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Abstract

The Erdős-Sós Conjecture states that if G is a simple graph of order n with average
degree more than k − 2, then G contains every tree of order k. In this paper, we prove that
Erdős-Sós Conjecture is true for n = k + 4.
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1 Introduction
The graphs considered in this paper are finite, undirected, and simple (no loops or multiple
edges). Let G = (V (G), E(G)) be a graph of order n, where V (G) is the vertex set and
E(G) is the edge set with size e(G). The degree of v ∈ V (G), the number of edges incident
to v, is denoted dG(v) and the set of neighbors of v is denotedN(v). If u and v in V (G) are
adjacent, we say that u hits v or v hits u. If u and v are not adjacent, we say that u misses v
or v misses u. If S ⊆ V (G), the induced subgraph ofG by S is denoted byG[S]. Denote by
D(G) the diameter of G. In addition, δ(G), ∆(G) and avedeg(G) = 2e(H)

|V (H)| are denoted
by the minimum, maximum and average degree in V (G), respectively. Let T be a tree on
k vertices. If there exists an injection g : V (T ) → V (G) such that g(u)g(v) ∈ E(G) if
uv ∈ E(T ) for u, v ∈ V (T ), we call g an embedding of T into G and G contains a copy
of T as a subgraph, denoted by T ⊆ G. In addition, assume that T ′ ⊆ T is a subtree of T

∗This work is supported by National Natural Science Foundation of China (Nos.11271256 and 11531001),
The Joint Israel-China Program (No.11561141001), Innovation Program of Shanghai Municipal Education
Commission (No.14ZZ016) and Specialized Research Fund for the Doctoral Program of Higher Education
(No.20130073110075).

E-mail addresses: yuanlongtu@sjtu.edu.cn (Long-Tu Yuan), xiaodong@sjtu.edu.cn (Xiao-Dong Zhang)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



50 Ars Math. Contemp. 13 (2017) 49–61

and g′ is an embedding of T ′ into G. If there exists an embedding g : V (T )→ V (G) such
that g(v) = g′(v) for all v ∈ V (T ′), we say that g′ is T−extensible.

In 1959, Erdős and Gallai [6] proved the following theorem.

Theorem 1.1. Let G be a graph with avedeg(G) > k − 2. Then G contains a path of
order k.

Based on the above result, Later Erdős and Sós proposed the following well known
conjecture (for example, see [5]).

Conjecture 1.2. Let G be a graph with avedeg(G) > k − 2. Then G contains every tree
on k vertices as a subgraph.

Various specific cases of Conjecture 1.2 have already been proven. For example, Brandt
and Dobson [2] proved the conjecture for graphs having girth at least 5. Balasubramanian
and Dobson [1] proved this conjecture for graphs without any copy ofK2,s, s < k

12 +1. Li,
Liu and Wang [15] proved the conjecture for graphs whose complement has girth at least 5.
Dobson [3] improved this to graphs whose complements do not contain K2,4. More results
on this conjecture can be referred to [7, 8, 9] and [11, 12]. On the other hand, in 2003,
Mclennan [10] proved the following theorem.

Theorem 1.3. Let G be a graph with avedeg(G) > k − 2. Then G contains every tree of
order k whose diameter does not excess 4 as a subgraph.

In 2010, Eaton and Tiner [4] proved the the following two theorems.

Theorem 1.4. [4] Let G be a graph with avedeg(G) > k − 2. If δ(G) ≥ k − 4, then G
contains every tree of order k as a subgraph.

Theorem 1.5. [4] Let G be a graph with avedeg(G) > k − 2. If k ≤ 8, then G contains
every tree of order k as a subgraph.

In 1984, Zhou [17] proved that Conjecture 1.2 holds for k = n. Later, Slater, Teo and
Yap [13] and Woźniak [16] proved that Conjecture 1.2 holds for k = n− 1 and k = n− 2,
respectively.

Theorem 1.6. [16] Let G be a graph of order n with avedeg(G) > k − 2. If k = n − 2,
then G contains every tree of order k as a subgraph.

Recently, Tiner [14] proved that Conjecture 1.2 holds for k = n− 3.

Theorem 1.7. [14] Let G be a graph of order n with avedeg(G) > k − 2. If k ≥ n − 3,
then G contains every tree of order k as a subgraph.

In this paper, we establish the following:

Theorem 1.8. Let G be a graph of order n with avedeg(G) > k − 2. If k ≥ n − 4, then
G contains every tree of order k as a subgraph.
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2 Proof of Theorem 1.8
Let T be any tree of order k. If k ≥ n− 3, or k ≤ 8 or the diameter of T is at most 4, the
assertion holds by Theorems 1.3, 1.5 and 1.7. We only consider k = n−4 ≥ 9, D(T ) ≥ 5
and prove the assertion by the induction. Clearly the assertion holds for n = 6. Hence
assume Theorem 1.8 holds for all of the graphs of order fewer than n and let G be a graph
of order n. If there exists a vertex v with dG(v) < bk2 c, then avedeg(G − v) > k − 2
and the assertion holds by Theorems 1.7. Furthermore, by Theorem 1.4, without loss of
generality, there exists a vertex z in V (G) such that bk2 c ≤ dG(z) = δ(G) ≤ k−5. Without
loss of generality, we can assume that e(G) = 1 + b 12 (k − 2)(k + 4)c. Let T be any tree
of order k with a longest path P = a0a1 . . . ar−1ar and NT (a1) \ {a2} = {b1, . . . , bs}
and NT (ar−1) \ {ar−2} = {c1, . . . , ct}. Since avedeg(G) > k − 2, we can consider the
following cases: ∆(G) = k + 3, k + 2, k + 1, k, k − 1.

2.1 ∆(G) = k + 3

Let u ∈ V (G) be such vertex that dG(u) = k + 3 and let G′ = G − {u, z} and T ′ =
T − {a1, b1, . . . , bs}. Then e(G′) ≥ e(G)− (k + 3)− (k − 5) + 1 > 1

2 (k + 4)(k − 2)−
(k+ 3)− (k− 5) + 1 = 1

2 (k2− 2k− 2). So avedeg(G′) > (k2− 2k− 2)/(k+ 2) > k− 4
and | V (T ′) |≤ k − 2. By the induction hypothesis, T ′ ⊆ G′. Let f ′ be an embedding
of T ′ into G′. Then let f = f ′ in T ′ and f(a1) = u, X = V (G) \ f ′(V (T ′)). Since
dG(u) = k + 3, u hits at least s vertices in X . Hence f can be extended to an embedding
of T into G or we can say that f is T−extensible.
Remark: For the remainder of this paper we shall always let f ′ be an embedding of T ′ into
G′ and when we do not define the value of f on any vertex of T ′, we always let f = f ′ on
those vertices.

