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A B S T R A C T	   A R T I C L E   I N F O	

This	paper	presents	a	bi‐objective	optimization	model	for finding the	optimal	
number	and	optimal	aperiodic	times	for	the	inspections	of	finite‐life	repaira‐
ble	systems	when	the	availability	of	the	component	and	the	total	maintenance	
cost	are	under	consideration.	The	model	utilizes	the	delay‐time	concept	under	
perfect	 inspection	 assumption.	 The	 defect	 arrival	 process	 is	modelled	 using	
the	nonhomogeneous	Poisson	process	and	the	failure	times	are	probabilistic.	
The	solution	to	this	problem	is	NP‐hard,	therefore,	a	mutation‐based	genetic	
algorithm	 has	 been	 designed	 to	 solve	 the	 model.	 The	 effectiveness	 of	 the	
model	was	demonstrated	using	seven	illustrative	examples	and	compared	to	
an	 existing	 classical	 periodic	 inspection	model	 that	 uses	 a	 fixed	 number	 of	
inspections.	The	results	showed	that	the	proposed	model	did	better	(in	all	of	
the	attributes)	than	the	aperiodic	model	that	using	a	fixed	number	of	inspec‐
tions.	Furthermore,	 the	results	showed	that	 the	proposed	model	gave	better	
results	 than	 a	 single‐objective	 aperiodic	 model.	 The	 proposed	 model	 is	 a	
general	model	that	can	be	implemented	with	different	rates	of	occurrence	of	
defects	and	different	delay‐time	distributions.	Also	this	model	can	be	extend‐
ed	easily	to	cover	complex	systems	and	imperfect	inspection	cases.	
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1. Introduction 

