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Abstract

The ErdGs-Sés Conjecture states that if GG is a simple graph of order n with average
degree more than k£ — 2, then G contains every tree of order k. In this paper, we prove that
Erd6s-Sos Conjecture is true for n = k + 4.
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1 Introduction

The graphs considered in this paper are finite, undirected, and simple (no loops or multiple
edges). Let G = (V(G), E(G)) be a graph of order n, where V(G) is the vertex set and
E(G) is the edge set with size e(G). The degree of v € V(G), the number of edges incident
to v, is denoted d¢ (v) and the set of neighbors of v is denoted N (v). If w and v in V(G) are
adjacent, we say that u hits v or v hits u. If w and v are not adjacent, we say that u misses v
or v misses u. If S C V (@), the induced subgraph of G by S is denoted by G[.S]. Denote by

D(G) the diameter of G. In addition, 6(G), A(G) and avedeg(G) = ﬁf((g))‘ are denoted
by the minimum, maximum and average degree in V (G), respectively. Let T' be a tree on
k vertices. If there exists an injection g : V(T') — V(G) such that g(u)g(v) € E(G) if
uv € E(T) for u,v € V(T), we call g an embedding of T into G and G contains a copy

of T as a subgraph, denoted by 7' C G. In addition, assume that 7" C T is a subtree of T
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and ¢’ is an embedding of 7” into G. If there exists an embedding g : V(T') — V(G) such
that g(v) = ¢'(v) forallv € V(1”), we say that ¢’ is T —extensible.
In 1959, Erdds and Gallai [6] proved the following theorem.

Theorem 1.1. Let G be a graph with avedeg(G) > k — 2. Then G contains a path of
order k.

Based on the above result, Later Erd6s and Sé6s proposed the following well known
conjecture (for example, see [5]).

Conjecture 1.2. Let G be a graph with avedeg(G) > k — 2. Then G contains every tree
on k vertices as a subgraph.

Various specific cases of Conjecture 1.2 have already been proven. For example, Brandt
and Dobson [2] proved the conjecture for graphs having girth at least 5. Balasubramanian
and Dobson [1] proved this conjecture for graphs without any copy of K g, s < % +1. Li,
Liu and Wang [15] proved the conjecture for graphs whose complement has girth at least 5.
Dobson [3] improved this to graphs whose complements do not contain K 4. More results
on this conjecture can be referred to [7, 8, 9] and [11, 12]. On the other hand, in 2003,
Mclennan [10] proved the following theorem.

Theorem 1.3. Ler G be a graph with avedeg(G) > k — 2. Then G contains every tree of
order k whose diameter does not excess 4 as a subgraph.

In 2010, Eaton and Tiner [4] proved the the following two theorems.

Theorem 1.4. [4] Let G be a graph with avedeg(G) > k — 2. If §(G) > k — 4, then G
contains every tree of order k as a subgraph.

Theorem 1.5. [4] Let G be a graph with avedeg(G) > k — 2. If k < 8, then G contains
every tree of order k as a subgraph.

In 1984, Zhou [17] proved that Conjecture 1.2 holds for £ = n. Later, Slater, Teo and
Yap [13] and WozZniak [16] proved that Conjecture 1.2 holds fork =n—1and k = n — 2,
respectively.

Theorem 1.6. [16] Let G be a graph of order n with avedeg(G) > k — 2. Ifk =n — 2,
then G contains every tree of order k as a subgraph.

Recently, Tiner [14] proved that Conjecture 1.2 holds for k = n — 3.

Theorem 1.7. [14] Let G be a graph of order n with avedeg(G) > k — 2. Ifk > n — 3,
then G contains every tree of order k as a subgraph.

In this paper, we establish the following:

Theorem 1.8. Let G be a graph of order n with avedeg(G) > k — 2. If k > n — 4, then
G contains every tree of order k as a subgraph.
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2 Proof of Theorem 1.8

Let T be any tree of order k. If £ > n — 3, or k£ < 8 or the diameter of 7" is at most 4, the
assertion holds by Theorems 1.3, 1.5 and 1.7. We only considerk =n—4>9, D(T) > 5
and prove the assertion by the induction. Clearly the assertion holds for n = 6. Hence
assume Theorem 1.8 holds for all of the graphs of order fewer than n and let G be a graph
of order n. If there exists a vertex v with dg(v) < [£], then avedeg(G — v) > k — 2
and the assertion holds by Theorems 1.7. Furthermore, by Theorem 1.4, without loss of
generality, there exists a vertex z in V(G) such that | § | < dg(z) = 6(G) < k—>5. Without
loss of generality, we can assume that e(G) = 1+ [$(k — 2)(k + 4)]. Let T be any tree
of order k with a longest path P = agpay ...ar—1a, and Nr(ay) \ {a2} = {b1,...,bs}
and Np(ar—1) \ {ar—2} = {c1,...,c:}. Since avedeg(G) > k — 2, we can consider the
following cases: A(G) =k + 3,k +2,k+ 1,k, k — L.

21 AG)=k+3

Let u € V(G) be such vertex that dg(u) = k+ 3 andlet G’ = G — {u,z} and T" =
T —{a1,b1,...,bs}. Thene(G') > e(G) — (k+3) — (k—5) +1 > F(k+4)(k —2) —
(k+3)—(k—5)+1=1(k* -2k —2). So avedeg(G') > (k* =2k —2)/(k+2) > k—4
and | V(T") |< k — 2. By the induction hypothesis, 7" C G’. Let f’ be an embedding
of T"into G’. Thenlet f = f'in T’ and f(a1) = u, X = V(G) \ f(V(T")). Since
de(u) = k + 3, whits at least s vertices in X. Hence f can be extended to an embedding
of T into G or we can say that f is T'—extensible.

Remark: For the remainder of this paper we shall always let f’ be an embedding of 7" into
G’ and when we do not define the value of f on any vertex of 77, we always let f = f/ on
those vertices.