2.2 ∆(G) = k + 2

Let u ∈ V (G) be such vertex that dG(u) = k + 2. Then there exists only one vertex
x ∈ V (G) \ {u} not adjacent to u. We consider two subcases: dG(x) ≤ k − 2 and
dG(x) ≥ k − 1.

2.2.1 dG(x) ≤ k − 2

Let G′ = G−{u, x} and T ′ = T −{a1, b1, . . . , bs}. Then e(G′) ≥ e(G)− (k+2)− (k−
2) > 1

2 (k2−2k−8). So avedeg(G′) > (k2−2k−8)/(k+2) = k−4 and | V (T ′) |≤ k−2.
By the induction hypothesis, T ′ ⊆ G′. Then let f(a1) = u and X = V (G) \ f ′(V (T ′)).
Since dG(u) = k + 2, u hits at least s vertices in X , f is T−extensible.

2.2.2 dG(x) ≥ k − 1

Since x 6= z, we consider the following two cases.
(A). x misses z. Let G′ = G − {u, z, x} and T ′ = T − {a1, b1, . . . , bs, ar}. Then

e(G′) ≥ e(G)− (k+ 2)− (k− 5)− (k+ 1) + 1 > 1
2 (k2− 4k− 2). Hence avedeg(G′) >

(k2−4k−2)/(k+1) > k−5 and | V (T ′) |≤ k−3. By the induction hypothesis, we have
T ′ ⊆ G′. Since x misses z, u and dG(x) ≥ k − 1, x misses at most two vertices of G′. If
x hits f ′(a2), let f(a1) = x and f(ar) = u. Since dG(x) ≥ k − 1 and u hits all vertices
of T ′, f is T−extensible. Hence we assume that x misses f ′(a2). If x hits f ′(ar−1), let
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f(ar) = x and f(a1) = u. Then f is T−extensible. If x misses f ′(a2) and f ′(ar−1), then
x hits all of V (G′)\{f ′(a2), f ′(ar−1)}, because D(T ) ≥ 5, a2 and ar−1 are not adjacent.
Then let f(ar−1) = x, f(a1) = u, which implies that f is T−extensible.

(B). x hits z. We consider the following two subcases.
(B.1). dG(x) > k − 1. Let G′ = G− {u, z, x}, T ′ = T − {a1, b1, . . . , bs, ar}. Since

x misses u and dG(x) > k − 1, x misses at most two vertices of G′, the assertion can be
proven by the similar method of (A).

(B.2). dG(x) = k − 1. Then x misses 3 vertices of V (G) \ {u}, says y1, y2, y3.
(a). There exists one vertex yi with 1 ≤ i ≤ 3 such that dG(yi) ≥ k + 1. Let

G′ = G − {u, z, yi, x} and T ′ = T − {a1, b1, . . . , bs, ar−1, c1, . . . , ct}. Then e(G′) ≥
e(G)− (k + 2)− (k − 5)− (k + 2)− (k − 1) + 3 + 1 > 1

2 (k2 − 6k + 4), which implies
avedeg(G′) > (k2 − 6k + 4)/k > k − 6 and | V (T ′) |≤ k − 4. Hence by the induction
hypothesis, T ′ ⊆ G′. Note that yi misses at most one vertex of G′. If yi misses f ′(a2), let
f(a1) = u, f(ar−1) = yi; if yi misses f ′(ar−2), let f(ar−1) = u,f(a1) = yi. Thus f is
T−extensible.

(b). There exists one vertex yi with 1 ≤ i ≤ 3 such that dG(yi) = k and yi misses z.
Then the proof is similar to (a) and omitted.

(c). There exists one vertex yi with 1 ≤ i ≤ 3 such that dG(yi) ≤ k − 2. Let
G′ = G−{u, yi, x} and T ′ = T−{a1, b1, . . . , bs, ar}. Then e(G′) ≥ e(G)−(k+2)−(k−
2)−(k−1)+1 > 1

2 (k2−4k−4), which implies avedeg(G′) > (k2−4k−4)/(k+1) > k−5
and | V (T ′) |≤ k − 3. Hence by the induction hypothesis, T ′ ⊆ G′. Similarly as in case
(A), there exists an embedding from T into G.

(d). dG(yi) = k, yi hits z or dG(yi) = k − 1 for i ∈ {1, 2, 3}.
(d.1). dT (a1) + dT (ar−1) ≥ 5. Let G′ = G − {u, z, y1, y2, x} and T ′ = T −

{a1, b1, . . . , bs, ar−1, c1, . . . , ct}. Then e(G′) ≥ e(G)−(k+2)−(k−5)−(k−1)−(k−1)−
(k−1)+3 > 1

2 (k2−8k+10) which implies avedeg(G′) > (k2−8k+10)/(k−1) > k−7
and | V (T ′) |≤ k − 5. Hence by the induction hypothesis, T ′ ⊆ G′. Moreover, x misses
only one vertex of G′. If x misses f ′(a2), let f(a1) = u, f(ar−1) = x; if x misses
f ′(ar−2), let f(ar−1) = u, f(a1) = x. In both situations, f is T−extensible.

(d.2). dT (a1) = dT (ar−1) = 2. Let G′ = G − {u, z} and T ′ = T − {a0, a1}. Then
e(G′) ≥ e(G) − (k + 2) − (k − 5) + 1 > 1

2 (k2 − 2k), which implies avedeg(G′) >
(k2 − 2k)/(k + 2) > k − 4 and | V (T ′) |≤ k − 2. By the induction hypothesis, T ′ ⊆ G′.
Moreover, u hits all vertices of V (G)\{x} and z hits x. Let f(a1) = u or z and f(a0) = z
or u. Then f is T−extensible.

2.3 ∆(G) = k + 1

Let u ∈ V (G) be such vertex that dG(u) = k + 1 with u missing vertices x1 and x2.
Without loss of the generality, we can assume dG(x1) ≥ dG(x2) and dT (a1) ≥ dT (ar−1).

2.3.1 dT (a1) + dT (ar−1) ≥ 5

We consider the following two cases: (A) and (B).
(A). x1 misses x2.
(A.1) dG(x1) + dG(x2) ≤ 2k − 3. Let G′ = G − {u, x1, x2} and T ′ = T −

{a1, b1, . . . , bs}. Then e(G′) ≥ e(G) − (k + 1) − (2k − 3) > 1
2 (k2 − 4k − 4), which

implies avedeg(G′) > (k2 − 4k − 4)/(k + 1) > k − 5 and | V (T ′) |≤ k − 3. Hence by
the induction hypothesis, T ′ ⊆ G′. Let f(a1) = u. It is easy to see that f is T−extensible.



