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Instituto de Matemáticas, Universidad Nacional Autónoma de México,
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Abstract

This paper studies the maximum number of edges of a Directed Acyclic Graph (DAG)
with n vertices in terms of it’s longest path `. We prove that in general this number is the
Turán number t(n, l+1), the maximum number of edges in a graph with n vertices without
a clique of size `+2. Furthermore, we find the maximum number of edges in a DAG which
is either reduced, strongly reduced or extremely reduced and we relate this extremal result
with the family of intersection graphs of families of boxes with transverse intersection.
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1 Introduction
One of the fundamental results in extremal graph theory is the Theorem of Turán (1941)
which states that a graph with n vertices that has more than t(n, k) edges, will always
contain a complete subgraph of size k + 1. The Turán graph T (n, k), is a k–partite graph
on n vertices whose partite sets are as nearly equal in cardinality, and has the property
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that contains the maximum posible number of edges t(n, k) of any graph not containing a
clique of size k + 1. It is known that t(n, k) ≤ (1− 1

k )n2

2 , and equality holds if k divides
n. In fact, limn→∞

t(n,m)
n2/2 = 1− 1

m . See [1].
Turán numbers for several families of graphs have been studied in the context of ex-

tremal graph theory, see for example [3] and [4]. In ([2, 7]) the authors analyze, among
other things, the intersection graphs of boxes in Rd proving that, if T (n, k, d) denotes
the maximal number of intersection pairs in a family F of n boxes in Rd with the prop-
erty that no k + 1 boxes in F have a point in common (with n ≥ k ≥ d ≥ 1), then
T (n, k, d) = T (n − k + d, d) + T (n, k − d + 1, 1), with T (n, k, 1) =

(
n
2

)
−
(
n−k+1

2

)
being the precise bound in dimension 1 for the family of interval graphs.

Turán numbers have played and important role for several variants of the Turán Theo-
rem and its relation with the fractional Helly Theorem (see [5, 6]).

The purpose of this paper is to study the maximum number of edges in directed acyclic
graphs with n vertices with respect to it’s longest path. That turns out to be related with the
extremal behavior of the family of intersection graphs for a collection of boxes in R2 with
transverse intersection.

The first result, Theorem 2.10, states that in a directed acyclic graph with n vertices,
if the longest path has length `, then the maximal number of edges is the Turán number
t(n, `+ 1).

Theorem 3.19 and its Corollaries state that given a directed acyclic graph ~G with n
vertices such that the longest path has length `, then if ~G is either reduced, strongly reduced
or extremely reduced, ~G has at most t(n − ` + 1, 2) + T (n, `, 1) edges, where again
T (n, `, 1) denotes the maximal number of intersecting pairs in a family F of n intervals in
R with the property that no `+ 1 intervals in F have a point in common.

In fact, this bound is best possible. The bound is reached by the intersection graph of a
collection of boxes in R2 with transverse intersection (see Proposition 4.6). This graph is
extremely reduced (and thus is also strongly reduced and reduced, see Proposition 4.4).

2 Directed acyclic graphs
By a directed acyclic graph, DAG, we mean a simple directed graph without directed cy-
cles. A DAG, ~G = (V, ~E), with vertex set V and directed edge set ~E is transitive if for
every x, y, z ∈ V , if {x, y}, {y, z} ∈ ~E then {x, z} ∈ ~E .

Definition 2.1. A topological order of a directed graph ~G is an ordering O of its vertices
{v1, v2, . . . , vn} so that for every edge {vi, vj} then i < j.

The following proposition is a well known result:

Proposition 2.2. A directed graph ~G is a DAG if and only if ~G has a topological order.

Given any set X , by |X| we denote the cardinal of X .

Definition 2.3. The indegree, deg−(v), of a vertex v is the number of directed edges {x, v}
with x ∈ V . The outdegree, deg+(v), of a vertex v is the number of directed edges {v, x}
with x ∈ V . Notice that each directed edge {v, w} adds one outdegree to the vertex v and
one indegree to the vertex w. Therefore,

∑
v∈V deg+(v) =

∑
v∈V deg−(v) = |(~E)|.

