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Abstract

We describe the Bockting operator v for a tridiagonal pair of g-Racah type, in terms of
a certain L-operator for the quantum loop algebra U, (L(slz)).
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1 Introduction

In the theory of quantum groups there exists the concept of an L-operator; this was in-
troduced in [20] to obtain solutions for the Yang-Baxter equation. In linear algebra there
exists the concept of a tridiagonal pair; this was introduced in [13] to describe the irre-
ducible modules for the subconstituent algebra of a (Q-polynomial distance-regular graph.
Recently some authors have connected the two concepts. In [1], [4] Pascal Baseilhac and
Kozo Koizumi use L-operators for the quantum loop algebra U,(L(slz)) to construct a
family of finite-dimensional modules for the g-Onsager algebra Og; see [2, 3, 5, ?] for re-
lated work. A finite-dimensional irreducible O,-module is essentially the same thing as a
tridiagonal pair of g-Racah type [?, Section 12], [23, Section 3]. In [22, Section 9], Kei
Miki uses similar L-operators to describe how U, (L(slz)) is related to the ¢-tetrahedron
algebra X,. A finite-dimensional irreducible X,-module is essentially the same thing as a
tridiagonal pair of g-geometric type [16, Theorem 2.7], [14, Theorems 10.3, 10.4]. Follow-
ing Baseilhac, Koizumi, and Miki, in the present paper we use L-operators for U, (L(sls))
to describe the Bockting operator ¢/ associated with a tridiagonal pair of g-Racah type. Be-
fore going into detail, we recall some notation and basic concepts. Throughout this paper
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F denotes a field. Let V' denote a vector space over F with finite positive dimension. For
an [F-linear map A : V' — V and a subspace W C V, we say that W is an eigenspace of A
whenever W # 0 and there exists § € F such that W = {v € V|Av = 6v}; in this case §
is called the eigenvalue of A associated with W. We say that A is diagonalizable whenever
V is spanned by the eigenspaces of A.

Definition 1.1. (See [13, Definition 1.1].) Let V denote a vector space over F with finite
positive dimension. By a tridiagonal pair (or TD pair) on V we mean an ordered pair of
F-linear maps A : V' — V and A* : V — V that satisfy the following four conditions:

(i) Each of A, A* is diagonalizable.

(ii) There exists an ordering {V;}%_, of the eigenspaces of A such that
AV, CVig + Vit Vi (0<i<d), (1.1)
where V_; = 0and Vg4, = 0.

(iii) There exists an ordering {V;*}9_, of the eigenspaces of A* such that
AVFE C Vi + VE+ VA (0<i<9), (1.2)

where V) = 0and Vy" | = 0.

(iv) There does not exist a subspace W C V such that AW C W, A*W C W, W # 0,
W #£V.

We refer the reader to [12, 13, 17] for background on TD pairs, and here mention only a few
essential points. Let A, A* denote a TD pair on V, as in Definition 1.1. By [13, Lemma 4.5]
the integers d and ¢ from (1.1) and (1.2) are equal; we call this common value the diameter
of A, A*. An ordering of the eigenspaces for A (resp. A*) is called standard whenever
it satisfies (1.1) (resp. (1.2)). Let {Vi}fzo denote a standard ordering of the eigenspaces
of A. By [13, Lemma 2.4] the ordering {Vd,i}fzo is standard and no further ordering is
standard. A similar result holds for the eigenspaces of A*. Until the end of this section
fix a standard ordering {V;}¢_, (resp. {V;*}¢_,) of the eigenspaces for A (resp. A*). For
0 < i < dlet#; (resp. 6;) denote the eigenvalue of A (resp. A*) for the eigenspace V;
(resp. V;*). By construction {¢;}%_, are mutually distinct and contained in F. Moreover
{67}4_, are mutually distinct and contained in F. By [13, Theorem 11.1] the expressions

Oi—o — i1 0;_o — 0714
A o 0

are equal and independent of ¢ for 2 < ¢ < d — 1. For this constraint the solutions can be
given in closed form [13, Theorem 11.2]. The “most general” solution is called g-Racah,
and will be described shortly.

