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Abstract

We describe the Bockting operator ψ for a tridiagonal pair of q-Racah type, in terms of
a certain L-operator for the quantum loop algebra Uq(L(sl2)).
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1 Introduction
In the theory of quantum groups there exists the concept of an L-operator; this was in-
troduced in [20] to obtain solutions for the Yang-Baxter equation. In linear algebra there
exists the concept of a tridiagonal pair; this was introduced in [13] to describe the irre-
ducible modules for the subconstituent algebra of a Q-polynomial distance-regular graph.
Recently some authors have connected the two concepts. In [1], [4] Pascal Baseilhac and
Kozo Koizumi use L-operators for the quantum loop algebra Uq(L(sl2)) to construct a
family of finite-dimensional modules for the q-Onsager algebra Oq; see [2, 3, 5, ?] for re-
lated work. A finite-dimensional irreducible Oq-module is essentially the same thing as a
tridiagonal pair of q-Racah type [?, Section 12], [23, Section 3]. In [22, Section 9], Kei
Miki uses similar L-operators to describe how Uq(L(sl2)) is related to the q-tetrahedron
algebra �q . A finite-dimensional irreducible �q-module is essentially the same thing as a
tridiagonal pair of q-geometric type [16, Theorem 2.7], [14, Theorems 10.3, 10.4]. Follow-
ing Baseilhac, Koizumi, and Miki, in the present paper we use L-operators for Uq(L(sl2))
to describe the Bockting operator ψ associated with a tridiagonal pair of q-Racah type. Be-
fore going into detail, we recall some notation and basic concepts. Throughout this paper
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F denotes a field. Let V denote a vector space over F with finite positive dimension. For
an F-linear map A : V → V and a subspace W ⊆ V , we say that W is an eigenspace of A
whenever W 6= 0 and there exists θ ∈ F such that W = {v ∈ V |Av = θv}; in this case θ
is called the eigenvalue ofA associated withW . We say thatA is diagonalizable whenever
V is spanned by the eigenspaces of A.

Definition 1.1. (See [13, Definition 1.1].) Let V denote a vector space over F with finite
positive dimension. By a tridiagonal pair (or TD pair) on V we mean an ordered pair of
F-linear maps A : V → V and A∗ : V → V that satisfy the following four conditions:

(i) Each of A,A∗ is diagonalizable.

(ii) There exists an ordering {Vi}di=0 of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d), (1.1)

where V−1 = 0 and Vd+1 = 0.

(iii) There exists an ordering {V ∗i }δi=0 of the eigenspaces of A∗ such that

AV ∗i ⊆ V ∗i−1 + V ∗i + V ∗i+1 (0 ≤ i ≤ δ), (1.2)

where V ∗−1 = 0 and V ∗δ+1 = 0.

(iv) There does not exist a subspace W ⊆ V such that AW ⊆ W , A∗W ⊆ W , W 6= 0,
W 6= V .

We refer the reader to [12, 13, 17] for background on TD pairs, and here mention only a few
essential points. LetA,A∗ denote a TD pair on V , as in Definition 1.1. By [13, Lemma 4.5]
the integers d and δ from (1.1) and (1.2) are equal; we call this common value the diameter
of A,A∗. An ordering of the eigenspaces for A (resp. A∗) is called standard whenever
it satisfies (1.1) (resp. (1.2)). Let {Vi}di=0 denote a standard ordering of the eigenspaces
of A. By [13, Lemma 2.4] the ordering {Vd−i}di=0 is standard and no further ordering is
standard. A similar result holds for the eigenspaces of A∗. Until the end of this section
fix a standard ordering {Vi}di=0 (resp. {V ∗i }di=0) of the eigenspaces for A (resp. A∗). For
0 ≤ i ≤ d let θi (resp. θ∗i ) denote the eigenvalue of A (resp. A∗) for the eigenspace Vi
(resp. V ∗i ). By construction {θi}di=0 are mutually distinct and contained in F. Moreover
{θ∗i }di=0 are mutually distinct and contained in F. By [13, Theorem 11.1] the expressions

θi−2 − θi+1

θi−1 − θi
θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
are equal and independent of i for 2 ≤ i ≤ d − 1. For this constraint the solutions can be
given in closed form [13, Theorem 11.2]. The “most general” solution is called q-Racah,
and will be described shortly.

We now recall the split decomposition [13, Section 4]. For 0 ≤ i ≤ d define

Ui = (V ∗0 + V ∗1 + · · ·+ V ∗i ) ∩ (V0 + V1 + · · ·+ Vd−i).