The degree of a vertex is deg(v) = deg−(v) + deg+(v).



Á. Martı́nez-Pérez et al.: A note on extremal results on directed acyclic graphs 447

Definition 2.4. A vertex v such that deg−(v) = 0 is called source. A vertex v such that
deg+(v) = 0 is called sink.

It is well known that every DAG ~G has at least one source and one sink.

Definition 2.5. Given a DAG, ~G = (V, ~E), a directed path ~γ in G is a sequence of vertices
{v0, . . . , vn} such that {vi−1, vi} ∈ ~E for every 1 ≤ i ≤ n. Here, ~γ has length n, and
endpoint vn.

Observe that since DAG’s are acyclic, all the vertices on a directed path are different.

Definition 2.6. Given a DAG, ~G = (V, ~E), let Γ: V → N be such that Γ(v) = k if there
exists a directed path ~γ in G of length k with endpoint v and there is no directed path ~γ′

with endpoint v and length greater than k.

Definition 2.7. Given a DAG, ~G = (V, ~E) suppose that ` = max{k | Γ(v) = k for every
v ∈ V}. Notice that, since ~G has no directed cycle, ` ≤ |V|. Then, let us define a partition
PΓ = {V0, . . . , V`} of V such that Vi := {v ∈ V | Γ(v) = i} for every 0 ≤ i ≤ `.

Notice that V0 is exactly the set of sources in ~G and V` is contained in the set of sinks
in G.

Lemma 2.8. Vi is nonempty for every 0 ≤ i ≤ `.

Proof. Let {v0, . . . , v`} be a directed path of maximal length in ~G. Clearly, for every
0 ≤ i ≤ `, vi /∈ Vj if j < i. Suppose vi ∈ Vj with i < j ≤ `. Then, there is a directed path
{v′0, . . . , v′j = vi} with j > i and {v′0, . . . , v′j , vi+1, . . . , v`} is a directed path with length
j + l − i > ` which contradicts the hypothesis.

Lemma 2.9. The induced subgraph with vertices Vi, G[Vi], is independent (has no edges)
for every i.

Proof. Let vi, v′i ∈ Vi and suppose {vi, v′i} ∈ ~E . Let {v0, . . . , vi} be a path of length iwith
endpoint vi. Then, {v0, . . . , vi, v

′
i} defines a directed path of length i+1 which contradicts

the fact that v′i ∈ Vi.

Recall that T (n, `) denote the `-partite Turán graph with n vertices and t(n, `) denote
the number of edges of T (n, `).

Theorem 2.10. Let ~G = (V, ~E) be a DAG with n vertices such that the longest directed
path has length `. Then, ~G has at most t(n, `+ 1) edges.

Proof. Consider the partition PΓ = {V0, . . . , V`} of V . By Lemma 2.9, this defines an
(`+1)-partite directed graph. Thus, neglecting the orientation we obtain a complete (`+1)-
partite graph with partition sets V0, . . . , V`. Therefore, the number of edges is at most
t(n, `+ 1).

Remark 2.11. It is readily seen that the bound in Theorem 2.10 is best possible. Consider
the Turán graph T (n, ` + 1) and any ordering of the ` + 1 independent sets V0, . . . , V`.
Then, for every edge {vi, vj} in T (n, `) with vi ∈ Vi, vj ∈ Vj and i < j let us assume the
orientation {vi, vj}. It is trivial to check that the resulting graph is a DAG with t(n, `+ 1)
edges.
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3 Reduced, strongly reduced and extremely reduced DAGs

LetO be a topological ordering in a DAG ~G. Given any two vertices v, w, and two directed
paths in ~G, γ,γ′, from v to w, let us define γ ∪O γ′ as the sequence of vertices defined by
the vertices in γ ∪ γ′ in the order given by O. Of course, this need not be, in general, a
directed path from v to w.