L.-T. Yuan and X.-D. Zhang: On the Erdős-Sós Conjecture for graphs on n = k + 4 vertices 53

(A.2). dG(x1) + dG(x2) ≥ 2k − 2.
(a). dG(x1) = k−1 Then dG(x2) = k−1 and x1 misses {u, x2, y1, y2}. If y1, y2 6= z,

let G′ = G − {u, z, x1, x2, y1} and T ′ = T − {a1, b1, . . . , bs ar−1, c1, . . . , ct}. Then
e(G′) ≥ e(G) − (k + 1) − (k − 5) − (2k − 2) − (k + 1) + 3 > 1

2 (k2 − 8k + 8), which
implies avedeg(G′) > (k2 − 8k + 8)/(k − 1) > k − 7 and | V (T ′) |≤ k − 5. Hence by
the induction hypothesis, T ′ ⊆ G′. Note that x1 misses only one vertex of G′. If x1 misses
f ′(a2), let f(a1) = u and f(ar−1) = x1; if x1 misses f ′(ar−2), let f(ar−1) = u and
f(a1) = x1. In both situations, f is T−extensible. Now assume that y1 = z or y2 = z.
Let G′ = G − {u, x1, x2, y1, y2} and T ′ = T − {a1, b1, . . . , bs, ar−1, c1, . . . , ct}. Then
e(G′) ≥ e(G) − (k + 1) − (k − 5) − (2k − 2) − (k + 1) + 2 + 1 > 1

2 (k2 − 8k + 8),
which implies avedeg(G′) > (k2 − 8k + 8)/(k − 1) > k − 7 and | V (T ′) |≤ k − 5. Let
f(ar−1) = u and f(a1) = x1. Then f is T−extensible.

(b). dG(x1) ≥ k. Let G′ = G−{u, z, x1, x2} and T ′ = T −{a1, b1, . . . , bs, ar−1, c1,
. . . , ct}. Then e(G′) ≥ e(G)− (k + 1)− (k − 5)− (2k + 2) + 1 + 2 > 1

2 (k2 − 6k + 2),
which implies avedeg(G′) > (k2 − 6k + 2)/k > k − 6 and | V (T ′) |≤ k − 4. Hence by
the induction hypothesis, T ′ ⊆ G′. Note that x1 misses at most one vertex of G′. If x1
misses f ′(a2), let f(a1) = u and f(ar−1) = x1; if x1 misses f ′(ar−2), let f(ar−1) = u
and f(a1) = x1. In both situations, f is T−extensible.

(B). x1 hits x2.
(B.1). dG(x1) + dG(x2) ≤ 2k − 2. The proof is similar to (A.1) and omitted.
(B.2). dG(x1) + dG(x2) ≥ 2k − 1. The proof is similar to (A.2) with (a)dG(x1) =

k,dG(x2) = k − 1 or k, (b)dG(x1) = k + 1.

2.3.2 dT (a1) = dT (ar−1) = 2.

We consider the following four cases.
(A). There exists a vertex v 6= u of degree at most k such that it hits both x1 and x2.

Let G′ = G − {u, v} and T ′ = T − {a0, a1}. Then e(G′) ≥ e(G) − (k + 1) − k + 1 >
1
2 (k2 − 2k − 8), which implies avedeg(G′) > (k2 − 2k − 8)/(k + 2) = k − 4 and
| V (T ′) |≤ k − 2. Hence by the induction hypothesis, T ′ ⊆ G′. If f ′(a2) hits u, let
f(a1) = u. If f ′(a2) misses u, then f ′(a2) = x1 or x2 and let f(a1) = v, f(a0) = u.
Thus f is T−extensible.

(B). There exists a vertex v 6= u of degree at least k+ 1 such that it hits both x1 and x2.
Then dG(v) = k + 1 and v misses y1 and y2. Since the case z ∈ {x1, x2, y1, y2} is much
easier, we may suppose z 6= x1, x2, y1, y2. Let G′ = G − {u, v, z} − x1x2 − y1y2 and
T ′ = T −{a0, a1, ar}. Then e(G′) ≥ e(G)−2(k+1)−(k−5)+1−2 > 1

2 (k2−4k−4),
which implies avedeg(G′) > (k2 − 4k − 4)/(k + 1) > k − 5 and | V (T ′) |≤ k − 3.
Hence by the induction hypothesis, T ′ ⊆ G′. If f ′(a2) = x1 or x2, and f ′(ar−1) = y1
or y2, then let f(a1) = v and f(ar) = u. If f ′(a2) = x1 and f ′(ar−1) = x2, then let
f(a1) = v, f(ar−1) = u, because u hits all the neighbours of f ′(ar−1). If f ′(a2) =
y1,f ′(ar−1) = y2, then let f(a1) = u and f(ar−1) = v. For the rest situations, it is easy
to find an embedding from T into G.

(C). There is no vertex in V (G) \ {u} hitting both x1 and x2, and x1 misses x2. Then
dG(x1) + dG(x2) ≤ k + 1. Let G′ = G − {u, x1, x2} and T ′ = T − {a0, a1}. Then
e(G′) ≥ e(G) − (k + 1) − (k + 1) > 1

2 (k2 − 2k − 12), Since k ≥ 9, avedeg(G′) >
(k2 − 2k − 12)/(k + 1) > k − 4 and | V (T ′) |≤ k − 2. By theorem 1.7, T ′ ⊆ G′. Let
f(a1) = u. Then f is T−extensible.
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(D). There is no vertex in V (G) \ {u} hitting both x1 and x2, and x1 hits x2. Then
dG(x1) + dG(x2) ≤ k + 3. If dG(x1) + dG(x2) ≤ k + 2, the assertion follows from
(C). Hence assume that dG(x1) + dG(x2) = k + 3. If z 6= x1, x2, then z has to hit x1
or x2, say that z hits x1. Let G′ = G − {u, z} − x1x2 and T ′ = T − {a0, a1}. Then
e(G′) ≥ e(G) − (k + 1) − (k − 5) + 1 − 1 > 1

2 (k2 − 2k), which implies avedeg(G′) >
(k2 − 2k)/(k + 2) > k − 4 and | V (T ′) |≤ k − 2. Hence by the induction hypothesis,
T ′ ⊆ G′. If f ′(a2) hits u, let f(a1) = u; if f ′(a2) = x1, let f(a1) = z and f(a0) = u.
If f ′(a2) = x2 and if there is a vertex w in T ′ such that f ′(w) = x1, let f(w) = u,
f(a1) = x1 and f(a0) = z, because u hits all neighbours of f ′(w) in G′; if f ′(a2) = x2
and there does not exist any vertex w in T ′ such that f ′(w) = x1, let f(a1) = x1, and
f(a0) = z. In all situations, f is T−extensible. If z = x1 or x2, then let G′ = G− {u, z}
and T ′ = T − {a0, a1}. Similarly, we can find an embedding from T into G.

