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0  INTRODUCTION

Pipelines are used ubiquitously to transport fluids. 
For example, the Alberta Energy and Utilities Board 
(EUB) reports that a total of 377,248 km of energy 
related pipeline was under its jurisdiction at the end 
of 2005. The same source also indicates there were 
a total of 12,848 pipeline “incidents” between 1990 
and 2005. About 95% of the reported incidents led 
to a pipeline leak or rupture.  Hence, it is clear that 
extensive networks of pipelines are in widespread 
use and they are prone to occasional failure. Clearly 
a method of inspecting pipelines is required to detect 
and size defects and, ideally, it should be non-invasive.

Guided waves are appealing because they can 
propagate over long distances, say tens of metres, 
and they are capable of rapidly interrogating entire 
structures, including otherwise inaccessible regions. A 
thorough literature review of guided wave inspection 
of pipes may be found in [1], so only references 
pertinent to the present work are given here. Early 
attempts of using guided waves for pipe inspection 
focussed on the torsional and longitudinal wave modes 
and considered spurious reflections as an indication 
of damage. More recent work has focussed also on 
reflections of axisymmetric pipe modes from defects. 
The use of flexural waves has been infrequent because 
“the acoustic field is much more complicated than the 
case of axisymmetric modes” [2]. On the other hand, 
the identification of spatially decaying modes, which 

are introduced in a pipe by a notch and are analogous 
to end modes [3], has not been reported.

The first objective of this paper is to demonstrate 
that singularities, where the term singularity is used to 
indicate a frequency at which a displacement response 
of a given guided wave mode becomes very large 
and behaves similarly to a resonant frequency of an 
undamped single degree of freedom oscillator, distinct 
from an unblemished pipe’s cutoff frequencies are 
present when a notch is introduced. These singularities 
are analogous, in some sense, to the end modes 
reported in [3]. A second objective is to describe a 
technique that takes advantage of these singularities 
to characterise the dimensions of an axisymmetric 
notch in a pipe. The last objective is to suggest that the 
extension to nonaxisymmetric and more general notch 
geometries is straightforward but computationally 
expensive.

The proposed technique to detect and characterise 
the dimensions of an axisymmetric notch has a 
number of advantages. It utilizes the classical and 
simplest means, i.e., a radial point load acting on 
the pipe’s outer surface, of introducing ultrasonic 
energy into a pipe to simultaneously excite a number 
of modes. The notch may be detected by simply 
examining the spectral density or reflection coefficient 
of the response. As frequency differences are used to 
infer a notch’s dimensions, the need for consistent 
transducer coupling is reduced somewhat compared to 
methods that make use of amplitude changes. A single 
measurement can yield sufficient information to 
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determine a notch’s dimensions. This attribute offers 
an advantage over methods that rely on the excitation 
of a single mode to determine a reflection coefficient, 
say, as at least two modes are required to uniquely 
determine even an axisymmetric notch’s dimensions 
[4]. However, because the proposed method makes 
use of measurements relatively close to a notch, 
where waves incident and scattered by the notch may 
interact (in the reflected field), only modest lengths 
of pipe are required. Consequently, the procedure can 
be applied only locally to a notch as waves are used 
whose amplitudes decay exponentially from a notch’s 
boundary. The technique complements, therefore, 
other methods that can rapidly screen long lengths of 
pipe.

The newly discerned singularities are 
demonstrated to exist first by applying the hybrid semi-
analytical finite element (SAFE) in combination with 
a standard finite element procedure to axisymmetric 
notches in a (hollow) steel pipe. The pipe is assumed 
to be homogeneous, linearly elastic, isotropic, 
and uniformly right circular. A parametric study is 
undertaken subsequently in which the radial depth 
and axial extent of outer surface breaking, rectangular 
axisymmetric notches are varied independently. 
The results are used to illustrate how the frequency 
differences between the new singularities and an 
unblemished pipe’s cutoff frequencies can be used 
to detect a notch and determine its size.  Solely outer 
surface breaking notches are considered because the 
simulations can be partially corroborated by existing 
experimental data [4]. The examples suggest that 
almost any set, which contains a sufficient number 
of accurate frequency differences, will give the 
same inverse solution. The modes could be selected 
generally but they are selected usually on the basis of 
ease of experimental implementation. The extension 
to nonaxisymmetric notches is suggested by showing 
that the singularities still exist and characteristic 
behaviours can be generalized.

1  HYBRID SAFE AND STANDARD  
FINITE ELEMENT PROCEDURE

1.1  Overview of Hybrid Wave Function-Standard Finite 
Element Approach

A hybrid wave function-standard finite element 
approach employs a conventional finite element 
description to model the displacement field in a 
region completely enclosing a nonhomogeneity. The 
displacement field in the remainder of the waveguide 
is described in terms of a modal expansion of the 

“parent” waveguide’s wave functions. (References 
pertinent to pipes are given in [1].) An incident 
wave field is generated in the parent waveguide. 
Waves are scattered by the nonhomogeneity and the 
corresponding (scattered) wave field is obtained by 
enforcing continuity (displacements and stresses/
nodal forces) between the finite element and wave 
function expansion regions.

