l is even.

° q:t:l

is odd. In this situation there is one conjugacy class of Dyg in PSL(2, q). The
condltlon on g implies that Npgr,(2,q)(D10) = D2o and Npgy,(2,¢)(D20) = D2o. Therefore
the number of Do containing a given D1 is one.

Up to conjugacy, there ex1st exactly two RWPRI and (27T); geometries T'(PSL(2, q);
As, Dag, D1p) prov1ded L is odd.

Let us deal with the fuswn of non-conjugate classes. Up to isomorphism there is exactly
one such geometry, since following Lemma 8 the two classes of D1g and A5 are fused under
the action of PGL(2, ¢) and thus also under the action of PT'L(2, q).

To summarize, up to conjugacy there exist exactly two RWPRI and (27); geometries
I's = I' (PSL(2, q); As, D2, D1g) provided ¢ = p = £1(20). Up to isomorphism there
exists exactly one such geometry. Also, up to conjugacy there exist exactly two RWPRI
and (27); geometries I'12 = T (PSL(2, q); As, Dag, D1o) provided ¢ = p? = —1(20).
Up to isomorphism there exists exactly one such geometry.

This geometry is new and the number of classes up to conjugacy (resp. isomorphism)
is confirmed by MAGMA for ¢ = 19,41, 61. For ¢ = 19, it is also confirmed by [20].

1.2. We consider the case where G; = Ds , provided 15 | Qq;tll)
The condition 15 | % implies that either ¢ = 4" with r prime, ¢ = p = £1(5) or
q = p* = —1(5). Hence, there are three cases namely ¢ = 4" = +1(15) with r prime;
q =p = %1(30); or ¢ = p* = —1(30). We distinguish the first case from the other two.

o Let us first assume that q = 4" = £1(15) with r prime. In this situation there is only
one conjugacy class of As. The number of classes of D3 and Dy in PSL(2, ¢) depends
on whether 2L is even or odd. The even case cannot occur because of the condition

1r
q = 4" given on q. If qil is odd there is only one conjugacy class of Dsg and also

one of Dig in PSL(2,q). Then the index | 3"‘ =# 2, and therefore all Dy in D3 are
conjugate. And As contains one D1 up to con]ugacy The odd condition on qil implies
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that NPSL(2,q) (Dlo) = D10 and NPSL(Q,q) (Dgo) = Dgo. Therefore the number of Dgo
containing a given Dy is one.

To summarize, up to conjugacy there exists exactly one RWPRI and (27"); geometry
Iy =T (PSL(2, q); As, D3o, D1p) and thus also exactly one up to isomorphism provided
either ¢ = 4" with r prime; orqil odd. This geometry is new and the number of classes
up to conjugacy (resp. 1som0rph1sm) is confirmed by MAGMA for ¢ = 16 and is also
confirmed by [20].

e The cases ¢ = p = +1(30) and ¢ = p?> = —1(30) with p an odd prime can be
treated together. In this situation there are two conjugacy classes of A5, but the number of
conjugacy classes of D3y and D1y depends on whether qi)l is even or odd.

Assume 3%1 is even. This implies that Npgr,(2,4)(D10) = D20 and Npgy,(2,¢)(D30) =
Dgy, with two conjugacy classes of D1y and also two of D3y. The number of subgroups
D3 containing a given subgroup Dyg in PSL(2, ¢) is equal to

|PSL(2,¢) | |Dso| | Dl _
| Deo | | Dio | | PSL(2,q) |

Up to conjugacy, there ex1st exactly two RWPRI and (27'); geometries I'(PSL(2, ¢); A4s,
Dsp, D1g) pr0v1ded 4£1l i5 even.

Let us deal with the fusion of non-conjugate classes. Following Lemma 8 the two
classes of Dy, D3 and A5 are fused under the action of PGL(2, ¢) and thus also under
the action of PI'L(2, q). Therefore there exists exactly one RWPRI and (27); geometry

I'(PSL(2, q) As, D3g, D1g) up to isomorphism prov1ded 4£L js even.
Assume £ 30 is odd. This implies that Npgy,(2,4)(D10) = Dm and Npsr,(2,q)(D30) = Dso,
with one conjugacy class of Djg and also one of Dsg. The number of subgroups Dsg
containing a given subgroup D1 in PSL(2, ¢) is equal to

| PSL(2,9) | . | Dso | . | Dyo | _
| Dso | | Dio | | PSL(2,q) |

Up to conjugacy, there ex1st exactly two RWPRI and (27"); geometries I'(PSL(2, q); 45,
D3, D1p) prov1ded L is odd.

Let us deal with the fusion of non-conjugate classes. Following Lemma 8 the two
classes of As are fused under the action of PGL(2, ¢) and thus also under the action of
PT'L(2, q). Therefore, there exists exactly one RWPRI and (27"); geometry I'(PSL(2, q);
As, D3g, D1p) up to isomorphism provided % qil is odd.

To summarize, there exist exactly two RWPRI and (27"); geometries I's =T'(PSL(2, ¢);
As, D3g, D1g) up to conjugacy and exactly one up to isomorphism provided ¢ = p =
+1(30). Also, up to conjugacy there exist exactly two RWPRI and (27); geometries
I'13 = I'(PSL(2,q); As, Dsg, D1o) and exactly one up to isomorphism provided ¢ =
p? = —1(30). This geometry is new and the number of classes up to conjugacy (resp.
isomorphism) is confirmed by MAGMA for ¢ = 29, 31, 61.

1.3. Consider the case Gy = G = As.

There are four situations, which are ¢ = 5" with r odd prime, ¢ = p = £1(5),
q = p?> = —1(5) with p an odd prime and ¢ = 4" with r prime. Cases 2 and 3 can be
treated together. We distinguish them from the others in our discussion.
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e Assume ¢ = 5" with r an odd prime. Using that PSL(2,5) & Aj, there is only
one conjugacy class of PSL(2,5). We must check whether this geometry exists, that is
whether there are two subgroups isomorphic to Ay in PSL(2,5") that have a subgroup D1
in common. There is only one conjugacy class of E5: 2. Since PSL(2,5") is simple and
As maximal, As is self-normalized. Also, since PSL(2,5) is simple and Fs : 2 maximal,
Es : 2 is self-normalized in PSL(2, 5) and also in PSL(2,5"). Therefore the number of
subgroups PSL(2, 5) containing a given subgroup Fs:2 in PSL(2,5") is equal to

|PSL2,5) | |PSLE5)| | Es:2|
[PSL(2,5)| | Bs:2| | PSL257)]

which implies that the geometry does not exist.

o Assume that either ¢ = p = £1(5) or ¢ = p?> = —1(5) with p an odd prime. There
are two conjugacy classes of As. The number of conjugacy classes of D1g depends on
whether ql—iol is even or odd.

If % is even there are two conjugacy classes of D1g. Notice that all D1y in an A5 are
conjugate and Npgr,(2,4)(D10) = D2o. The number of subgroups A containing a given

subgroup Djg in PSL(2, q) is equal to

PSL) | (Al IDwl
| As | | Dio | | PSL(2,q) |

Therefore there exist exactly two RWPRI and (27"); geometries

'y =T (PSL(2, q); As, As, D1o) up to conjugacy, provided ql—iol is even with ¢ an odd
prime and also exactly two RWPRI and (27"); geometries I'yy = T'(PSL(2, q); A5, 45,
D1p) up to conjugacy, provided % is even with ¢ = p?; one geometry for each class of
As.

