creative ARS MATHEMATICA
@commons CONTEMPORANEA

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)
ARS MATHEMATICA CONTEMPORANEA 21 (2021) #P1.04 / 45-55
https://doi.org/10.26493/1855-3974.2358.3c9
(Also available at http://amc-journal.eu)

On Hermitian varieties in PG (6, ¢?)

Angela Aguglia* ®
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari,
Via Orabona 4, I-70125 Bari, Italy

Luca Giuzzi ' ©®
DICATAM, University of Brescia, Via Branze 53, I-25123 Brescia, Italy

Masaaki Homma @

Department of Mathematics and Physics, Kanagawa University,
Hiratsuka 259-1293, Japan

Received 8 June 2020, accepted 15 February 2021, published online 10 August 2021

Abstract

In this paper we characterize the non-singular Hermitian variety (6, ¢*) of PG(6, ¢°),
q # 2 among the irreducible hypersurfaces of degree ¢ + 1 in PG(6, ¢?) not containing
solids by the number of its points and the existence of a solid .S meeting it in ¢* + ¢% + 1
points.
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1 Introduction

The set of all absolute points of a non-degenerate unitary polarity in PG(r, ¢?) determines
the Hermitian variety H(r, ¢?). This is a non-singular algebraic hypersurface of degree
g+ 1in PG(r, ¢%) with a number of remarkable properties, both from the geometrical and
the combinatorial point of view; see [6, 16]. In particular, (r, q2) is a 2-character set with
respect to the hyperplanes of PG(r, ¢?) and 3-character blocking set with respect to the
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lines of PG(r, ¢?) for r > 2. An interesting and widely investigated problem is to provide
combinatorial descriptions of H(r, ¢?).

First, we observe that a condition on the number of points and the intersection numbers
with hyperplanes is not in general sufficient to characterize Hermitian varieties; see [,
2]. On the other hand, it is enough to consider in addition the intersection numbers with
codimension 2 subspaces in order to get a complete description; see [7].

In general, a hypersurface H of PG(r, ¢) is viewed as a hypersurface over the algebraic
closure of GF(q) and a point of PG(r, ¢%) in H is called a GF(¢%)-point. A GF(q)-point
of H is also said to be a rational point of . Throughout this paper, the number of GF (¢*)-
points of H will be denoted by N,:(#). For simplicity, we shall also use the convention
[H] = Ny(#).

In the present paper, we shall investigate a combinatorial characterization of the Her-
mitian hypersurface H(6,q?) in PG(6, ¢?) among all hypersurfaces of the same degree
having also the same number of GF(¢?)-rational points.

More in detail, in [12, 13] it has been proved that if X is a hypersurface of degree g + 1
in PG(r, %), r > 3 odd, with |X| = [H(r,¢®)| = (¢ 1 + (~1)")(q" — (~1)")/(¢® — 1)
GF(q?)-rational points, not containing linear subspaces of dimension greater than =,
then X is a non-singular Hermitian variety of PG(r, ¢%). This result generalizes the char-
acterization of [8] for the Hermitian curve of PG(2, ¢?), q # 2.

The case where » > 4 is even is, in general, currently open. A starting point for
a characterization in arbitrary even dimension can be found in [3] where the case of a
hypersurface X of degree ¢ + 1 in PG(4, ¢?), ¢ > 3 is considered. There, it is shown that
when X has the same number of rational points as # (4, ¢%), does not contain any subspaces
of dimension greater than 1 and meets at least one plane 7 in ¢> +1 GF(¢?)-rational points,
then X is a Hermitian variety.

In this article we deal with hypersurfaces of degree ¢ + 1 in PG(6, ¢?) and we prove
that a characterization similar to that of [3] holds also in dimension 6. We conjecture that
this can be extended to arbitrary even dimension.