For notational convenience define U−1 = 0 and Ud+1 = 0. By [13, Theorem 4.6] the sum
V =

∑d
i=0 Ui is direct. By [13, Theorem 4.6] both

U0 + U1 + · · ·+ Ui = V ∗0 + V ∗1 + · · ·+ V ∗i ,

Ui + Ui+1 + · · ·+ Ud = V0 + V1 + · · ·+ Vd−i
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for 0 ≤ i ≤ d. Let I : V → V denote the identity map. By [13, Theorem 4.6] both

(A− θd−iI)Ui ⊆ Ui+1, (A∗ − θ∗i I)Ui ⊆ Ui−1 (1.3)

for 0 ≤ i ≤ d.

We now describe the q-Racah case. Pick a nonzero q ∈ F such that q4 6= 1. We say that
A,A∗ has q-Racah type whenever there exist nonzero a, b ∈ F such that both

θi = aq2i−d + a−1qd−2i, θ∗i = bq2i−d + b−1qd−2i (1.4)

for 0 ≤ i ≤ d. For the rest of this section assume that A,A∗ has q-Racah type. For
1 ≤ i ≤ d we have q2i 6= 1; otherwise θi = θ0. Define an F-linear map K : V → V such
that for 0 ≤ i ≤ d, Ui is an eigenspace of K with eigenvalue qd−2i. Thus

(K − qd−2iI)Ui = 0 (0 ≤ i ≤ d). (1.5)

Note that K is invertible. For 0 ≤ i ≤ d the following holds on Ui:

aK + a−1K−1 = θd−iI. (1.6)

Define an F-linear map R : V → V such that for 0 ≤ i ≤ d, R acts on Ui as A − θd−iI .
By (1.6),

A = aK + a−1K−1 +R. (1.7)

By the equation on the left in (1.3),

RUi ⊆ Ui+1 (0 ≤ i ≤ d). (1.8)

We now recall the Bockting operator ψ. By [8, Lemma 5.7] there exists a unique F-linear
map ψ : V → V such that both

ψUi ⊆ Ui−1 (0 ≤ i ≤ d), (1.9)
ψR−Rψ = (q − q−1)(K −K−1). (1.10)

The known properties of ψ are described in [7, 8, ?]. Suppose we are given A,A∗, R,K
in matrix form, and wish to obtain ψ in matrix form. This can be done using (1.8), (1.9),
(1.10) and induction on i. The calculation can be tedious, so one desires a more explicit
description of ψ. In the present paper we give an explicit description of ψ, in terms of a
certain L-operator for Uq(L(sl2)). According to this description, ψ is equal to −a times
the ratio of two components for the L-operator. Theorem 5.4 is our main result.

The paper is organized as follows. In Section 2 we review the algebra Uq(L(sl2)) in its
Chevalley presentation. In Section 3 we recall the equitable presentation for Uq(L(sl2)).
In Section 4 we discuss some L-operators for Uq(L(sl2)). In Section 5 we use these L-
operators to describe ψ.
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2 The quantum loop algebra Uq(L(sl2))

Recall the integers Z = {0,±1,±2, . . .} and natural numbers N = {0, 1, 2, . . .}. We will
be discussing algebras. An algebra is meant to be associative and have a 1. Recall the field
F. Until the end of Section 4, fix a nonzero q ∈ F such that q2 6= 1. Define

[n]q =
qn − q−n

q − q−1
n ∈ Z.

All tensor products are meant to be over F.

Definition 2.1. (See [10, Section 3.3].) Let Uq(L(sl2)) denote the F-algebra with genera-
tors Ei, Fi,K±1

i (i ∈ {0, 1}) and relations

KiK
−1
i = 1, K−1

i Ki = 1,

K0K1 = 1, K1K0 = 1,

KiEi = q2EiKi, KiFi = q−2FiKi,

KiEj = q−2EjKi, KiFj = q2FjKi, i 6= j,

EiFj − FjEi = δi,j
Ki −K−1

i

q − q−1
,

E3
i Ej − [3]qE

2
i EjEi + [3]qEiEjE

2
i − EjE3

i = 0, i 6= j,

F 3
i Fj − [3]qF

2
i FjFi + [3]qFiFjF

2
i − FjF 3

i = 0, i 6= j.

We call Ei, Fi,K±1
i the Chevalley generators for Uq(L(sl2)).