22 AG)=k+2

Let u € V(G) be such vertex that dg(u) = k + 2. Then there exists only one vertex
x € V(G) \ {u} not adjacent to u. We consider two subcases: dg(z) < k — 2 and
dg(x) >k—1.

221 dg(z) <k-—2

LetG' = G—{u,z}and T =T —{a1,b1,...,bs}. Thene(G’) > e(G) — (k+2) — (k—
2) > 1(k?—2k—8). So avedeg(G') > (k*—2k—8)/(k+2) = k—4and | V(T") |< k—2.
By the induction hypothesis, 77 C G’. Then let f(a;) = wand X = V(G) \ f/(V(T")).
Since d(u) = k + 2, w hits at least s vertices in X, f is T'—extensible.

222 de(z)>k—1

Since x # z, we consider the following two cases.

(A). z misses z. Let G’ = G — {u,z,2} and T" = T — {aq,b1,...,bs,a,}. Then
e(G) > e(G)— (k+2)— (k—5) — (k+1) +1 > J(k? — 4k — 2). Hence avedeg(G') >
(k? —4k—2)/(k+1) > k—5and | V(T") |< k— 3. By the induction hypothesis, we have
T’ C G'. Since z misses z,u and dg(z) > k — 1, x misses at most two vertices of G’. If
x hits f/(az), let f(a;) = x and f(a,) = u. Since dg(x) > k — 1 and w hits all vertices
of T, f is T—extensible. Hence we assume that « misses f’(az). If 2 hits f'(a,—1), let
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f(a;) = z and f(a1) = u. Then f is T—extensible. If z misses f’(az) and f'(a,—_1), then
 hits all of V(G')\ {f'(a2), f'(ar—1)}, because D(T') > 5, as and a,-_1 are not adjacent.
Then let f(a,—1) = x, f(a1) = u, which implies that f is T—extensible.

(B). z hits z. We consider the following two subcases.

B.1). dg(z) >k —1.LetG =G —{u,z,2}, 7" =T — {ay,by,...,bs,a,}. Since
x misses u and dg(z) > k — 1, 2 misses at most two vertices of G’, the assertion can be
proven by the similar method of (A).

(B.2). dg(x) = k — 1. Then x misses 3 vertices of V/(G) \ {u}, says y1, y2, ys.

(a). There exists one vertex y; with 1 < ¢ < 3 such that dg(y;) > k + 1. Let
G =G —{u,z,y,z}and T = T — {a1,b1,...,bs,ar_1,¢1,...,¢}. Then e(G') >
e(G)— (k+2)— (k—5)— (k+2)— (k—1)+3+1 > 1(k? — 6k + 4), which implies
avedeg(G') > (k* — 6k +4)/k > k — 6 and | V(T"') |< k — 4. Hence by the induction
hypothesis, 7" C G’. Note that y; misses at most one vertex of G'. If y; misses f'(az), let
fla1) = u, f(ar—1) = ys; if y; misses f'(a,—2), let f(ar—1) = u.f(a1) = y;. Thus f is
T —extensible.

(b). There exists one vertex y; with 1 < ¢ < 3 such that dg(y;) = k and y; misses z.
Then the proof is similar to (a) and omitted.

(c). There exists one vertex y; with 1 < ¢ < 3 such that dg(y;) < k — 2. Let
G' =G—{u,y;,x}and T = T—{a1,by,...,bs,a,}. Thene(G') > e(G)—(k+2)—(k—
2)—(k—1)+1 > 3 (k?—4k—4), which implies avedeg(G') > (k*—4k—4)/(k+1) > k—5
and | V(T") |< k — 3. Hence by the induction hypothesis, 7" C G’. Similarly as in case
(A), there exists an embedding from 7" into G.

(d). dg(y;) = k, y; hits zor dg(y;) = k — 1 fori € {1,2,3}.

@d.1). dr(a1) + dr(ar—1) > 5. Let G' = G — {u,z,y1,92,2} and T = T —
{a1,b1,...,bs,ar_1,¢1,...,¢:}. Thene(G') > e(G)—(k+2)—(k—5)—(k—1)—(k—1)—
(k—1)43 > 1(k?—8k+10) which implies avedeg(G') > (k* —8k+10)/(k—1) > k—7
and | V(T") |< k — 5. Hence by the induction hypothesis, 7/ C G’. Moreover, x misses
only one vertex of G'. If x misses f'(a2), let f(a1) = u, f(ar,—1) = x; if 2 misses
f'(ar—2), let f(ar—1) = u, f(a1) = 2. In both situations, f is T —extensible.

(d.2). dr(a1) = dr(ar—1) = 2. Let G = G — {u,z} and T = T — {ag, a1}. Then
e(G") > e(G) — (k+2) — (k—5) +1 > L(k* — 2k), which implies avedeg(G’) >
(k* —2k)/(k +2) >k —4and | V(T') |< k — 2. By the induction hypothesis, 7" C G'.
Moreover, u hits all vertices of V/(G) \ {2} and z hits z. Let f(a;) = vorzand f(ag) = z
or u. Then f is T'—extensible.

23 AG)=k+1

Let v € V(QG) be such vertex that dg(u) = k + 1 with v missing vertices 1 and z5.
Without loss of the generality, we can assume dg(x1) > dg(x2) and dr(a1) > dr(ar—1).

231 dr(ai) +dr(ar_1) > 5

We consider the following two cases: (A) and (B).

(A). 1 misses xs.

(A1) dg(x1) + da(z2) < 2k —3. Let G = G — {u,z1, 22 and T = T —
{a1,b1,...,bs}. Then e(G') > e(G) — (k + 1) — (2k — 3) > (k* — 4k — 4), which
implies avedeg(G') > (k? — 4k —4)/(k+1) > k—5and | V(T') |< k — 3. Hence by
the induction hypothesis, 7" C G'. Let f(a1) = u. Itis easy to see that f is T—extensible.
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(A2). dg(z1) + de(z2) > 2k — 2.