Theorem 1.1. Let S be a hypersurface of PG(6,q?), ¢ > 2, defined over GF(q?), not
containing solids. If the degree of S is q + 1 and the number of its rational points is
g +¢° + ¢+ ¢ + ¢® + 1, then every solid of PG(6, %) meets S in at least ¢* + ¢*> + 1
rational points. If there is at least a solid X3 such that |3 N S| = ¢* + ¢*> + 1, then S is a
non-singular Hermitian variety of PG(6, ¢?).

Furthermore, we also extend the result of [3] to the case ¢ = 3.

2 Preliminaries and notation

In this section we collect some useful information and results that will be crucial to our
proof.

A Hermitian variety in PG(r, ¢°) is the algebraic variety of PG (r, ¢*) whose points (v)
satisfy the equation 7(v, v) = 0 where 7 is a sesquilinear form GF(¢?)" ! x GF(¢?)"*! —
GF(q?). The radical of the form 7 is the vector subspace of GF(g?)"*! given by

Rad(n) := {w € GF(¢*)"™': Vv € GF(¢*)" ™, n(v,w) = 0}.

The form 7 is non-degenerate if Rad(n) = {0}. If the form 7 is non-degenerate, then the
corresponding Hermitian variety is denoted by #(r, ¢?) and it is a non-singular algebraic
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variety, of degree ¢ + 1 containing

(@ + (1))@ = (=1)")/(@* = 1)

GF(q?)-rational points. When 7 is degenerate we shall call vertex R; of the degenerate Her-
mitian variety associated to 7 the projective subspace R; := PG(Rad(n)) := {{w): w €
Rad(n)} of PG(r,¢%). A degenerate Hermitian variety can always be described as a cone
of vertex R; and basis a non-degenerate Hermitian variety H(r — ¢, ¢?) disjoint from R;
where ¢t = dim(Rad(7)) is the vector dimension of the radical of 7). In this case we shall
write the corresponding variety as Ry H(r — ¢, ¢?). Indeed,

RH(r—t,¢*) :={X €(P,Q): PE€ R,,Q € H(r —t,¢*)}.

Any line of PG(r, ¢?) meets a Hermitian variety (either degenerate or not) in either
1,q + 1 or ¢®> + 1 points (the latter value only for r > 2). The maximal dimension of
projective subspaces contained in the non-degenerate Hermitian variety H(r, ¢) is (r —
2)/2, if r is even, or (r — 1)/2, if r is odd. These subspaces of maximal dimension are
called generators of H(r, g*) and the generators of H(r, ¢*) through a point P of H(r, ¢%)
span a hyperplane P+ of PG(r, ¢?), the tangent hyperplane at P.

It is well known that this hyperplane meets H(r, ¢*) in a degenerate Hermitian variety
PH(r — 2,¢%), that is in a Hermitian cone having as vertex the point P and as base a
non-singular Hermitian variety of © =2 PG(r — 2, ¢) contained in P+ with P ¢ ©.

Every hyperplane of PG(r, ¢?) that is not tangent meets #(r,¢?) in a non-singular
Hermitian variety H(r — 1, ¢), and is called a secant hyperplane of H(r, ¢?). In particular,
a tangent hyperplane contains

L+ ¢*(q" ™+ (1))@ = (-1)")/(¢* — 1)
GF(g?)-rational points of H(r, ¢?), whereas a secant hyperplane contains

(@ + (1" = ()"H/(¢* - 1)

GF(¢?)-rational points of H(r, ¢?).
We now recall several results which shall be used in the course of this paper.

Lemma 2.1 ([15]). Let d be an integer with 1 < d < q + 1 and let C be a curve of degree
d in PG(2, q) defined over GF(q), which may have GF(q)-linear components. Then the
number of its rational points is at most dq + 1 and Ny(C) = dq + 1 if and only if C is a
pencil of d lines of PG(2, q).

Lemma 2.2 ([10]). Let d be an integer with 2 < d < q + 2, and C a curve of degree d
in PG(2, q) defined over GF(q) without any GF(q)-linear components. Then N, (C) <
(d —1)q+ 1, except for a class of plane curves of degree 4 over GF (4) having 14 rational
points.