Let us deal with the fusion of non-conjugate classes. Following Lemma 8 the two
classes of As and Dy are fused under the action of PGL(2,¢q) and thus also under the
action of PT'L(2,q). Therefore, there exists exactly one RWPRI and (27); geometry
I'; = T'(PSL(2,q); As, As, D1g) up to isomorphism provided qli—ol is even with ¢ an odd
prime and also exactly one RWPRI and (27"); geometry I'14 = I" (PSL(2, q); A5, As, D1o)
up to isomorphism provided % is even with ¢ = p?.

Assume that ql—iol is odd. There is only one conjugacy class of D and
Npgr(2,q)(D10) = Dio. The number of subgroups As containing a given subgroup D1 in
PSL(2, q) is equal to

PSLO.q) | 45| | D
| As | | Dio | | PSL(2,q) |

Since there are two conjugacy classes of Aj there exists exactly one RWPRI and (277),
geometry I's = T'" (PSL(2, q); A5, A5, D19) up to conjugacy and thus also exactly one up
to isomorphism provided q101 is odd with ¢ an odd prime. Also, there exists exactly one
RWPRI and (27'); geometry I';5 = T' (PSL(2, ¢); As, As, D19) up to conjugacy and thus
also exactly one up to isomorphism provided qlJBl is odd with ¢ = p?.
This geometry is new and the number of classes up to conjugacy (resp. isomorphism) is
confirmed by MAGMA for ¢ = 9,11,19,29,31,41,49. For ¢ = 9, it is also confirmed by
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[3] and for ¢ = 11, 19 by [20].

o If ¢ = 4" with r prime. We know that there is only one conjugacy class of A5. We must
check whether this geometry exists, that is whether there are two subgroups isomorphic to
As in PSL(2,4") that have a subgroup D1 in common. The condition given on ¢ implies
that 2L is odd, therefore there is only one class of D1g and Npgy,(2,q)(D10) = D1o. The

5
number of subgroups A; containing a given subgroup D1q in PSL(2, ¢) is equal to

| PSL(2,q) | . | As | ) | Dio | _
| As | | Dio | | PSL(2,q) |

In this situation there is only one conjugacy class of A, therefore we may conclude that
there exists no such geometry.

O
Proof of Proposition 14

Proof. Let Gy = A4 with ¢ prime, ¢ > 3 and either ¢ = 3, 13,27,37(40) or ¢ = 5.
In view of (5) in Proposition 7 the only possibility for Gy is the cyclic subgroup of order 3.
If H is a subgroup of G such that (H, 3) is a two-transitive pair then one of the following
holds: H = Zg provided 6 | ":5—1, H = Dg and H = Ay. They are the three only
(i1-candidates.
Notice that ¢ prime, ¢ > 3 and so 3 divides either q2 or 5= L
We review all possibilities for G; as well as the number of classes of geometries with re-
spect to conjugacy (resp. isomorphism).
1. Consider the case where G = Zg, provided 6 | LESY

The conditions on ¢ prime are that ¢ = +£1(12) and ¢ = 3,13,27,37(40). This implies
that ¢ = 13,37, 83,107(120) with ¢ prime. The group A4 contains one cyclic group of
order 3 up to conjugacy. The cyclic group of order 3 is contained in exactly one Zg and
all Zg in PSL(2, g) are conjugate. Since PSL(2, ¢) is simple and A4 maximal, A, is self-
normalized. It is also the case for the cyclic subgroups of order 3 in A4. Now N, (3) = Zg
and Npg,(2,q)(3) = Npsi(2,q)(Z6) = Dy 1 provided 6 | q“ and D,_ provided 6 | %.
The number of subgroups Zg containing a given cyclic subgroup of order 3 in PSL(2, q) is
equal to

|PSL(2,q) | . [g£1|

lq+1] | PSL(2,q) |

Therefore, there exists exactly one RWPRI and (27"); geometry I'y = T'(PSL(2, q); A4,
Zs,3) up to conjugacy, and also exactly one up to isomorphism, provided ¢ = 13, 37, 83,
107(120). This geometry is new and the number of classes up to conjugacy (resp. isomor-
phism) is confirmed by MAGMA for g = 13, 37, 83.

2. Consider the case where G = Dg.
All cyclic subgroups of order 3 are conjugate in PSL(2,¢). The number of conjugacy
classes of Dg depends on whether qil is odd or even. We distinguish the cases qil odd
or even.

The group A4 contains one cyclic group of order 3 up to conjugacy. We know that
the normalizer of Dg in PSL(2, ¢) is Dg provided qiTl is odd, and that it is D2 provided
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qjgl is even. The normalizer of the cyclic group of order 3 in Dg is D¢ and its normalizer

in PSL(2, ¢) is a dihedral group of order ¢ & 1. Therefore the number of subgroups Dg
containing a given cyclic subgroup of order 3 in PSL(2, ¢) is equal to

IPSL(2,0)| el g g

\PS‘I?(‘ )l b ‘P|SLJ([21’\q)| B} i1 ! :I:l odd
2,9)| q _gq e g

Drl 1 PsLa@gr = 12 if even.

To get the number of geometries up to conjugacy we need to know whether the sub-
group A4 normalizes each of the Dg, which is the case because

|NpPsL(2,q)(3) N Npsr(2,q)(A4)| = 3.

In order to determlne the number of classes of geometries up to conjugacy we distin-
guish the cases < 6 L odd or even.

e Assume % is odd. There is only one class of Dg and every given cyclic subgroup
of order 3 in PSL(2, q) is contained in exactly % dihedral groups Dg. Up to conjugacy
there exist exactly qil geometries.

e Assume % is even. There are two classes of Dg and every given cyclic subgroup

of order 3 in PSL(2, q) is contained in exactly L dihedral groups Dg. Up to conjugacy

there exist exactly L geometries.
To summarize, up to conjugacy there exist exactly 1 RWPRI and (27"); geome-
tries I's = T (PSL(2,q); A4, D¢, 3) provided < T is odd and exactly q61 RWPRI and

(2T"); geometries I's = I" (PSL(2, q); A4, D, 3) up to conjugacy, provided %1 is even.
Also, there exist exactly 4 21 RWPRI and (27'); geometries 'y = I' (PSL(2, q); A4, Ds, 3)
up to conjugacy, prov1ded ﬁl is odd and exactly q“ RWPRI and (27'); geometries
Iy =T (PSL(2,q); A4, De, ) up to conjugacy, prov1ded 2t s even.