Lemma 2.2. (See [18, p. 35].) We turn Uq(L(sl2)) into a Hopf algebra as follows. The
coproduct ∆ satisfies

∆(Ki) = Ki ⊗Ki, ∆(K−1
i ) = K−1

i ⊗K
−1
i ,

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = 1⊗ Fi + Fi ⊗K−1
i .

The counit ε satisfies

ε(Ki) = 1, ε(K−1
i ) = 1, ε(Ei) = 0, ε(Fi) = 0.

The antipode S satisfies

S(Ki) = K−1
i , S(K−1

i ) = Ki, S(Ei) = −K−1
i Ei, S(Fi) = −FiKi.

We now discuss the Uq(L(sl2))-modules.

Lemma 2.3. (See [10, Section 4].) There exists a family of Uq(L(sl2))-modules

V(d, t) 0 6= d ∈ N, 0 6= t ∈ F (2.1)

with this property: V(d, t) has a basis {vi}di=0 such that

K1vi = qd−2ivi (0 ≤ i ≤ d),

E1vi = [d− i+ 1]qvi−1 (1 ≤ i ≤ d), E1v0 = 0,

F1vi = [i+ 1]qvi+1 (0 ≤ i ≤ d− 1), F1vd = 0,

K0vi = q2i−dvi (0 ≤ i ≤ d),

E0vi = t[i+ 1]qvi+1 (0 ≤ i ≤ d− 1), E0vd = 0,

F0vi = t−1[d− i+ 1]qvi−1 (1 ≤ i ≤ d), F0v0 = 0.

The module V(d, t) is irreducible provided that q2i 6= 1 for 1 ≤ i ≤ d.
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Definition 2.4. Referring to Lemma 2.3, we call V(d, t) an evaluation module for
Uq(L(sl2)). We call d the diameter. We call t the evaluation parameter.

Example 2.5. For 0 6= t ∈ F the Uq(L(sl2))-module V(1, t) is described as follows.
With respect to the basis v0, v1 from Lemma 2.3, the matrices representing the Chevalley
generators are

E1 :

(
0 1
0 0

)
, F1 :

(
0 0
1 0

)
, K1 :

(
q 0
0 q−1

)
,

E0 :

(
0 0
t 0

)
, F0 :

(
0 t−1

0 0

)
, K0 :

(
q−1 0
0 q

)
.

Lemma 2.6. (See [19, p. 58].) Let U and V denote Uq(L(sl2))-modules. Then U ⊗ V
becomes a Uq(L(sl2))-module as follows. For u ∈ U and v ∈ V ,

Ki(u⊗ v) = Ki(u)⊗Ki(v),

K−1
i (u⊗ v) = K−1

i (u)⊗K−1
i (v),

Ei(u⊗ v) = Ei(u)⊗ v +Ki(u)⊗ Ei(v),

Fi(u⊗ v) = u⊗ Fi(v) + Fi(u)⊗K−1
i (v).

Definition 2.7. (See [11, p. 110].) Up to isomorphism, there exists a unique Uq(L(sl2))-
module of dimension 1 on which each u ∈ Uq(L(sl2)) acts as ε(u)I , where ε is from
Lemma 2.2. This Uq(L(sl2))-module is said to be trivial.

Proposition 2.8. (See [22, Theorem 3.2].) Assume that F is algebraically closed with
characteristic zero, and q is not a root of unity. Let V denote a nontrivial finite-dimensional
irreducible Uq(L(sl2))-module on which each eigenvalue of K1 is an integral power of q.
Then V is isomorphic to a tensor product of evaluation Uq(L(sl2))-modules.

3 The equitable presentation for Uq(L(sl2))

In this section we recall the equitable presentation for Uq(L(sl2)). Let Z4 = Z/4Z denote
the cyclic group of order 4. In a moment we will discuss some objects Xij . The subscripts
i, j are meant to be in Z4.

Lemma 3.1. (See [15, Theorem 2.1], [22, Proposition 4.2].) The algebra Uq(L(sl2)) has
a presentation by generators

X01, X12, X23, X30, X13, X31 (3.1)

and the following relations:

X13X31 = 1, X31X13 = 1,
qX01X12 − q−1X12X01

q − q−1
= 1,

qX12X23 − q−1X23X12

q − q−1
= 1,

qX23X30 − q−1X30X23

q − q−1
= 1,

qX30X01 − q−1X01X30

q − q−1
= 1,

qX01X13 − q−1X13X01

q − q−1
= 1,

qX31X12 − q−1X12X31

q − q−1
= 1,

qX23X31 − q−1X31X23

q − q−1
= 1,

qX13X30 − q−1X30X13

q − q−1
= 1,

X3
i,i+1Xi+2,i+3−[3]qX

2
i,i+1Xi+2,i+3Xi,i+1+[3]qXi,i+1Xi+2,i+3X

2
i,i+1−Xi+2,i+3X

3
i,i+1 = 0.
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An isomorphism with the presentation in Definition 2.1 sends