Let Γ(u, v) be the set of all directed paths from u to v. Let ∪O{γ | γ ∈ Γ(u, v)}
represent the sequence of all the vertices from the paths in Γ(u, v) ordered according toO.

Definition 3.1. A finite DAG ~G is strongly reduced if for any topological ordering O of
~G, every pair of vertices, v, w, and every pair of directed paths, γ, γ′, from v to w, then
γ ∪O γ′ defines a directed path from v to w.

Remark 3.2. Let ~G be DAG. Given any two vertices v, w, and two directed paths in ~G,
γ,γ′, from v to w, let us define γ ≤ γ′ if every vertex in γ is also in γ′. Clearly, “≤” is a
partial order.

Definition 3.3. A vertex w is reachable from a vertex v if there is a directed path from v
to w.

Proposition 3.4. Given a finite DAG ~G = (V, ~E), the following properties are equivalent:

i) For every pair of vertices v, w and every pair of paths, γ, γ′, from v to w, there exists
a directed path from v to w, γ′′, such that γ, γ′ ≤ γ′′.

ii) For every pair of vertices v, w such that w is reachable from v, there is a directed
path from v to w, γM , such that for every directed path, γ, from v to w, γ ≤ γM .

iii) For every topological ordering O of ~G and any pair of vertices v, w, ∪O{γ | γ ∈
Γ(u, v)} defines a directed path from v to w.

Proof. Since the graph is finite and the relation ‘≤’ is transitive, i) and ii) are trivially
equivalent.

If ii) is satisfied, then it is trivial to see that ∪O{γ | γ ∈ Γ(u, v)} = γM and iii) is
satisfied. Also, it is readily seen that iii) implies ii) taking γM := ∪O{γ | γ ∈ Γ(u, v)}.

Definition 3.5. We say that a finite DAG ~G is reduced if it satisfies any of the properties
from Proposition 3.4.

Proposition 3.6. If a finite DAG ~G is strongly reduced, then ~G is reduced.

Proof. Since the graph is finite, it is immediate to see that being strongly reduced im-
plies iii).

Remark 3.7. The converse is not true. The graph in the left from Figure 1 is clearly re-
duced. Notice that the directed path γM := {v1, v2, v3, v4, v5} is an upper bound for every
directed path from v1 to v5. However, if we consider the directed paths γ = {v1, v2, v5}
and γ′ = {v1, v4, v5} with the topological order O = {v1, v2, v3, v4, v5}, then γ ∪O γ′ =
{v1, v2, v4, v5} which is not a directed path.
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Figure 1: Being reduced does not imply being strongly reduced and being strongly reduced
does not imply being extremely reduced.

Definition 3.8. Given a finite DAG ~G and a vertex v ∈ V we say that w is an ancestor of
v if there is a directed path {w = v0, . . . , vk = v} and w is a descendant of v if there is a
directed path {v = v0, . . . , vk = w}.

Definition 3.9. We say that a finite DAG ~G is extremely reduced if for every pair of non-
adjacent vertices x, y, if x, y have a common ancestor, then they do not have a common
descendant.

Proposition 3.10. If a DAG ~G = (V, ~E) is extremely reduced, then it is strongly reduced.

Proof. Let γ = {v, v1, . . . , vn, w} and γ′ = {v, w0, . . . , wm, w} be two directed paths in
~G from v yow. LetO be any topological order in ~G and consider γ∪Oγ′ = {v, z1, . . . , zk,

w}. First, notice that z1 is either v1 or w1. Therefore, {v, z1} ∈ ~E . Also, zk is either vn
or wm, and {zk, w} ∈ ~E . Now, for every 1 < i ≤ k, let us see that {zi−1, zi} ∈ ~E . If
zi−1, zi ∈ γ or zi−1, zi ∈ γ′, then they are consecutive vertices in a directed path and we
are done. Otherwise, since zi−1, zi have a common ancestor v and a common descendant
w, then there is a directed edge joining them and, since zi−1, zi are sorted by a topological
order, {zi−1, zi} ∈ ~E .