Lemma 2.3 ([11]). Let S be a surface of degree d in PG(3, q) over GF(q). Then
No(S) <dg” +q+1

Lemma 2.4 ([8]). Suppose q # 2. Let C be a plane curve over GF(q?) of degree q + 1
without GF(q?)-linear components. If C has q> + 1 rational points, then C is a Hermitian
curve.
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Lemma 2.5 ([7]). A subset of points of PG (r,q?) having the same intersection numbers
with respect to hyperplanes and spaces of codimension 2 as non-singular Hermitian vari-
eties is a non-singular Hermitian variety of PG(r, ¢°).

From [9, Theorem 23.5.1, Theorem 23.5.3] we have the following.

Lemma 2.6. If W is a set of " + q* + ¢*> + 1 points of PG(4,¢?), ¢ > 2 such that every
line of PG(4,q?) meets Win 1,q + 1 or ¢*> + 1 points, then W is a Hermitian cone with
vertex a line and base a unital.

Finally, we recall that a blocking set with respect to lines of PG(r,q) is a point set
which blocks all the lines, i.e., intersects each line of PG(r, ¢) in at least one point.

3 Proof of Theorem 1.1

We first provide an estimate on the number of points of a curve of degree ¢+1in PG(2, ¢?),
where ¢ is any prime power.

Lemma 3.1. Let C be a plane curve over GF(q?), without GF (¢*)-lines as components
and of degree q + 1. If the number of GF(q?)-rational points of C is N < ¢ + 1, then

¢ —(*—-2) ifg>3
N<{ 24 ifg=3 (3.1)
8 ifqg=2.

Proof. We distinguish the following three cases:

(a) C has two or more GF(¢?)-components;

(b) C is irreducible over GF(g?), but not absolutely irreducible;
(c) C is absolutely irreducible.

Suppose first ¢ # 2.

Case (a) Suppose C = C; U Cy. Let d; be the degree of C;, for each i = 1,2. Hence
di+ds =g+ 1. By Lemma 2.2,

N < Ng(Ci)+Ngp(Co) <[(g+1)—2]¢* +2=¢* - (¢* — 2)

Case (b) Let C’ be an irreducible component of C over the algebraic closure of GF(¢?). Let
GF(¢?") be the minimum defining field of C’ and o be the Frobenius morphism of GF (¢?*)
over GF(¢?). Then

t—1

c=cucrcucu...uc

and the degree of C’, say e, satisfies ¢ + 1 = te with e > 1. Hence any GF(¢?)-rational
point of C is contained in ﬂﬁ;éC’ o In particular, N < e? < (%1)2 by Bezout’s Theorem
and (54)” < ¢* — (¢ - 2).
Case (c) Let C be an absolutely irreducible curve over GF(g?) of degree ¢ + 1. Either C
has a singular point or not.

In general, an absolutely irreducible plane curve M over GF(q?) is ¢?-Frobenius non-
classical if for a general point P(zq,z1,x2) of M the point pe = pa’ (mSQ, :c’lf , xgz) is
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on the tangent line to M at the point P. Otherwise, the curve M is said to be Frobenius
classical. A lower bound of the number of GF(¢?)-points for ¢-Frobenius non-classical
curves is given by [4, Corollary 1.4]: for a ¢2-Frobenius non-classical curve C’ of degree
d, we have N;2(C") > d(q?> — d + 2). In particular, if d = g + 1, the lower bound is just
@+ 1.

Going back to our original curve C, we know that C is Frobenius classical because
N < ¢® + 1. Let F(z,y,2) = 0 be an equation of C over GF(¢?). We consider the curve
D defined by g—f;qu + %yqz + %—’:z‘f = 0. Then C is not a component of D because C is
Frobenius classical. Furthermore, any GF(¢?)-point P lies on C N D and the intersection
multiplicity of C and D at P is at least 2 by Euler’s theorem for homogeneous polynomials.
Hence by Bézout’s theorem, 2N < (g + 1)(¢* + ¢). Hence

1
N < 5(]((] + 1)2.

This argument is due to Stohr and Voloch [18, Theorem 1.1]. This Stohr and Voloch’s
bound is lower than the estimate for IV in case (a) for ¢ > 4 and it is the same for ¢ = 4.
When ¢ = 3 the bound in case (a) is smaller than the Stohr and Voloch’s bound.