X01 7→ K0 + q(q − q−1)K0F0, X12 7→ K1 − (q − q−1)E1,

X23 7→ K1 + q(q − q−1)K1F1, X30 7→ K0 − (q − q−1)E0,

X13 7→ K1, X31 7→ K0.

The inverse isomorphism sends

E1 7→ (X13 −X12)(q − q−1)−1, E0 7→ (X31 −X30)(q − q−1)−1,

F1 7→ (X31X23 − 1)q−1(q − q−1)−1, F0 7→ (X13X01 − 1)q−1(q − q−1)−1,

K1 7→ X13, K0 7→ X31.

Note 3.2. For notational convenience, we identify the copy of Uq(L(sl2)) given in Defini-
tion 2.1 with the copy given in Lemma 3.1, via the isomorphism given in Lemma 3.1.

Definition 3.3. Referring to Lemma 3.1, we call the generators (3.1) the equitable gener-
ators for Uq(L(sl2)).

Lemma 3.4. (See [24, Theorem 3.4].) From the equitable point of view the Hopf algebra
Uq(L(sl2)) looks as follows. The coproduct ∆ satisfies

∆(X13) = X13 ⊗X13, ∆(X31) = X31 ⊗X31,

∆(X01) = (X01 −X31) ⊗ 1 +X31 ⊗X01, ∆(X12) = (X12 −X13) ⊗ 1 +X13 ⊗X12,

∆(X23) = (X23 −X13) ⊗ 1 +X13 ⊗X23, ∆(X30) = (X30 −X31) ⊗ 1 +X31 ⊗X30.

The counit ε satisfies

ε(X13) = 1, ε(X31) = 1, ε(X01) = 1,

ε(X12) = 1, ε(X23) = 1, ε(X30) = 1.

The antipode S satisfies

S(X31) = X13, S(X13) = X31,

S(X01) = 1 +X13 −X13X01, S(X12) = 1 +X31 −X31X12,

S(X23) = 1 +X31 −X31X23, S(X30) = 1 +X13 −X13X30.

4 Some L-operators for Uq(L(sl2))

In this section we recall some L-operators for Uq(L(sl2)), and describe their basic proper-
ties.

We recall some notation. Let ∆ denote the coproduct for a Hopf algebra H . Then the
opposite coproduct ∆op is the composition

∆op : H −−−−→
∆

H ⊗H −−−−−−→
r⊗s7→s⊗r

H ⊗H.

Definition 4.1. (See [22, Section 9.1].) Let V denote a Uq(L(sl2))-module and 0 6= t ∈ F.
Consider an F-linear map

L : V ⊗V(1, t)→ V ⊗V(1, t).
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We call this map an L-operator for V with parameter t whenever the following diagram
commutes for all u ∈ Uq(L(sl2)):

V ⊗V(1, t)
∆(u)−−−−→ V ⊗V(1, t)

L

y yL
V ⊗V(1, t) −−−−→

∆op(u)
V ⊗V(1, t)

Definition 4.2. (See [22, Section 9.1].) Let V denote a Uq(L(sl2))-module and 0 6= t ∈ F.
Consider any F-linear map

L : V ⊗V(1, t)→ V ⊗V(1, t). (4.1)

For r, s ∈ {0, 1} define an F-linear map Lrs : V → V such that for v ∈ V ,

L(v ⊗ v0) = L00(v)⊗ v0 + L10(v)⊗ v1, (4.2)
L(v ⊗ v1) = L01(v)⊗ v0 + L11(v)⊗ v1. (4.3)

Here v0, v1 is the basis for V(1, t) from Lemma 2.3.