Fig. 1a shows standard orthographic views of 
a pipe having a nonaxisymmetric, outer surface 
breaking notch.  The nonhomogeneity in this case 
is the notch. It is bounded by the planes z = 0 and 
z = –2zFE , which demarcate the axial extents of 
the finite element region. An approximate wave 
function expansion is used outside this region. The 
incident wave field is generated by the transient 
input excitation, shown as a radial point force in the 
figure, applied in the z = zL plane. The combined 
incident and reflected (transmitted) wave field in the 
parent wave guide corresponds to z ≥ 0 (z ≤ –2zFE), 
in the configuration shown.  Note that the notched 
pipe shown is symmetric about the plane z = –zFE 
which corresponds to the finite element boundary 
B−. Computationally advantageous use is made of 
this symmetry by decomposing the input excitation 
into the sum of a pair of forces that are symmetric 
and antisymmetric about the plane z = –zFE. Then 
boundary conditions appropriate for symmetric and 
antisymmetric loadings can be applied to the finite 
element boundary B−. Moreover, the displacement 
field in the waveguide need be computed only for  
z ≥ 0, i.e., the reflected field, because the wave field in 
the transmitted field can be obtained from the reflected 
field by applying symmetric and antisymmetric 
arguments. Note that symmetry is not required to 
employ the hybrid wave function-standard finite 
element technique. Geometries that do not possess 
a plane of symmetry can be accommodated by 
enforcing continuity conditions between the finite 
element region and wave guide on two cross sections. 
The computational effort is increased, however.

Three components are required to apply the hybrid 
wave function-standard finite element technique. They 
are: i) the wave functions of the parent waveguide, ii) 
a finite element description of the region enclosing 
the defect, and iii) a method of enforcing continuity 
conditions between the first two components. Each 
component is described briefly now.

1.2  SAFE Modelling for Pipes

The SAFE formulation, detailed exhaustively in [1], 
provides an easily applied and accurate numerical 
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model by which the Green’s and wave functions of 
a pipe may be computed for a harmonic excitation 
having circular frequency ω. The frequency ω may be 
chosen arbitrarily so that an arbitrarily fine frequency 
resolution may be achieved computationally. This 
methodology is adapted here to compute the wave 
functions of a homogeneous, isotropic pipe subjected 
to a transient excitation. The transient excitation 
is decomposed into an infinite number of discrete 
frequency components by using a Fourier transform. 
Each frequency component of a point force is 
approximated by using a “narrow” pulse having a 
uniform amplitude of  (2r0θ0)−1 over a circumferential 
distance 2r0θ0 to circumvent convergence difficulties. 
The r0 is the radial coordinate where the point-like 
force is applied, while θ0 is the angle over which the 
pulse acts. This narrow pulse is represented, in turn, 
by employing a Fourier series, in the circumferential 
direction, of “ring-like” loads having separable spatial 
and time, t,variations.

The pipe is discretized by using N layers 
through its thickness. (The layers are taken to have 
identical thicknesses here.) Each layer corresponds 
to a one-dimensional finite element in the pipe’s 
radial direction for which a quadratic displacement 
interpolation function is assumed. A finite element 
approach is applied, layer by layer, in SAFE to 

approximate the elastic equations of motion. The 
displacement is represented, like the excitation, by a 
Fourier series in the circumferential coordinate.

The Fourier series describing the excitation 
and displacement are substituted into approximate 
equations of motion obtained from Hamilton’s 
principle. The result is transformed into the wave-
number domain by applying the Fourier integral 
transform. Then the nth circumferential harmonic 
(wave number) takes the form of a quadratic 
eigensystem which is linearized for the special 
case when no excitation is applied. Note that the 
circumferential wave numbers of a right circular pipe 
can take only integer values due to the requirement that 
the displacement field should be single valued. The 
resulting eigenvalues, knm, and (right) eigenvectors, 
φφnm

R , of this eigensystem are the approximate axial 
wave numbers and modes shapes through the 
thickness, respectively, for the nth circumferential 
harmonic. The index m is an integer value that is used 
to indicate the mth axial mode corresponding to the 
nth circumferential wave number. Modes are labelled 
using the standard convention described in [6]. Both 
the displacement (response) and excitation, for the nth 
circumferential harmonic, are expanded into a series 
of the normal modes (wave functions) of the linearized 
eigensystem. A displacement is obtained, for the nth 

Fig. 1.  Illustrating; a) a nonaxisymmetrically notched pipe and b) the finite element nodal points on boundary B+ which is located at z = 0; 
point “O” is the origin of the cylindrical coordinate system
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circumferential wave-number and those axial cross 
sections having positive or negative z, by linearly 
superimposing the appropriate admissible 6N+3 
right eigenvector solutions. Applying first the inverse 
Fourier transform to this sum, and then Cauchy’s 
residue theorem, produces the nth circumferential 
mode of the displacement. A linear superposition of 
the circumferential harmonics gives the displacement 
for a harmonic component of the excitation. The 
total displacement produced by a multi-frequency 
excitation is found by linearly superimposing the 
displacements caused by each individual frequency 
component. See [1] for further details.