(@). dg(x1) = k—1Thendg(z2) = k—1 and z1 misses {u, z2, y1, Y2} fy1, 92 # 2,
let G' = G — {u,z,21,29,y1} and T" = T — {ay,b1,...,bsar_1,¢1,...,¢:}. Then
e(G) > e(G)— (k+1)— (k—5)— (2k —2) — (k+1) + 3 > 3(k® — 8k + 8), which
implies avedeg(G') > (k? — 8k +8)/(k — 1) > k — 7 and | V(T") |< k — 5. Hence by
the induction hypothesis, 7/ C G’. Note that x1 misses only one vertex of G'. If z1 misses
f'(az2), let f(a1) = wand f(ar—1) = x1; if x1 misses f'(a,_2), let f(a,—1) = u and
f(a1) = x1. In both situations, f is T'—extensible. Now assume that y; = 2z or y2 = 2.
Let G' = G — {u,x1,22,y1,y2} and T/ = T — {a1,b1,...,bs,ar_1,¢1,...,¢t}. Then
e(G)>e(G)—(k+1)—(k—5)—(2k—2)—(k+1)+2+1> L(k* -8k +38),
which implies avedeg(G') > (k* — 8k +8)/(k —1) >k —T7and | V(T") |< k — 5. Let
f(ar—1) =wand f(a1) = 1. Then f is T—extensible.

(). dg(z1) > k. Let G’ = G—{u,z,x1,z2} and T =T —{ay, by, ..., bs,ar_1, 1,
..,¢t}. Thene(G') > e(G) — (k+1) — (k—5) — (2k+2) + 142 > 1(k* — 6k +2),
which implies avedeg(G') > (k* — 6k +2)/k > k —6and | V(T") |< k — 4. Hence by
the induction hypothesis, 77 € G’. Note that z; misses at most one vertex of G'. If x;
misses f'(az), let f(a;) = wand f(a,—1) = x1; if x1 misses f'(a,_2), let f(a,—1) = u
and f(a;) = x1. In both situations, f is T—extensible.

(B). z1 hits z».

(B.1). dg(x1) + dg(x2) < 2k — 2. The proof is similar to (A.1) and omitted.

(B.2). dg(x1) + dg(x2) > 2k — 1. The proof is similar to (A.2) with (a)dg(x1) =
kdg(ze) =k —1ork, (b)dg(z1) =k + 1.

2.3.2 dT(al) = dT(aT_l) = 2.

We consider the following four cases.

(A). There exists a vertex v # u of degree at most &k such that it hits both z; and 5.
Let G' = G — {u,v}and T = T — {ag,a1}. Thene(G') > e(G) — (k+1)—k+1 >
1(k* — 2k — 8), which implies avedeg(G’) > (k* — 2k — 8)/(k +2) = k — 4 and
| V(T") |< k — 2. Hence by the induction hypothesis, 77 C G’. If f'(a2) hits u, let
f(a1) = w. If f’(a2) misses u, then f'(az) = x1 or x2 and let f(a1) = v, f(ag) = u.
Thus f is T'—extensible.

(B). There exists a vertex v # u of degree at least k£ + 1 such that it hits both z; and .
Then dg(v) = k + 1 and v misses y; and yo. Since the case z € {1, 22,y1, Y2} is much
easier, we may suppose z # x1,T2,Y1,Y2. Let G’ = G — {u,v,2} — 122 — y1y2 and
T" =T —{ap,a1,a,}. Thene(G') > e(G)—2(k+1)— (k—5)+1-2 > 1(k? -4k —4),
which implies avedeg(G’) > (k* — 4k — 4)/(k+ 1) > k—5and | V(T') |< k — 3.
Hence by the induction hypothesis, T/ C G'. If f'(a2) = x1 or 22, and f'(a,—1) = 11
or Yo, then let f(a1) = v and f(a,) = w. If f'(a2) = 21 and f'(a,—1) = w2, then let
flay) = v, f(ar—1) = u, because w hits all the neighbours of f'(a,_1). If f'(az) =
y1,f (ar—1) = ya, then let f(a;) = wand f(a,—1) = v. For the rest situations, it is easy
to find an embedding from 7 into G.

(C). There is no vertex in V(G) \ {u} hitting both 21 and x2, and 1 misses 3. Then
dg(z1) +de(ze) < k+ 1. Let G = G — {u,z1,22} and T" = T — {ag,a1}. Then
e(G') > e(G) — (k+1) — (k+1) > 3(k? — 2k — 12), Since k > 9, avedeg(G') >
(k? =2k —12)/(k+1) > k—4and | V(T') |< k — 2. By theorem 1.7, T’ C G'. Let
f(a1) = u. Then f is T—extensible.
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(D). There is no vertex in V(G) \ {u} hitting both x; and x9, and z; hits z3. Then
da(z1) +dg(ze) < k+ 3. If dg(z1) + dg(z2) < k + 2, the assertion follows from
(C). Hence assume that dg(x1) + dg(x2) = k + 3. If 2 # 21,29, then z has to hit z;
or xg, say that z hits 1. Let G’ = G — {u, 2} — z129 and T = T — {ag,a1}. Then
e(G") > e(G) — (k+1) — (k—5)+1—1> (k* — 2k), which implies avedeg(G') >
(k* —2k)/(k +2) > k—4and | V(T") |< k — 2. Hence by the induction hypothesis,
T C G If f'(ag) hits u, let f(a1) = w; if f'(a2) = 21, let f(a1) = z and f(ap) = u.
If f'(az) = x2 and if there is a vertex w in T” such that f'(w) = x4, let f(w) = wu,
f(a1) = z1 and f(ag) = z, because w hits all neighbours of f/(w) in G’; if f'(a2) = x4
and there does not exist any vertex w in 7" such that f'(w) = z1, let f(a1) = z1, and
f(ag) = z. In all situations, f is T—extensible. If z = x1 or o, then let G’ = G — {u, z}
and 7" = T — {aop, a1 }. Similarly, we can find an embedding from 7" into G.