We now recall the split decomposition [13, Section 4]. For 0 < ¢ < d define
U=(Vy+WV+--+VIHI N (Vo+Vi+ -+ Vi)

For notational convenience define U_; = 0 and Ug4; = 0. By [13, Theorem 4.6] the sum
V= Zf:o U, is direct. By [13, Theorem 4.6] both

UO"’Ul+"'+Ui:V0*+V1*+"'+Vi*7
UitUipn+-+Us=Vo+Vi+-+ Vi,
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for0 <i <d. LetI:V — V denote the identity map. By [13, Theorem 4.6] both
(A—0q_;1)U; C U4, (A" =0;1U; CU;—4 (1.3)
for 0 <1 <d.

We now describe the g-Racah case. Pick a nonzero ¢ € IF such that ¢* # 1. We say that
A, A* has g-Racah type whenever there exist nonzero a, b € T such that both

gi — aq2i—d + a—lqd—2i’ 9: — bq2i—d + b—lqd—Qi (14)

for 0 < i < d. For the rest of this section assume that A, A* has ¢-Racah type. For
1 < i < d we have ¢?' # 1; otherwise 6; = 6. Define an F-linear map K : V — V such
that for 0 < i < d, Uj is an eigenspace of K with eigenvalue ¢¢~2*. Thus

(K — ¢ 1)U; =0 (0 <i<d). (1.5)
Note that K is invertible. For 0 < ¢ < d the following holds on U;:
aK +a 'Kt =041 (1.6)

Define an F-linear map R : V' — V such that for 0 < i < d, Ractson U; as A — 04_;1.
By (1.6),

A=aK +a 'K 1 +R. (1.7)
By the equation on the left in (1.3),
RU; C Ui (0 <i<d). (1.3)

We now recall the Bockting operator ¢. By [8, Lemma 5.7] there exists a unique F-linear
map ¢ : V' — V such that both

]

YU; CU;— (

0<i<d), (1.9)
YR—Ry=(q—q ")(K-K*

-, (1.10)

The known properties of 1 are described in [7, 8, ?]. Suppose we are given A, A*, R, K
in matrix form, and wish to obtain ¢ in matrix form. This can be done using (1.8), (1.9),
(1.10) and induction on ¢. The calculation can be tedious, so one desires a more explicit
description of . In the present paper we give an explicit description of 1), in terms of a
certain L-operator for U,(L(sl2)). According to this description, ¥ is equal to —a times
the ratio of two components for the L-operator. Theorem 5.4 is our main result.

The paper is organized as follows. In Section 2 we review the algebra U, (L(sl2)) in its
Chevalley presentation. In Section 3 we recall the equitable presentation for U, (L(slz)).
In Section 4 we discuss some L-operators for Ug(L(sl2)). In Section 5 we use these L-
operators to describe 1.
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2 The quantum loop algebra U, (L(sl2))

Recall the integers Z = {0, +1,+2,...} and natural numbers N = {0,1,2,...}. We will
be discussing algebras. An algebra is meant to be associative and have a 1. Recall the field
IF. Until the end of Section 4, fix a nonzero g € F such that ¢? # 1. Define
" —q"

nly=-——— n € 7.

[ }q q-— q_l
All tensor products are meant to be over F.
Definition 2.1. (See [10, Section 3.3].) Let U,(L(sl2)) denote the F-algebra with genera-
tors E;, Fi, K (i € {0,1}) and relations

KKt =1, K 'K; =1,
KoK, =1, KKy =1,
K,E; = °E;K;, K,F, = q *FK;,
K;E; = ¢ *E;K;, KiF; = ¢*F;K;, i # J,
K- K !
EZ'F]‘ — FJEZ = 5i’j7q — q_l s
E}E; — 3),E?EE; + [3|,E,E;E} — E;E} =0, i ],
F}F; — [3](FPF;F; + [3]F,FF} — F;F} =0, i # ]

We call E;, Fy, KX! the Chevalley generators for U, (L(sly)).