1.3  Finite Element Idealization

The finite element method is a well understood tool 
that is in common use. Therefore, only an outline 
pertinent to implementing the hybrid wave function-
standard finite element technique is provided. Further 
pertinent details may be found in [1].

Hamilton’s principle is first applied 
straightforwardly in the finite element region 
immediately surrounding the notch. To represent a 
notch, elements are simply removed from the finite 
element mesh. See Fig. 1b. It is well understood that 
singularities in the stress field that occur at the notch’s 
corners are not described accurately by this method.  
However, the far field behaviour is modelled with 
sufficient accuracy to be meaningful.

The equations of motion of the finite element 
region are partitioned first such that components 
related to the interior nodes, where no external 
forces are applied, can be condensed out so that 
only quantities on the boundaries B+ and B− remain. 
Then advantage is taken of the symmetry of the 
notched pipe about the plane z = –zFE in Fig. 1a. For 
(anti) symmetric loading, the displacement in the (r 
and θ) z direction(s), as well stress (σzz) σrz and σθz 
and corresponding nodal forces vanish on B−. The 
zero displacements on B− are condensed out and the 
unknown reaction forces are ignored (as they are not 
presently of interest).

Equations are produced that contain a known 
dynamic stiffness matrix and, as yet, unknown finite 
element nodal displacements and forces on boundary 
B+. These unknown displacements and forces are 
written in terms of the unblemished pipe’s wave 
functions for two cases. The first case is when the 
notch is axisymmetric, i.e., c in Fig. 1a is 360° (2π); 
the second, nonaxisymmetric case is when c is less 
than 360° (2π). Note that a notch may have a depth, 
d, which is zero and represents an unblemished pipe. 

This important case is considered in the transparency 
check discussed later.

1.4  Interface between the Wave Function and Finite 
Element Regions

A single incident wave mode of unit magnitude that is 
incident on the plane z = 0 is considered for simplicity. 
The scattering caused by an arbitrary incident wave 
field may be constructed by appropriately scaling and 
superimposing the scattered wave fields calculated for 
all the modes present in the incident field. For the sake 
of discussion, let the incident wave be time harmonic 
with circular frequency ω and have a circumferential 
wave number nin, with an axial wave number kn min in

. 
Note that only modes having a non-positive imaginary 
component to their axial wave number are admissible 
in the incident field for the configuration shown in Fig. 
1a. This restriction is due to the radiation condition 
that requires the displacement field to remain bounded 
at z = ±∞.

It is appropriate to use axisymmetric elements 
in the finite element region when the notch is 
axisymmetric. Then the finite element nodal points 
on the boundary B+, as shown in Fig. 1b, lie on the 
single radial line θ = 0. Note that, because the parent 
waveguide and the finite element region are both 
axisymmetric, the circumferential wave number of the 
scattered waves is required to be identical to that of 
the incident waves. See, for example, [7].

The finite element region is chosen in the 
axisymmetric case such that its axial boundaries 
correspond to those of the notch, i.e., the finite 
element region is bounded by the planes z = –l and  
z = 0. The plane of symmetry is then z = –l / 2, and 
–2zFE = l. This choice simultaneously simplifies 
the computations and reduces the number of finite 
elements used in the idealization.

Using modal superposition, the displacements at 
z = 0 of the reflected wave field caused by the incident 
wave can be written at the finite element nodal points 
along the radial line θ = 0 in the form:

 q+
=

+

= ∑s R
s s

s
s s

An m
m

N

n m
1

6 3

φφ ,  (1)

where the sub, subscript s indicates the scattered wave 
field, ns = nin, An ms s

 and φφn ms s

R  are the amplitude and 
mode shape of the n ms s

th  scattered mode. (Note that 
only modes having non-negative, imaginary wave 
number components are admissible in the reflected 
wave field.) Continuity constraints between the wave 
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function and finite element regions are applied on the 
nodal forces and displacements on boundary B+.

The (consistent) force vector at the points along 
the radial line θ = 0 can be obtained, for the incident 
and reflected wave fields by expressing the modal 
stresses in terms of the displacement wave functions 
and integrating the product of the stresses and the 
finite element shape functions over the surface of each 
finite element. Amplitudes of the scattered waves are 
found straightforwardly from an invertible matrix 
equation that results from algebraically rearranging 
the equations of motion that result from applying the 
continuity constraints. The matrix equation is invertible 
because all the approximate modes are retained in 
the modal expansion and the number of modes is 
identical to the number of constraint equations. This 
equation must be evaluated for both the symmetric and 
antisymmetric components of the load, by changing 
the boundary conditions on B−, in order to recover 
their combined effects. At any location, the reflected  
(z ≥ 0) and transmitted (z ≤ –2zFE) wave amplitudes for 
the n ms s

th  scattered mode, Rn ms s
 and Tn ms s

 respectively, 
due to a given incident mode, are given by

 R A An m n m n ms s s s s s

s a= +( ) / ,2  (2)

and

 T A An m n m n ms s s s s s

s a= −( ) / .2  (3)