24 AG)=k

Let u € V(G) be a vertex of degree dg(u) = k and misses three vertices x4, x2, T3.
Denote by S = {1, 22, 23}

2.4.1 G[S] contains no edges.

Let G = G —{u} and T' = T — {ao}. Then e(G’) > e(G) — k > 5(k* — 8), which
implies avedeg(G') > (k? — 8)/(k +3) > k —3and | V(T") |< k — 1. By the induction
hypothesis, 77 C G'. If f'(aq1) hits u, let f(ag) = w; if f'(a1) = x;, 1 < i < 3, let
f(a1) = u. Since u hits all neighbours of f’(a;) in G', f is T'—extensible.

2.4.2 G[S] contains exactly one edge.

Without loss of the generality, z; hits 2, dg(z1) > dg(x2), and dr(a1) > dr(ar—1). We
consider two cases.

(A) dT(al) + dT(ar_l) Z 5

(AD). do(xa) > k—1. Ifzz # 2z, let G = G — {u,z,23} — x129 and T" =
T —{a1,b1,...,bs}. Thene(G') > e(G) — k — (k—5) — k — 1 > J(k® — 4k), which
implies avedeg(G’) > (k? — 4k)/(k +1) > k—5and | V(T') |< k — 3. By the
induction hypothesis, 77 C G’. If f’(a2) hits u, then let f(a1) = u; if f'(a2) = 1
and o ¢ f'(V(T")), then let f(a1) = zo; if f'(a2) = z1 and z2 € f/(V(T")) and
f'(w) = xq, then let f(w) = u, f(az) = 21, and f(a;) = z5. Hence f is T—extensible.
On the other hand, if 25 = z,let G’ = G —{u, z} —{x129} and T = T —{a1,by,...,bs}.
Similarly, we can prove that the assertion holds.

(A.2). dg(z3) > k — 1. By (A.1), we can assume that dg(x2) < k — 2. If 2 # 21, x9,
let @ = G —{u,z,21,29,23} and T" = T — {ay,b1,...,bs,ar_1,¢1,...,¢}. Then
e(G) >elG)—k—(k—5) —(k—2)—k—k+2+1> 1(k* — 8k + 12), which
implies avedeg(G’) > (k* — 8k +12)/(k — 1) > k—7and | V(T") |< k — 5. Hence
by the induction hypothesis, 7" C G’. Moreover, 23 misses at most one vertex of V' (G").
If z3 misses f'(az), let f(a1) = wand f(a,—1) = x3; if x3 hits f'(az), let f(a,—1) = u
and f(a1) = z3. then f is T—extensible. On the other hand, if ©1 = z or x5 = z, let
G' =G —{u,r1,29,2z3} and T =T —{ay,b1,...,bs,ar_1,¢1,...,c }. Using the same
above argument, we can prove the assertion.
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(A3). dg(z1) = kydg(xe) < k—2and dg(zs) < k—2. If 2 # 29,23, let G =
G —{u,z,x1,29,23} and T = T — {ay,by,...,bs,ar_1,¢1,...,c¢}. Hence e(G") >
e(G)—k—(k—5)—(k—2)—k—(k—2)+2 > 1(k*—8k+10), which implies avedeg(G') >
(k? — 8k +10)/(k —1) > k— 7and | V(T') |< k — 5. By the induction hypothesis,
T’ C G’'. Note that x; misses at most one vertex in V(G’). If x1 misses f'(az), let
flar) =wand f(ar—1) = x1; if 21 hits f/(az), let f(a,—1) = wand f(a1) = x;. Hence
f is T—extensible. On the other hand, if 25 = z or 23 = 2, let G’ = G — {u, z1, 2,23}
and 7" = T — {a1,b1,...,bs,ar_1,¢1,...,¢t}. By the same above argument, we can
prove the assertion.

(A4).dg(z1) < k—1,dg(ze) < k—2and dg(z3) < k—2. Then there exists a vertex
' in V(G) \ {z1, 22, x3,u} with degree at least k — 1. Otherwise, by 0(G) < k — 5, we
have avedeg(G) < ka*l)(k72)+(£;i)+2(k72)+(k75) < k — 2, which is a contradiction.
LetG' = G—{u,v'} —{x12x2} and T =T —{a1,b1,...,bs}. Thene(G') > e(G) —k —
k+1—1> %(k*—2k—8), which implies avedeg(G') > (k* —2k—8)/(k+2) = k—4 and
| V(T") |< k — 2. By the induction hypothesis, 7" C G'. If f/(a2) hits u, let f(a1) = u;
if f/(az) misses u, let f(az2) = wand f(a;) = u'. Then f is T—extensible.

(B). dr(a1) = 2 and dr(a,—1) = 2. If there exists a vertex w that hits both z; and x3,
let G' =G —{u,w} —z1z2and T = T — {ap, a1 }. Then e(G’) > e(G) — 2k +1—-1 >
1(k* — 2k — 8), which implies avedeg(G') > (k* — 2k + 8)/(k +2) = k — 4 and
| V(T') |< k — 2. By the induction hypothesis, 7/ C G’. If f'(az) = x1 or z3, let
fla1) = wand f(ap) = w; if f'(az) = x9 and 1 ¢ f'(V(T")), let f(a1) = x; and
flag) = w; if f'(az) = xz2 and x1 € f/(V(T")),f (v) = x1, let f(v) = u, f(a1) = x1
and f(ap) = w. In the above situations, f is T'—extensible. On the other hand, if there is no
vertex hits both z1 and x3, or x5 and z3. then dg (21 )+dg(z3) < k, dg(z2)+da(z3) < k.
Since dg (x;) > Lg] and k > 9, dg(x;) < k — 2. Hence, similarly as in (A.4), there exists
a vertex v’ in V(Q) \ {x1, z2, x3,u} with degree at least &k — 1, and an embedding of T
into G.

2.4.3 G][S] contains exactly two edges

Without loss of the generality, assume that 1 hits both x5 and z3. We consider the follow-
ing two cases.