2.4 ∆(G) = k

Let u ∈ V (G) be a vertex of degree dG(u) = k and misses three vertices x1, x2, x3.
Denote by S = {x1, x2, x3}.

2.4.1 G[S] contains no edges.

Let G′ = G − {u} and T ′ = T − {a0}. Then e(G′) ≥ e(G) − k > 1
2 (k2 − 8), which

implies avedeg(G′) > (k2 − 8)/(k + 3) > k − 3 and | V (T ′) |≤ k − 1. By the induction
hypothesis, T ′ ⊆ G′. If f ′(a1) hits u, let f(a0) = u; if f ′(a1) = xi, 1 ≤ i ≤ 3, let
f(a1) = u. Since u hits all neighbours of f ′(a1) in G′, f is T−extensible.

2.4.2 G[S] contains exactly one edge.

Without loss of the generality, x1 hits x2, dG(x1) ≥ dG(x2), and dT (a1) ≥ dT (ar−1). We
consider two cases.

(A). dT (a1) + dT (ar−1) ≥ 5.
(A.1). dG(x2) ≥ k − 1. If x3 6= z, let G′ = G − {u, z, x3} − x1x2 and T ′ =

T − {a1, b1, . . . , bs}. Then e(G′) ≥ e(G) − k − (k − 5) − k − 1 > 1
2 (k2 − 4k), which

implies avedeg(G′) > (k2 − 4k)/(k + 1) > k − 5 and | V (T ′) |≤ k − 3. By the
induction hypothesis, T ′ ⊆ G′. If f ′(a2) hits u, then let f(a1) = u; if f ′(a2) = x1
and x2 /∈ f ′(V (T ′)), then let f(a1) = x2; if f ′(a2) = x1 and x2 ∈ f ′(V (T ′)) and
f ′(w) = x2, then let f(w) = u, f(a2) = x1, and f(a1) = x2. Hence f is T−extensible.
On the other hand, if x3 = z, letG′ = G−{u, z}−{x1x2} and T ′ = T−{a1, b1, . . . , bs}.
Similarly, we can prove that the assertion holds.

(A.2). dG(x3) ≥ k − 1. By (A.1), we can assume that dG(x2) ≤ k − 2. If z 6= x1, x2,
let G′ = G − {u, z, x1, x2, x3} and T ′ = T − {a1, b1, . . . , bs, ar−1, c1, . . . , ct}. Then
e(G′) ≥ e(G) − k − (k − 5) − (k − 2) − k − k + 2 + 1 > 1

2 (k2 − 8k + 12), which
implies avedeg(G′) > (k2 − 8k + 12)/(k − 1) > k − 7 and | V (T ′) |≤ k − 5. Hence
by the induction hypothesis, T ′ ⊆ G′. Moreover, x3 misses at most one vertex of V (G′).
If x3 misses f ′(a2), let f(a1) = u and f(ar−1) = x3; if x3 hits f ′(a2), let f(ar−1) = u
and f(a1) = x3. then f is T−extensible. On the other hand, if x1 = z or x2 = z, let
G′ = G−{u, x1, x2, x3} and T ′ = T −{a1, b1, . . . , bs, ar−1, c1, . . . , ct}. Using the same
above argument, we can prove the assertion.



L.-T. Yuan and X.-D. Zhang: On the Erdős-Sós Conjecture for graphs on n = k + 4 vertices 55

(A.3). dG(x1) = k,dG(x2) ≤ k − 2 and dG(x3) ≤ k − 2. If z 6= x2, x3, let G′ =
G − {u, z, x1, x2, x3} and T ′ = T − {a1, b1, . . . , bs, ar−1, c1, . . . , ct}. Hence e(G′) ≥
e(G)−k−(k−5)−(k−2)−k−(k−2)+2 > 1

2 (k2−8k+10), which implies avedeg(G′) >
(k2 − 8k + 10)/(k − 1) > k − 7 and | V (T ′) |≤ k − 5. By the induction hypothesis,
T ′ ⊆ G′. Note that x1 misses at most one vertex in V (G′). If x1 misses f ′(a2), let
f(a1) = u and f(ar−1) = x1; if x1 hits f ′(a2), let f(ar−1) = u and f(a1) = x1. Hence
f is T−extensible. On the other hand, if x2 = z or x3 = z, let G′ = G − {u, x1, x2, x3}
and T ′ = T − {a1, b1, . . . , bs, ar−1, c1, . . . , ct}. By the same above argument, we can
prove the assertion.

(A.4). dG(x1) ≤ k−1,dG(x2) ≤ k−2 and dG(x3) ≤ k−2. Then there exists a vertex
u′ in V (G) \ {x1, x2, x3, u} with degree at least k − 1. Otherwise, by δ(G) ≤ k − 5, we
have avedeg(G) ≤ k+(k−1)(k−2)+(k−1)+2(k−2)+(k−5)

k+4 ≤ k − 2, which is a contradiction.
Let G′ = G−{u, u′}−{x1x2} and T ′ = T −{a1, b1, . . . , bs}. Then e(G′) ≥ e(G)−k−
k+1−1 > 1

2 (k2−2k−8), which implies avedeg(G′) > (k2−2k−8)/(k+2) = k−4 and
| V (T ′) |≤ k − 2. By the induction hypothesis, T ′ ⊆ G′. If f ′(a2) hits u, let f(a1) = u;
if f ′(a2) misses u, let f(a2) = u and f(a1) = u′. Then f is T−extensible.

(B). dT (a1) = 2 and dT (ar−1) = 2. If there exists a vertex w that hits both x1 and x3,
let G′ = G−{u,w}− x1x2 and T ′ = T −{a0, a1}. Then e(G′) ≥ e(G)− 2k+ 1− 1 >
1
2 (k2 − 2k − 8), which implies avedeg(G′) > (k2 − 2k + 8)/(k + 2) = k − 4 and
| V (T ′) |≤ k − 2. By the induction hypothesis, T ′ ⊆ G′. If f ′(a2) = x1 or x3, let
f(a1) = w and f(a0) = u; if f ′(a2) = x2 and x1 /∈ f ′(V (T ′)), let f(a1) = x1 and
f(a0) = w; if f ′(a2) = x2 and x1 ∈ f ′(V (T ′)),f ′(v) = x1, let f(v) = u, f(a1) = x1
and f(a0) = w. In the above situations, f is T−extensible. On the other hand, if there is no
vertex hits both x1 and x3, or x2 and x3. then dG(x1)+dG(x3) ≤ k, dG(x2)+dG(x3) ≤ k.
Since dG(xi) ≥ bk2 c and k ≥ 9, dG(xi) ≤ k− 2. Hence, similarly as in (A.4), there exists
a vertex u′ in V (G) \ {x1, x2, x3, u} with degree at least k − 1, and an embedding of T
into G.