Let us deal with the fusion of non-conjugate classes. We remember that ¢ is prime and
thus PI'L(2,q) = PGL(2,q). We also find that Npgp,(2,9)(A4) = S4. Npgriz,g)(3) =
Ds(q+1) and Npgr,(2,9)(Ds) = Di2. In order to determine the number of classes of ge-
ometries up to isomorphism we distinguish the cases < 6
o Assume qul odd. There is only one conjugacy class of Dg. If we fix A4 and the
cyclic group of order 3, there is one Dg which is fixed and the others are exchanged two
by two, because Dg in PSL(2, q) is its own normalizer. They merge two by two under
the action of PT'L(2, ¢). Therefore, the number of RWPRI and (2T)1 geometrles Iy =

I' (PSL(2, q); A4, D, 3) up to isomorphism, provided q'gl
and the number of RWPRI and (2T)1 geometnes I's = (PSL(2,q)7 A47D6, 3) up to

isomorphism, provided 4~

L odd or even.

e Assume ? is even. There are two con]ugacy classes of Dg. They both merge under
the action of PGL(2, ¢) and thus also in PT'L(2, ¢) (see Lemma 11). If we fix A4 and
the cyclic group of order 3, we fix two Dg, one of each conjugacy class and all others are
exchanged two by two. They merge two by two under the action of PT'L(2, q). Therefore,

the number of RWPRI and (27'), geometrles 'y =T (PSL(2,q); A4, Dg, 3) up to isomor-
= %1 and the number of RWPRI and

phism, provided ﬂ even, is exactly (

(2T'); geometries I's = T (PSL(Z,q);A47D6, 3) up to 1somorph1sm provided %= even,
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—1
is exactly ( 24 1) 1;21

This geometry is new and the number of classes up to conjugacy (resp. isomorphism)
is confirmed by MAGMA for ¢ = 5,13,37,43,53,67. For ¢ = 5, it is also confirmed by
[3] and for ¢ = 13 by [20].

3. Consider the case where Gy = G = Ay.
We must check whether this geometry exists or not, that is whether there are two subgroups
isomorphic to A4 in PSL(2, g) that have a cyclic subgroup of order 3 in common. We
know that Npgy,(2,4)(A4) = Ay and that N4, (3) = 3. Moreover, the group A4 contains
4 maximal cyclic subgroups of order 3, all conjugate. The normalizer of 3 in PSL(2, g) is
D,_1if3 | ¢—1and Dgyq if 3 | ¢+ 1. Therefore the number of subgroups A, containing
a given cyclic subgroup of order 3 in PSL(2, ¢) is equal to

|PSL(2,q)] -1 g1 .

{ | |A(4|q)|‘4 pstagr = 3 i 3le—1
PSL(2, 1 g+l .
w4 psteg = 5 F 3la+lL

Knowing that there exists only one conjugacy class of A4 and using the conditions on g we
know that this geometry exists. There exist exactly, up to conjugacy, == — 1 RWPRI and
(2T"); geometries I'; = T" (PSL(2, q); A4, A4,3), provided 3 | ¢ — 1 and exactly q+1 -1
RWPRI and (27"); geometries I's = T" (PSL(2, q); A4, A4, 3) up to conjugacy, prov1ded
3lg+1

Let us deal with the fusion of non-conjugate classes. We remember that g is prime and
thus PGL(2, q) = PFL(27 q) We find that NPGL(Z,q) (A4) = 54 and NPGL(Q,q) (3) =
Dy (g+1)- Therefore the number of subgroups A, containing a given cyclic subgroup of
order 3 in PGL(2, q) is equal to qiTl. To count the geometries up to isomorphism we need
to know the action of PGL(2, ¢) on subgroups A4 containing a given cyclic subgroup of
order 3. If we fix A4 = G and the cyclic subgroup of order 3 we know that [ Npgr,(2,4)(3)N
Npcr2,q(A4)] = |Dg| = 2[3|. This Dg is contained in two Sy in PGL(2, ¢), which
implies that there is one other A4 fixed and all others are exchanged two by two. Thus they

merge under the action of PGL(2, ¢). Hence, there exist exactly Q -+ 1 RWPRI and
(2T'); geometries
I'; = T'(PSL(2,q); A4, A4, 3) up to isomorphism, provided 3 | ¢ — 1 and exactly

&272) + 1 RWPRI and (27); geometries I's = T' (PSL(2, q); A4, A4, 3) up to isomor-
phism, provided 3 | ¢ + 1.

This geometry is new and the number of classes up to conjugacy (resp. isomorphism)
is confirmed by MAGMA for ¢ = 5,13, 37,43,53,67. For ¢ = 13, it is also confirmed by
[20]. O

Proof of Proposition 18

Proof. Let Gy = S;.

We subdivide our discussion in three cases, namely the three Gy;-candidates given by (11),
(12) and (13) in Proposition 7 which are: Dg, Dg and A4. In each of these three cases
we review all possibilities for G given in the previous Lemmas as well as the number of
classes of geometries with respect to conjugacy (resp. isomorphism).
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Subcase 1: Ggy = Go NG, = D,
By Lemma 15 the three possibilities for G; are Di5 provided 6
9] q L and S,.

The number of conjugacy classes of Dg depends on whethe

\ ‘1:5—1, Dsg provided

r %1 is odd or even. In

order to determine all geometries under the given conditions we distinguish the cases %
odd or even.

Recall that when ¢ > 2 is a prime and ¢ = +1(8) there are two conjugacy classes of
Sy in PSL(2, q).

1.1. Consider the case where G = D14, provided 6 | qil
Since == i is even, following Lemma 4 there are two conjugacy classes of Dg in PSL(2, q).

The number of conjugacy classes of Dj2 depends on whether qli; is even or odd. The

conditions on ¢ are that ¢ = £1(8) and ¢ = +1(12). Which implies that qil even. In
this situation there are two classes of D15 in PSL(2,q). Now the index of ‘I%lsll =2
therefore the Dg in a D15 are not all conjugate. Also, every Do contains two Dg which
are not conjugate. And S contains one Dg up to conjugacy. Since % is even we have
Npsr(2,q)(De) = D12 = Np,,(Ds) and Npgr,(2,q)(D12) = Da4. Therefore the number
of Dy, containing a given Dy is one. Since there are two classes of Sy, Dg and D12, there
exist exactly two RWPRI and (27"); geometries I'y = I' (PSL(2, ¢); S4, D12, Ds) up to
conjugacy when qlizl is even.

Let us deal with the fusion of non-conjugate classes. Following Lemma 11 the two
classes of Dg, D15 and Sy are fused under the action of PGL(2, ¢) and thus also under
the action of PT'L(2, q). Therefore, there exists exactly one RWPRI and (27); geometry
I'y =T (PSL(2, q); S4, D12, Dg) up to isomorphism, pr0V1ded 22 i even.

This geometry is new and the number of classes up to conjugacy (resp. isomorphism)

is confirmed by MAGMA for g = 23.

1.2. Consider the case where G; = D;g, provided 9 | qil

The number of conjugacy classes of D;g and Dg depends on whether q181 is even or odd.

The conditions on ¢ are that ¢ = £1(8) and ¢ = £1(18). Which implies that %.

Now the index ||%168“ # 2, therefore all Dg in a D;5 are conjugate. And S; contains

one Dg up to conjugacy.
e Assume qugl is even. This implies that Npgr,(2,q)(Ds) = D12 and Npgy,(2,4)(D1s) =
Ds6. In this situation there are two conjugacy classes of Dg and also two of Dig. The

number of subgroups Dg containing a given subgroup Dg in PSL(2, ) is equal to

| PSL(2,q) | . | Dis | ) | D12 | _
| D3g | | Dg | | PSL(2,q) |

Since there are two conjugacy classes of S, there exist exactly two RWPRI and (27');
geometries I'(PSL(2, q); S4, D1s, Dg) up to conjugacy, provided qli—gl is even.