Lemma 2.2. (See [18, p. 35].) We turn U,(L(sl2)) into a Hopf algebra as follows. The
coproduct A satisfies

AK) =K; @ K;, AKTY=K1'o K",
AE)=E;®1+ K, ® E;, AF)=10F,+F oK.
The counit € satisfies
e(K)=1, K H=1, eF)=0 eF)=0.
The antipode S satisfies
S(K;) =K', S(K;') =K; S(E;) = -K;'E,, S(F) = —F,K;.

We now discuss the U, (L(sl2))-modules.
Lemma 2.3. (See [10, Section 4].) There exists a family of U, (L(sl2))-modules

V(d,t) 0£deN, 0£telF 2.1

with this property: V (d,t) has a basis {v;}_, such that

Kyv; = ¢ %, (0<i<d),

Eyv; =[d— i+ 1]4vi—1 (1<i<d), Eivg =0,

Frv; = [i + 1]quit1 0<i<d-1), Flug =0,

Kov; = g%~ v, (0<i<d),

Eov; = t[i + l]qvi-g-l 0<i<d-1), FEovg =0,

Fov; =t 1d — i+ 1] 01 (1<i<d), Fyvg = 0.
The module V (d, t) is irreducible provided that ¢** # 1 for 1 <i < d.
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Definition 2.4. Referring to Lemma 2.3, we call V(d,t) an evaluation module for
U, (L(sl2)). We call d the diameter. We call ¢ the evaluation parameter.

Example 2.5. For 0 # t € F the U,(L(sl2))-module V(1,t) is described as follows.
With respect to the basis vg, v; from Lemma 2.3, the matrices representing the Chevalley

generators are
0 q O
Fi: , K _ ,
) ' ( 0 ) ' ( 0 ¢! >

0 0
Eu: <0 ' 1

. 0 . 0 ¢! . ¢!t 0
By (t ) Fo: (0 0), Ko (0 q).

Lemma 2.6. (See [19, p. 58].) Let U and V denote Uy(L(slz))-modules. Then U @ V
becomes a Uy(L(sly))-module as follows. For uw € U andv € V,

1
0
0
0

Ki(u®v) = Ki(u) ® K;(v),
K ' (u@v) = K (u) @ K (v),
Fi(u ® U) =u® E(’U) + Fz(u) (%9 Ki_l(v).
Definition 2.7. (See [11, p. 110].) Up to isomorphism, there exists a unique Uy (L(sl5))-

module of dimension 1 on which each u € U,(L(sly)) acts as e(u)I, where ¢ is from
Lemma 2.2. This U, (L(sl3))-module is said to be trivial.

Proposition 2.8. (See [22, Theorem 3.2].) Assume that F is algebraically closed with
characteristic zero, and q is not a root of unity. Let V denote a nontrivial finite-dimensional
irreducible Uy (L(slz))-module on which each eigenvalue of K is an integral power of q.
Then 'V is isomorphic to a tensor product of evaluation U, (L(slz))-modules.

3 The equitable presentation for U,(L(sl2))

In this section we recall the equitable presentation for U, (L(sl)). Let Z4 = Z/4Z denote
the cyclic group of order 4. In a moment we will discuss some objects X;;. The subscripts
1,7 are meant to be in Zg4.

Lemma 3.1. (See [15, Theorem 2.1], [22, Proposition 4.2].) The algebra U,(L(sl2)) has
a presentation by generators

Xo1, Xi2, Xoz, X30, X3, Xs; (3.1
and the following relations:

X1 X12 — ¢ X12Xo1 qX12X23 — ¢ X253 X12

X13X31 =1, Xa1Xis=1, =g =1, g—q 1 =1,
qX23X30 —q ' X30Xa3 1 qX30X01 —q ' X1 X30 1 X0 X13 — ¢ ' X13Xo1 1
q—q! o q—qt o q—qt -
qX31X12 —q ' X12 X351 1 qX23X31 — q ' X51Xo3 1 qX13X30 — ¢ ' X30X13 1
q—qt - q—q* - q—q* -

3 2 2 3
Xiiv1 Xivoirs—[3]qXiip1Xir2,i43Xii01+[3]g Xiir1 Xoq2,i13 X7 01 — Xivo,i43X, 141 = 0.
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An isomorphism with the presentation in Definition 2.1 sends

Xo1 = Ko +q(q — ¢ V) KoFo, X123 = K1 —(¢—q ")Ex,
Xoz = K1 +q(q— ¢ K1 F, X30— Ko — (¢ —q ") Eo,
)(13,}%[(17 X31 l—>K0.