Remark 3.11. The converse is not true. The graph in the right from Figure 1 is strongly
reduced. However, vertices w2 and w4 are not adjacent and have a common ancestor and a
common descendent.

Proposition 3.12. If ~G is transitive, then the following properties are equivalent:

• ~G is extremely reduced,

• ~G is strongly reduced,

• ~G is reduced.

Proof. By Proposition 3.10 if ~G is extremely reduced, then it is strongly reduced. By
Proposition 3.6, if ~G is strongly reduced, then it is reduced.

Suppose ~G is reduced and suppose that two vertices x, y have a common ancestor, v,
and a common descendant, w. Then, there are two directed paths γ, γ′ from v to w such
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that x ∈ γ and y ∈ γ′. By property i) in Proposition 3.4, there exists a path γ′′ in ~G from
v to w such that γ, γ′ ≤ γ′′. In particular, x, y ∈ γ′′. Therefore, either x is reachable from
y or y is reachable from x in ~G. Since ~G is transitive, this implies that x, y are adjacent.
Therefore, ~G is extremely reduced.

Definition 3.13. Given a DAG ~G = (V, ~E), the graph with vertex set V and edge set
~E ′ := ~E ∪ {{v, w} | w is reachable from v} is called the transitive closure of ~G, T [~G].

It is immediate to check the following:

Proposition 3.14. Given any DAG ~G, T [~G] is transitive.

Proposition 3.15. If a DAG ~G is reduced, then the transitive closure T [~G] is also reduced.

Proof. Suppose ~G satisfies i) in Proposition 3.4 and let γ = {v = v0, . . . , vn = w},
γ′ = {v = w0, . . . , wm = w} be any pair of paths from v to w in T [~G]. Therefore, vi
is reachable from vi−1 in ~G for every 1 ≤ i ≤ n and wi is reachable from wi−1 in ~G for
every 1 ≤ i ≤ m. Thus, there exist a path γ0 in ~G such that γ ≤ γ0 and a path γ′0 in ~G such
that γ′ ≤ γ′0. By property i), there is a directed path from v to w such that γ0, γ

′
0 ≤ γ′′0 .

Therefore, γ, γ′ ≤ γ′′0 and T [~G] satisfies i).

Then, from Propositions 3.6, 3.10, 3.12, 3.14 and 3.15:

Corollary 3.16. If a DAG ~G is reduced, then the transitive closure T [~G] is extremely
reduced and strongly reduced. In particular, if ~G is extremely reduced or strongly reduced,
then T [~G] is extremely reduced and strongly reduced.

Let us recall that

T (n, `, 1) =

(
n

2

)
−
(
n− `+ 1

2

)
= (n− `+ 1)(`− 1) +

(`− 1)(`− 2)

2
(3.1)

As it was proved in [7]:

Lemma 3.17. For n ≥ ` and d ≥ 1,

T (n+ d, `, 1)− T (n, `, 1) = d(`− 1).

In particular, T (n+ 2, `, 1)− T (n, `, 1) = 2(`− 1).
Also, from [7]:

Lemma 3.18. For 1 ≤ d ≤ n,

t(n+ d, d)− t(n, d) = (d− 1)n+

(
d

2

)
In particular, t(n+ 2, 2)− t(n, 2) = n+ 1.

Theorem 3.19. Let ~G = (V, ~E) be a DAG with n vertices and such that the longest directed
path has length ` ≥ 1. If ~G is extremely reduced, then ~G has at most t(n − ` + 1, 2) +
T (n, `, 1) edges.
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Proof. Let us prove the result by induction on n. Suppose that the longest directed path
has length `.

First, let us see that the result is true for n = `+ 1 and n = `+ 2.
If n = ` + 1 then ~G has at most `(`+1)

2 = (`−2)(`−1)
2 + 2(` − 1) + 1 = T (n, `, 1) +

t(n − ` + 1, 2) edges. The last equation follows immediately from (3.1) and the fact that
t(2, 2) = 1.