2.4.3 G[S] contains exactly two edges

Without loss of the generality, assume that x1 hits both x2 and x3. We consider the follow-
ing two cases.

(A). dT (a1) = 2. Let G′ = G − {u, x1} and T ′ = T − {a0, a1}. Then e(G′) ≥
e(G)−2k > 1

2 (k2−2k−8), which implies avedeg(G′) > (k2−2k−8)/(k+ 2) > k−4
and | V (T ′) |≤ k − 2. By the induction hypothesis, T ′ ⊆ G′. If f ′(a2) = x2 or x3 (say
x2), let f(a1) = x1; Moreover, if x3 /∈ f ′(V (T ′)), let f(a0) = x3; if x3 ∈ f ′(V (T ′))
and f ′(v) = x3, let f(v) = u, f(a1) = x1, and f(a0) = x3. Hence, f is T-extensible. If
f ′(a2) 6= x2, x3, then it is easy to find an embedding from T to G.

(B). dT (a1) ≥ 3.
(a). dG(x1) ≥ k − 1. If z 6= x2, x3, let G′ = G − {u, z, x1} and T ′ = T −

{a1, b1, . . . , bs}. Then e(G′) ≥ e(G) − k − (k − 5) − k + 1 > 1
2 (k2 − 4k + 4), which

implies avedeg(G′) > (k2 − 4k + 4)/(k + 1) > k − 5 and | V (T ′) |≤ k − 3. By
the induction hypothesis, T ′ ⊆ G′. If f ′(a2) = x2 or x3 (say x2), let f(a1) = x1.
Moreover, if x3 /∈ f ′(V (T ′)), let f(b1) = x3; if x3 ∈ f ′(V (T ′)) and f ′(v) = x3, let
f(v) = u, f(a1) = x1 and f(b1) = x3. Because u hits all neighbours of f ′(v) and
dG(x1) ≥ k − 1, f is T−extensible. If f ′(a2) 6= x2, x3, it is easy to find an embedding
from T to G. On the other hand, if z = x2 or x3 (say x2), let G′ = G−{u, x1, x2}, by the
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same argument above, the assertion holds.

(b). dG(x1) ≤ k − 2, dG(x2) = k or dG(x3) = k (say dG(x2) = k). Then there
exists a vertex y ∈ V (G) \ {u, x1, x2, x3} such that x2 misses y. So x2 misses u, x3
and y and u misses x3. By Case 2.4.2, we can assume y hits x3. Further, by (a), we
can assume dG(y) ≤ k − 2. If z 6= x1, y, let G′ = G − {u, z, x2, x3, y} and T ′ =
T − {a1, b1, . . . , bs, ar−1, c1, . . . , ct}. Then e(G′) ≥ e(G)− k − (k − 5)− k − k − (k −
2) + 3 > 1

2 (k2 − 8k+ 12), which implies avedeg(G′) > (k2 − 8k+ 12)/(k− 1) > k− 7
and | V (T ′) |≤ k − 5. By the induction hypothesis, T ′ ⊆ G′. Further, if f ′(a2) = x1,
let f(a1) = x2 and f(ar−1) = u; if f ′(ar−2) = x1, let f(ar−1) = x2 and f(a1) = u.
Hence f is T−extensible. On the other hand, if z = y, let G′ = G − {u, x2, x3, y} and
T ′ = T − {a1, b1, . . . , bs, ar−1, c1, . . . , ct}; if z = x1, let G′ = G− {u, z, x2, x3, y} and
T ′ = T −{a1, b1, . . . , bs, ar−1, c1, . . . , ct}. Then by the same argument, it is easy to prove
that the assertion holds.

(c). dG(x1) ≤ k− 2, dG(x2) = k− 1 and dG(x3) = k− 1. Let G′ = G−{u, x2, x3}
and T ′ = T−{a1, b1, . . . , bs}. Then e(G′) ≥ e(G)−k−(k−1)−(k−1) > 1

2 (k2−4k−4),
which implies avedeg(G′) > (k2−4k−4)/(k+ 1) > k−5 and | V (T ′) |≤ k−3. By the
induction hypothesis, T ′ ⊆ G′. If f ′(a2) = x1, let f(a1) = x2, which f is T−extensible.
If f ′(a2) 6= x1, it is easy to find an embedding from T to G.

(d). dG(x1) ≤ k − 2, and dG(x2) ≤ k − 2 or dG(x3) ≤ k − 2 (say dG(x2) ≤ k − 2),
hence dG(x3) ≤ k − 1 by (b). Then there exists a vertex u′ ∈ V (G) \ {x1, x2, x3, u}
of degree at least k − 1, otherwise 2e(G) ≤ (k − 1)(k − 2) + (k − 5) + k + 2(k −
2) + (k − 1) ≤ (k + 4)(k − 2) which is impossible. Let G′ = G − {u, u′, x1} and
T ′ = T − {a1, b1, . . . , bs}. Then e(G′) ≥ e(G) − 2k − (k − 2) + 1 > 1

2 (k2 − 4k − 2),
which implies avedeg(G′) > (k2−4k−2)/(k+ 1) > k−5 and | V (T ′) |≤ k−3. By the
induction hypothesis, T ′ ⊆ G′. Hence if f ′(a2) hits u, let f(a1) = u; if f ′(a2) = x2 or
x3 (say x2), let f(a2) = u and f(a1) = u′ since u hits all the neighbours of f ′(a2). Then
f is T−extensible.

2.4.4 G[S] contains exactly three edges

The following two cases are considered.

(A). dT (a1) = 2. If there exists an 1 ≤ i ≤ 3 (say i = 1) such that dG(x1) ≤ k− 1, let
G′ = G−{u, x1}−x2x3 and T ′ = T −{a0, a1}. Then e(G′) ≥ e(G)−k− (k−1)−1 >
1
2 (k2−2k−8), which implies avedeg(G′) > (k2−2k−8)/(k+2) = k−4 and | V (T ′) |≤
k−2. By the induction hypothesis, T ′ ⊆ G′. If f ′(a2) = x2 or x3 (say x2), let f(a1) = x1.
Moreover, if x3 /∈ f ′(V (T ′)), let f(a0) = x3; and if x3 ∈ f ′(V (T ′)) and f ′(v) = x3,
let f(v) = u, f(a1) = x1, f(a0) = x3. Hence f is T−extensible. On the other hand, if
dG(x1) = dG(x2) = dG(x3) = k, let G′ = G − {u, x1} and T ′ = T − {a0, a1}. Then
e(G′) ≥ e(G)−2k > 1

2 (k2−2k−8), which implies avedeg(G′) > (k2−2k−8)/(k+2) =
k − 4 and | V (T ′) |≤ k − 2. By the induction hypothesis,T ′ ⊆ G′. If f ′(a2) = x2 or x3,
let f(a1) = x1; if f ′(a2) 6= x2, x3, let f(a1) = u. Hence f is T -extensible.