The An ms s
 is the n ms s

th  scattered wave 
amplitude and superscript (a) s denotes the solution 
corresponding to the (anti) symmetric boundary 
conditions. Rn ms s

 and Tn ms s
 represent normalized 

reflection and transmission coefficients, respectively, 
because they are calculated by assuming a single 
incident mode having a unit amplitude. Note that the 
magnitudes of Rn ms s

 and Tn ms s
 depend on the scaling 

of the mode shapes; all mode shapes are scaled here 
to have a vector norm magnitude of unity. Moreover, 
the Rn ms s

 and Tn ms s
 represent the amplitudes of the 

scattered waves at the planes z = 0 and z ≤ –2zFE, 
respectively.

The procedure for the nonaxisymmetric notch 
is essentially identical to before but with two major 
differences. First, all the circumferential wave numbers 
used in the modal expansion participate, in principle, 
in the reflected displacement field even though a 
single incident wave is assumed. Therefore, three-
dimensional elements are required now in the finite 
element region and clearly finite element nodal points 
on the boundary B+ have to be arranged around this 
entire boundary, as shown in Fig. 1b. Consequently 

Eq. (1) becomes:

 q+
=

+

=

= ∑∑s R
ss s

ss min

max

s s
jA nn m

m

N

n n

n

n m
1

6 3

φφ exp( ),θ  (4)

where nmin and nmax are the minimum and maximum 
circumferential wave numbers, respectively, 
employed in the modal expansion of the reflected 
field. The second difference is that, unlike before, 
the number of constraint equations resulting from 
applying the continuity conditions on boundary B+ 
does not generally equal the number of modes in the 
modal expansion so the system is not immediately 
invertible. Application of the principle of virtual work 
is applied to develop a system of equations from 
which the scattered waves’ amplitudes are recovered 
straightforwardly. Then no further modifications are 
necessary. Further details are available in [1].

2  ILLUSTRATIVE EXAMPLES

2.1  Overview

Having provided an overview of the hybrid-SAFE 
technique, it is applied in this section to wave 
scattering from two illustrative rectangular notches 
in an otherwise blemish free pipe. The first notch is 
axisymmetric, while the second is nonaxisymmetric. 
Both notches are outer surface breaking and they have 
finite radial depths and axial extents. (Note that the 
accuracy of the software has been checked by applying 
transparency and energy balance considerations [1].) 
The properties assumed for the unblemished pipe and 
excitation pulse are described first. Then an overview 
is given of the SAFE analysis to recover approximate 
wave functions for the pipe. Finally results are given 
for the wave scattering from the two illustrative 
notches.

2.2  Unblemished Pipe’s Description

The unblemished pipe, whose properties 
are summarized in Table 1, is assumed to be 
uniform, hollow, right circular, homogeneous, 
and isotropic. These properties are representative 
of an unblemished, seamless, Schedule 40, 
80 mm diamètre nominal (DN), steel pipe. 
Moreover, the properties are essentially identical 
to the pipe examined experimentally in [5]. Where 
possible, (selected) direct comparisons between the 
experimental data given in [5] and the simulations 
presented here are also given.
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2.3  Excitation’s Form

The function, p(t), which describes the temporal 
variation of the applied force is idealized as the 
commonly used Gaussian modulated sine wave that 
has the form:

      
p t

t

A a st s t t
( )

,

exp ( ) sin( ), ,
=

<

− −  ≥







0 0

02
0τ ω  (5)

where A is an amplitude, a determines the rate of 
decay of the pulse, s serves to “scale” time, τ centres 
the pulse in time, t, and ω0 sets the centre frequency 
of the sine wave. The constant a, s, τ, and ω0 are taken 
invariably to be:

 
a s= × =

= × = ×

−

−

2 29595 10 0 28
1 4 10 5 10

10 2

5
0

5

. ; . ;
. ; ( ) / .

s
s rad sτ ω π  (6)

Moreover, the (body force) amplitude is always 
A = (μ / H) and all nondimensionalized (body) forces 
are given with respect to (μ / H). (In the remainder 
of the text, a quantity embellished with a superscript 
asterisk indicates that it has been nondimensionalized.) 
The pulse is smooth (i.e., differentiable) in both time 
and frequency and, with the chosen constants, has a 
70 kHz centre frequency and over 99% of its energy 
is contained within the 35 to 107 kHz bandwidth.  
Therefore the Fourier integral transform of p(t),  

p( )ω , may be assumed reasonably to be contained 
within this finite bandwidth. The resulting forms 
of p(t) and |p( )ω |, are illustrated in Fig. 2. Note 
that this excitation has been successfully employed 
experimentally, as in, for example, [1], [5], and [8].

