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Research Review Paper 

Dealing with Noise in 
EEG Recording and 
Data Analysis 

Grega Repovš 

Abstract. EEG recording is highly susceptible to 
various forms and sources of noise, which present 
significant difficulties and challenges in analysis 
and interpretation of EEG data. A number of 
strategies are available to deal with noise 
effectively both at the time of EEG recording as 
well as during preprocessing of recorded data. The 
aim of the paper is to give an overview of the most 
common sources of noise and review methods for 
prevention and removal of noise in EEG recording, 
including elimination of noise sources, signal 
averaging, data rejection and noise removal, along 
with their key advantages and challenges.
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Izvleček. EEG signal je zelo občutljiv na 
raznolike vire in oblike šuma, ki predstavlja 
pomemben izziv pri analizi in interpretaciji zajetega 
signala. Za uspešno spoprijemanje s šumom tako v 
času zajemanja EEG signala kot v okviru priprave 
podatkov na analizo je na voljo več strategij. 
Namen prispevka je predstaviti najpogostejše vire 
šuma ter podati pregled tehnik za njegovo 
preprečevanje in odstranjevanje, kot so 
odstranjevanje virov šuma, povprečevanje signala, 
zavračanje podatkov ter odštevanje šuma. Podane 
so tudi prednosti in izzivi pri uporabi teh tehnik. 

 Infor Med Slov: 2010; 15(1): 18-25 
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Introduction 

Electroencephalography (EEG) is one of the key 
tools for observing brain activity. While it can not 
match the precision and resolution of spatial 
localisation of brain activity of many other brain 
imaging methods, its main advantages are low 
costs, relative ease of use and excellent time 
resolution. For these reasons, EEG is widely used 
in many areas of clinical work and research. One 
of the biggest challenges in using EEG is the very 
small signal-to-noise ratio of the brain signals that 
we are trying to observe, coupled by the wide 
variety of noise sources. Four general strategies are 
employed to deal with the issue of noise in EEG 
recording and analysis, each with their own 
advantages, challenges and limitations: 
elimination of noise sources, averaging, rejection 
of noisy data, and noise removal. 

Elimination of noise sources 

The best way of dealing with noise is to not have 
any in the first place. Some sources of noise can be 
relatively easyly removed, others present more of a 
challenge and can introduce unwanted 
consequenes, while some sources of noise are in 
principle unavoidable. 

The easiest sources of noise to deal with are 
external, environmental sources of noise, such as 
AC power lines, lighting and a large array of 
electronic equipment (from computers, displays 
and TVs to wirelles routers, notebooks and mobile 
phones). The most basic steps in dealing with 
environmental noise are removing any 
unnecessary sources of electro-magnetic (EM) 
noise from the recording room and its immediate 
vicinity, and, where possible, replacing equipment 
using alternate current with equipment using 
direct current (such as direct current lighting). A 
more advanced and costly measure is to insulate 
the recording room from EM noise by use of a 
Faraday cage. While very effective in eliminating 
most of environmental EM noise, EM insulation 
requires either advance planning or costly 
rebuilding work. 

Another tractable source of noise in EEG 
recording is physiological noise that can be caused 
by various noise generators. Common examples of 
such noise are cardiac signal (electrocardiogram, 
ECG), movement artifacts caused by muscle 
contraction (electromyogram, EMG) and ocular 
signal caused by eyeball movement 
(electrooculogram, EOG). Of these, ECG signal is 
not preventable, but also has the lowest effect on 
the recorded EEG signal. Noise caused by EMG 
and EOG signals can often be avoided. 

EMG noise can be avoided or reduced by asking 
the participant to find a comfortable position and 
relax before the start of a recording session, and by 
avoiding tasks that require verbal responses or 
large movements. When such tasks can not be 
avoided, one should try to plan the experiment so 
that the periods of movement do not overlap with 
critical periods of data collection. 