If n = `+ 2 then there are `+ 1 vertices which define a directed path γ = {v0, . . . , v`}
and one vertex w such that neither {w, v0} nor {v`, w} is a directed edge. Then, the parti-
tion PΓ = {V0, . . . , V`} of ~G satisfies that vi ∈ Vi for every 0 ≤ i ≤ `. Also, w ∈ Vj for
some 0 ≤ j ≤ ` and {w, vj}, {vj , w} are not directed edges. Hence, deg(w) ≤ `. There-
fore, ~G has at most `(`+1)

2 + ` = (`−2)(`−1)
2 + 3(`− 1) + 2 = T (n, `, 1) + t(n− `+ 1, 2)

edges. The last equation follows immediately from (3.1) and the fact that t(3, 2) = 2.
Suppose the induction hypothesis holds when the graph has n vertices and let #(V) =

n+ 2. Also, by Proposition 3.15 we may assume that the graph is transitive.
Consider the partition PΓ = {V0, . . . , V`} of V . Let #(Vi) = ri. Let v ∈ V0 and w

be any sink of ~G. Consider any pair of vertices vi, v′i ∈ Vi. Since ~G is extremely reduced
and every two vertices in Vi are non-adjacent, vi, v′i can not be both descendants of v and
ancestors of w simultaneously. Hence, the number of edges joining the sets {v, w} and
Vi are at most ri + 1. Therefore, there are at most n + ` − 1 edges joining {v, w} and
G \ {v, w}

Since G \ {v, w} has n vertices, by hypothesis, it contains at most t(n − ` + 1, 2) +
T (n, `, 1) edges.

Finally, there is at most 1 edge in the subgraph induced by {v, w}.
Therefore, by Lemmas 3.17 and 3.18, | ~E(G)| ≤ t(n− `+ 1, 2) +T (n, `, 1) +n+ ` =

t(n− `+ 3, 2) + T (n+ 2, `, 1).

By Corollary 3.16 we know that the extremal graph for reduced and strongly reduced
graphs is transitive. Thus, from Theorem 3.19 and Proposition 3.12 we obtain the follow-
ing.

Corollary 3.20. Let ~G = (V, ~E) be a DAG with n vertices and such that the longest
directed path has length ` ≥ 1. If ~G is reduced, then ~G has at most t(n − ` + 1, 2) +
T (n, `, 1) edges.

Corollary 3.21. Let ~G = (V, ~E) be a DAG with n vertices and such that the longest
directed path has length ` ≥ 1. If ~G is strongly reduced, then ~G has at most t(n − ` +
1, 2) + T (n, `, 1) edges.

4 Directed intersection graphs of boxes
Definition 4.1. Let R be a collection of boxes with parallel axes in R2. Let ~G = (V, ~E)
be a directed graph such that V = R and given R,R′ ∈ R with R = I × J , R′ = I ′ × J ′
then {R,R′} ∈ ~E if and only if I ⊂ I ′ and J ′ ⊂ J (i.e. there is an edge if and only
if the intersection is transverse and the order is defined by the subset relation in the first
coordinate). Let us call ~G the directed intersection graph ofR.

Definition 4.2. LetR be a collection of boxes with parallel axes in R2. We say thatR is a
collection with transverse intersection if for every pair of boxes either they are disjoint or
their intersection is transverse.
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R=I×J

R’=I’×J’

I

I’

J’

J

Figure 2: The transverse intersection above induces a directed edge {R,R′}.

Proposition 4.3. Let R be a collection of boxes with parallel axes in R2 and ~G be the
induced directed intersection graph. If two vertices v, w have both a common ancestor and
a common descendant in ~G, then the corresponding boxes Rv, Rw intersect.

Proof. Let a be a common ancestor and Ra = Ia × Ja be the corresponding box. Let
b be a common descendant and Rb = Ib × Jb be the corresponding box. Then if Rv =
Iv × Jv , Rw = Iw × Jw are the boxes corresponding to v and w respectively, it follows
by construction that Ia ⊂ Iv, Iw and Jb ⊂ Jv, Jw. Therefore, Ia × Jb ⊂ Rv, Rw and
Rv ∩Rw 6= ∅.