Table 1.  Properties assigned to the unblemished pipe

Property Assigned value

Density, ρ, [kg m–3] 7932

Outer diameter, Do, [mm] 88.8

Wall thickness, H, [mm] 5.59

Mean radius, R, [mm] 41.60

Thickness to mean radius ratio, (H / R) 0.134

Young’s modulus, E, [GPa] 216.9

Lamé constant (Shear modulus), μ (G), [GPa] 84.3

Lamé constant, λ, [GPa] 113.2
Ratio of Lamé constants, (λ / μ) 1.34
Poisson’s ratio, ν 0.286

2.4  Approximate Wave Functions from SAFE

In determining approximate wave functions by using 
SAFE, ten identically thick finite elements are used 
to uniformly discretize the pipe’s wall thickness, 
H. The circumferential angle, 2θ0, over which the 
spatial pulse approximates the Dirac delta function, 
is taken to be 0.002 radians (0.1°). Circumferential 
wavenumbers n, from 0 to ±16, and all the 6N + 3 

Fig. 2.  Applied excitation in a) time and b) frequency



Strojniški vestnik - Journal of Mechanical Engineering 60(2014)5, 349-362

355Reflection and Transmission Coefficients from Rectangular Notches in Pipes 

corresponding axial modes are incorporated into 
the wave scattering computations. Numerical and 
experimental investigations of the unblemished pipe’s 
displacement response may be found in [1] and [8].

2.5  Axisymmetric Notch

The axisymmetric notch has the dimensional 
properties summarized in Table 2. Eight node, 
quadratic axisymmetric finite elements [7] are utilized 
for the finite element region around the notch. A 
uniform idealization is selected after successfully 
checking the convergence of representative reflection 
coefficients [1]. Ultimately, ten (five) finite elements 
describe the behaviour over the wall thickness in the 
wave function (finite element) region. Furthermore 
four finite elements, which together correspond to 
half the notch’s axial extent, are utilized axially. This 
selection allows longer axial notches to be represented 
without the need for additional axial finite elements. 
Note that the smallest propagating wavelength 
over the excitation’s bandwidth is about 3.4H, and 
belongs to the L(0,1) mode. Consequently, the ratio 
of the smallest (axial) wavelength excited to a finite 
element’s axial length is approximately 48, almost 
five times larger than the (minimum) recommended 
guideline given by [5] of ten elements per shortest 
wavelength.

Table 2.  Dimensions of the outer surface breaking, axisymmetric 
notch

Property Assigned value

Depth of notch, d, [mm] 2.79

Axial length of notch, l, [mm] 3.17

Depth to wall thickness ratio, (d / H) 0.500

Axial length to wall thickness ratio, (l / H) 0.568

The transient point-like force is applied radially 
to the simulated pipe’s outer surface at zL* = (zL / H) = 
5.1, where zL is the transmitting transducer’s axial 
coordinate. (Note that angles are measured relative 
to the idealized force’s central point of application.) 
The resulting radial displacement is computed on the 
pipe’s outer surface at θR = 0, i.e., a pure axial offset 
from the point load, and zR* = (zR / H) = 10.2, where 
zR is the axial coordinate of the receiving transducer 
located in the reflected field. (The transmitted and 
reflected fields give similar information so the former 
is omitted.) All pertinent positions are shown in Fig. 1.

The (approximate) wave functions for the 
unblemished pipe were determined by using SAFE. 
Then the hybrid-SAFE technique was applied on a 

mode by mode and frequency by frequency basis. A 
modal superposition was applied at each frequency 
and the inverse Fourier transform was approximated 
using a numerical integration scheme to recover time 
histories from the approximate spectral densities. Fig. 
3 shows typical displacement responses predicted in 
time and frequency for a pipe having no notch and a 
pipe having the outer surface breaking, axisymmetric 
notch. The displacement responses are evaluated 
on the pipe’s outer surface where θR = 0 and  
zR* = (zR / H) = 10.2.

A cursory examination of Fig. 3 shows that the 
incident and reflected waves interact and cannot be 
separated in time. However, the notch’s presence 
is discerned easily from a comparison of the 
corresponding spectral densities. This is because 
each predominant peak in the spectral density of 
Fig. 3b “splits” into two local maxima in Fig. 3d, 
one on either side of the original peak. The sharper 
maximum at the lower frequency also has a much 
larger amplitude so, for convenience, it is termed a 
“singularity.” Differences between the frequencies of 
such singularities and the nearest cutoff behaviour of 
the unblemished pipe, having the frequencies shown 
in Fig. 3b are presented in Table 3.