As	 equipment	 age,	 the	 failure	 and	 deterioration	 related	maintenance	 costs	 and	 interruptions	
increase;	hence,	the	need	for	effective	maintenance	policies	become	more	obvious.	Traditionally,	
corrective	maintenance	is	the	most	prevailing	maintenance	type	practiced.	It	was	estimated	that	
80	%	of	the	industry	dollars	is	spent	on	maintaining	chronic	failures	of	machines,	systems,	and	
people.	 Despite	 this	 huge	 figure,	 corrective	maintenance	 cannot	 improve	 the	 reliability	 of	 the	
machines/systems	as	the	maintenance	action	is	taken	after	the	failure.	In	the	other	hand,	it	was	
estimated	that	eliminating	many	of	those	chronic	failures	by	implementing	an	effective	mainte‐
nance	policies	can	reduce	this	percentage	between	40	%	and	60	%	[1].	Preventive	maintenance	
(PM)	is	one	of	the	most	widely	used	maintenance	types	that	can	reduce	the	cost	of	maintaining	
machines	and	systems	due	to	its	ability	of	discovering	hidden	failures	that	may	constitute	up	to	
40	%	of	the	failure	modes	in	complex	industrial	systems	[2].	Many	inspection	models	were	de‐
veloped	 in	 literatures	 to	 optimize	 the	 inspection	 process	 in	 order	 to	 reduce	 the	 number	 of	
chronic	failures.	Earlier	inspection	models	aimed	to	optimize	the	number	of	inspections	per	unit	
of	time	by	minimizing	the	total	downtime	or	maximizing	the	profit	which	were	expressed	as	a	
function	of	number	of	inspections	[3‐7].	These	models	did	not	discuss	the	periodicity	of	the	in‐
spections	 but	 rather	 found	 the	 optimum	number	 of	 inspections	 per	 unit	 of	 time.	More	 recent	
inspection	models	were	developed	based	on	delay‐time	concept	introduced	by	[8]	which	is	very	
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similar	to	the	Potential	Failure	interval	in	reliability	centered	maintenance	developed	later	[2].	
Delay‐time	 concept	 divides	 the	 failure	 process	 into	 two	 stages:	 defect	 initialization	 stage	 and	
failure	stage	and	defines	the	time	elapsed	between	the	defect	initialization	and	the	correspond‐
ing	actual	 failure	as	 the	delay‐time.	This	concept	 is	very	 important	 in	preventive	maintenance	
PM	because	 it	 shows	 that	 there	 is	 a	 time	window	 (equals	 to	 the	 delay‐time)	 that	 the	mainte‐
nance	crew	can	detect	and	fix	the	defect	before	it	turns	into	a	chronic	failure.	This	concept	 in‐
spired	many	 researchers	 to	 develop	 optimization	 inspection	models	 to	 reduce	 the	 number	 of	
chronic	failures.	The	essence	of	those	inspection	models	is	to	find	the	optimal	periodicity	of	the	
inspections	that	will	reduce	the	expected	number	of	chronic	 failures.	Christer	et	al.	and	Baker,	
used	 the	 delay‐time	 concept	 in	 the	 industrial	 plant	 to	 find	 the	 periodicity	 of	 the	 inspections	
where	 the	 value	 of	 the	 delay‐time	 was	 considered	 probabilistic	 [9‐13].	Wang	 and	Majid	 [14]	
used	the	concept	of	delay‐time	in	offshore	oil	platform	plant	 to	optimize	 the	periodicity	of	 the	
inspections	by	minimize	the	system	downtime.	The	work	of	Dawotola	et	al.	 [15]	used	the	con‐
cept	of	delay‐time	in	very	long	cross‐country	petroleum	pipeline	system	where	the	periodicity	of	
the	inspections	was	determined	by	minimizing	the	total	economic	loss	of	failure	while	taking	the	
human	risk	and	maintenance	budget	as	constraints.	Abdel‐Hameed	[16]	implemented	increasing	
jump	Markov	 process	 to	 optimize	 the	 periodicity	 of	 inspections.	 Okumura	 et	 al.	 [17,	 18]	 pro‐
posed	 a	 stochastic‐process	 free	method	 for	 optimizing	 the	 discrete	 time	 point	 inspections	 for	
single	unit	 system	using	 stochastic	 processes.	Wang	 [19]	proposed	 two	models	 one	 for	 single	
component	 and	another	one	 for	 complex	 component	based	on	delay‐time	concept	 and	 in	 [20]	
the	author	extended	the	delay‐time	concept	and	instead	of	assuming	that	the	failures	can	be	de‐
tected	only	by	inspections,	he	assumes	that	the	failures	can	be	revealed	by	themselves.	Based	on	
this	extension,	he	proposed	an	inspection	model	for	two	types	of	inspections	and	repairs	to	de‐
termine	the	optimal	constant	periodicity	of	the	inspections.	Later,	Wang	et	al.	[21]	extended	the	
work	of	Wang	[20]	to	multi‐component	multi‐failure	mode	inspection	model.		

Unfortunately,	 very	 little	work	was	devoted	 to	 consider	 the	multi‐objective	optimization	of	
the	 inspection	models	under	delay‐time	concept.	Under	delay‐time	concept,	most	of	 the	 litera‐
tures	 aimed	 to	 optimize	 the	 inspection	 policy	 based	 on	 a	 single	 objective	 namely,	minimizing	
some	 form	of	maintenance	 cost	 [17,	 22‐27].	Other	 objectives	 are	 also	 found	 in	 the	 literatures	
such	as	maximizing	the	availability	or	the	reliability	of	the	system	[6,	28,	29].		

Few	of	the	studies	in	the	literatures	considered	both	the	number	of	inspections	and	the	tim‐
ing	of	these	 inspections	in	there	models.	The	majority	of	them	optimized	either	the	number	of	
inspection	per	unit	time	[4‐7]	or	considered	a	constant	number	of	inspections	and	optimized	the	
times	at	which	the	inspections	were	made	[30].	Moreover,	a	lot	of	the	optimization	models	in	the	
literatures	 were	 solved	 by	 a	 special	 designed	 algorithms	 that	 can	 be	 used	 only	 to	 the	 corre‐
sponding	inspection	model	or	algorithms	that	were	time	inefficient	like	enumeration.	