Lemma 4.3. Referring to Definition 4.2, the map (4.1) is an L-operator for V with param-
eter t if and only if the following equations hold on V :

K1L00 = L00K1, K1L01 = q−2L01K1,

K1L10 = q2L10K1, K1L11 = L11K1;

L00E1 − qE1L00 = L10, L01E1 − qE1L01 = L11 − L00K1,

L10E1 − q−1E1L10 = 0, L11E1 − q−1E1L11 = −L10K1;

F1L00 − q−1L00F1 = L01, F1L01 − qL01F1 = 0,

F1L10 − q−1L10F1 = L11 −K0L00, F1L11 − qL11F1 = −K0L01;

K0L00 = L00K0, K0L01 = q2L01K0,

K0L10 = q−2L10K0, K0L11 = L11K0;

L00E0 − q−1E0L00 = −tL01K0, L01E0 − q−1E0L01 = 0,

L10E0 − qE0L10 = tL00 − tL11K0, L11E0 − qE0L11 = tL01;

F0L00 − qL00F0 = −t−1K1L10, F0L01 − q−1L01F0 = t−1L00 − t−1K1L11,

F0L10 − qL10F0 = 0, F0L11 − q−1L11F0 = t−1L10.

Proof. This is routinely checked.

Example 4.4. (See [21, Appendix], [22, Proposition 9.2].) Referring to Definition 4.2,
assume that V is an evaluation module V(d, µ) such that q2i 6= 1 for 1 ≤ i ≤ d. Consider
the matrices that represent the Lrs with respect to the basis {vi}di=0 for V(d, µ) from
Lemma 2.3. Then the following are equivalent:
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(i) the map (4.1) is an L-operator for V with parameter t;

(ii) the matrix entries are given in the table below (all matrix entries not shown are zero):

operator (i, i− 1)-entry (i, i)-entry (i− 1, i)-entry
L00 0 q1−i−µ−1tqi−d

q−q−1 ξ 0

L01 [i]qq
1−iξ 0 0

L10 0 0 [d− i+ 1]qq
i−dµ−1tξ

L11 0 qi−d+1−µ−1tq−i

q−q−1 ξ 0

Here ξ ∈ F.

Lemma 4.5. (See [22, Proposition 9.3].) Let U and V denote Uq(L(sl2))-modules, and
consider the Uq(L(sl2))-module U ⊗ V from Lemma 2.6. Let 0 6= t ∈ F. Suppose we
are given L-operators for U and V with parameter t. Then there exists an L-operator for
U ⊗ V with parameter t such that for r, s ∈ {0, 1},

Lrs(u⊗ v) = Lr0(u)⊗ L0s(v) + Lr1(u)⊗ L1s(v) u ∈ U, v ∈ V. (4.4)

Proof. For r, s ∈ {0, 1} define an F-linear map Lrs : U ⊗ V → U ⊗ V that satisfies (4.4).
Using (4.4) and Lemma 2.6 one checks that the Lrs satisfy the equations in Lemma 4.3.
The result follows by Lemma 4.3.

Corollary 4.6. Adopt the notation and assumptions of Proposition 2.8. Then for 0 6= t ∈ F
there exists a nonzero L-operator for V with parameter t.

Proof. By Proposition 2.8 along with Example 4.4 and Lemma 4.5.

5 TD pairs and L-operators
In Section 1 we discussed a TD pairA,A∗ on V . We now return to this discussion, adopting
the notation and assumptions that were in force at the end of Section 1. Recall the scalars
q, a, b from (1.4). Recall the map K from above (1.5).

Proposition 5.1. (See [17, p. 103].) Assume that F is algebraically closed with characteris-
tic zero, and q is not a root of unity. Then the vector space V becomes a Uq(L(sl2))-module
on which K = X31, K−1 = X13 and

A = aX01 + a−1X12, A∗ = bX23 + b−1X30.

Proof. This is how [17, p. 103] looks from the equitable point of view.

Note 5.2. The Uq(L(sl2))-module structure from Proposition 5.1 is not unique in general.

We now investigate the Uq(L(sl2))-module structure from Proposition 5.1. Recall the map
R from above (1.7).

Lemma 5.3. Assume that the vector space V becomes a Uq(L(sl2))-module on which
K = X31, K−1 = X13 and

A = aX01 + a−1X12, A∗ = bX23 + b−1X30.

On this module,
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(i) R looks as follows in the equitable presentation:

R = a(X01 −X31) + a−1(X12 −X13). (5.1)

(ii) R looks as follows in the Chevalley presentation:

R = (q − q−1)(aqK0F0 − a−1E1). (5.2)

Proof. (i) In line (1.7) eliminate A,K,K−1 using the assumptions of the present lemma.
(ii) Evaluate the right-hand side of (5.1) using the identifications from Lemma 3.1 and Note
3.2.

We now present our main result. Recall the Bockting operator ψ from (1.9), (1.10).