Table 3.  Frequencies that correspond to the readily identified 
singularities appearing in Fig. 3d; they are distinct from the 
unblemished pipe’s cutoff frequencies

Circumferential 
wavenumber

Axial 
order

Frequency of
singularity [kHz]

Difference between 
cutoff and singularity 

frequency [kHz]

n ±  8 m =1 43. 112 0.085

±  2 3 46.462 0.001
±  4 2 49.623 0.294
±  9 1 52.983 0.129
±10 1 63.362 0.192
±11 1 74.153 0.273
±12 1 85.274 0.377
±13 1 96.660 0.503

To help explain the frequency dependent 
behaviour of the notched pipe in the neighbourhood 
of the unblemished pipe’s cutoff frequencies, Fig. 
4 shows other normalized reflection coefficients 
predicted for the flexural F(n,1) modes, where n 
equals 8 through 13, for an axisymmetric notch 
having (d / H) = 0.5 and (l / H) = 0.568. Each curve 
represents a single F(n,1) mode which is reflected into 
itself. (Modal conversions from F(n,1) into F(n,m), 
m ≠ 1, are not given for brevity. Such conversions 
are required to satisfy continuity and boundary 
conditions.) For easier comparisons, the frequency 
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Fig. 3.  Radial displacement predicted on the pipe’s outer surface within the reflected field where θR = 0 and zR* = (zR / H) = 10.2 
for an axisymmetric notch having (d / H) = 0.5 and (l / H) = 0.568;  a) and b) direct  waves produced by a radial point force; c) and d) 

superposition of direct and reflected waves produced by a radial point force

Fig. 4.  Normalized reflection coefficient caused by flexural F(n,1) modes, where n is 8 through 13 inclusive, and an axisymmetric notch 
having (d / H) = 0.5 and (l / H) = 0.568; the f nF

c
( , )1   is the cutoff frequency of the unblemished pipe’s F(n,1) mode

axis in Fig. 4 has been normalized by the cutoff 
frequency of the mode in question and expanded to 
lower frequency ratios. It is noteworthy now that 

each curve can be seen to possess two singularities. 
The singularity near a normalized frequency of 
1.0 occurs, as before, at a frequency just below the 
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unblemished pipe’s relevant cutoff frequency. This 
observation can be corroborated by noting that the 
normalized reflection coefficients always pass through 
the point (1.0,1.0) for these modes. On the other hand, 
the up-rise around the lower normalized frequency 
of 0.7 always corresponds to a mode transitioning 
from evanescent to non-propagating. The practical 
usefulness of this up-rise, however, may be limited. 
Waves scattered from the axisymmetric notch at 
frequencies near this up-rise decay exponentially 
from the notch’s vertical boundaries at a rate of about  
exp(–zd*). The zd* is the distance from the notch’s 
boundary, nondimensionalized by the unblemished 
pipe’s thickness, H. The decay rate in the axial 
direction is determined approximately based on the 
behaviour of the representative F(10,1) mode’s axial 
wavenumber found from Fig. 5. The latter figure 
shows that the imaginary part of the nondimensional 
axial wavenumber of this mode is almost one when the 
mode transitions from evanescent to nonpropagating. 
The quite large exponent suggests that the effect 
is very localized and likely to be masked by the 
propagating modes. The singularity just below the 
cutoff frequency of 63.553 kHz, on the other hand, is 
more interesting. Its effect is not so localized because 
the magnitude of the imaginary part of its wavenumber 
is much closer to zero. Indeed, Fig. 5 suggests that the 

axial decay rate is about exp(–0.15zd*) at the notch-
induced singularity. As a consequence of the smaller 
exponent, this last singularity is detectable further 
from the notch’s vertical boundaries.

An analysis of the eigenvalues (resonant 
frequencies) of solely the finite element region (which 
can be found in [1]) indicates that the frequency 
of the possibly more important singularity does 
not correspond to a resonant frequency of the finite 
element region alone. It depends presumably upon the 
properties of both the finite element region and the 
parent waveguide. Moreover, the last column of Table 
3 shows that the difference between the frequency of 
this singularity and the corresponding unblemished 
pipe’s cutoff frequency grows continuously as the 
circumferential wavenumber increases. Advantage 
might be taken of this trend by increasing the centre 
frequency of the point force to excite modes having 
larger circumferential wavenumbers in order to make 
the frequency differences easier to measure.

Having examined the wave scattering from one 
particular notch, wave scattering by axisymmetric 
notches having various dimensions is considered. Fig. 
6 presents the frequency difference (reduction), Δf, 
from a nearby cutoff frequency of the unblemished 
pipe caused by each notch. Results are shown for the 
F(10,1) mode but data for the F(11,1) and F(12,1) 

Fig. 5.  Real and imaginary parts of the unblemished pipe’s F(10,1) nondimensional axial wavenumber, k* = k10,1 H, as a function of 
frequency
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two dimensions, constant frequency differences 
are projected for each of the F(10,1), F(11,1), and 
F(12,1) modes onto their common horizontal plane. 
These projections are superimposed in Fig. 7. Not 
surprisingly it can be seen that, due to the contours’ 
“U-shapes,” the depth ratio of a notch for a given axial 
length ratio, (l / H), and constant frequency reduction, 
Δf, cannot be found absolutely from any single one of 
the three modes. Consequently more than one mode 
has to be employed—a situation which is common to 
a reflection based procedure [4].