Let us deal with the fusion of non-conjugate classes. Following Lemma 11 the two
classes of Dg, D1g and Sy are fused under the action of PGL(2, ¢) and thus also under
the action of PT'L(2, q). Therefore, there exists exactly one RWPRI and (27"); geometry

I'(PSL(2, q); S4, D1g, Dg) up to isomorphism, provided % E is even.

o Assume &= i is odd. This implies that Npg, (2, q)(Db) D¢ and Npgy,(2,q)(D1g) =
D1g. In this 51tuat10n there is one conjugacy class of Dg and also one of D;g. The number
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of subgroups D15 containing a given subgroup Dg in PSL(2, ¢) is equal to

|PSL2,¢) | |Dws|  |De|
| D1s | | D¢ | [ PSL(2,q) |

Since there are two conjugacy classes of Sy there exist exactly two RWPRI and (27');
geometries I'(PSL(2, q); Sy, D1s, Dg) up to conjugacy, provided qli—sl is odd.

Let us deal with the fusion of non-conjugate classes. Following Lemma 11 the two
classes of Sy are fused under the action of PGL(2, ¢) and thus also under the action of
PT'L(2, q). Therefore, there exists exactly one RWPRI and (27"); geometry I'(PSL(2, q);
S4, D1g, Dg) up to isomorphism, provided qli—gl is odd.

To summarize, there exist exactly two RWPRI and (27"); geometries
'y = T'(PSL(2,q); S4, D1s, Dg) up to conjugacy and one up to isomorphism, provided
g = £1(72) or ¢ = £17(72). This geometry is new and the number of classes up to con-
jugacy (resp. isomorphism) is confirmed by MAGMA for ¢ = 17 and is also confirmed by
[20].

1.3. Finally we consider the case where Gg = G1 = ;.
e Assume qiTl is even. There are two conjugacy classes of Dg. Now all the Dg are
contained in a Sy and all Dg in a Sy are conjugate. The normalizer of Dg in PSL(2, q) is
D15. The number of subgroups S, containing a given subgroup Dg in PSL(2, ¢) is equal
to
|PSL(2,¢) | [Sa]| [ Di2|
| S| | De | | PSL(2,q) |

Therefore, there exist exactly two RWPRI and (27"); geometries I's = T'(PSL(2, ¢); S4,
S4, Dg) up to conjugacy, provided % is even, one for each class of Sy.

Let us deal with the fusion of non-conjugate classes. Following Lemma 11 the two
classes of Sy are fused under the action of PGL(2,¢) and thus also under the action
of PT'L(2,q). Therefore, there exists exactly one RWPRI and (27); geometry I's =
T (PSL(2, q); S4, S4, Dg) up to isomorphism, provided % is even.

e Assume %1 is odd. There is one conjugacy class of Dg. This implies that normalizer
Npsi,(2,q)(Ds) = Ds. The number of subgroups .S, containing a given subgroup Dg in
PSL(2, ¢) is equal to

[PSL2,q)| |Si|  |Ds|
[Si]  1Ds| [PSLZ,q)]

Since there are two conjugacy classes of Sy, there exists exactly one RWPRI and (27);
geometry I'y = T (PSL(2, q); S4, S4, Dg) up to conjugacy and thus also one up to isomor-
phism, provided qiTl is odd.

This geometry is new and the number of classes up to conjugacy (resp. isomorphism)
is confirmed by MAGMA for ¢ = 7,17,23, 31, 41. For ¢ = 17, it is also confirmed by [20].

Subcase 2: GOl = G() n Gl = Dg.
By Lemma 16 the three possibilities for Gy are Dqg provided 8 | ‘%—1, Doy provided

12| % and Sy4. Observe that under the hypothesis there are two conjugacy classes of Sy
in PSL(2, q).
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2.1. Consider the case where G = D¢, provided 8 | %1

Since qiTl is even there are two conjugacy classes of Dg. The conditions on g are that
q £+ 1(8) and g £ 1(16). Which implies that ¢ = £1(16). The index of Dg in Dy equals
two, therefore the Dg in a D14 are not all conjugate. And also, every D1 contains two Dsg
which are not conjugate. Moreover S, contains one Dg up to conjugacy. The number of
conjugacy classes of D depends on whether 1i61 is even or odd. In order to determine all
geometries under the given conditions we distinguish the cases ‘1 L 6dd or even.

e Assume qule is even. This implies that Npgr,(2,q)(Ds) = D16 = Np,,(Ds) and
Npsv(2,q) (D16) = D32, with two conjugacy classes of D1g. Therefore the number of D¢
containing a given Dsg is one.

Since there are two classes of Sy, Dg and Dsg, there exist exactly two RWPRI and
(2T)1 geometries I'(PSL(2, q); S4, D16, Dg) up to conjugacy, provided % qi—l is even.

Let us deal with the fusion of non-conjugate classes. Following Lemma 11 the two
classes of Dg, Dig and Sy are fused under the action of PGL(2, ¢) and thus also under
the action of PI'L(2, q). Therefore there exists exactly one RWPRI and (27T'); geometry

I'(PSL(2, q); S4, D16, Ds) up to isomorphism prov1ded 221 s even.

e Assume q1161 is odd. This implies that NpSL(Q,q)(DS) D16 and Npgr,(2,q)(D16) =
D1, with one conjugacy class of D1g. Therefore the number of D¢ containing a given
Dy is one.

Hence, there exist exactly two RWPRI and (27"); geometries I'(PSL(2, ¢); S4, D16,
Dsg) up to conjugacy, prov1ded L is odd.

Let us deal with the fusion of non-conjugate classes. Following Lemma 11 the two
classes of Dg and Sy are fused under the action of PGL(2,¢) and thus also under the
action of PT'L(2,q). Therefore, there exists exactly one RWPRI and (27"); geometry

I'(PSL(2, q); S4, D16, Dg) up to isomorphism, provided % qil is odd.

To summarize, there exist exactly two RWPRI and (2T) geometries
I's =T (PSL(2,q); S4, D16, Ds) up to conjugacy and exactly one up to isomorphism, pro-
vided ¢ = +1(16). This geometry is new and the number of classes up to conjugacy (resp.
isomorphism) is confirmed by MAGMA for ¢ = 17, 31. For ¢ = 17, it is also confirmed by
[20].

2.2. We now consider the case G = Doy, provided 12 | %.

The index |‘ D““ # 2, therefore all Dg in a D4y are conjugate. And S, contains one Dg up

to conjugacy. The number of conjugacy classes of Dg and D24 depends on whether £ j is
even or odd. In order to determine all geometries under the given conditions we distinguish
the cases qi odd or even.

e Assume q2i41 is even. This implies that Npgr,(2,¢)(Ds) = D16 and Npgp,(2,9)(D24) =
D,g. In this situation there are two conjugacy classes of Dg and also two of Day4. The

number of subgroups Do, containing a given subgroup Dg in PSL(2, ¢) is equal to

| PSL(2,¢) | |Doa| | Die|l
| Dag | | Ds | | PSL(2,q) |

Therefore, there exist exactly two RWPRI and (27); geometries I'(PSL(2, ¢); S4, D24,
Dsg) up to conjugacy, provided % is even.

Let us deal with the fusion of non-conjugate classes. Following Lemma 11 the two
classes of Dg, Doy and Sy are fused under the action of PGL(2, ¢) and thus also under
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the action of PT'L(2, ¢). Therefore, there exists exactly one RWPRI and (27"); geometry
I'(PSL(2, q); S4, D24, Dg) up to isomorphism provided ‘12i—41 is even.

e Assume qi is odd. This implies that Npgy,(2,4)(Ds) = Dg and Npgy,(2,9)(Das) =
Dsy. In this s1tuat10n there is one conjugacy class of Dg and also one of Ds4. The number
of subgroups D15 containing a given subgroup Dg in PSL(2, ¢) is equal to

|PSL(2,¢) | |Daa|  [Ds|
| Doy | | Ds | [ PSL(2,q) |

To summarize, there exist exactly two RWPRI and (27"); geometries I'(PSL(2, q); S4, D24,
Dg) up to conjugacy.