(A). dr(a1) = 2. Let @ = G —{u,z1} and T" = T — {ag,a1}. Then e(G’) >
e(G) -2k > §(k? — 2k — 8), which implies avedeg(G’) > (k* —2k —8)/(k+2) > k—4
and | V(T”) |< k — 2. By the induction hypothesis, 77 C G’. If f'(a2) = x5 or x5 (say
x2), let f(a1) = x1; Moreover, if x5 & f/(V(T")), let f(ag) = z3; if z3 € f'(V(T"))
and f'(v) = x3, let f(v) = u, f(a1) = x1, and f(ag) = x3. Hence, f is T-extensible. If
f'(a2) # x2,x3, then it is easy to find an embedding from T to G.

(B). dT(CLl) Z 3.

@). dg(z) > k—1. If 2 # z9,23, let G = G — {u,z,z1} and T = T —
{a1,br,...,bs}. Then e(G") > e(G) — k — (k —5) — k+1 > (k? — 4k + 4), which
implies avedeg(G') > (k* — 4k +4)/(k +1) > k—5and | V(T') |< k — 3. By
the induction hypothesis, 77 C G'. If f'(a2) = x5 or x3 (say x2), let f(a1) = x1.
Moreover, if z3 ¢ f/(V(T")), let f(b1) = z3; if z3 € f/(V(T")) and f'(v) = z3, let
f(v) = u,f(a1) = x1 and f(by) = w3. Because w hits all neighbours of f/(v) and
dg(z1) > k — 1, f is T—extensible. If f'(as) # x9,x3, it is easy to find an embedding
from T to G. On the other hand, if z = x5 or z3 (say x2), let G’ = G — {u, 1, 22}, by the
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same argument above, the assertion holds.

(). dg(z1) < k —2,dg(xq) = k or dg(xs) = k (say dg(x2) = k). Then there
exists a vertex y € V(G) \ {u,z1,x2, 23} such that 25 misses y. So xo misses u,x3
and y and v misses 3. By Case 2.4.2, we can assume y hits z3. Further, by (a), we
can assume dg(y) < k—2. If z # z1,y, let G = G — {u,z,22,25,y} and T" =
T —{a1,b1,...,bs,ar_1,c1,...,¢t}. Thene(G') > e(G) =k — (k—5) —k —k — (k-
2) +3 > $(k? — 8k + 12), which implies avedeg(G') > (k* —8k+12)/(k—1) > k-7
and | V(T”) |< k — 5. By the induction hypothesis, 7/ C G’. Further, if f'(a2) = 21,
let f(a1) = a2 and f(a,—1) = u; if f'(ar—2) = 1, let f(ar—1) = 22 and f(a1) = w.
Hence f is T—extensible. On the other hand, if z = y, let G’ = G — {u, x9,z3,y} and
T =T —{a1,b1,...,bs,ar_1,¢1,...,c:}sif z = 21, let G = G — {u, z, 22, 23,y} and
T =T-{ay,b1,...,bs,ar_1,¢1,...,ct}. Then by the same argument, it is easy to prove
that the assertion holds.

©).dg(z1) <k—2,dg(x2) =k —1landdg(zs) =k —1.Let G' = G — {u, x2, 23}
andT" = T—{ay,by,...,bs}. Thene(G’') > e(G)—k—(k—1)—(k—1) > L (k*—4k—1),
which implies avedeg(G’) > (k* —4k —4)/(k+1) > k—5and | V(T") |< k — 3. By the
induction hypothesis, 7" C G'. If f'(a2) = x1, let f(a1) = 2, which f is T—extensible.
If f'(a2) # w1, it is easy to find an embedding from T to G.

d). dg(z1) <k —2,and dg(z2) <k —2ordg(zs) < k— 2 (say dg(z2) < k —2),
hence dg(z3) < k — 1 by (b). Then there exists a vertex v’ € V(G) \ {x1,x2,x3,u}
of degree at least k — 1, otherwise 2¢(G) < (k — 1)(k —2)+ (k —5) + k + 2(k —
2)+ (k—1) < (k+ 4)(k — 2) which is impossible. Let G = G — {u,u', 21} and
T' =T — {a1,by,...,bs}. Then e(G') > e(G) — 2k — (k — 2) + 1 > L(k? — 4k — 2),
which implies avedeg(G') > (k* —4k —2)/(k+1) > k—5and | V(T") |< k — 3. By the
induction hypothesis, 7" C G’. Hence if f'(as) hits u, let f(a1) = w; if f'(as) = x2 or
x3 (say x2), let f(az) = wand f(a;) = v’ since w hits all the neighbours of f/(as). Then
f is T—extensible.

2.4.4 G[S] contains exactly three edges

The following two cases are considered.

(A). dr(ay) = 2. If there exists an 1 < ¢ < 3 (say ¢ = 1) such that dg(z1) < k—1, let
G' =G—{u,z1} —xsx3and T' = T —{ag,a1 }. Thene(G’) > e(G)—k—(k—-1)—1 >
1(k*—2k—8), which implies avedeg(G') > (k* —2k—8)/(k+2) = k—4and | V(T") |<
k—2. By the induction hypothesis, 77 C G'. If f'(as) = x5 or z3 (say 2), let f(a1) = z;1.
Moreover, if x5 ¢ f'(V(T")), let f(ag) = z3; and if z5 € f/(V(T")) and f'(v) = z3,
let f(v) = u, f(a1) = 1, f(ap) = x3. Hence f is T—extensible. On the other hand, if
dg(r1) = dg(x2) = dg(z3) =k, let G = G — {u,z1} and T" = T — {agp, a1 }. Then
e(G') > e(G)—2k > & (k*—2k—8), which implies avedeg(G') > (k?—2k—8)/(k+2) =
k—4and | V(T") |< k — 2. By the induction hypothesis,7’ C G'. If f'(a3) = x5 or x3,
let f(a1) = x1;if f'(az) # xa, 3, let f(a;) = u. Hence f is T-extensible.