EOG signals are generated by eye saccades or 
pursuit movements as well as blinks. Saccade and 
pursuit movement signals can be avoided by 
designing tasks that do not require eye movements 
but rather encourage participants to hold gaze in 
the same location throughout the critical periods 
of the task. Blinks are more difficult to avoid; one 
possibility is to ask participants not to blink during 
critical periods of the task and then provide cues 
for periods when they can blink freely. 

While such strategies can effectively reduce 
occurence of blinks and eye movements in critical 
task periods, they also have significant drawbacks 
one has to consider. As both blinking and 
spontaneous eye movement are automatic 
behaviors, withholding either of them requires 
voluntary attention that might interact with task 
performance as well as introduce EEG signal.1 
Withholding them can be especially problematic 
when it is required for longer periods of time, and 
virtually impossible when recording resting EEG. 

When dealing with physiological sources of noise, 
skin potentials, which occur due to insulating 
properties of the outer layer of the skin and ionic 
potential of sweat glands, need to be considered as 
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well. The best way of reducing skin potentials 
while increasing signal-to-noise ratio of the 
recorded signal is by reducing or removing the 
insulating barier, most commonly by using an 
abrasive creme, scratching using an hypodermic 
needle or puncturing using a prick needle. 

Nevertheless, there are some sources of noise that 
are unavoidable. When recording EEG, we are 
most often interested in a very specific signal, such 
as the signal related to task-evoked cognitive 
processing or epileptiform discharges in an 
epileptic patient. These signals always appear on 
the background of other spontaneous, stimulus- or 
task-related neuronal activity of a living brain. 

Signal averaging 

Possibly the simplest way to deal with noise in the 
recorded data is signal averaging. The key 
assumption in signal averaging is that the noise in 
the signal is random, or at least occurs with a 
random phase in relation to the event of interest, 
whereas the signal of interest is stable. If we record 
EEG signal over a number of occasions, noise at 
each timepoint will increase the signal on some, 
reduce on others, but on average cancel itself out, 
leaving us with the stable EEG response to the 
event of interest. 

Signal averaging is a simple and powerful way of 
dealing with noise, but it has a number of 
limitations and caveats. Firstly, signal averaging 
can only be used when we are looking for a stable, 
event-locked signal that we can record over a 
large number of trials, as is the case in event 
related potential (ERP) studies. Signal averaging 
can not be used in cases when we are studying rare 
events that we can not time-lock to a known point 
in time, or when the signal of interest is itself 
variable. An example might be the study of 
epileptiform discharges in epilepsy. 

Secondly, only noise that is random and symetric 
can be eliminated using signal averaging. If (for 
any reason) noise is time-locked to the event of 
interest, it can not be averaged out but will rather 

be summed to the signal of interest. Such example 
can be the noise arising from presentation of the 
stimuli. Large changes in brightness on poorly 
insulated CRT screen could lead to event locked 
spikes in noise. 

Similarly, if the noise is not symetric (introducing 
balanced increases as well as decreases in signal), 
its average across time will not be zero but it will 
rather lead to overall increases or decreases of 
averaged signal. This might not be an issue when 
the amount of noise is constant throughout the 
recording session or at least each recorded trial, as 
in that case the signal of interest will stay the same 
compared to baseline. It might, however, lead to 
significant artefacts when it occurs only on some 
parts of trial, where it can appear as systematic 
decrease or increase of signal and can thus be 
mistaken for ERP components. 

Lastly, relying on signal averaging as the main 
strategy for noise removal can be quite expensive 
in terms of the number of trials needed to 
sufficiently increase the signal-to-noise ratio. 
Specifically, as signal-to-noise ratio only increases 
as a square root of the number of samples 
(repetitions or trials in an ERP experiment), the 
number of trials required to counteract the noise 
increases with the power of two. In other words, 
two-fold increase in noise requires four times the 
number of repetitions to get the same signal-to-
noise ratio. 

For these reasons, it is best to rely on signal 
averaging as a last resort for truly unavoidable 
noise sources only, and use other strategies to 
prevent noise before recording and remove it after 
recording. 