Let us deal with the fusion of non-conjugate classes. Following Lemma 11 the two
classes of Sy are fused under the action of PGL(2, ¢) and thus also under the action of
PT'L(2, q). Therefore, there exists exactly one RWPRI and (27"); geometry I'(PSL(2, q);
S4, Day, Dg) up to isomorphism, provided quTl is odd.

To summarize, there exist exactly two RWPRI and (27"); geometries
T'¢ =T (PSL(2, q); S4, D24, Ds) up to conjugacy and exactly one up to isomorphism pro-
vided ¢ = £1(24). This geometry is new and the number of classes up to conjugacy (resp.
isomorphism) is confirmed by MAGMA for g = 23.

2.3. At last, consider the case Gy = G =

The number of conjugacy classes of Dg depends on whether £% is even or odd. In order

8
to determine all geometries under the given conditions we distinguish the cases qil odd or
even.

e Assume % is even. There are two conjugacy classes of Dg. In Sy all Dg are
conjugate and the normalizer of Dg in PSL(2,q) is Dig. The number of subgroups Sy

containing a given subgroup Dg in PSL(2, ¢) is equal to

| PSL2,g) | [Sal [ Dis|
| Sy | | Ds | | PSL(2,q) |

Therefore, up to conjugacy there exist exactly two RWPRI and (27'); geometries

'y =T (PSL(2,q); S4, S4, Ds) provided ‘11%1 is even, one for each class of S,.

Let us deal with the fusion of non-conjugate classes. Following Lemma 11 the two
classes of Sy are fused under the action of PGL(2,¢) and thus also under the action
of PT'L(2,q). Therefore, there exists exactly one RWPRI and (27"); geometry I'; =

I (PSL(2, q); S4, S4, Dg) up to isomorphism, provided 2£ is even.

e Assume %1 is odd. There is one conjugacy class of Dg. This implies that normalizer
Npsti,(2,q)(Dg) = Dg. The number of subgroups S, containing a given subgroup Dg in
PSL(2, q) is equal to

| PSL2,g) | [Sal _ IDs|
| Sy | | Ds | |PSL(2,q) |

Since there are two conjugacy classes of Sy, there exists exactly one RWPRI and (27'),
geometry I's = T (PSL(2, q); S4, S4, Dg) up to conjugacy and thus also exactly one up to
isomorphism provided '%1 i

This geometry is new and the number of classes up to conjugacy (resp. isomorphism)
is confirmed by MAGMA for ¢ = 7,17,23,31,41. For ¢ = 7, it is also confirmed by [3]
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and for ¢ = 17 by [20].

Subcase 3: GOl = GO n Gl = A4.
By Lemma 17 the possibilities for G; are Sy and As provided ¢ = +1(5). In the latter
situation there are two conjugacy classes of As.

3.1. Consider the case where G = G = Sy.
We have ¢ = +1(8) which implies that there are two conjugacy classes of Sy and also two
of A4. Now all A4 in a S, are conjugate and every given A4 is contained in exactly one
Sy, which implies that there exists no geometry in this situation.

3.2. Consider the case where G = As.
If ¢ = p = £1(5) = £1(8) with p prime, this case has already been dealt with in
Proposition 13. Therefore, there exist exactly two RWPRI and (27); geometries I'y =
I (PSL(2, q); S4, As, A4) up to conjugacy and exactly one up to isomorphism for g = p =
+1(40) and for ¢ = p = £9(40) with p an odd prime. O

Proof of Proposition 20

Proof. Let Gy = PSL(2,2").

We subdivide our discussion in three cases according to the three G;-candidates given by
(3), (4), (6) and (10) in Proposition 7 namely: the case of the cyclic subgroup of order 3
provided ¢’ = 2; the case of D1 provided ¢’ = 4 and the case of Eqn: (2" — 1).

In each of these three cases we review all possibilities for G; given in the previous
Lemmas as well as the number of classes of geometries with respect to conjugacy (resp.
isomorphism). In order to determine all geometries under the given conditions we subdi-
vide our discussion in a particular case and a general one depending on whether n = 1 or
not.

Particular case: n = 1 and m = 2.
In this situation ¢’ = 2 and ¢ = 4. In view of (3) and (4) in Proposition 7 there are two
cases to consider: the cyclic group of order 3 and the cyclic group of order 2.

Subcase 1: Gg1 = Gy NGy = 2.
Since G = PSL(2,4), (PSL(2,2),2) and (22,2) are the only two-transitive pairs. We
obtain the following geometries

'y = I'(PSL(2,4); PSL(2,2), PSL(2,2),2) and I's = I" (PSL(2,4); PSL(2,2), 2, 2) .

They are indeed RWPRI and (27"); geometries as we need because we already met them
in [5], Proposition 15. Since PSL(2,4) = PSL(2,5) and PSL(2,2) = Ss, these are the
RWPRI and (27"); geometries corresponding to the Petersen graph and the Desargues’
configuration.

Subcase 2: Gog1 = Gy NG = 3.
Since G = PSL(2,4) = A5, (PSL(2,2), 3) and (A4, 3) are the only two-transitive pairs.

The geometry T" (PSL(2,4); PSL(2,2), PSL(2, 2), 3) has been treated in [5] Proposi-
tion 15 since PSL(2,2) = Dg and it does not exist. We obtain the following geometry

Iy =T (PSL(2,4); PSL(2,2), A4, 3), which is indeed a RWPRI and (27"); geometry
as we need because we already met it in Proposition 14 since PSL(2,4) = PSL(2, 5).
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General case: n # 1 and m is a prime.
In view of (10) in Proposition 7 there are two cases to consider: Fon : (2" — 1) and Diq
provided ¢’ = 4.

Subcase 1: Go1 = Gy N G1 = D1, provided ¢’ = 4.
This situation has been treated in Proposition 13, Subcase 1. We obtained the following
RWPRI and (27)); geometry I'y = I' (PSL(2,4™); PSL(2,4), D39, D1), provided <= is
odd.

Subcase 2: Gp1 = Go NG = Fan : (2" — 1).
By Lemma 19 the possibilities for G are Fa2. : (2™ — 1) provided m = 2, and PSL(2, 2™).
Notice that if n = 2, PSL(2,2") = As;.

2.1. Consider the case where Gy = FEa2n : (2" — 1) provided m = 2.

In this situation there is only one conjugacy class of PSL(2,2") and also one of Egzx :
(2™ — 1) in PSL(2, 22"). There is one conjugacy class of Eqn : (2" — 1) in PSL(2,2") and
also one in PSL(2,22"). Notice that there are 2" + 1 conjugacy classes of Fgn : (2" — 1)
in Fgen : (2" — 1). Since PSL(2,22") is simple and both PSL(2,2") and Fan : (2" — 1)
are maximal, PSL(2,2") and Ean : (2™ — 1) are self-normalized. Moreover the normalizer
of Eyn : (2" — 1) in PSL(2, 22") is itself. We also find that Npgy,(2 22n)(Eaz2n : (2" — 1)) =
FEy2n : (22" — 1). Therefore the number of subgroups Esz. : (2" — 1) containing a given
subgroup Eqn : (2" — 1) in PSL(2,22") is equal to

| ].:)S:|:4<27 22n) ‘ ) | E22n : (2” - 1) | | Egn (271 - 1) |
[ Egon (2270 —1) | [Ban (2" —1)] [ PSL(2,22) |

Hence, the RWPRI and (27"); geometry I'y = I'(PSL(2,22"); PSL(2,2"), Egz2n : (2" — 1),
Egn : (2™ — 1)) provided n # 1 exists and is unique up to conjugacy and also up to
isomorphism.