Finally, we consider the case ¢ = 2. Under this assumption, C is a cubic curve and neither
case (a) nor case (b) might occur. For a degree 3 curve over GF(q2) the Stohr and Voloch’s
bound is loose, thus we need to change our argument. If C has a singular point, then C is a
rational curve with a unique singular point. Since the degree of C is 3, singular points are
either cusps or ordinary double points. Hence N € {4, 5,6}. If C is nonsingular, then it is
an elliptic curve and, by the Hasse-Weil bound, see [19], N € I where I = {1,2,...,9}
and for each number N belonging to I there is an elliptic curve over GF(4) with N points,
from [14, Theorem 4.2]. This completes the proof. O

Henceforth, we shall always suppose g > 2 and we denote by S an algebraic hypersur-
face of PG(6, ¢?) satisfying the following hypotheses of Theorem 1.1:

(S1) S is an algebraic hypersurface of degree ¢ + 1 defined over GF(¢?);
S2) |S|=¢"+¢+d"+*+ ¢+ 1;

(S3) S does not contain projective 3-spaces (solids);

(S4) there exists a solid 3 such that |S N X3| = ¢* + ¢% + 1.

We first consider the behavior of S with respect to the lines.

Lemma 3.2. An algebraic hypersurface T of degree q + 1 in PG(r,q?), q¢ # 2, with
|T| = |H(r, q?)| is a blocking set with respect to lines of PG(r, ¢*)

Proof. Suppose on the contrary that there is a line ¢ of PG(r, ¢?) which is disjoint from
T. Let « be a plane containing ¢. The algebraic plane curve C = o NT of degree ¢ + 1
cannot have GF(g?)-linear components and hence it has at most ¢® + 1 points because of
Lemma 2.2. If C had q3 + 1 rational points, then from Lemma 2.4, C would be a Hermitian
curve with an external line, a contradiction since Hermitian curves are blocking sets. Thus
N,2(C) < ¢®. Since ¢ > 2, by Lemma 3.1, N,2(C) < ¢*—1 and hence every plane through
r meets 7 in at most ¢ — 1 rational points. Consequently, by considering all planes ttlrough
2r—4_ 4

q =
7?1

7, we can bound the number of rational points of 7 by N2(7) < (¢* — 1)
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q*" 73 + -+« < |H(r,q%)|, which is a contradiction. Therefore there are no external lines to
T and so 7T is a blocking set w.r.t. lines of PG(r, ¢?). O

Remark 3.3. The proof of [3, Lemma 3.1] would work perfectly well here under the
assumption ¢ > 3. The alternative argument of Lemma 3.2 is simpler and also holds for
q=3.

By the previous Lemma and assumptions (S1) and (S2), S is a blocking set for the
lines of PG(6, ¢?) In particular, the intersection of S with any 3-dimensional subspace ¥
of PG(6, ¢?) is also a blocking set with respect to lines of ¥ and hence it contains at least
q* + ¢*> + 1 GF(¢?)-rational points; see [5].

Lemma 3.4. Let Y3 be a solid of PG(6, ¢?) satisfying condition (S4), that is Y3 meets S
in exactly ¢* + ¢> + 1 points. Then, 11 := S N X3 is a plane.

Proof. SN Y3 must be a blocking set for the lines of PG (3, ¢?); also it has size ¢* + ¢ + 1.
It follows from [5] that IT := § N X3 is a plane. O]

Lemma 3.5. Let Y3 be a solid of satisfying condition (S4). Then, any 4-dimensional
projective space ¥4 through Y3 meets S in a Hermitian cone with vertex a line and basis a
Hermitian curve.