The inverse isomorphism sends
B (X3 — X12)(g—q "), Eg v (X31 — Xs0)(q—q~ )71,
Fi— (X51 X3 — 1) "(g—q )71, Fo— (X13Xo1 —1)g "(g—q )71,
K1 — X3, Ko — X31.

Note 3.2. For notational convenience, we identify the copy of U, (L(sl2)) given in Defini-
tion 2.1 with the copy given in Lemma 3.1, via the isomorphism given in Lemma 3.1.

Definition 3.3. Referring to Lemma 3.1, we call the generators (3.1) the equitable gener-
ators for U, (L(sly)).

Lemma 3.4. (See [24, Theorem 3.4].) From the equitable point of view the Hopf algebra
Uq(L(sl2)) looks as follows. The coproduct A satisfies

A(X13) = X13 ® Xa3, A(X31) = X31 ® X31,
A(Xo1) = (Xo1 — X31) ® 1 + X31 ® Xou, A(X12) = (X12 — X13) ® 1 + X13 ® X112,
A(Xa23) = (Xo3 — X13) ® 1 + X153 ® Xas, A(X30) = (X30 — X31) ® 1 + X31 ® X30.

The counit € satisfies

e(X13) =1, e(X31) =1, e(Xo1) =1,
e(X12) =1, e(Xa23) =1, £(X30) = 1.
The antipode S satisfies
S(Xs31) = Xas, S(X13) = X31,

S(Xo1) =14 X153 — X13X01, S(Xi2) =14 X31 — X351 X129,
S(Xo3) =14 X31 — X31X03, S(X30) = 14 X13 — X13X30.

4 Some L-operators for U,(L(s!))

In this section we recall some L-operators for U, (L(sl3)), and describe their basic proper-
ties.

We recall some notation. Let A denote the coproduct for a Hopf algebra H. Then the
opposite coproduct A°P is the composition

A®:. H — HRH —— H®H.
A r@S—sQT

Definition 4.1. (See [22, Section 9.1].) Let V denote a U, (L(sl3))-module and 0 # ¢ € F.
Consider an F-linear map

L: VeVt —VeVl,t.
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We call this map an L-operator for V with parameter t whenever the following diagram
commutes for all u € Uy(L(sl)):

vevl) 2" veva,n

% y
VeV(Li) —— Ve V(L

°P(u)

Definition 4.2. (See [22, Section 9.1].) Let V denote a U, (L(sl2))-module and 0 # t € F.
Consider any F-linear map

L: VeVt —VeV(,b. @.1)
For r, s € {0, 1} define an F-linear map L,; : V' — V such that forv € V,

L(’U ® 1]0) = Loo(’U) & v + LIO(U) & vy, “4.2)
L(’U & Ul) = Lo (’U) & v + Lll(’l)) & vy. “4.3)
Here vg, v1 is the basis for V(1,¢) from Lemma 2.3.