This geometry is new and the number of classes up to conjugacy (resp. isomorphism)
is confirmed by MAGMA for ¢ = 16, 64. For ¢ = 16, it is also confirmed by [20].

The particular situation where n = 2, has also been dealt with in Proposition 13, which
showed that T'(PSL(2,42%); As, E16: 3, A4) exists and is unique up to conjugacy, and also
up to isomorphism.

L2+ 1) - =1

2.2. Consider the case where Gy = G = PSL(2,2").
In this situation there is only one conjugacy class of PSL(2,2") in PSL(2, 2™™). We must
check whether this geometry exists, that is whether there are two subgroups isomorphic
to PSL(2,2") in PSL(2,2™™) that have the subgroup Ea~ : (2" — 1) in common. Since
PSL(2,2™™) is simple and PSL(2, 2™) maximal, PSL(2,2") is self-normalized. More-
over, the group PSL(2, 2™) contains 2" + 1 maximal subgroups E2~ : (2™ —1) all conjugate.
The normalizer of Eg» : (2™ — 1) in PSL(2, q) is the group itself. Therefore the number of
subgroups PSL(2, 2™) containing a given subgroup Eox : (2™ — 1) in PSL(2, q) is equal to

‘ Ezn '(271 - ].) ‘

|
)| [ PSL(2,2mm) |

| PSL(2,2") | | PSL(2,2")
[PSL2,2") | [ Ean:(2" — 1

which implies that the geometry does not exist.
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The particular situation where n = 2, has also been treated in Proposition 13 since
PSL(2,4) = As, which showed that T'(PSL(2,4™); PSL(2,4), PSL(2,4), A4) does not
exist. O

Proof of Proposition 24

Proof. Let Gy = PSL(2,p™).

We subdivide our discussion in three cases according to the four G;-candidates given by
(5)-(10) in Proposition 7 namely: A, provided ¢’ = 5, Sy provided ¢’ = 7, A5 provided
¢ =9,11and E,: C5L.

In each of these four cases we review all possibilities for G given in the previous Lem-
mas as well as the number of classes of such geometries with respect to conjugacy (resp.
isomorphism). In order to determine all geometries under the given conditions we subdi-
vide our discussion in a particular case and a general one depending on whether n = 1 or
not.

Particular case: n = 1.
In this situation ¢’ = p. The candidates for Gy, are E, : %, Ay provided ¢ = 5, Sy
provided ¢’ = 7, A5 provided ¢’ = 11.

Subcase 1: Gg1 = Gog NGy & Ep:%.
By Lemma 21 the only possibility for G; is PSL(2, p). We distinguish two particular situ-
ations, namely PSL(2,3) = A, (provided p = 3) and PSL(2,5) & A (provided p = 5).
All other situations will be treated in the general case, where n can take any value.

1.1 Consider the case where Gy = PSL(2,3) = Ay =2 G;.

In this situation Gg; is the cyclic group of order 3. There is only one conjugacy class of
Ay in PSL(2,3™). We must check whether this geometry exists, that is whether there exist
two subgroups isomorphic to A4 in PSL(2, 3™) that have the cyclic subgroup of order 3 in
common. Since PSL(2,3™) is simple and A4 maximal, A4 is self-normalized. The cyclic
subgroup of order 3 is self-normalized in A4. Moreover A, contains four cyclic subgroups
of order 3 which are all conjugate. The normalizer of 3 in PSL(2,3™) is an elementary
abelian subgroup of order 3. Therefore the number of subgroups A, containing a given
subgroup 3 in PSL(2,3™) is equal to

| PSL(2,3™) | [As]  [3™]
[ Aal T [3] | PSL(2,3m) |

— 3m71

and thus the geometry exists. There exist exactly 3™~ — 1 RWPRI and (27"); geometries
Iy = T'(PSL(2,3™); Ay, A4,3) up to conjugacy when m # 3. There exist exactly 8
RWPRI and (27'); geometries 'y = I' (PSL(2, 3%); A4, A4, 3) up to conjugacy when m =
3.

Let us deal with the fusion of non-conjugate classes. We find that Nprr,(2,q) (Ay) =
(Sy : Cy) and Nppr2,)(3) = (3™.2: Cy,). Therefore the number of subgroups Ay
containing a given cyclic subgroup of order 3 in PT'L(2,3™) is equal to

| PTL(2,3™) | | As| | 3™.2.m |
| Sqem | " [3] 7| PTL(2,3™) |

_ 37n— 1
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To count the geometries up to isomorphism we need to know the action of PT"L(2,3™) on
the subgroups A4 containing a given cyclic subgroup of order 3. If we fix A4 = G and the
cyclic subgroup of order 3 we know that |[Nprp,(2,3m)(A4) "Nprr(2,3m)(3)| = |De|.|Cra .
We distinguish the cases m = 3 and m # 3:
e Let us first assume that m = 3. In this situation there are three subgroups A, fixed
and the others are exchanged 6 by 6. Thus they merge under the action of PT'L(2,3™).

Therefore, there exist exactly ﬁﬁ + 1 = 2 RWPRI and (27'); geometries I'y =
r (PSL(2, 3%); Ay, Ay, 3) up to isomorphism for m = 3.
e Now we assume m # 3. Using Fermat’s Last Theorem for m an odd prime we

know that m | 3™~! — 1. In this situation there is only one A4 = Gy fixed. All others

are exchanged 2m by 2m. Therefore, there exist exactly 3";;_1 RWPRI and (27);
geometries I'y = I' (PSL(2,3™); A4, A4, 3) up to isomorphism, provided m # 3 is an odd
prime.

This geometry is new and the number of classes up to conjugacy (resp. isomorphism)

is confirmed by MAGMA for g = 27.

1.2 Consider the case where Gy = PSL(2,5) = A5 = G;.
This RWPRI and (27"); geometry I' (PSL(2,5™), PSL(2,5), A5, E5:2) has already been
dealt with in Proposition 13 and it does not exist.

Subcase 2: Go1 = Gg NG =2 Ay, provided ¢ = 5™ with m an odd prime.
This RWPRI and (27); geometry I' (PSL(2,5™), PSL(2,5), A5, A4) has already been
dealt with in Proposition 13, Subcase 2.3 and it does not exist.

Subcase 3: Gg1 = Gy N G1 = Sy, when ¢ = 7™ with m an odd prime.

By Lemma 23 the possibility for G; = PSL(2,7) 2 Gy. In this situation there is only one
conjugacy class of PSL(2,7) in PSL(2,11™) and two conjugacy classes of S4. We must
check whether this geometry exists, that is whether there are two subgroups isomorphic
to PSL(2,7) in PSL(2, 7™) which have the subgroup S, in common. Since PSL(2,7™)
is simple and PSL(2, 7) maximal, PSL(2,7) is self-normalized. The normalizer of S4 in
PSL(2,7™) and in PSL(2,7) is the group Sy itself. Therefore the number of subgroups
PSL(2,7) containing a given subgroup Sy in PSL(2, 7™) is equal to

IPSLE,T™) | |PSLT)| IS

which implies that the geometry does not exist.