In	this	paper	a	bi‐objective	inspection	optimization	model	is	considered	to	optimize	the	num‐
ber	and	the	timing	of	inspections	utilizing	two	objectives:	maximizing	the	availability	and	mini‐
mizing	 the	maintenance	 cost	 of	 the	 system.	 The	model	 utilized	 the	 delay‐time	 concept	 under	
perfect	 inspection	 assumption.	 The	defect	 arrival	 process	 is	modelled	using	nonhomogeneous	
Poisson	process	and	the	failure	times	are	probabilistic.	Genetic	algorithm,	which	is	a	generic	and	
efficient	optimization	algorithm,	was	used	to	optimize	this	model.	

The	paper	 contains	 the	 following	 sections:	 Section	2	 shows	 the	 notations	 and	 the	 assump‐
tions	of	the	model.	Section	3	presents	the	model	formulation	based	on	delay‐time	concept.	Sec‐
tion	4	presents	 the	details	of	 the	 genetic	 algorithm	used.	 Section	5	presents	 the	experimenta‐
tions	and	discussion,	and	finally,	section	6	concludes.	

2. Assumptions and notations 

This	section	lists	the	assumptions	and	notations	used	in	this	paper.	The	following	assumptions	
and	 notations	 can	 be	 explained	 on	 the	 light	 of	 Fig.	 1	 which	 shows	 a	 typical	 defect‐failure‐
inspection	relation	under	delay‐time	concept.	
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Fig.	1	The	relationship	between	defects,	failures,	and	inspections	under	the	delay‐time	concept	

	
Consider	a	system	with	a	finite	life	ܮ,	the	objective	of	this	proposed	model	is	to	find	the	optimal	
inspection	policy;	i.e.,	the	optimal	number	of	inspections	݊	and	the	optimal	timing	for	the	inspec‐
tions	࢚	to	achieve	the	highest	possible	availability	ܣୱ	and	the	lowest	possible	maintenance	cost	
	:follows	as	are	model	proposed	the	underlying	assumptions	The	system.	the	for	௠ܥ

 The	system	is	treated	as	single	unit.	
 One	mode	of	failures	(defects)	is	analyzed	and	the	defects	are	assumed	to	be	independent.	
 The	defects	arise	as	a	nonhomogenous	Poisson	process	with	Rate	of	Occurrence	of	Defects	

(ROCOD)	ߣሺݑሻ	at	time	ݑ.		
 A	failure	happens	after	the	initialization	of	a	defect	and	the	corresponding	delay‐time	݄	is	

passed.	
 The	delay‐time	distribution	is	independent	of	the	time	origin	ݑ.	
 The	probability	density	function	for	the	delay‐time	݄	is	݂ሺ݄ሻ	with	cumulative	density	func‐

tion	ܨሺ݄ሻ.	
 Inspections	are	carried	out	at	࢚ ൌ ሼݐଵ, ,ଶݐ ,ଷݐ … , 	݊	and	࢚	are	variables	decision	the	hence	௡ሽ,ݐ

where	࢚	takes	discrete	values.	
 Only	one	type	of	inspection	is	considered	and	thus	the	inspections	are	identical.	
 Inspections	are	perfect	in	that	all	the	defects	present	at	the	time	of	inspection	will	be	rec‐

ognized.	
 The	mean	inspection	time	is	݀௜௡௦	during	which	the	system	is	down.	
 The	mean	time	to	rectify	a	defect	is	݀௥	during	which	the	system	is	down.	
 The	mean	time	to	repair	a	failure	is	݀௙	during	which	the	system	is	down.	
 The	average	inspection	cost	is	ܿ௜௡௦.	
 The	average	rectification	cost	is	ܿ௥.	
 The	average	repairing	cost	is	 ௙݀.	
 ܧሾ ௗܰሺݐ௜ିଵ, ,௜ିଵݐሺ	interval	the	in	defects	of	number	expected	the	represents	௜ሻሿݐ 	.௜ሻݐ
 ൣܧ ௙ܰሺݐ௜ିଵ, ,௜ିଵݐሺ	interval	the	in	failures	of	number	expected	the	represnts	௜ିଵ൧ݐ|௜ሻݐ 	.௜ሻݐ
 ܧሾ ௥ܰሺݐ௜ିଵ, 	.௜ݐ	time	at	݅	inspection	by	defects	rectified	of	number	expected	the	represents	௜ሻሿݐ
 ܣ௦	denotes	the	nonparametric	availability	of	the	system	during	its	life	ܮ.	
 ܥ௠	denotes	the	expected	maintenance	cost	of	the	system	during	its	life	ܮ.	
 ܤ௠	denotes	the	maintenance	budget	allocated	for	the	system	during	its	life	ܮ.	
 ܵܮ஺ೞis	the	satisfaction	level	at	ܣ௦.	
 ܵܮ஼೘	is	the	satisfaction	level	at	ܥ௠.	