The intersection of the contours of two different 
flexural modes is usually unique. See, for example, 
the 200 Hz and 300 Hz contours for the F(11,1) and 
F(12,1) modes, respectively.  The single intersection of 
the contours provides two coordinates which uniquely 
define the two dimensions of an axisymmetric notch.  
Interpolations are obviously needed if a frequency 
difference does not lie precisely on a contour line.  

Fig. 7.  Contour maps of constant frequency differences between the singularity produced by an axisymmetric notch and the unblemished 
pipe’s cutoff frequencies for the F(10,1), F(11,1), and F(12,1) modes; The solid curves correspond to contours of the F(10,1), dashed to 

F(11,1), and dotted to F(12,1) mode

Fig. 6.  Frequency differences, Δf from the unblemished pipe’s 
F(10,1) cutoff frequency introduced by axisymmetric notches 

having various dimensions

modes are similar. Frequency reductions can be seen 
to depend upon an axisymmetric notch’s depth and, 
to a less degree, its axial length. To determine these 
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An example of this situation is illustrated in 
Fig. 7 where the frequency differences tabulated in 
Table 3 for the F(10,1), F(11,1), and F(12,1) modes 
are indicated.  These differences can be used to 
uniquely characterise the notch’s dimensions. Fig. 7 
also suggests that, for a given frequency difference, 
a flexural mode with a higher circumferential 
wavenumber has a lower position.  Consequently 
such modes are more sensitive to smaller notches. 
There are instances, however, when the curves 
for two different modes intersect more than once. 
One such example seen in Fig. 7 occurs for the 
400 Hz and 600 Hz contours of the F(11,1) and 
F(12,1) modes, respectively.  In this instance the 
two arrowed distances from the F(10,1) mode’s  
200 Hz reference contour may be used to distinguish 
the two intersections.  Then, by interpolating linearly 
between the 200 and 300 Hz contours of the F(10,1) 
mode, a frequency difference in the F(10,1) mode of 
around 225 Hz would suggest a notch having  (d / H) ≈ 
0.73 and (l / H) ≈ 0.78. On the other hand, a frequency 
difference of about 260 Hz in the F(10,1) mode would 
imply a notch with (d / H) ≈ 0.62 and (l / H) ≈ 0.70. 
Clearly, however, each additional intersection requires 
knowledge of another mode’s frequency difference 
to uniquely determine a notch’s dimensions. 
Furthermore, an excitation such as a point force 
which simultaneously excites several modes becomes 
more advantageous as the number of required modes 
increases.

2.6  Nonaxisymmetric Notch

The extension to nonaxisymmetric notches 
is considered now and the procedure for the 
axisymmetric notch is essentially followed. The 
reference nonaxisymmetric notch has dimensions 
identical to the axisymmetric notch considered 
earlier (see Table 2) with the exception that its 
circumferential extent is reduced to one-half of the 
unblemished pipe’s circumference. Twenty-seven 
node, brick finite elements using quadratic Lagrange 
interpolation polynomials in each coordinate direction 
[7] were employed for the finite element region 
around the notch. The notch was modelled again 
by simply removing appropriate finite elements. 
Consequently the far field behaviour is meaningful. 
Ultimately, ten identically thick finite elements 
described the behaviour over a full wall thickness. 
To reduce computer waiting time, the minimally 
acceptable two finite elements always represented 
a notch’s axial extent. However, 126 elements were 
deployed invariably around the pipe’s unadulterated 

circumference. The radial discretization of ten 
elements through the unblemished pipe’s wall was 
selected so that the wavefunctions from the previous 
axisymmetric analysis could be employed.

The appropriateness of the minimal axial 
discretization was checked by simulating the previous 
axisymmetric notch with the three-dimensional 
software. The two sets of reflection and transmission 
coefficients were each essentially indistinguishable. 
The circumferential discretization was determined, 
after selecting the radial and axial discretizations, by 
considering the results from transparency tests. The 
number of finite elements around the unblemished 
pipe’s circumference was increased gradually until 
the reflection coefficient was less than 0.01 for 
all the modes propagating over some part of the 
excitation’s bandwidth, 35 to 107 kHz [1]. Therefore 
any reflection coefficient which has a magnitude 
greater than 0.01 for a propagating mode has an 
inconsequential error from this modelling component. 
Not surprisingly, the F(13,1) mode dictated the 
circumferential discretization as it has the smallest 
(3.6H) circumferential wavelength of the propagating 
modes. On the other hand, the propagating L(0,1) 
mode has a somewhat smaller axial wavelength of 
around 3.4H. Consequently, the ratio of the smallest 
axial wavelength of all the propagating modes to a 
finite element’s axial length was approximately 12—a 
value which is above the recommended lower bound 
of ten elements per shortest wavelength [5]. Similarly, 
the ratio of the F(13,1) mode’s (circumferential) 
wavelength to a finite element’s circumferential 
length was virtually 10.