=1

Subcase 4: Gg1 = Go N G1 = As, when ¢ = 11" with m an odd prime.

By Lemma 25 the possibility for G; = PSL(2,11) & Gj. In this situation there is only one
conjugacy class of PSL(2,11) in PSL(2,11™) and two conjugacy classes of A5. We must
check whether this geometry exists, that is whether there are two subgroups isomorphic to
PSL(2,11) in PSL(2, 11™) which have the subgroup As in common. Since PSL(2,11™)
is simple and PSL(2, 11) maximal, PSL(2, 11) is self-normalized. The normalizer of A5 in
PSL(2,11™) and in PSL(2, 11) is the group Aj itself. Therefore the number of subgroups
PSL(2, 11) containing a given subgroup As in PSL(2, 11™) is equal to

|PSL(2,11™) | |[PSL(211)| |4y ]

. -1
[PSL2,11) | [As] | PSL2,117)]
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which implies that the geometry does not exist.

General case:
Let us now discuss the general case, where n can take any value and p™ is different from 3
and 5 because these two cases have been discussed in the particular case. The two candi-

dates for Gy are Ey

Subcase 1: GOl GO n Gl : p7L;1
By Lemma 21 the only possibility for G 1is PSL(2, p™) = GY. In this situation there is only
one conjugacy class of PSL(2, p™) in PSL(2, p™"™). We must check whether this geometry
exists, that is whether there are two subgroups isomorphic to PSL(2, p™) in PSL(2, p"™)
that have the subgroup Ep» in common. Since PSL(2, ¢) is simple and PSL(2, p™)
maximal, PSL(2, p™) is self—normahzed. Moreover, the group PSL(2, p™) contains 2" + 1

. (-1
maximal subgroups En : (

5 ) all conjugate. There is only one conjugacy class of E,»

(pnﬂ) in PSL(2,p™"). The normalizer of Epn : £

5 ~1 in PSL(2, ¢) is the group itself.

Therefore the number of subgroups PSL(2, p™) containing a given subgroup E,,» : (p n; 1)
in PSL(2, q) is equal to

| PSL(2,p™) | | PSL(2,p") | | Epn: 257" |

. — . =1
| PSL(2,p") | | Bpn: 251 | | PSL(2,pmn) |

which implies that the geometry does not exist.

Subcase 2: Go1 = Gy N G1 = As, when ¢ = 9™ with m an odd prime.

By Lemma 22 the possibility for G; =2 PSL(2,9) = G. In this situation there is only one
conjugacy class of PSL(2,9) in PSL(2,9™) and two conjugacy classes of As5. We must
check whether this geometry exists, that is whether there are two subgroups isomorphic
to PSL(2,9) in PSL(2,9™) which have the subgroup As in common. Since PSL(2,9™)
is simple and PSL(2,9) maximal, PSL(2, 9) is self-normalized. The normalizer of A5 in
PSL(2,9™) and in PSL(2,9) is the group As itself. Therefore the number of subgroups
PSL(2,9) containing a given subgroup As in PSL(2,9™) is equal to

| PSL(2,9) | | A5 | | PSL(2,9™) |
which implies that the geometry does not exist. O

Proof of Proposition 29

Proof. Let Gy = PGL(2,p").

We subdivide our discussion in four cases, namely the four G -candidates given by (11),
(12), (13) and (20) in Proposition 7 namely: E,~ : (p"™ — 1), PSL(2,p"), Ds for p" = 3
and the case of S4 provided ¢ = 52. In each of these four cases we review all possibilities
for GG; given in the previous Lemmas as well as the number of classes of such geometries
with respect to conjugacy (resp. isomorphism).

Subcase 1: Gg; = Gg N G1 = Dg, provided ¢ = 9.
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By Lemma 25 the only case to consider is Gy = G; = PGL(2, 3).

Since ¢ = 9, there is only one conjugacy class of Dg and Dsg is self-normalized in
PSL(2,9). Therefore the number of subgroups PGL(2,3) containing a given subgroup
Ds in PSL(2,9) is equal to

|PSL2,9)| |PGL2.3)|  |Ds|
[PGL2.3)| | Ds|  [PSL.9)]

There are 2 conjugacy classes of PGL(2, 3) in PSL(2,9). Hence, up to conjugacy and also
up to isomorphism there exists exactly one RWPRI and (27"); geometry
I's =T (PSL(2,9); PGL(2, 3); PGL(2, 3); Dg). This is confirmed by [3].

Subcase 2: Go1 = Go NGy = Epn : (p™ — 1).
By Lemma 26 the possibilities for G| are Ej2n : (p™ — 1) and PGL(2,p"). Notice that Sy
is a particular case of PGL(2, p™) provided p™ = 3.

2.1. Consider the case where Gy = Ep2n : (p™ — 1).
In this situation there is only one conjugacy class of E,zn : (p™ — 1) and two conjugacy
classes of PGL(2, p") in PSL(2, p**). Each PGL(2,p") contains one conjugacy class of
Epn i (p" — 1) and there are two conjugacy classes of E,» : (p™ — 1) in PSL(2,p?").
Notice that there are p™ + 1 conjugacy classes of Epn : (p™ — 1) in E2n : (p™ — 1). Since
PSL(2,p?") is simple and both PGL(2, p") and E,» : (p" — 1) maximal, PGL(2, p")
and E,» : (p™ — 1) are self-normalized. Moreover the normalizer of E,» : (p"™ — 1) in

. . n 2"’7
PSL(2,p?") is itself. We also find that Npgr2,p2n) (Epen : (p" — 1)) = Epan : P L

Therefore the number of subgroups PGL(2, p™) containing a given subgroup Eyn : (p” —1)
in PSL(2, p?") is equal to

| PSL(2,p™) | [PGL(2,p") | | Ep: (" =D | _
| PGL(2,p") | | Epn:(p" —1) | | PSL(2,2%") |

Therefore, up to conjugacy, there exist exactly two RWPRI and (27"); geometries
=" (PSL(2,p2”); PGL(2,p"); Epen: (p™ — 1); Epn : (p" — 1)), corresponding to the
two conjugacy classes of subgroups isomorphic to Epn : (p™ — 1).

Let us deal with the fusion of non-conjugate classes. Following Lemma 11 the two
classes of PGL(2,p") are fused under the action of PGL(2, p?*) and thus also under the
action of PI"L(2, p*"). This is also the case for the two classes of En : (p" —1). Therefore,
up to isomorphism there exists exactly one RWPRI and (27"); geometry
Iy =T (PSL(2,p*"); PGL(2,p"); Epen : (p" — 1); Epn: (p™ — 1)).

This geometry is new and the number of classes up to conjugacy (resp. isomorphism)
is confirmed by MAGMA for ¢ = 9, 25, 49.