Proof. Consider all of the ¢% + ¢* + ¢® + 1 subspaces 3 of dimension 3 in PG(6, ¢?)
containing IT = S N ¥s. B
From Lemma 2.3 and condition (S3) we have [X3 N S| < ¢® + ¢* + ¢ + 1. Hence,

ISl=(@"+ D)@+ +1) <+ + ) + "+ +1=|S|.

Consequently, | Y3 N S| = ¢° + ¢* + ¢*> + 1 for all X3 # 3 such that IT C X3.

Let C' := ¥4 N'S. Counting the number of rational points of C' by considering the
intersections with the g2 + 1 subspaces ¥4 of dimension 3 in X4 containing the plane IT we
get

Cl=¢ @+ +@F+1=q +¢* +F+ 1.
In particular, C' N X% is a maximal surface of degree ¢ + 1; so it must splitin ¢ + 1 distinct
planes through a line of II; see [17]. So C consists of ¢> + 1 distinct planes belonging to
distinct g2 pencils, all containing IT ; denote by £ the family of these planes. Also for each
¥4 # Xs, there is a line £ such that all the planes of £ in ¥ pass through ¢'. It is now
straightforward to see that any line contained in C' must necessarily belong to one of the
planes of £ and no plane not in £ is contained in C'.

In order to get the result it is now enough to show that a line of ¥4 meets C' in either 1,
g+ 1 or ¢> + 1 points. To this purpose, let £ be a line of ¥4 and suppose ¢ Z C'. Then, by
Bezout’s theorem,

1<UnC|<qg+1.

Assume |[¢ N C| > 1. Then we can distinguish two cases:

1. £NTI # (. If £ and TI are incident, then we can consider the 3-dimensional subspace
¥4 := (¢,II). Then £ must meet each plane of £ in Xj in different points (otherwise
£ passes through the intersection of these planes and then |¢ N C| = 1). As there are
q + 1 planes of £ in 25, we have |[{NC| = ¢+ 1.
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2. £NII = (. Consider the plane A generated by a point P € II and ¢. Clearly
A & L. The curve AN .S has degree g+ 1 by construction, does not contain lines (for
otherwise A € £) and has ¢® + 1 GF(¢?)-rational points (by a counting argument).
So from Lemma 2.4 it is a Hermitian curve . It follows that £ is a ¢ + 1 secant.

We can now apply Lemma 2.6 to see that C' is a Hermitian cone with vertex a line. O

Lemma 3.6. Let X5 be a space satisfying condition (S4) and take X5 to be a 5-dimensional
projective space with 3 C ¥5. Then S N X5 is a Hermitian cone with vertex a point and
basis a Hermitian hypersurface H(4, ¢?).

Proof. Let
Sy =32 ne

be the 4-spaces through X3 contained in ¥5. Put C; := ¥4 NS, foralli € {1,...,¢°> + 1}
and IT = ¥3 N ;. From Lemma 3.5 C; is a Hermitian cone with vertex a line, say /;.
Furthermore II C Y3 C Ei where II is a plane. Choose a plane IT' C Z}l such that
m := II' N C; is a line m incident with II but not contained in it. Let P; := m N IL. Itis
straightforward to see that in 3} there are exactly 1 plane through m whichis a (¢*+q?+1)-
secant, ¢* planes which are (¢ + ¢? + 1)-secant and g2 planes which are (¢ + 1)-secant.
Also P; belongs to the line /1. There are now two cases to consider:

(a) There is a plane I1” # IT’ not contained in X! foralli = 1,...,¢*>+1 withm C IT” C
SNXs.