Lemma 4.3. Referring to Definition 4.2, the map (4.1) is an L-operator for V with param-
eter t if and only if the following equations hold on V :

KiLoo = LooK1, KiLoi = ¢ °Lo1 K,
KiLio = q°L1oK1, Ki1Lyy = L1 Ky;
LooE1 — qF1Loo = Lo, LoiE1 — qE1Lo1 = L11 — Loo K1,
LioE1 — ¢ "E1Lio = 0, LBy —q "E1Liy = —LioKy;
FiLoo —q "LooFi = Lo, F1Lor —qLo1F1 =0,
Fi1Lio — q_1L10F1 =L — KoLoo, FiLi — qL11F1 = *K()L(n;
KoLoo = LooKo, KoLo1 = ¢°Lo1 Ko,
KoLio = ¢ > L1oKo, KoL11 = L11Ko;
LooEo — q¢ ' EoLoo = —tLo1 Ko, Lo1Eo —q "EoLoi = 0,
LioEo — qFoL10 = tLoo — tL11 Ko, L11Eo — qgEoL11 = tLoy;
FoLoo — qLooFo = —t~ " K1 Lo, FoLoi —q "LoiFo =t "Loo —t 'Ki L1,
FoLio — qLioFo =0, FoLi1 —q "L Fo =t ' L.
Proof. This is routinely checked. O

Example 4.4. (See [21, Appendix], [22, Proposition 9.2].) Referring to Definition 4.2,
assume that V' is an evaluation module V (d, 11) such that ¢ # 1 for 1 < i < d. Consider
the matrices that represent the L, with respect to the basis {v;}&, for V(d, u) from
Lemma 2.3. Then the following are equivalent:
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(1) the map (4.1) is an L-operator for V' with parameter ¢;

(ii) the matrix entries are given in the table below (all matrix entries not shown are zero):

operator | (i,i — 1)-entry (i,1)-entry (i — 1,19)-entry
Loo 0 7q1_l;fq__lfql_d 3 0
Lo [ilgq" "¢ 0 0
LlO 0 0 [d -1+ 1]qqz_du_1t§
i—d41_ —1, —i
Lu, 0 e RS 0
Here ¢ € F.

Lemma 4.5. (See [22, Proposition 9.3].) Let U and V denote U,(L(sl2))-modules, and
consider the Uy(L(sly))-module U @ V' from Lemma 2.6. Let 0 # t € F. Suppose we
are given L-operators for U and V with parameter t. Then there exists an L-operator for
U ® V with parameter t such that forr,s € {0,1},

L.s(u®v) = Lyo(u) ® Los(v) + Lr1(u) @ L15(v) wuelU, veV. (44

Proof. Forr,s € {0,1} define an F-linear map L,; : U ® V — U ® V that satisfies (4.4).
Using (4.4) and Lemma 2.6 one checks that the L, satisfy the equations in Lemma 4.3.
The result follows by Lemma 4.3. O

Corollary 4.6. Adopt the notation and assumptions of Proposition 2.8. Thenfor0 #t € F
there exists a nonzero L-operator for V with parameter t.

Proof. By Proposition 2.8 along with Example 4.4 and Lemma 4.5. O

S TD pairs and L-operators

In Section 1 we discussed a TD pair A, A* on V. We now return to this discussion, adopting
the notation and assumptions that were in force at the end of Section 1. Recall the scalars
q, a,b from (1.4). Recall the map K from above (1.5).

Proposition 5.1. (See [17, p. 103].) Assume that F is algebraically closed with characteris-
tic zero, and q is not a root of unity. Then the vector space V becomes a Uy(L(sl2))-module
onwhich K = X371, K~ = X153 and

A= (J,X()l + a_leg, A* = bX23 + b_ngo.
Proof. This is how [17, p. 103] looks from the equitable point of view. [

Note 5.2. The U,(L(sl3))-module structure from Proposition 5.1 is not unique in general.

We now investigate the Uy (L(sl2))-module structure from Proposition 5.1. Recall the map
R from above (1.7).

Lemma 5.3. Assume that the vector space V becomes a U,(L(slz))-module on which
K = X3, K1 = X3 and

A= G,X(n + a_leg, A = bX23 —+ b_ng().

On this module,
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(1) R looks as follows in the equitable presentation:

R:a(X(n 7X31)+(171(X12 7X13). (51)

(ii) R looks as follows in the Chevalley presentation:

R=(q—q ")(aqKoFy —a ' Ey). (5.2)

Proof. (i) In line (1.7) eliminate A, K, K ~! using the assumptions of the present lemma.
(ii) Evaluate the right-hand side of (5.1) using the identifications from Lemma 3.1 and Note
3.2. O

We now present our main result. Recall the Bockting operator ¢ from (1.9), (1.10).