Rejection of noisy data 

Whenever noise in the recorded data is sparse and 
easily recognizable, the most obvious way of 
dealing with it is to eliminate the parts of the data 
where the noise is present. The most 
straightforward procedure for rejection of noisy 
data is by visual inspection. Most eye-movements, 
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blinks and movement artefacts are relatively easily 
recognizable and can be marked for rejection 
before averaging and data analysis.  

Relying on visual inspection of the data is however 
not always feasible or effective. When dealing with 
large datasets, visual inspection might be 
prohibitively time consuming. In addition, some 
types of noise can be difficult to recognize and 
identify even for the most experienced EEG 
analist. For these reasons a number of strategies 
have been developed that help identify noise in 
the data based on its statistical properties. 

To identify bad channels, a number of EEG 
analysis tools offer options for visualizing 
frequency spectra and testing the distribution of 
the data. Channels with lots of noise are usually 
characterised with high power at high frequencies 
or spikes in the power spectrum at some 
characteristic frequencies (such as 50 or 60Hz 
frequency of power line noise). Noisy channels can 
also show significantly higher variability in the 
signal across time compared to other channels, as 
well as stronger deviation from Gaussian 
distribution. 

Other features of the data can be used to to 
identify and reject specific segments of the 
recording. EEGLAB analysis package2 provides a 
number of such options. Among rather 
straightforward methods are detecting extreme 
values caused by noise artefacts or abnormal 
trends due to linear drift. More advanced methods 
are based on computing the range of expected 
values or statistics across all the trials and then 
identifying trials that represent outliers. In one 
such method a probability of a value occuring at a 
specific timepoint within a trial is computed and 
values that are highly improbable are identified. 
Another method depends on computing kurtosis 
of distribution of values across a trial. The most 
effective method based on an empirical analysis3 
might be detection of abnormal frequency spectra 
within the trial.  

While potentially highly effective in identifying 
noisy data segment, even these methods require 

careful selection and tuning of rejection criteria as 
well as additional visual inspection, to make sure 
both that "clean" data is not rejected as well as 
that as that all the identifiable noise artefacts are. 

Despite relative ease of rejection of noisy data 
there are a number of cases where such strategy is 
not feasible. In research the design of the 
experimental task might require the subject to 
speak or move their eyes. The length of the 
individual trials might be too long, or the 
frequency of blinking too high to eliminate all the 
trials containing blinks and/or eye movements. 
The analysis of the data itself might require long 
continuous segments of data. In clinical use 
detection of each individual occurence of a 
specific signal might be cruical, or the signal itself 
might be inseparably related to the source of noise, 
such as movements during an epileptic seisure. In 
all these cases rejection of noisy data is not an 
option, necessitating development of methods that 
enable removal of noise from the raw data. 

Removal of noise 

Filtering 

Possibly the easiest way to remove noise from the 
raw data is by filtering. To be able to filter it, the 
noise needs to fall within one of the three 
categories: the frequency of the noise needs to be 
either below the frequency of the phenomena we 
are trying to observe, above it, or it needs to fall 
within a very narrow well-specified range. 

High-pass filtering (filtering that passes only the 
signal varying above the selected cut-off 
frequency) is rutinely used already during 
acquisition itself. A number of factors such as 
sweating and drifts in electrode impendance can 
lead to slow changes in the measured voltage, 
which can in turn lead to saturation of the 
amplifyer and lost data during recording, as well as 
to significant distortions in the averaged event-
related timecourse.4 For those reasons, it is often 
recommended to filter the frequencies below 0.01 
Hz. 
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Low-pass filtering (filtering that passes only the 
signal varying below the selected cutoff frequency) 
is used to remove noise at the other end of the 
spectrum of frequencies that we are interested in. 
Contraction of muscles typically lead to strong 
signal with frequencies above 100 Hz, so 
supression of frequencies above 100 Hz would (to 
a large extent) remove movement artefacts in the 
acquired signal. Additionally, sampling of the data 
itself can lead to aliasing – a phenomena in which 
frequencies higher than the sampling frequency 
can appear as artifactual low frequencies in the 
sampled data. To eliminate aliasing, the data 
should be low-pass filtered at frequencies at least 
one third lower than the sampling rate.4 

Unfortunately, lots of noise falls within the range 
of frequencies we are interested in and so can not 
be removed using filtering without also removing 
the signal of interest. However, there are signals 
that are of a very narrow and predictable 
frequency, such as the 50 (or in some cases 60) Hz 
frequency of the electricity lines. Such noise can 
be removed by a notch filter that supresses or 
eliminates signal in a very narrow frequency range. 