(B). dT (a1) ≥ 3. If there exists an 1 ≤ i ≤ 3 (say i = 1) such that dG(x1) ≥ k − 1,
LetG′ = G−{u, z, x1}−x2x3. By the same argument as Case 2.4.3.(B).(a), the assertion
holds. The rest is similar as Case 2.4.3.(B).(d).
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2.5 ∆(G) = k − 1

Since ∆(G) = k − 1 and δ(G) ≤ k − 5, there exist at least four vertices of degree k − 1.
Otherwise 2e(G) ≤ 3(k−1)+k(k−2)+(k−5) = (k−2)(k+4), which is a contradiction.
Let ui be vertex of dG(ui) = k − 1 missing four vertices of Si = {xi1, xi2, xi3, xi4} for
i = 1, 2, 3, 4. If there exists a vertex ui with 1 ≤ i ≤ 4 such that G[Si] contains at
most one edge. Let G′ = G − {ui} − E(G[Si]) and T ′ = T − {a0}. Then e(G′) ≥
e(G)− (k− 1)− 1 > 1

2 (k2 − 8), which implies avedeg(G′) > (k2 − 8)/(k+ 3) > k− 3
and | V (T ′) |≤ k − 1. By the induction hypothesis, T ′ ⊆ G′. If ui hits f ′(a1), let
f(a0) = ui, and if ui misses f ′(a1), let f(a1) = ui. Then f is T−extensible. Hence we
assume that G[Si] contains at least two edges for i = 1, 2, 3, 4.

2.5.1 dT (a1) ≥ 3,dT (ar−1) ≥ 2

We consider the number of the edges in G[u1, u2, u3, u4].
(A).G[u1, u2, u3, u4] contains at least one edge, say u1 hits u2. If z /∈ S1 = {x11, x12,

x13, x14}, let G′ = G − {u1, u2, z} − E(G[S1]) and T ′ = T − {a1, b1, . . . , bs}. Then
e(G′) ≥ e(G)−2(k−1)−(k−5)+1−6 > 1

2 (k2−4k−4), which implies avedeg(G′) >
(k2 − 4k − 4)/(k + 1) > k − 5 and | V (T ′) |≤ k − 3. By the induction hypothesis,
T ′ ⊆ G′. Hence if u1 hits f ′(a2), let f(a1) = u1; and if u1 misses f ′(a2), let f(a2) = u1
and f(a1) = u2. Since u1 hits all the neighbours of f ′(a2) in G′, f is T−extensible. On
the other hand, if z ∈ S1 = {x11, x12, x13, x14}, say z = x11. Let G′ = G−{u1, u2, z}−
E(G[x12, x13, x13]). By the same argument, the assertion holds.

(B). G[u1, u2, u3, u4] contains no edges.
(B.1). If there exist two vertices, say u1 and u2, in {u1, u2, u3, u4} such that u1

misses y1 and u2 misses y2, where y1 6= y2 and y1, y2 /∈ {u1, . . . , u4}. Let G′ =
G − {u1, u2, u3, u4} and T ′ = T − {a1, b1, . . . , bs, ar−1, c1, . . . , ct}. Then e(G′) ≥
e(G) − 4(k − 1) > 1

2 (k2 − 6k), which implies avedeg(G′) > (k2 − 6k)/k = k − 6
and | V (T ′) |≤ k − 4. By the induction hypothesis, T ′ ⊆ G′. Hence if f ′(a2) = y1,
let f(a1) = u2 and f(ar−1) = u1; if f ′(a2) = y2, let f(a1) = u1 and f(ar−1) = u2.
Moreover, if f ′(ar−2) = y1, let f(a1) = u1 and f(ar−1) = u2; and if f ′(ar−2) = y2, let
f(a1) = u2 and f(ar−1) = u1. Therefore, f is T−extensible.

(B.2). There exist a vertex y /∈ {u1, . . . , u4} such that y misses u1, . . . , u4. Then
G[u1, . . . , u4, y] contains no edges.

(a). dT (ar−1) = 2. Then there exists a vertex w hits {u1, u2, u3, u4} and y. Let G′ =
G−{u1, w} and T ′ = T−{ar−1, ar}. Then e(G′) ≥ e(G)−2(k−1)+1 > 1

2 (k2−2k−2),
which implies avedeg(G′) > (k2−2k−2)/(k+ 2) > k−4 and | V (T ′) |≤ k−2. By the
induction hypothesis, T ′ ⊆ G′. Hence if f ′(ar−2) = u2, u3, u4 or y, let f(ar−1) = w and
f(ar) = u1; and if f ′(ar−2) 6= u2, u3, u4, y, let f(ar−1) = u1 and f(ar) = w. Therefore
f is T−extensible.

(b). dT (ar−1) ≥ 3. If z 6= y, let G′ = G − {u1, u2, u3, u4, y, z} and T ′ = T −
{a1, b1, . . . , bs, ar−1, c1, . . . , ct}. Then e(G′) ≥ e(G)−4(k−1)−(k−1)−(k−5)+4 >
1
2 (k2 − 10k + 20), which implies avedeg(G′) > (k2 − 10k + 20)/(k − 2) > k − 8 and
| V (T ′) |≤ k − 6. By the induction hypothesis, T ′ ⊆ G′. Let f(a1) = u1 and f(ar−1) =
u2. Then f is T−extensible. On the other hand, if z = y, let G′ = G− {u1, u2, u3, u4, z}
and T ′ = T−{a1, b1, . . . , bs, ar−1, c1, . . . , ct}. By the same argument, the assertion holds.
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2.5.2 dT (a1) = 2,dT (ar−1) = 2.

We will discuss the following four cases: (A), (B), (C) and (D).
(A). There exists a 1 ≤ i ≤ 4, say i = 1, such thatG[S1] contains two or three edges. If

u1 hits one vertex, say u2, of three vertices u2, u3, u4. Let G′ = G−{u1, u2}−E(G[S1])
and T ′ = T −{a0, a1}. Then e(G′) ≥ e(G)− 2(k− 1) + 1− 3 > 1

2 (k2− 2k− 8), which
implies avedeg(G′) > (k2 − 2k − 8)/(k + 2) = k − 4 and | V (T ′) |≤ k − 2. By the
induction hypothesis, T ′ ⊆ G′. Hence if u1 hits f ′(a2), let f(a1) = u1; and if u1 misses
f ′(a2), let f(a2) = u1 and f(a1) = u2. Since u1 hits all the neighbours of f ′(a2) in G′, f
is T−extensible. Therefore, we assume that u1 misses uj for j = 2, 3, 4. Then u1 misses
x11 = u2, x12 = u3, x13 = u4, x14 and G[u2, u3, u4, x14] contains two or three edges.