(B). dr(ay) > 3. If there exists an 1 < 4 < 3 (say ¢ = 1) such that dg(z1) > k — 1,

Let G’ = G —{u, z, 21} — xox3. By the same argument as Case 2.4.3.(B).(a), the assertion
holds. The rest is similar as Case 2.4.3.(B).(d).
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25 AG)=k—1

Since A(G) = k — 1 and §(G) < k — 5, there exist at least four vertices of degree k — 1.
Otherwise 2e(G) < 3(k—1)+k(k—2)+(k—5) = (k—2)(k+4), which is a contradiction.
Let u; be vertex of dg(u;) = k — 1 missing four vertices of S; = {21, 2, i3, T4} for
i = 1,2,3,4. If there exists a vertex u; with 1 < 4 < 4 such that G[S;] contains at
most one edge. Let G’ = G — {u;} — E(G[S;]) and T" = T — {ap}. Then e(G’) >
e(G) — (k—1) =1 > $(k? — 8), which implies avedeg(G’) > (k* —8)/(k+3) > k—3
and | V(T") |< k — 1. By the induction hypothesis, 77 C G'. If u; hits f'(a1), let
f(ap) = u;, and if w; misses f'(a1), let f(a1) = u;. Then f is T—extensible. Hence we
assume that G[S;] contains at least two edges fori = 1,2, 3, 4.

2.5.1 dT(al) 2 3,dT(a,~_1) Z 2

We consider the number of the edges in Gluy, ug, uz, uy).

(A). Gluy, ug, us, uy) contains at least one edge, say u hits us. If z ¢ S1 = {11, 212,
1’13,5814}, let G/ =G — {ul,uz, Z} - E(G[Sl]) and 7' =T — {al, bl, ey bg} Then
e(G') > e(G)—2(k—1)— (k—5)+1—6 > 1(k? — 4k —4), which implies avedeg(G') >
(k* —4k —4)/(k+1) > k—5and | V(T") |< k — 3. By the induction hypothesis,
T’ C G'. Hence if uy hits f/(az), let f(a1) = u1; and if uy misses f’(az), let f(az) = uy
and f(a1) = us. Since u; hits all the neighbours of f’(as) in G’, f is T—extensible. On
the other hand, if z € S1 = {211,212, 213,14}, 88y 2 = x11. Let G’ = G — {ug,u9, 2} —
E(G[x12, %13, T13]). By the same argument, the assertion holds.

(B). G[uy, uz, us, u4] contains no edges.

(B.1). If there exist two vertices, say uj and wus, in {u1,us,us,us} such that ug
misses y; and up misses y2, where y1 # yo and y1,y2 ¢ {u1,...,us}. Let G' =
G — {u1,u,uz,us} and T/ = T — {a1,b1,...,bs,ar_1,¢1,...,¢}. Then e(G') >
e(G) — 4(k — 1) > L(k* — 6k), which implies avedeg(G') > (k® — 6k)/k = k — 6
and | V(T") |< k — 4. By the induction hypothesis, 7/ C G’. Hence if f'(a2) = y1,
let f(a1) = ug and f(ar—1) = uq; if f'(a2) = yo, let f(a1) = uy and f(ar—1) = us.
Moreover, if f'(a,—2) = y1, let f(a1) = uy and f(a,—1) = ug; and if f'(a,_2) = yo, let
f(a1) = ug and f(a,—1) = uy. Therefore, f is T—extensible.

(B.2). There exist a vertex y ¢ {ui,...,us} such that y misses uq,...,us. Then
Glus, . .., uq,y] contains no edges.

(@). dr(ar—1) = 2. Then there exists a vertex w hits {uy, us, us, us} and y. Let G' =
G—{ui,w}and T’ = T—{a,_1,a,}. Thene(G’) > e(G)—2(k—1)+1 > (k*—2k—2),
which implies avedeg(G') > (k? — 2k —2)/(k+2) > k—4and | V(T’) |< k—2. By the
induction hypothesis, 7" C G’. Hence if f'(a,—2) = ug,us, uq ory, let f(a,—1) = w and
f(ay) = uy; and if f/(a,—2) # ua,us, uq,y, let f(ar-—1) = uj and f(a,) = w. Therefore
f is T—extensible.

(). dr(ar—1) > 3. If z # y, let ' = G — {uy,us, uz,uq,y, 2} and 7" = T —
{a1,b1,...,bs,ap_1,¢1,...,¢:}. Thene(G') > e(G)—4(k—1)—(k—1)—(k—5)+4 >
(k% — 10k + 20), which implies avedeg(G') > (k? — 10k + 20)/(k — 2) > k — 8 and
| V(T”) |< k — 6. By the induction hypothesis, 77 C G'. Let f(a1) = u1 and f(a,—1) =
ug. Then f is T—extensible. On the other hand, if z = y, let G' = G — {u, us, ug, ug, 2}
and7/ =T—{ay,b1,...,bs,ar_1,¢1,...,c:}. By the same argument, the assertion holds.
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2.5.2 dT(al) = 2,dT(a7-_1) = 2.

We will discuss the following four cases: (A4), (B), (C) and (D).

(A). There existsa 1 < ¢ < 4, say ¢ = 1, such that G[S1] contains two or three edges. If
w1 hits one vertex, say us, of three vertices ug, us, ug. Let G’ = G — {uy,us} — E(G[S1])
and T’ =T — {ag,a1}. Then e(G’) > e(G) —2(k — 1)+ 1 —3 > 1(k* — 2k — 8), which
implies avedeg(G') > (k* — 2k —8)/(k+2) = k —4and | V(T') |< k — 2. By the
induction hypothesis, 77 C G’. Hence if u; hits f’(as), let f(a1) = uy; and if u; misses
f'(a2), let f(az) = ug and f(a1) = ug. Since u4 hits all the neighbours of f/(az) in G', f
is T'—extensible. Therefore, we assume that u; misses u; for j = 2, 3,4. Then u; misses
11 = Ug, X1z = U3, T13 = Ug, X14 and Glua, us, ug, x14] contains two or three edges.