We first show that the vertices of the cones C; are all concurrent. Consider m; :=
0" N XY Then {m; : i = 1,...,¢% + 1} consists of ¢> + 1 lines (including m) all
through P;. Observe that for all ¢, the line m; meets the vertex ¢; of the cone C; in
P; € II. This forces Py = Py = --- = Pp4q. So Py € £1,... Ly,

Now let ¥4 be a 4-dimensional space in X5 with P; & ¥4; in particular IT Z 3,. Put
also Y3 := ¥} N ¥,. Clearly, 7 :== Y3 N1Ilis aline and P; ¢ r. So ¥3 N S cannot be
the union of ¢ + 1 planes, since if this were to be the case, these planes would have to
pass through the vertex £;. It follows that X3 NS must be a Hermitian cone with vertex
a point and basis a Hermitian curve. Let W := ¥4 N'S. The intersection W N Ei, as i
varies, is a Hermitian cone with basis a Hermitian curve, so, the points of WV are

Wl=(@+1)"+¢+1=(*+1)(¢° +1);

in particular, W is a hypersurface of 3, of degree q + 1 such that there exists a plane
of ¥4 meeting WV in just one line (such planes exist in X3). Also suppose W to contain
planes and let IT"”” C W be such a plane. Since ¥4 NV does not contain planes, all

2
meet II” in a line t;. Also IT” must be contained in |J%_" #;. This implies that the set
{ti}i=1.. 4241 consists of ¢* + 1 lines through a point P € IT \ {P, }.

Furthermore each line ¢; passing through P must meet the radical line ¢; of the Hermi-
tian cone S N X} and this forces P to coincide with Py, a contradiction. It follows that
W does not contain planes.

So by the characterization of H(4,q?) of [3] we have that WV is a Hermitian variety
H(4,q?).
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We also have that |[SNY5| = |P1H (4, ¢%)|. Let now 7 be any line of H(4, ¢%) = SNX4
and let © be the plane (r, P1). The plane © meets X in a line ¢; C S for each
i=1,...,¢%> + 1 and these lines are concurrent in P;. It follows that all the points of
O are in S. This completes the proof for the current case and shows that S N X5 is a
Hermitian cone P;H (4, ¢?).

(b) All planes IT” with m C TI” C SN X5 are contained in 3/ for some i = 1,...,¢% + 1.
We claim that this case cannot happen. We can suppose without loss of generality
mnN¥ = Ppand P| & ¢; foralli = 2,... ,q% + 1. Since the intersection of the
subspaces Y is 3, there is exactly one plane through m in X5 which is (¢* + ¢ + 1)-
secant, namely the plane (¢1,m). Furthermore, in 3} there are ¢* planes through m
which are (¢®+¢*+1)-secant and ¢* planes which are (g% + 1)-secant. We can provide
an upper bound to the points of S N X5 by counting the number of points of S N X5
on planes in X5 through m and observing that a plane through m not in X5 and not
contained in S has at most ¢> + ¢ + 1 points in common with S N X5. So

SN < P +qd" +¢* + 2+ 1.

As |[SNY5| = ¢°+¢" +¢*+¢>+1, all planes through m which are neither (g*+¢?+1)-
secant nor (g2 +1)-secant are (¢ +q?+1)-secant. That is to say that all of these planes
meet S in a curve of degree ¢ + 1 which must split into ¢ + 1 lines through a point
because of Lemma 2.1.

Take now P, € ¥7 NS and consider the plane = := (m, ). The line (P, P») is
contained in Y%; so it must be a (¢ + 1)-secant, as it does not meet the vertex line /5 of
Co in 3. Now, = meets every of X2 fori = 2,...,¢* + 1 in a line through P; which
is either a 1-secant or a ¢ + 1-secant; so

ISNE <P+ +1=¢"+¢+1.

It follows that [SNZ| = ¢® + ¢> + 1 and S N Z is a set of ¢ + 1 lines all through the
point P;. This contradicts our previous construction.

O

Lemma 3.7. Every hyperplane of PG(6,q?) meets S either in a non-singular Hermitian
variety H(5, q*) or in a cone with vertex a point over a Hermitian hypersurface H(4, ¢?).

Proof. Let X3 be a solid satisfying condition (S4). Denote by A a hyperplane of PG (6, ¢2).
If A contains X5 then, from Lemma 3.6 it follows that ANS is a Hermitian cone PH (4, ¢%).