When filtering data, one needs to be aware that 
filtering – depending on the nature of the filter 
used – can also significantly affect the data in the 
non-filtered frequency ranges, thus affecting 
estimates of onsets and/or amplitude of observed 
ERP waves as well as introducing artifactual 
oscillations. Hence, it is advisable4 to limit filtering 
only to what is necessary and unavoidable. 

Subtraction using linear regression 

When dealing with predictable noise that can be 
recorded independently on a separate channel, it 
is possible to remove the noise from the data by 
estimating the amount of noise transtered to data 
using linear regression and then subtracting it. A 
typical example is the noise produced by blinks 
and eye movements. To remove such noise, linear 
regression is computed between each data channel 
and nuisance channels used to record horizontal 
(HEOG – difference between voltages recorded 
above and below eyes), vertical (VEOG – 

difference between voltages recorded at the left 
and right outer canthi of the eyes) and radial 
(REOG – difference between average voltage at 
the eyes and EEG reference) movement. The 
estimated ß coefficients are then used to subtract 
values from each nuisance channel multiplied with 
corresponding ß coefficient from the measured 
data channel.5 

The process can be represented by the formula 

EE G ci  EEGci  nc EOGni  

where EEGci and EEG'ci represent the measured 
and estimated true EEG signal at channel c and 
timepoint i respectively, ßnc is the regression 
coefficient between data channel c and EOG 
nuisance channel n and EOGni is the value of 
EOG nuisance channel n at timepoint i. 

Subtraction using linear regression is a simple and 
powerful method that has long represented the 
golden standard in oculomotor artefact removal. 
However, it is hindered by some important 
drawbacks. Firstly, information recorded using 
HEOG, VEOG and REOG channels might not 
capture all the signal due to blinks and eye 
movement. Any signal not represented in the 
nuisance channels will remain as noise in the 
cleaned data. Secondly, due to their close 
proximity to the data channels, nuisance channels 
will invariably also capture some of the cerebellar 
signal of interest, which will then be subtracted 
from the data channels. And thirdly, most of the 
methods in use require a number of calibration 
trials at the start of the session to correctly 
compute the appropriate regression coefficients, 
which can be impractical in some situations. 

Subtraction using adaptive filtering 

As EOG signals are mostly of lower frequency than 
the cerebellar signal of interest, the problem of 
EOG signals contamination by signal of interest 
can be somewhat reduced by low-pass filtering the 
EOG channels before applying substraction using 
linear regression,6 thus aleviating some of the 
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problem of removing cerebellar signal of interest 
along with EOG in subtraction using linear 
regression. 

Sume authors have gone even a step further.7 
Based on the assumption that the true EOG 
signals are uncorrelated with the cerebellar signal 
of interest, they formulated an adaptive filter 
algorithm. The filter is used to process EOG 
signals before they are being subtracted from the 
data signals. The filter is computed on the initial 
set of samples and then adjusted with each new 
sample both to improve it as well as adjust it to 
possible changes in the transfer function between 
EOG and data channels. The authors have shown 
that the filter converges quickly and is stable while 
effectively removing EOG artefacts. 

Besides resolving the problem of cerebellar 
contamination of EOG signals, the adaptive 
nature of the filtering also eliminates the need for 
separate calibration session and can be used online 
during recording. It does however still depend on 
separate recording of EOG channels and their 
quality. 