3. Model formulation 

Consider	 a	 nonhomogeneous	 defect	 arrivals	 process	with	 arrival	 rate	 given	 by	 	,ሻݑሺߣ then	 the	
number	of	defects	in	the	infinitesimal	time	ߜሺݑሻ	is	ߣሺݑሻߜሺݑሻ.	Integrating	ߣሺݑሻߜሺݑሻ	over	the	in‐
terval	 ሺݐ௜ିଵ, 	௜ሻݐ gives	 the	 expected	 number	 of	 defects	 in	 that	 interval.	Mathematically,	 the	 ex‐
pected	number	of	defects	in	the	interval	ሺݐ௜ିଵ, 	is	௜ሻݐ
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ሾܧ ௗܰሺݐ௜ିଵ, ௜ሻሿݐ ൌ න ݑሻ݀ݑሺߣ
௧೔

௧೔షభ

	 (1)

	

The	probability	that	any	of	these	defects	who	arose	in	time	u	and	is	in	the	interval	ሺݐ௜ିଵ, 	will	௜ሻݐ
develop	 into	 a	 failure	 in	 the	 interval	 ൫ݑ, ݑ ൅ 	ሻ൯ݑሺߜ is	 	.ሻݑሺߜሻݑሺܨሻݑሺߣ Integrating	 λሺuሻFሺuሻδሺuሻ	
over	the	interval	ሺݐ௜ିଵ, ‐Mathemat	interval.	that	over	failures	of	number	expected	the	give	will	௜ሻݐ
ically,	the	expected	number	of	failures	in	the	interval	ሺt୧ିଵ, t୧ሻ	is	
	

ൣܧ ௙ܰሺݐ௜ିଵ, ௜ሻ൧ݐ ൌ න ௜ݐሺܨሻݑሺߣ െ ݑሻ݀ݑ
௧೔

௧೔షభ

	

	
(2)

Since	perfect	inspection	is	assumed,	at	the	݅௧௛	inspection	which	is	conducted	at	time	ݐ௜,	the	ex‐
pected	number	of	rectifications	is	simply	the	difference	between	the	expected	number	of	defects	
arrived	in	the	interval	ሺݐ௜ିଵ, 	,.i.e	failures,	into	developed	defects	of	number	expected	the	and	௜ሻݐ
the	expected	number	of	 failures,	 in	 the	same	 interval.	Mathematically	 the	expected	number	of	
rectifications	in	the	interval	ሺݐ௜ିଵ, 	is	௜ሻݐ
	

ሾܧ ௥ܰሺݐ௜ሻሿ ൌ ሾܧ ௗܰሺݐ௜ିଵ, ௜ሻሿݐ െ ൣܧ ௙ܰሺݐ௜ିଵ, 	௜ሻ൧ݐ (3)
	

The	nonparametric	availability	of	 the	system	can	be	seen	as	the	ratio	between	the	uptime	and	
the	down	time.	Mathematically	the	nonparametric	availability	ܣ௦	can	be	given	as	
	

௦ܣ ൌ
݁݉݅ݐ݌ܷ

݁݉݅ݐ݌ܷ ൅ ݁݉݅ݐ݊ݓ݋ܦ
	

	
(4)

The	uptime	of	the	system	is	simply	the	life	time	of	the	system,	ܮ,	minus	the	downtime	of	the	sys‐
tem	during	the	system's	life.	This	means	that	the	uptime	plus	the	downtime	is	the	ܮ,	the	life	of	
the	system.	