Now assume that A does not contain ¥3. Denote by S, with j = 1,...,¢%> + 1
the ¢* + 1 hyperplanes through X}, where as before, 3} is a 4-space containing X3. By
Lemma 3.6 again we get that S NS = P71 (4,¢*). We count the number of rational
points of A N S by studying the intersections of SJ NS with A forall j € {1,...,¢>+1}.
Setting W; := Sg NSNA,Q:=3%]NSNA then

[SNAl=) " Wi\ al+al.
j

If I is a plane of A then €2 consists of ¢ + 1 planes of a pencil. Otherwise let m be the
line in which A meets the plane II. Then € is either a Hermitian cone PyH(2,¢?), or g + 1
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planes of a pencil, according as the vertex P7 € Il is an external point with respect to m or
not.

In the former case W; is a non singular Hermitian variety (4, ¢*) and thus |[SNA| =
@+ +++1="+q" +¢° +¢° + 1.

In the case in which € consists of ¢+ 1 planes of a pencil then Wj is either a PyH(3, ¢*)
or a Hermitian cone with vertex a line £ and basis a Hermitian curve H(2, ¢?).

If there is at least one index j such that W; = (H(2,¢?), then there must be a 3-
dimensional space Y5 of Sg N A meeting S in a generator. Hence, from Lemma 3.6 we get
that S N A is a Hermitian cone P'H (4, ¢?).

Assume that forall j € {1,...,¢% + 1}, W; is a PyH(3, ¢%). In this case

ISNA =P+ +(q+1)* +@+1=¢"+q" + +¢* + ¢ +1=H(5.¢)|

We are going to prove that the intersection numbers of S with hyperplanes are only two
thatis ¢ +¢" +¢®* +¢* + > +1orq” +q¢" + ¢* +¢*> + 1.

Denote by z; the number of hyperplanes meeting S in i rational points with i € {¢° +
T+ +P+1,E+q¢" +P+*+1,¢° +q¢" + ¢ + ¢* + ¢* + 1}. Double counting
arguments give the following equations for the integers x;:

Zixi=q12+q10+q8+q6+q4+q2+1
Siiw =S|+ + ¢+t + P +1) (3.2)
Sic1i(i—Da; = [S|(IS| = D(¢®+ ¢® +¢* + > + 1).

Solving (3.2) we obtain 404 474 ¢5+42+1 = 0. In the case in which |S N A| = [H(5,¢?)],
since S N A is an algebraic hypersurface of degree g + 1 not containing 3-spaces, from
[19, Theorem 4.1] we get that S N A is a Hermitian variety (5, ¢%) and this completes the
proof. O

Proof of Theorem 1.1. The first part of Theorem 1.1 follows from Lemma 3.4. From
Lemma 3.7, S has the same intersection numbers with respect to hyperplanes and 4-spaces
as a non-singular Hermitian variety of PG(6, ¢?), hence Lemma 2.5 applies and S turns
out to be a H(6, ¢°). O

Remark 3.8. The characterization of the non-singular Hermitian variety # (4, ¢?) given
in [3] is based on the property that a given hypersurface is a blocking set with respect to
lines of PG(4, q2), see [3, Lemma 3.1]. This lemma holds when ¢ > 3. Since Lemma 3.2
extends the same property to the case ¢ = 3 it follows that the result stated in [3] is also
valid in PG (4, 32).

4 Conjecture

We propose a conjecture for the general 2n-dimensional case.

Let S be a hypersurface of PG(2d, ¢2), q > 2, defined over GF (q?), not containing d-
dimensional projective subspaces. If the degree of S is q + 1 and the number of its rational
points is |H(2d, g%)|, then every d-dimensional subspace of PG(2d, q*) meets S in at least
O0,2(d — 1) == (¢*¥2 — 1)/(¢*® — 1) rational points. If there is at least a d-dimensional
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subspace ¥4 such that |$, N S| = |PG(d — 1,¢%)
variety of PG(2d, ¢?).

Lemma 3.1 and Lemma 3.2 can be a starting point for the proof of this conjecture since
from them we get that S is a blocking set with respect to lines of PG(2d, ¢?).

, then S is a non-singular Hermitian
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