(A.1). x4 hits one vertex, say uo, of three vertices ug,uz,uy. Let G = G —
{u1,us,ug,us} and 7" = T — {ag,a1,a,-1,a,}. Then e(G') > e(G) — 4(k — 1) >
1(k? — 6k), which implies avedeg(G') > (k* — 6k)/k =k —6 and | V(T”) |< k — 4. By
the induction hypothesis, 7/ C G’. Since G[usg, ug, u4, 214] contains two or three edges,
there exists a vertex, say us, of two vertices us,u4 misses at most one vertex, say yi, in
V(G) \ {ul,UQ,U47$14}. Hence if f/(ag) = x14 Or Y1, and f’(ar,g) = y1 O T14, let
f(a1) = ug orwuy and f(a,—1) = uy or ug, then f is T—extensible. For the rest cases, it is
easy to find an embedding from 7" to G.

(A.2). x14 misses three vertices usg, us, u4. Then Glug, us, us] contains two or three
edges. We can assume that us hits ug and uy. If ug misses uy, uz misses at most one vertex,
says y1, in V(G) \ {u1, u2,uq, 14} Thenlet G’ = G — {uy, x14,u3,ug} and T =T —
{ag,a1,a,_1,a,}. By the similar argument as Case (A.1), the assertion holds. Hence we
can assume that ug hits uy and w3 misses z1, z2, u1, x14. Let G' = G — {uy, 14, uz, ug} —
{z1z2} and T" = T — {ap,a1,a,-1,a,}. Then e(G') > ¢(G) —4(k—-1)+1 -1 >
1 (k* — 6k), which implies avedeg(G') > (k* —6k)/k =k —6and | V(T") |< k — 4. By
the induction hypothesis, 77 C G’. Hence if f'(az) = 21 or 29, and f'(a,_2) = 29 or 21,
let f(a2) = us, f(a1) = u4, f(ar—1) = uy. Therefore f is T— extensible. If f'(a3) = 21
or zo, and f'(a,—2) = ug, let f(a1) = u1, f(ar—1) = ug. Therefore f is T— extensible.
For the rest cases, it is easy to find an embedding from 7" to G.

(B). There exists a 1 < ¢ < 4, say ¢ = 1, such that G[S] contains exactly four edges.

(B.1). There exists a vertex, say x11, of degree 3 in G[S1] and | E(G[S1]) |< 5.
Then T11 hits 12,213 and T14. Let G/ =G — {ul,xll} - E(G[$127$13,x14]) and
T" =T —{ag,a1}. Then e(G’) > e(G) — 2(k — 1) — 2 > 1(k? — 2k — 8), which implies
avedeg(G') > (k* — 2k —8)/(k+2) = k —4and | V(T") |< k — 2. By the induction
hypothesis, 7/ C G’. Hence if u; hits f/(a2), let f(a1) = wy, which implies that f is
T—extensible. If uy misses f'(az2) and f'(as) = x12, let f(a1) = x11. Moreover, if 13
orz14 ¢ f/(V(T")), then let f(ag) = x13 or x14. Then f is T—extensible. If x13 and
z1a € fI(V(T")), f'(w) = x13 or x14, let f(w) = uq, f(ag) = z13 or x14. Then f is
T —extensible. For the rest cases, it is easy to find an embedding from 7" to G.

(B.2). The degree of every vertex in G[S;] is two. We assume that 11 hits 212, 212
hits x13, x13 hits x14, 14 hits z11.

(). uq hits all vertices of {ug, us, uq}.

(a.1). There exists a vertex u;, say usg, in {ug, us, us} which misses 11, 12, 13 and
T14. Let G/ =G - {ul,UQ,xn, .T12} — 13714 andT' =T — {ao,al,a,n_l, ar}. Then
e(G') > e(G) —4(k — 1) + 1 > 1(k* — 6k + 2), which implies avedeg(G') > (k* —
6k +2)/k > k—6and | V(T') |< k — 4. By the induction hypothesis, T/ C G'. If
f'(a2) = w13, f'(ar_2) = w14, let f(a1) = 212, f(ao) = 211, f(ar—2) = w1, flar—1) =
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ug. Since w; hits all the neighbours of f’(a,_2) in G’, f is T—extensible. For the rest
cases, similarly, it is easy to find an embedding from 7" to G.

(a.2). There exists a vertex, say us, in {ug, us, us} such that it hits at least two vertices
of {3311, 12,213, J,‘14}, say us hits x11 and x3, or us hits 17 and 5.

If (%) hits T11 and 13, let G/ =G - {ul,u2} — 211712 — L1213 — 13714 and
T' =T —{ag,a1}. Then e(G’) > e(G) — 2(k — 1) + 1 — 3 > 1(k? — 2k — 8), which
implies avedeg(G') > k —4 and | V(T”) |< k — 2. By the induction hypothesis, 77 C G’.
Hence if f/(ag) = 11 Or x13, let f(al) = ug; if f/(az) = x19, let f(ag) = wuy and
f(al) = U9, if f’(ag) = T14 and 13 ¢ f’(V(T’)), let f(al) = T13 and f(ao) = U2, if
f/(ag) = 214 and r13 € f/(V(T/)), let f(U) = ul,f(al) = I’lg,f(ao) = U2, because
there is a vertex v, f'(v) = x13 and wy hits all the neighbours of f’(v) in G’. Therefore f
is T'—extensible.

If uo hits x17 and xq9, let G =G - {ul,’LLg} — T19%13 — T13T14 — T11X14 and
T" = T — {ag,a1}. Then e(G') > e(G) —2(k — 1) + 1 -3 > J(k? — 2k — 8),
which implies avedeg(G') > k — 4 and | V(T") |< k — 2. By the induction hypothesis,
T C G'. Hence if f'(ag) = 11 or x19, let f(ay) = wug; if f/(az) = x93 or x1y4, let
f(a2) = u1, f(a1) = ug, because u; hits all the neighbours of f'(as) in G'. Therefore f
is T'—extensible.