(A.1). x14 hits one vertex, say u2, of three vertices u2, u3, u4. Let G′ = G −
{u1, u2, u3, u4} and T ′ = T − {a0, a1, ar−1, ar}. Then e(G′) ≥ e(G) − 4(k − 1) >
1
2 (k2 − 6k), which implies avedeg(G′) > (k2 − 6k)/k = k− 6 and | V (T ′) |≤ k− 4. By
the induction hypothesis, T ′ ⊆ G′. Since G[u2, u3, u4, x14] contains two or three edges,
there exists a vertex, say u3, of two vertices u3,u4 misses at most one vertex, say y1, in
V (G) \ {u1, u2, u4, x14}. Hence if f ′(a2) = x14 or y1, and f ′(ar−2) = y1 or x14, let
f(a1) = u2 or u1 and f(ar−1) = u1 or u2, then f is T−extensible. For the rest cases, it is
easy to find an embedding from T to G.

(A.2). x14 misses three vertices u2, u3, u4. Then G[u2, u3, u4] contains two or three
edges. We can assume that u2 hits u3 and u4. If u3 misses u4, u3 misses at most one vertex,
says y1, in V (G) \ {u1, u2, u4, x14}. Then let G′ = G− {u1, x14, u3, u4} and T ′ = T −
{a0, a1, ar−1, ar}. By the similar argument as Case (A.1), the assertion holds. Hence we
can assume that u3 hits u4 and u3 misses z1, z2, u1, x14. LetG′ = G−{u1, x14, u3, u4}−
{z1z2} and T ′ = T − {a0, a1, ar−1, ar}. Then e(G′) ≥ e(G) − 4(k − 1) + 1 − 1 >
1
2 (k2 − 6k), which implies avedeg(G′) > (k2 − 6k)/k = k− 6 and | V (T ′) |≤ k− 4. By
the induction hypothesis, T ′ ⊆ G′. Hence if f ′(a2) = z1 or z2, and f ′(ar−2) = z2 or z1,
let f(a2) = u3, f(a1) = u4, f(ar−1) = u1. Therefore f is T− extensible. If f ′(a2) = z1
or z2, and f ′(ar−2) = u2, let f(a1) = u1, f(ar−1) = u4. Therefore f is T− extensible.
For the rest cases, it is easy to find an embedding from T to G.

(B). There exists a 1 ≤ i ≤ 4, say i = 1, such that G[S1] contains exactly four edges.
(B.1). There exists a vertex, say x11, of degree 3 in G[S1] and | E(G[S1]) |≤ 5.

Then x11 hits x12, x13 and x14. Let G′ = G − {u1, x11} − E(G[x12, x13, x14]) and
T ′ = T −{a0, a1}. Then e(G′) ≥ e(G)− 2(k− 1)− 2 > 1

2 (k2 − 2k− 8), which implies
avedeg(G′) > (k2 − 2k − 8)/(k + 2) = k − 4 and | V (T ′) |≤ k − 2. By the induction
hypothesis, T ′ ⊆ G′. Hence if u1 hits f ′(a2), let f(a1) = u1, which implies that f is
T−extensible. If u1 misses f ′(a2) and f ′(a2) = x12, let f(a1) = x11. Moreover, if x13
or x14 /∈ f ′(V (T ′)), then let f(a0) = x13 or x14. Then f is T−extensible. If x13 and
x14 ∈ f ′(V (T ′)), f ′(w) = x13 or x14, let f(w) = u1, f(a0) = x13 or x14. Then f is
T−extensible. For the rest cases, it is easy to find an embedding from T to G.

(B.2). The degree of every vertex in G[S1] is two. We assume that x11 hits x12, x12
hits x13, x13 hits x14, x14 hits x11.

(a). u1 hits all vertices of {u2, u3, u4}.
(a.1). There exists a vertex ui, say u2, in {u2, u3, u4} which misses x11, x12, x13 and

x14. Let G′ = G − {u1, u2, x11, x12} − x13x14 and T ′ = T − {a0, a1, ar−1, ar}. Then
e(G′) ≥ e(G) − 4(k − 1) + 1 > 1

2 (k2 − 6k + 2), which implies avedeg(G′) > (k2 −
6k + 2)/k > k − 6 and | V (T ′) |≤ k − 4. By the induction hypothesis, T ′ ⊆ G′. If
f ′(a2) = x13, f

′(ar−2) = x14, let f(a1) = x12, f(a0) = x11, f(ar−2) = u1, f(ar−1) =
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u2. Since u1 hits all the neighbours of f ′(ar−2) in G′, f is T−extensible. For the rest
cases, similarly, it is easy to find an embedding from T to G.

(a.2). There exists a vertex, say u2, in {u2, u3, u4} such that it hits at least two vertices
of {x11, x12, x13, x14}, say u2 hits x11 and x13, or u2 hits x11 and x12.

If u2 hits x11 and x13, let G′ = G − {u1, u2} − x11x12 − x12x13 − x13x14 and
T ′ = T − {a0, a1}. Then e(G′) ≥ e(G) − 2(k − 1) + 1 − 3 > 1

2 (k2 − 2k − 8), which
implies avedeg(G′) > k− 4 and | V (T ′) |≤ k− 2. By the induction hypothesis, T ′ ⊆ G′.
Hence if f ′(a2) = x11 or x13, let f(a1) = u2; if f ′(a2) = x12, let f(a2) = u1 and
f(a1) = u2; if f ′(a2) = x14 and x13 /∈ f ′(V (T ′)), let f(a1) = x13 and f(a0) = u2; if
f ′(a2) = x14 and x13 ∈ f ′(V (T ′)), let f(v) = u1, f(a1) = x13, f(a0) = u2, because
there is a vertex v, f ′(v) = x13 and u1 hits all the neighbours of f ′(v) in G′. Therefore f
is T−extensible.

If u2 hits x11 and x12, let G′ = G − {u1, u2} − x12x13 − x13x14 − x11x14 and
T ′ = T − {a0, a1}. Then e(G′) ≥ e(G) − 2(k − 1) + 1 − 3 > 1

2 (k2 − 2k − 8),
which implies avedeg(G′) > k − 4 and | V (T ′) |≤ k − 2. By the induction hypothesis,
T ′ ⊆ G′. Hence if f ′(a2) = x11 or x12, let f(a1) = u2; if f ′(a2) = x13 or x14, let
f(a2) = u1, f(a1) = u2, because u1 hits all the neighbours of f ′(a2) in G′. Therefore f
is T−extensible.