The	system	downtime	is	calculated	as	the	sum	of	four	components,	namely:	the	total	expected	
rectification	time	corresponding	to	the	݊	inspections;	the	total	expected	correction	time	corre‐
sponding	to	the	݊	inspections,	the	total	time	for	the	݊	inspections,	and	finally,	the	expected	cor‐
rection	time	corresponding	to	the	period	between	the	last	inspection	time	ݐ௡	and	the	life	of	the	
system,ܮ.	Mathematically,	the	expected	availability	of	the	system	during	its	life	ܮ	can	be	given	as		

	

௦ܣ ൌ
ܮ െ ቂ∑ ൫݀௥ܧሾ ௗܰሺݐ௜ିଵ, ௜ሻሿݐ ൅ ݀௙ൣܧ ௙ܰሺݐ௜ିଵ, ௜ሻ൧൯ݐ

௡
௜ୀଵ ൅ ݊݀௜௡௦ ൅ ݀௙ൣܧ ௙ܰሺݐ௡, ሻ൧ቃܮ

ܮ
	 (5)

The	system	corrective	maintenance	cost	during	its	life	ܮ,	is	also	the	sum	of	four	components	
namely:	 the	 total	 expected	 rectification	 cost	 corresponding	 to	 the	 ݊	 inspections;	 the	 total	 ex‐
pected	correction	cost	corresponding	to	the	݊	inspection	periods,	the	total	cost	for	the	n	inspec‐
tions,	and	finally,	the	expected	correction	cost	corresponding	to	the	period	between	the	last	in‐
spection	time	ݐ௡	and	the	life	of	the	system,	ܮ.	Mathematically,	the	expected	maintenance	cost	of	
the	system	during	its	life	ܮ	can	be	given	as	

	

௠ܥ ൌ෍൫ܿ௥ܧሾ ௗܰሺݐ௜ିଵ, ௜ሻሿݐ ൅ ௙ܿൣܧ ௙ܰሺݐ௜ିଵ, ௜ሻ൧൯ݐ

௡

௜ୀଵ

൅ ݊ܿ௜௡௦ ൅ ௙ܿൣܧ ௙ܰሺܮ, 	௡ሻ൧ݐ

	

(6)

The	 two	 objective	 functions	 of	 the	 proposed	model	 can	 be	 expressed	 as	 the	 total	 satisfaction	
level	 	ܮܵܶ about	 the	 inspection	 policy.	 The	 total	 satisfaction	 level	 can	 be	 calculated	 as	 the	
weighted	average	of	the	maintenance	cost	satisfaction	level	ܵܮ஼೘	and	the	availability	satisfaction	
level	ܵܮ஺ೞ.	To	develop	the	two	satisfaction	levels,	two	membership	functions	were	defined:	one	
for	ܣ௦	(Fig.	2)	and	one	for	ܥ௠	(Fig.	3).	
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Fig.	2	Membership	function	for	the	ܣ௦	
	

	
Fig.	3	Membership	function	for	the	ܥ௠	

	
	
Using	those	two	membership	functions,	the	ܵܮ஺ೞ	and	ܵܮ஼೘	are	given	by		

஺ೞܮܵ ൌ ௦ܣ
	

(7)

஼೘ܮܵ ൌ 1 െ
௠ܥ
௠ܤ

	

	
(8)

	is	ܮܵܶ
ܮܵܶ ൌ ஺ೞܮܵݓ ൅ ሺ1 െ ஼೘ܮሻܵݓ (9)

Putting	all	this	together,	gives	the	proposed	inspection	model	as	

ݔܽ݉ ܮܵܶ
subject	to	

௠ܥ ൑ 	௠ܤ
௜ݐ ൒ ௜ିଵݐ ൅ ݀௜௡௦	

	

(10)