Proposition 4.4. If R is a collection of boxes with parallel axes in R2 with transverse
intersection, then the induced directed intersection graph G is extremely reduced and tran-
sitive.

Proof. First notice that the transitivity holds simply by the transverse intersection prop-
erty. Let v, w be two vertices such that there is no edge joining them. This means, by
construction, that their corresponding boxes do not have a transverse intersection. SinceR
has transverse intersection, this implies that these boxes do not intersect. Thus, by Proposi-
tion 4.3, if v, w have a common ancestor, then they can not have a common descendant.

Remark 4.5. Consider the bipartite graph G from Figure 3 with the partition given by
{letters, numbers} and assume all directed edges go from letters into numbers. Note that
G is extremely reduced, transitive and acyclic. Notice that the induced subgraphs given by
the sets C1 := {1, 2, A,B}, C2 := {3, 4, C,D} and C3 := {5, 6, E, F} are three cycles
of length 4. Furthermore the induced subgraph given by the set of vertices {1, 2, 3, 4, 8, 9,
A,B,C,D,H, I} is realizable as boxes in R2 (see Figure 4) note, that contains C1 and
C2 and its realization force one of them to be inside the other say C1 inside C2. Simi-
larly the induced subgraphs given by the set of vertices {1, 2, 5, 6, A,B,E, F, 7, 12, G, L}
and the set of vertices {3, 4, 5, 6, C,D,E, F, 10, 11, J,K} forces necessarily a system of
tree squares one inside the other. However, intervals given by {7, 8, 9, 10, 11, 12} and
{G,H, I, J,K,L} are forced to have more intersections that those given by the graph. In
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A B C D E F

G H I J K L

1 2 3 4 5 6

7 8 9 10 11 12

Figure 3: The bipartite, transitive, and extremely reduced DAG, G with partition given by
{letters, numbers} and edges directed from letters into numbers. This graph is not realiz-
able as a family of boxes in R2.

other words, there is no family of boxes (or intervals) that realizes such a graph or for which
it is induced the graph G. Then, the converse of Proposition 4.4 is not true.

1

2

3

4

A B
C

D8

9
H

I

Figure 4: Realization in R2 of the induced subgraph with vertices {1, 2, 3, 4, 8, 9, A,
B,C,D,H, I} of the graph shown in Figure 3.

Let G[r, l, s] be the graph, G(V, ~E), such that:

• V = {x1, . . . , xr, y1, . . . , yl−1, z1, . . . , zs}
• {xi, xj} /∈ ~E for any i 6= j,

• {zi, zj} /∈ ~E for any i 6= j,

• {xi, yj} ∈ ~E for every i, j,

• {yi, yj} ∈ ~E for every i < j,

• {yi, zj} ∈ ~E for every i, j,

• {xi, zj} ∈ ~E for every i, j.

This is the directed intersection graph from the collection of boxes in Figure 5.
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B1 

A1 

Bs 

Ar 

… 

…
 

Ai Bj …
 

…
 … 

C1 Cl-1 

C1 

Cl-1 

V0 V1 Vl-1 Vl 

Figure 5: The graph G[r, l, s] corresponds to the directed intersection graph of the collec-
tion in the figure where xi ∼ Ai, yj ∼ Cj and zk ∼ Bk. Notice that the graph is transitive
although not every edge is represented in the figure.

By Proposition 4.4, G[r, l, s] is a transitive extremely reduced DAG. In particular,
G[r, l, s] is strongly reduced and reduced.

Now, to prove that the bound obtained in Theorem 3.19 and its corollaries is best pos-
sible, it is immediate to check the following:

Proposition 4.6. If n− ` is even, G[n−`2 , `, n−`2 ] has t(n− `+ 1, 2) + T (n, `, 1) edges. If
n− ` is odd, G[n−`+1

2 , `, n−`−1
2 ] has t(n− `+ 1, 2) + T (n, `, 1) edges.
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[7] Á. Martı́nez-Pérez, L. Montejano and D. Oliveros, Extremal results on intersection graphs of
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