Theorem 5.4. Assume that the vector space V becomes a Uq(L(sl2))-module on which
K = X31, K−1 = X13 and

A = aX01 + a−1X12, A∗ = bX23 + b−1X30.

Consider an L-operator for V with parameter a2. Then on V ,

ψ = −a(L00)−1L01 (5.3)

provided that L00 is invertible.

Proof. Let ψ̂ denote the expression on the right in (5.3). We show ψ = ψ̂. To do this, we
show that ψ̂ satisfies (1.9), (1.10). Concerning (1.9), by Lemma 4.3 the equation K0ψ̂ =

q2ψ̂K0 holds on V . By Lemma 3.1, Note 3.2, and the construction, we obtainK0 = X31 =

K on V . By these comments Kψ̂ = q2ψ̂K on V . By this and (1.5) we obtain ψ̂Ui ⊆ Ui−1

for 0 ≤ i ≤ d. So ψ̂ satisfies (1.9). Next we show that ψ̂ satisfies (1.10). Since L00 is
invertible and K0K1 = 1 it suffices to show that on V ,

L00(ψ̂R−Rψ̂) = (q − q−1)L00(K0 −K1). (5.4)

By this and (5.2) it suffices to show that on V ,

aqL00(ψ̂K0F0 −K0F0ψ̂)− a−1L00(ψ̂E1 − E1ψ̂) + L00(K1 −K0) = 0. (5.5)

We examine the terms in (5.5). By Lemma 4.3 and the construction, the following hold on
V :

L00ψ̂K0F0 = −aL01K0F0

= −aq−2K0L01F0

= −aq−1K0(F0L01 − a−2L00 + a−2K1L11)

and

L00K0F0ψ̂ = K0L00F0ψ̂

= q−1K0(a−2K1L10 + F0L00)ψ̂

= q−1K0(a−2K1L10ψ̂ − aF0L01)
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and

L00ψ̂E1 = −aL01E1

= −a(qE1L01 + L11 − L00K1)

= −a(qE1L01 + L11 −K1L00)

and

L00E1ψ̂ = (L10 + qE1L00)ψ̂

= L10ψ̂ − qaE1L01

and

L00K1 = K1L00, L00K0 = K0L00.

To verify (5.5), evaluate its left-hand side using the above comments and simplify the result
using K0K1 = 1. The computation is routine, and omitted. We have shown that ψ̂ satisfies
(1.10). The result follows.
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J. 13 (2007), 39–62, doi:10.1007/s11139-006-0242-4.

[16] T. Ito and P. Terwilliger, Two non-nilpotent linear transformations that satisfy the cubic q-Serre
relations, J. Algebra Appl. 6 (2007), 477–503, doi:10.1142/s021949880700234x.

[17] T. Ito and P. Terwilliger, The augmented tridiagonal algebra, Kyushu J. Math. 64 (2010), 81–
144, doi:10.2206/kyushujm.64.81.

[18] J. C. Jantzen, Lectures on Quantum Groups, volume 6 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, Rhode Island, 1996.

[19] C. Kassel, Quantum Groups, volume 155 of Graduate Texts in Mathematics, Springer-Verlag,
New York, 1995, doi:10.1007/978-1-4612-0783-2.

[20] P. P. Kulish and E. K. Sklyanin, Solutions of the Yang-Baxter equation, J. Sov. Math. 19 (1982),
1596–1620, doi:10.1007/bf01091463.

[21] P. P. Kulish and N. Yu. Reshetikhin, Quantum linear problem for the sine-Gordon equation and
higher representations, J. Sov. Math. 23 (1983), 2435–2441, doi:10.1007/bf01084171.

[22] K. Miki, Finite dimensional modules for the q-tetrahedron algebra, Osaka J. Math. 47 (2010),
559–589, https://projecteuclid.org/euclid.ojm/1277298918.

[23] P. Terwilliger, Two relations that generalize the q-Serre relations and the Dolan-Grady re-
lations, in: A. N. Kirillov, A. Tsuchiya and H. Umemura (eds.), Physics and Combina-
torics 1999, World Scientific Publishing, River Edge, New Jersey, pp. 377–398, 2001, doi:
10.1142/9789812810199 0013, proceedings of the International Workshop held at Nagoya
University, Nagoya, August 23 – 27, 1999.

[24] P. Terwilliger, The equitable presentation for the quantum group Uq(g) associated with a sym-
metrizable Kac-Moody algebra g, J. Algebra 298 (2006), 302–319, doi:10.1016/j.jalgebra.
2005.11.013.