Present and previous published [5] reflection 
coefficients, | RL(0,2),L(0,2) |, are compared in Fig. 8 
for different nonaxisymmetric notches. (Note that 
the finite element results in [5] are extrapolated 
by multiplying each result from a corresponding 
axisymmetric notch by the percentage ratio of the 
part circumferential notch length to the pipe’s total 
circumference.) Solely the reflected L(0,2) component 
of the incident L(0,2) mode is considered. Note that 
a 50%, circumferential notch is examined in Fig. 8a, 
while an 11% circumferential notch is used in in Figs. 
8b and d so that direct comparisons can be made to 
the data given in [5]. Axial extents are varied more 
comprehensively, however, than before. Agreement is 
generally reasonable and | RL(0,2),L(0,2) | is seen in Fig. 
8d to grow not quite linearly with a notch’s greater 
axial extent.

Fig. 9a is a comparable plot to Fig. 4 but 
with the F(11,1) mode impinging solely on the 
nonaxisymmetric rather than the axisymmetric 
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notch. The curves labelled F(11,1) in these figure 
have a similar overall character. Furthermore the 
frequency resolution in Fig. 9b, which lies an order 
of magnitude finer than the commonly employed 500 
Hz here, appear to produce an additional singularity-
like feature. It occurs between 74.30 and 74.35 
kHz; values which are again immediately below 
the 74.426 kHz cutoff frequency of the F(11,1) 
mode for the unblemished pipe. Consequently the 
more detailed nature of the reflections from the two 
notches seems little different when the F(11,1) mode 
is considered alone.  Conversely, Fig. 9a indicates 
that the nonaxisymmetric, unlike the axisymmetric, 
notch also converts the lone incident F(11,1) mode 
into superimposed reflections of principally the 
F(n,1)  modes having values of n just below eleven. 
On the other hand, a comparison of Figs. 4 and 9a 
shows that each of the individual modal contributions 
retains almost all the prominent features observed 
for the axisymmetric notch. A computationally 

intensive frequency resolution, comparable to that 
used for F(11,1) in Fig. 9b, is still required however 
around singularities. Then the extension of the local 
procedure to dimensionalize an axisymmetric notch 
by using fairly small frequency differences can be 
explored. Furthermore, as propagating modes are 
also generated by nonaxisymmetric notches (through 
cross modal couplings), the possibility of remoter 
assessments could be also investigated.

3  CONCLUSIONS AND CLOSING REMARKS

A hybrid SAFE and standard finite element procedure 
was applied to detect and characterise an open notch 
in an infinitely long steel pipe. Axisymmetric notches 
were considered first. Interactions between incident 
and scattered guided waves and the axisymmetric 
notch were shown numerically to change a radial 
displacement’s temporal history and introduce 
additional, singularity-like information in the 

Fig. 8.   Magnitude of the normalized reflection coefficient, | RL(0,2),L(0,2) |, for different a) excitation frequencies, b) depths, c) 
circumferential extents, and d) axial lengths of nonaxisymmetric notches
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previously unblemished pipe’s frequency response 
function (FRF). This information indicated the 
presence of a nearby notch.  Moreover, frequency 
differences between the “singularities” of the 
unblemished and blemished pipes were shown to reflect 
an axisymmetric notch’s dimensions. A procedure 
by which an axisymmetric notch’s dimensions could 
be estimated was demonstrated by considering 
the frequency differences for multiple modes. It is 
envisioned that, in practice, the experimental and 
signal processing techniques described in [8] could 
be utilized to simultaneously excite several modes 

and measure the resulting singularity frequencies. The 
extension to nonaxisymmetric notches was suggested.

The frequency differences are seen to grow with 
a larger circumferential wavenumber.  Advantageous 
use might be made of this property by increasing the 
centre frequency of the excitation in order to excite 
modes with higher circumferential wavenumbers. 
However, effects are localized around the notch’s 
axial boundaries because the frequencies of the 
singularities occur below nearby cut-off frequencies. 
This localization might be expected grow in size 
with a greater circumferential wavenumber because 

Fig. 9.  Showing a) normalized reflection coefficients produced by the F(11,1) mode incident on the reference nonaxisymmetric notch with b) 
the frequency scale expanded about the F(11,1) mode’s cutoff frequency
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of the increasing frequency difference as a result of 
correspondingly increasing frequency differences. 
Because the technique applies only locally, it is 
unsuitable for rapidly screening large sections of pipe, 
unlike other complementary methods.

While no new experimental data is given, 
preliminary (and as of yet unpublished) experiments 
have shown that introducing a notch in a pipe 
generates singularities distinct from the pipe’s cutoff 
frequencies. However, only “sharp,” rectangular 
notches are considered.  The extension to notches 
having different geometries still needs to be examined.  
Notwithstanding, the hybrid-SAFE approach can be 
applied straightforwardly to any arbitrary geometry 
providing that a finite element mesh suitably 
represents a notch’s geometry.

The notches considered here are larger than 
those of practical interest, but serve to illustrate the 
proposed method. It is speculated, based on the limited 
data obtained to date, that singularities distinct from 
the unblemished pipe will be generated by notch-like 
defects of any dimensions. It is yet to be determined, 
however, if the frequency differences of small notches 
can be measured with sufficient precision to be useful.
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