In	this	model	the	decision	variables	are	the	number	of	inspections,݊,	and	the	inspection	times,	
	inspection	the	for	level	satisfaction	total	the	maximize	will	mode	this	of	function	objective	The.࢚
policy,	〈݊, 	,〈࢚ i.e,	find	〈݊, 	and	(஺ೞܮܵ	highest)	availability	possible	highest	the	to	corresponding	〈࢚
lowest	 possible	maintenance	 cost	 (highest	 	.(஼೘ܮܵ The	 constraint	 ௜ݐ ൒ ௜ିଵݐ ൅ ݀௜௡௦	 dictates	 that	
the	݅௧௛	inspection	should	be	at	least	݀௜௡௦	apart	from	the	previous	inspection,	i.e.,	the	inspection	
times	are	discrete.	The	constraint	ܥ௠ ൑ 	.cost	maintenance	the	on	cap	upper	an	puts	௠ܤ

4. Genetic algorithm 

Genetic	algorithm	(GA)	is	an	evolutionary	optimization	algorithm	inspired	by	Darwin's	natural	
selection	 theory.	 It	 enhances	 the	 solutions	 through	 successive	 applications	 of	 exploration	 and	
exploitation	operators.	The	genetic	algorithm	encodes	the	solutions	into	vectors	called	chromo‐
somes	where	each	value	in	the	chromosome	is	called	a	gene.	A	fitness	function	is	used	to	calcu‐
late	the	fitness	of	each	chromosome.	The	fitness	values	are	used	to	determine	the	parents	by	a	
step	called	selection	that	will	generate	the	next	generation	of	chromosomes.	Usually	crossover	
operator	is	used	to	generate	the	chromosomes	from	the	parents	for	the	next	generation	(called	
offspring)	in	a	step	called	reproduction.	A	mutation	operator	is	used	to	mutate	the	new	chromo‐
somes	generated	in	the	reproduction	step.	The	mutated	offspring	and	some	of	the	parents	usual‐
ly	constitute	the	individuals	in	the	next	generation.	This	evolutionary	process	(reproduction	and	
selection)	terminates	when	the	preset	termination	criterion	is	satisfied.	

The	elements	of	the	genetic	algorithm	used	in	this	study	are	presented	in	the	following	sub‐
sections.	
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4.1 Chromosome representation  

Each	 chromosome	has	 ܮ െ 1	 binary	 genes.	 Binary	 chromosome	 representation	 is	 selected	 be‐
cause	of	its	ease	of	use.	Each	gene	carries	two	pieces	of	information:	the	time	(for	example	a	day	
or	a	month)	and	whether	an	inspection	is	carried	out	at	this	time	or	not.		

Consider	the	chromosome	shown	in	Fig.	4	for	a	possible	inspection	policy.		
	

0	 0	 1	 0	 0	 0	 0	 1	 0	 1	 …	 1	 …	 1	 …	 1	 …	 0	

t1	 t2	 t3	 ti‐1	 ti	 tn	

Fig.	4	Chromosome	representation	for	one	possible	inspection	policy	(time	ti	in	days)	
	
This	 chromosome	suggests	 the	use	of	݊	 inspections.	 For	 example	 the	 first	 inspection	 is	 in	 the	
third	day,	 the	second	inspection	 is	 in	the	8th	day.	This	means	that	there	are	no	 inspections	be‐
tween	the	third	day	and	the	8th	day,	and	the	third	inspection	is	in	day	number	10.	Moreover,	the	
first	gene	and	the	last	gene	must	always	equal	to	zero	because	those	genes	correspond	to	the	fist	
day	 and	 the	 last	 day	 in	 the	 system	 life,	which	 cannot	have	 inspections	 in	 them.	Decoding	 this	
chromosome	gives	 the	 inspection	policy	 that	consists	of	 the	number	of	 inspections	and	 timing	
for	the	inspections,	i.e.	〈݊, 	.〈࢚

It	should	be	clear	that	the	possible	number	of	different	inspection	polices	for	a	L‐life	system	
is	2௅ିଶ	policies	which	is	typically	a	huge	number.	For	example	the	possible	number	of	different	
inspection	policies	for	a	365‐day	life	system	is	over	7.5E+109	policies.		