Theorem 5.4. Assume that the vector space V' becomes a Uy(L(sly))-module on which
K= X3, K7' = X3 and

A=aXp + aileg, A* =bXo3 + bingo.
Consider an L-operator for V with parameter a?. Then on'V,

¢ = —a(Loo)” " Loy (5.3)
provided that Ly is invertible.

Proof. Let 1/) denote the expression on the right in (5.3). We show ¢ = ¢ To do this, , we
show that zb satisfies (1.9), (1.10). Concerning (1.9), by Lemma 4.3 the equation K(ﬂ/J

2¢K0 holds on V. By Lemma 3.1, Note 3.2, and the construction, we obtain Ky = X3; =
K on V. By these comments KlZ = qzzZK on V. By this and (1.5) we obtain 12)\U1- CU;—1
for0 <1¢ < d. So zZ satisfies (1.9). Next we show that 12 satisfies (1.10). Since Lgg is
invertible and KK = 1 it suffices to show that on V,

Loo($R — RY) = (¢ — ") Loo (Ko — K1). (5.4)
By this and (5.2) it suffices to show that on V,
aqLoo(b Ko Fo — KoFyh) — a ™' Log (W E1 — Er)) + Loo(Ky — Ko) = 0. (5.5

We examine the terms in (5.5). By Lemma 4.3 and the construction, the following hold on
V:
LO()"ZKOFO = —alLonKokp
= —aq *KoLnFy
= —aq 'Ko(FoLo1 — a *Loo + a K1 L11)

and

LOOKOFO’[Z)\ = KOLOOFOQZ
= q_lKO(a_2K1L10 + F0L00)¢
= q_lKO(a_ZKlLl(ﬂﬁ - GFOLol)



64

and

and

and
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LoovEy = —aLy By
= —a(qE1Lo1 + L11 — Loo K1)
= —a(qEi1Loi + L1 — K1 Loo)
LooEyp = (L1o + qE1L00)IZ
= Loy —qaE1 Loy
Loo K1 = Ki Lo, LooKo = KoLoo.

To verify (5.5), evaluate its left-hand side using the above comments and simplify the result

using KoK = 1. The computation is routine, and omitted. We have shown that ¢/ satisfies
(1.10). The result follows. O

Acknowledgment

The author thanks Sarah Bockting-Conrad and Edward Hanson for giving this paper a
close reading and offering valuable suggestions. The author also thanks Pascal Baseilhac
for many conversations concerning quantum groups, L-operators, and tridiagonal pairs.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

P. Baseilhac, An integrable structure related with tridiagonal algebras, Nuclear Phys. B 705
(2005), 605-619, doi:10.1016/j.nuclphysb.2004.11.014.

P. Baseilhac and S. Belliard, The half-infinite XXZ chain in Onsager’s approach, Nuclear Phys.
B 873 (2013), 550-584, doi:10.1016/j.nuclphysb.2013.05.003.

P. Baseilhac and K. Koizumi, A deformed analogue of Onsager’s symmetry in the X X Z open
spin chain, J. Stat. Mech. Theory Exp. 10 (2005), P10005, doi:10.1088/1742-5468/2005/10/
p10005.

P. Baseilhac and K. Koizumi, A new (in)finite-dimensional algebra for quantum integrable
models, Nuclear Phys. B 720 (2005), 325-347, doi:10.1016/j.nuclphysb.2005.05.021.

P. Baseilhac and K. Koizumi, Exact spectrum of the X X Z open spin chain from the g-
Onsager algebra representation theory, J. Stat. Mech. Theory Exp. 9 (2007), P09006, doi:
10.1088/1742-5468/2007/09/p09006.

P. Baseilhac and K. Shigechi, A new current algebra and the reflection equation, Lett. Math.
Phys. 92 (2010), 47-65, doi:10.1007/s11005-010-0380-x.