2.2 Let us now consider the case where G = Gy = PGL(2, p").
In this situation there are two conjugacy classes of PGL(2,p™) and also two conjugacy
classes of Epn : (p" — 1) in PSL(2, p?™). We must check whether this geometry exists, that
is whether there are two subgroups isomorphic to PGL(2, p") in PSL(2, p?>") that have the
subgroup E,» : (p™ —1) in common. Since PSL(2, p?") is simple and PGL(2, p™) is maxi-
mal, PGL(2, p") is self-normalized. The subgroup E,» : (p™ —1) is also its own normalizer
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in PGL(2, p") and in PSL(2, p*"). Therefore the number of subgroups PGL(2, p") con-

taining a given subgroup E,» : (p" — 1) in PSL(2, p?") is equal to
[PSL2p™) | |PGL2p") | | Bpi("—1)|
[PGLE,p") | [Ep:(p—1)] | PSL(2,2%7) |

Now all Ep» : (p" — 1) in PGL(2, p™) are conjugate. This implies that the RWPRI and
(2T), geometry I' (PSL(2, p*); PGL(2,p"); PGL(2, p™); Epn : (p" — 1)) does not exist.

Notice that in the particular case where p” = 3 and thus G; = S, = PGL(2, 3) the
geometry does not exist.

Subcase 3: Go1 = Go N Gy = PSL(2,p").
By Lemma 27 the possibilities for G; are As provided p™ = 3, PGL(2, p"™). Notice
that .S, is a particular case of PGL(2, p™) provided p™ = 3.

3.1. Consider the case where G; = As when p™ = 3.
There are two conjugacy classes of PGL(2,3) = Sy, of A4 and of A5 in PSL(2,9). All
Ay in Aj are conjugate, it is also the case for all A4 in S4. Since PSL(2,9) is simple
and both S and A5 are maximal, S4 and As are self-normalized. The normalizer of A4
in PSL(2,9) and in Sy is S4. Ay is self-normalized in As. The number of subgroups Aj
containing a given subgroup A4 in PSL(2, ¢) is equal to

[PSL(2q) | [As|  [Si|
45| [Ad| [PSL(Zq)]

To count the geometries up to conjugacy we need to know if the S4 normalizes each of
the As which is not the case because | Npgy,(2,q) (A1) N Npgr(2,q)(S1)| = |Sa] = 2| A4l.
Therefore, up to conjugacy there exist exactly two RWPRI and (27); geometries I's =
Tr (PSL(Q, 9), 54, A5, A4)

Let us deal with the fusion of non-conjugate classes. Following Lemma 11 the two
classes of A4, Sy and As are fused under the action of PGL(2,9) and thus also under
the action of PI'L(2,9). Therefore, there exists exactly one RWPRI and (27); geometry
Iy =T (PSL(2,9); S4, A5, A4) up to isomorphism. This is confirmed by [3].

3.2 Consider the case where G1 = Gy = PGL(2,p").
In this situation there are two conjugacy classes of PGL(2,p™) and also two conjugacy
classes of PSL(2, p") in PSL(2, p*). We must check whether this geometry exists, that is
whether there are two subgroups isomorphic to PGL(2, p") in PSL(2, p?>") that have the
subgroup PSL(2, p") in common. Since PSL(2, p?") is simple and PGL(2, p") maximal,
PGL(2, p™) is self-normalized. The normalizer of the subgroup PSL(2, p™) in PGL(2, p")
and in PSL(2,p*") is PGL(2,p"). Therefore the number of PGL(2,p") containing a
given PSL(2, p™) is one.

Now all PSL(2, p™) in PGL(2, p™) are conjugate, which implies that the RWPRI and
(2T), geometry I' (PSL(2, p*"); PGL(2, p™); PGL(2,p"); PSL(2, p™)) does not exist.

Notice that in the particular case where p™* = 3 we get G; = S, = PGL(2, 3).

Subcase 4: Go1 = Go N Gy = Sy, provided g = 52.
By Lemma 28 the only case to consider is Gp = G1 = PGL(2,5).
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In this situation where ¢ = 25, there are two conjugacy classes of PGL(2,5) and also
two conjugacy classes of Sy in PSL(2,52). Since PSL(2,52) is simple and PGL(2, 5) is
maximal, PGL(2, 5) is self-normalized and Sy is self-normalized in PGL(2, 5) and also
in PSL(2,52). Therefore the number of PGL(2,5) containing a given S, is one. Now
all Sy in PGL(2,5) are conjugate, which implies that the RWPRI and (27"); geometry
I' (PSL(2,5%); PGL(2,5); PGL(2,5); S4) does not exist. O

Case of Table 3, geometry I';

We know that s > 2. Consider a path (a, b, ¢) as in the preceding case. Here, Gape =
Zs. This acts on the three 1-elements d, do, d3 other than b in ¢. The action is transitive
since otherwise Zs would be in the kernel of the action of G, on ¢*. This kernel for the
action of S, on the cosets of Dg is reduced to the identity, a contradiction. This provides
s > 3 for paths starting at a 0 — element.

Next consider a path (h, 4, j) as in the preceding case. Here, G;; = Z>. This acts on
the two O-elements k1, ko other than ¢ in j-. The action is transitive since otherwise Z
would be in the kernel of the action of G on j*. This kernel for the action D;g on the
cosets of Dg is a group Zs, a contradiction. Hence s > 3.

Applying Leemans’ method we get s = 2 or 3. Thus s = 3.

Case of Table 3, geometry I's

This geometry I' (PSL(2, q); D¢, S4, Ds) is known as a locally 7-arc-transitive graph
due to Wong [22], hence s = 7.

Case of Table 3, geometry I'; and I's.

This geometry I (PSL(2, q); S4, S4, Dsg) is known as a locally 4-arc-transitive graph
due to Biggs-Hoare [1], hence s = 4 in this case.

Case of Table 4, geometry I'y

We know that s > 2. Consider a path (a, b, ) as in the preceding case. Here, Gape. =
2™. This acts on the 2" elements of type 1, dy, ..., da» other than b in ¢t. The action is
transitive since otherwise a subgroup of order 2 would be in the kernel of the action of G,
on ct. This kernel for the action of PSL(2,2") on the cosets of 2" : (2" — 1) is reduced
to the identity, a contradiction. This provides s > 3 for paths starting at a 0 — element.

Next consider a path (h, 7, j) as in the preceding case. Here, Gp;; = Zan_1. This acts
on the 2" — 1 elements of type 0, k1, kon _1 other than ¢ in jL. The action is transitive since
otherwise Z; with ¢ prime and dividing 2" — 1 would be in the kernel of the action of G;
on j+. This kernel for the action of 22" : (2" — 1) on the cosets of 2" : (2" — 1) is not
determined but its order divides 2", a contradiction. Hence s > 3.

Applying Leemans’ method we get s = 2 or 3. Thus s = 3.

Case of Table 6, geometry I';

We know that s > 2. Consider a path (a, b, ¢) as in the preceding case. Here, Gyp. =
p™. This acts on the p" elements of type 1, dy, ..., d,» other than b in c. The action is
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transitive since otherwise a subgroup of order p would be in the kernel of the action of G,
on ¢t . This kernel for the action of PG'L(2,2") on the cosets of p™ : (p" — 1) is reduced
to the identity, a contradiction. This provides s > 3 for paths starting at a 0 — element.

Next consider a path (h, ¢, j) as in the preceding case. Here, Gj;; = Z,»_1. This acts
on the p™ — 1 elements of type 0, k1, kp»_; other than ¢ in j . The action is transitive since
otherwise Z; with ¢ prime and dividing p” — 1 would be in the kernel of the action of G;
on j+. This kernel for the action of p?* : (p™ — 1) on the cosets of p™ : (p™ — 1) is not
determined but its order divides p™, a contradiction. Hence s > 3.

Applying Leemans’ method we get s = 2 or 3. Thus s = 3.