Subtraction using data decomposition 

The only way to fully remove the nuisance signal 
while avoiding removal of signal of interest is to 
efficiently estimate and remove only the nuisance 
signal related to a specific source of noise. 

A number of methods for estimating specific 
sources of EEG signal developed and tested in the 
recent years fall under the umbrella of blind source 
separation (BSS).8 The key assumption of BBS is 
that the observed signal can be understood as a 
mixture of original source signals. The specific 
methods differ in the algorithms and information 
used to estimate the mixing matrix and the 
original source signals. 

Second order statistics (SOS) methods are based 
on the assumption that the original source signals 
are uncorrelated and aim to decompose the 
observed signal into a number of uncorrelated 
components. Probably the most widely known 

method is pricipal component analysis (PCA), 
which decomposes the time series into a number 
of orthogonal (uncorrelated) sources with 
decreasing significance, such that a small number 
of components contain most of the variance of the 
measured signal. PCA is most often used as a data 
reduction method.  

Recently, new SOS methods have been developed 
that make use of the temporal structure of the 
signal by relying on time-lagged covariance 
matrices. Two representatives of this approach are 
algorithm for multiple unknown signals extraction 
(AMUSE)9 and second-order blind identification 
(SOBI).10 

When original signal sources are assumed to be 
independent, methods based on higher order 
statistics (HOS) can be used to decompose the 
measured signal. Again, a number of methods for 
independent component analysis (ICA) exist, 
making use of varius measures of statistical 
independence. Possibly most widely known and 
used is INFOMAX,11 which aims to minimize the 
mutual information between the components. 
Other examples of frequently used ICA methods 
are JADE12 and FASTICA.13 To provide reliable 
signal decomposition, ICA methods require a large 
number of samples, preferably at least a few times 
the square of the number of channels used.2 

Applying any of the listed methods decomposes 
the measured signal into a number of original 
source signals and a mixing matrix that provides 
information on the degree to which each of the 
original source signals is represented in each of the 
data channels. To remove unwanted nuisance 
signal from the EEG recording, both time-course 
and topography of the original source signals can 
be used to identify the components of the data 
representing nuisance signal. Once nuisance 
components are identified, the remaining original 
source signals can be mixed back together to 
reconstruct a clean EEG signal. 

BSS methods provide a powerfull tool for not only 
identifying and removing noise and nuisance 
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signal, but also identifying and separating possible 
signals of interest.  

Besides choosing the most appropriate method, 
providing a sufficient amount of data and 
performing appropriate preprocessing steps, the 
most challenging part of using BBS methods for a 
novice user is identifying the right components to 
be removed or kept in the final dataset. 

If topography, time-course and/or frequency 
composition properties of the nuisance signal 
source are known, probable candidates can be 
identified by computing correlation between 
identified components and nuisance signal 
template or their best estimate. In the case of 
blinks, component topography can be correlated 
either with average blink EEG14 topography or a 
set of previously identified EOG components,15 or 
alternatively, component signal can be correlated 
with each of the EOG signals. 

The advancements in refinement and complexity 
of BSS methods in the recent years have been 
staggering and often difficult to follow. To relieve 
the experimenter of the burden of identifying 
nuisance components, as well as to ensure the 
objectivity and reliability of noise removal using 
BSS methods, a number of automated procedures 
and algorithms have been proposed and 
implemented in advanced commercial and freely 
available software packages. The burden and 
responsibility of making informed decisions on 
when and how to use them, though, still lies with 
the user. 

Conclusion 

Noise can present a significant challenge in 
analysis and interpretation of EEG data, 
necessitating efficient strategies for noise 
prevention and removal. A large amount of noise 
can be avoided by taking care of the appropriate 
recording environment and carefull planning of 
experiments and recording sessions. Additionally, 
a number of methods and algorithms can be 
employed to reject noisy data, remove noise signal 

and improve signal-to-noise ratio of the data. In 
order to effectively choose and use methods of 
dealing with noise, their advantages and 
challenges need to be considered in relation to the 
properties of the data and the analytical questions 
being asked. 
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