S. Bockting-Conrad, Two commuting operators associated with a tridiagonal pair, Linear Al-
gebra Appl. 437 (2012), 242-270, doi:10.1016/j.1aa.2012.02.007.

S. Bockting-Conrad, Tridiagonal pairs of g-Racah type, the double lowering operator 1), and
the quantum algebra Uy (sl2), Linear Algebra Appl. 445 (2014), 256-279, doi:10.1016/j.1aa.
2013.12.007.

S. Bockting-Conrad and P. Terwilliger, The algebra Uy (sl2) in disguise, Linear Algebra Appl.
459 (2014), 548-585, doi:10.1016/j.1a2.2014.07.022.



[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

P. Terwilliger: Tridiagonal pairs of q-Racah type, the Bockting operator 1, and. . . 65

V. Chari and A. Pressley, Quantum affine algebras, Commun. Math. Phys. 142 (1991), 261-283,
https://projecteuclid.org/euclid.cmp/1104248585.

V. Chari and A. N. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cam-
bridge, 1995.

T. Ito, K. Nomura and P. Terwilliger, A classification of sharp tridiagonal pairs, Linear Algebra
Appl. 435 (2011), 1857-1884, doi:10.1016/j.1aa.2011.03.032.

T. Ito, K. Tanabe and P. Terwilliger, Some algebra related to P- and @-polynomial associa-
tion schemes, in: A. Barg and S. Litsyn (eds.), Codes and Association Schemes, American
Mathematical Society, Providence, Rhode Island, volume 56 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pp. 167-192, 2001, papers from the DIMACS
Workshop held at Rutgers University, Piscataway, NJ, November 9 — 12, 1999.

T. Ito and P. Terwilliger, The g-tetrahedron algebra and its finite dimensional irreducible mod-
ules, Comm. Algebra 35 (2007), 3415-3439, doi:10.1080/00927870701509180.

T. Ito and P. Terwilliger, Tridiagonal pairs and the quantum affine algebra Uq(sAlg), Ramanujan
J. 13 (2007), 39-62, doi:10.1007/s11139-006-0242-4.

T. Ito and P. Terwilliger, Two non-nilpotent linear transformations that satisfy the cubic g-Serre
relations, J. Algebra Appl. 6 (2007), 477-503, doi:10.1142/s021949880700234x.

T. Ito and P. Terwilliger, The augmented tridiagonal algebra, Kyushu J. Math. 64 (2010), 81—
144, doi:10.2206/kyushujm.64.81.

J. C. Jantzen, Lectures on Quantum Groups, volume 6 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, Rhode Island, 1996.

C. Kassel, Quantum Groups, volume 155 of Graduate Texts in Mathematics, Springer-Verlag,
New York, 1995, doi:10.1007/978-1-4612-0783-2.

P. P. Kulish and E. K. Sklyanin, Solutions of the Yang-Baxter equation, J. Sov. Math. 19 (1982),
15961620, doi:10.1007/bf01091463.

P. P. Kulish and N. Yu. Reshetikhin, Quantum linear problem for the sine-Gordon equation and
higher representations, J. Sov. Math. 23 (1983), 2435-2441, doi:10.1007/bf01084171.

K. Miki, Finite dimensional modules for the g-tetrahedron algebra, Osaka J. Math. 47 (2010),
559-589, https://projecteuclid.org/euclid.ojm/1277298918.

P. Terwilliger, Two relations that generalize the g-Serre relations and the Dolan-Grady re-
lations, in: A. N. Kirillov, A. Tsuchiya and H. Umemura (eds.), Physics and Combina-
torics 1999, World Scientific Publishing, River Edge, New Jersey, pp. 377-398, 2001, doi:
10.1142/9789812810199.0013, proceedings of the International Workshop held at Nagoya
University, Nagoya, August 23 — 27, 1999.

P. Terwilliger, The equitable presentation for the quantum group U, (g) associated with a sym-
metrizable Kac-Moody algebra g, J. Algebra 298 (2006), 302-319, doi:10.1016/j.jalgebra.
2005.11.013.