(a.3). ui hits exactly one vertex of {x11, x12, x13, x14} for i = 2, 3, 4.

(i). There exist two vertices of {u2, u3, u4} such that they hit the same vertex in
{x11, x12, x13, x14}, says both u2 and u3 hit x14.

If u2 and u3 misses the same vertices, say, {x11, x12, x13, y}, then u2 hits u3. Further,
if G[x11, x12, x13, y] contains at most three edges or has a vertex of degree 3, the assertion
follows from Case 2.5.2.(A) or Case 2.5.2.(B.1). Therefore we can assume that y hits both
x11 and x13. Let G′ = G − {u2, u3, x11, x12} − x13y and T ′ = T − {a0, a1, ar−1, ar}.
The assertion follows from Case 2.5.2. (B.2).(a.1).

If u2 misses {x11, x12, x13, y1} and u3 misses {x11, x12, x13, y2} with y1 6= y2, let
G′ = G − {u1, u2, u3, x14} − x11x12 − x12x13 and T ′ = T − {a0, a1, ar−1, ar}. Then
e(G′) ≥ e(G)−4(k−1)+4−2 > 1

2 (k2−6k+4), which implies avedeg(G′) > k−6 and
| V (T ′) |≤ k − 4. By the induction hypothesis, T ′ ⊆ G′. Hence if f ′(a2) = x11 or x13,
let f(a1) = x14,f(a0) = u3 or u2 or let f(a2) = u1,f(a1) = u3 or u2. If f ′(a2) = x12,
let f(a2) = u1,f(a1) = u3 or u2. If f ′(a2) = y1 or y2, let f(a1) = u3 or u2. Since
there is a choice which uses distinct vertices of {u1, u2, u3, x14} for any two vertices of
{x11, x12, x13, y1, y2}, we can find an embedding from T to G. (For example, if f ′(a2) =
x11,f ′(ar−2) = x13, let f(a1) = x14,f(a0) = u3,f(ar−2) = u1,f(ar−1) = u2.)

(ii). {u2, u3, u4} hits the different vertices of {x11, x12, x13, x14}. Without loss of
generality, we assume that u2 hits x11 and u3 hits x13, u2 misses y1 and u3 misses y2. Let
G′ = G − {u1, u2, u3, x13} − x11x12 − x11x14 and T ′ = T − {a0, a1, ar−1, ar}. Then
e(G′) ≥ e(G)−4(k−1)+3+0−2 > 1

2 (k2−6k+2), which implies avedeg(G′) > k−6
and | V (T ′) |≤ k − 4. By the induction hypothesis, T ′ ⊆ G′. Hence if f ′(a2) = x12 or
x14, let f(a1) = x13 and f(a0) = u3, or let f(a2) = u1 and f(a1) = u2, if f ′(a2) = y1
or y2, let f(a1) = u1, if f ′(a2) = x11, let f(a1) = u2, Therefore f is T−extensible. For
the rest cases, by the same argument, it is easy to find an embedding from T to G.

(b). u1 hits one or two vertices of {u2, u3, u4}. Without loss of the generality, we
assume that u1 hits u2 and u1 misses u4. Then u4 ∈ {x11, x12, x13, x14}, say u4 = x14,
u4 misses u1,x12,z1,z2.

If u2 6= z1, z2, then u2 hits u4. Let G′ = G − {u1, u2, u4, x12} − z1z2 and T ′ =
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T − {a0, a1, ar−1, ar}. Then e(G′) ≥ e(G) − 4(k − 1) + 2 − 1 > 1
2 (k2 − 6k), which

implies avedeg(G′) > k − 6 and | V (T ′) |≤ k − 4. By the induction hypothesis, T ′ ⊆
G′. Hence if f ′(a2) = x11 and f ′(ar−2) = x13, let f(a1) = u4, f(ar−2) = u1 and
f(ar−1) = u2, if f ′(a2) = z1 and f ′(ar−2) = z2, let f(a1) = u1, f(ar−2) = u4
and f(ar−1) = u2. Therefore f is T-extensible. For the rest cases, it is easy to find an
embedding from T to G. If u2 = z1 or z2, say u2 = z1, let G′ = G − {u1, u2, u4, x12}
and T ′ = T − {a0, a1, ar−1, ar}. This situation is much easier than the above case.

(c). u1 misses all the vertices of {u2, u3, u4}. Without loss of generality, we assume
u2 = x11, u3 = x12, u4 = x13. Let u2 miss {u1, x13, y1, y2}. If G[u1, x13, y1, y2]
contains two, or three edges, or a vertex of degree 3, the assertion follows from Case 2.5.2
(A). and Case 2.5.2 (B.1). Hence we assume that u1 hits y1, y1 hits u4 = x13, u4 hits y2
and y2 hits u1. Hence the assertion follows from Case 2.5.2. (B.2). (a) and Case 2.5.2.
(B.2).(b).

(C). There exists a 1 ≤ i ≤ 4, say i = 1, such that G[x11, x12, x13, x14] contains
five edges. Then we assume that x11 hits x12, x13 and x14. Let G′ = G − {u1, x11} −
E(G[x12, x13, x14]) and T ′ = T − {a0, a1}. The assertion follows from the proof of Case
2.5.2 (B.1).

(D). There exists a 1 ≤ i ≤ 4, say i = 1, such that G[x11, x12, x13, x14] contains six
edges. If dG(x11) ≤ k − 2, similar as Case 2.5.2 (B.1), we can prove the assertion. So
we can assume dG(x11) = dG(x12) = dG(x13) = dG(x14) = k − 1, we can also assume
if dG(x) = k − 1, and x misses y then dG(y) = k − 1, furthermore we can assume x
hits all of the vertices whose degree is less than k − 1. Let G′ = G − {u1, z}, z hits all
of {x1, x2, x3, x4}, T ′ = T − {a0, a1}. So e(G′) ≥ e(G) − (k − 1) − (k − 5) + 1 >
1
2 (k2 − 2k + 6). avedeg(G′) > (k2 − 2k + 6)/(k + 2) > k − 4 and | V (T ′) |≤ k − 2.
By the induction assumption, T ′ ⊆ G′. If f ′(a2) hits u1, then f(a1) = u1, f(a0) = z. If
f ′(a2) misses u1, then f(a0) = u1, f(a1) = z. f is T-extensible.
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(Keszthely, 1993), http://dx.doi.org/10.1016/0012-365X(95)00207-D.

[3] E. Dobson, Constructing trees in graphs whose complement has no K2,s, Com-
bin. Probab. Comput. 11 (2002), 343–347, http://dx.doi.org/10.1017/
S0963548302005102.
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