(a.3). u; hits exactly one vertex of {x11, 12, 13, x14} fori = 2,3, 4.

(i). There exist two vertices of {us,us,us} such that they hit the same vertex in
{11,212, %13, T14}, says both ug and ug hit z14.

If uy and w3 misses the same vertices, say, {211, 12, 13, ¥}, then us hits ug. Further,
if Gx11, 12, 213, Y] contains at most three edges or has a vertex of degree 3, the assertion
follows from Case 2.5.2.(A) or Case 2.5.2.(B.1). Therefore we can assume that y hits both
x11 and x13. Let G/ = G — {ug, us, x11,212} — 13y and 7" = T — {ap, a1, ar—1,a,}.
The assertion follows from Case 2.5.2. (B.2).(a.1).

If us misses {xll,xlg,xlg,yl} and us3 misses {$11,$12,$13,y2} with yq 7é Yo, let
G/ =G - {ul,UQ,U3,l‘14} — 211712 — 12713 and T =T — {ao,al,ar_l,aT}. Then
e(G') > e(G)—4(k—1)+4—2 > $(k®>—6k+4), which implies avedeg(G') > k—6 and
| V(T") |< k — 4. By the induction hypothesis, 77 C G’. Hence if f’(a3) = 11 or z13,
let f(a1) = 14.f(ao) = uz or up or let f(az) = u1.f(a1) = ug or up. If f'(az) = 12,
let f(ag) = ui,f(a1) = ug or ug. If f'(as) = y1 or ya, let f(a;) = us or uy. Since
there is a choice which uses distinct vertices of {uy, us, us, z14} for any two vertices of
{x11,T12, 13, Y1, Y2}, we can find an embedding from T to G. (For example, if f/(as) =
r11,f (ar—2) = 213, let f(a1) = z14,f(ao) = uz,far—2) = u1,f(ar—1) = ua.)

(ii). {ug2,us,uq} hits the different vertices of {11,212, x13,214}. Without loss of
generality, we assume that uo hits x1; and wug hits 213, us misses y; and ug misses ys. Let
G =G - {Ul,UQ,U3,Q?13} — 211712 — X11X14 and T/ =T — {ao,al,ar_l,aT}. Then
e(G') > e(G)—4(k—1)+3+0—2 > 1(k? —6k+2), which implies avedeg(G') > k—6
and | V(T") |< k — 4. By the induction hypothesis, 7" C G'. Hence if f'(a2) = z12 or
z14, let f(a1) = z13 and f(ao) = us, orlet f(az) = ur and f(a1) = ug, if f'(a2) = ¥
or ya, let f(a1) = uy, if f'(a2) = 211, let f(a1) = ug, Therefore f is T—extensible. For
the rest cases, by the same argument, it is easy to find an embedding from 7" to G.

(b). w; hits one or two vertices of {us,us,us}. Without loss of the generality, we
assume that u; hits ug and u; misses ug. Then uy € {x11,x12,T13, 14}, SAY Ug = T14,
Uy MISSES U7 ,L12,21,22.

If us # 21, 2o, then uso hits uy. Let G =G - {U17U27U4,$12} — 2129 and T" =
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T — {ag,a1,ar_1,a,}. Then e(G’') > e(G) — 4(k — 1) +2 — 1 > 1(k* — 6k), which
implies avedeg(G') > k — 6 and | V(T") |< k — 4. By the induction hypothesis, 7" C
G’. Hence if f/(ag) = x11 and f’(ar,g) = x13, let f(al) = ’U,4,f(CLT,2) = wuy and
f(a,._l) = U, if f’(ag) = z; and f/(a7-_2) = 29, let f(al) = Uy, f(a,-_Q) = Uy
and f(a,—1) = us. Therefore f is T-extensible. For the rest cases, it is easy to find an
embedding from T to G. If ug = 27 or 29, say us = 21, let G = G — {u1,ug, uq,x12}
and 7" =T — {ag, a1, a,_1, a,}. This situation is much easier than the above case.

(c). u; misses all the vertices of {us, us, us}. Without loss of generality, we assume
Up = T11, Uz = T12, Ug = x13. Let up miss {uy,x13,y1,y2}. If Glui, 13, y1, 2]
contains two, or three edges, or a vertex of degree 3, the assertion follows from Case 2.5.2
(A). and Case 2.5.2 (B.1). Hence we assume that uq hits vy, y1 hits uy = 13, uq hits yo
and y- hits u;. Hence the assertion follows from Case 2.5.2. (B.2). (a) and Case 2.5.2.
(B.2).(b).

(C). There exists a 1 < i < 4, say ¢ = 1, such that G[z11, 212, T13,214] contains
five edges. Then we assume that x1; hits z12, 213 and 214. Let G’ = G — {uy, 211} —
E(Glx12, %13, 214]) and T/ = T — {ag, a1 }. The assertion follows from the proof of Case
2.5.2 (B.1).

(D). There exists a 1 < i < 4, say ¢ = 1, such that G[z11, 212, 13, Z14] contains six
edges. If dg(x11) < k — 2, similar as Case 2.5.2 (B.1), we can prove the assertion. So
we can assume dg(211) = dg(x12) = dg(213) = dg(x14) = k — 1, we can also assume
if dg(x) = k — 1, and x misses y then dg(y) = k — 1, furthermore we can assume x
hits all of the vertices whose degree is less than k — 1. Let G’ = G — {uy, 2}, z hits all
of {x1,20,23,24}, T' = T — {ap,a1}. Soe(G') > e(G)—(k—1)—(k—-5)+1>
1(k* — 2k + 6). avedeg(G') > (k* =2k +6)/(k+2) > k—4and | V(T') [< k — 2.
By the induction assumption, 77 C G'. If f'(a2) hits uy, then f(a1) = uy, f(ap) = 2. If
f'(az) misses uy, then f(ag) = w1, f(a1) = z. f is T-extensible.
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