4.2 Fitness function and selection 

The	fitness	function	used	in	this	GA	calculates	the	total	satisfaction	level.	This	function	is:	
	

ܮܵܶ ൌ ݓ
ܮ െ ቂ∑ ൫݀௥ܧሾ ௗܰሺݐ௜ିଵ, ௜ሻሿݐ ൅ ݀௙ൣܧ ௙ܰሺݐ௜ିଵ, ௜ሻ൧൯ݐ

௡
௜ୀଵ ൅ ݊݀௜௡௦ ൅ ݀௙ൣܧ ௙ܰሺݐ௡, ሻ൧ቃܮ

ܮ

൅	ሺ1 െ ሻݓ ቎1 െ෍൫ܿ௥ܧሾ ௗܰሺݐ௜ିଵ, ௜ሻሿݐ ൅ ௙ܿൣܧ ௙ܰሺݐ௜ିଵ, ௜ሻ൧൯ݐ

௡

௜ୀଵ

൅ ݊ܿ௜௡௦

൅ ௙ܿൣܧ ௙ܰሺܮ, 	௡ሻ൧቏ݐ

(11)

	
In	this	step,	the	fitness	values	for	all	of	the	chromosomes	in	the	generation	are	evaluated	and	the	
chromosome	with	the	best	fitness	value	is	chosen	and	selected	as	the	best	chromosome.	Ties	are	
broken	arbitrary.	

4.3 Mutation operator and reproduction 

In	 the	proposed	GA	approach,	no	 crossover	operator	 is	used;	 instead,	mutation	operator	with	
heavy	mutation	rate	 is	used	to	explore	the	sample	space.	The	mutation	operator	works	on	the	
best	chromosome	found	in	the	generation	to	produce	the	offspring	as	follows:	

 Select	a	random	number	ܰܩ	between	2	and	ܮ െ 1.	
 Scramble	 the	numbers	between	2	and	ܮ െ 1,	which	 represent	 the	 genes	numbers	 in	 the	

best	chromosome	found	in	the	generation,	and	flip	the	value	of	the	first	ܰܩ	numbers	such	
that	if	the	gene	value	equals	1	it	will	be	changes	to	0	and	vice	versa.	

 Repeat	steps	1	and	2,	ܰܲ െ 1	times,	where	ܰܲ	is	the	population	size,	to	produce	ܰܲ െ 1	
offspring.	

 The	best	chromosome	along	with	the	offspring	will	be	selected	to	be	the	population	for	the	
next	generation	based	on	the	fitness	value.		
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5. Experimentations and results 

In	this	section,	7	different	examples	will	be	illustrated	and	solved	with	the	proposed	model.	The	
results	 will	 be	 compared	 with	 the	 results	 obtained	 by	 Bi‐objective	 aperiodic	 model	 but	 with	
fixed	number	of	inspections	and	with	the	results	of	single	objective	model	with	variable	number	
of	inspections.	This	comparative	analysis	is	aimed	to	show	the	importance	of	modelling	inspec‐
tion	models	with	variable	number	of	inspections	and	Bi‐objective	rather	than	modelling	the	in‐
spection	models	with	fixed	number	of	inspections	and	single	objective.	Exponential	ROCOD	ߣሺݐሻ	
given	by	݁ߙఉ௧	, ߚ	and	ߙ ൐ 0	and	exponential	delay‐time	݂ሺݐሻ	given	by	ି݁ߛఊ௧,	ߛ ൐ 0	are	used	tra‐
ditionally	in	the	literatures	such	as	references	[30‐33].	For	such	ROCOD	and	݂ሺݐሻ,	the	expected	
number	of	defects,	rectifications,	and	failures	are	given	as	follows:	
	

ሾܧ ௗܰሺݐ௜ିଵ, ௜ሻሿݐ ൌ න ݐఉ௧݀݁ߙ
௧೔

௧೔షభ

ൌ
ߙ
ߚ
ൣ݁ఉ௧೔ െ ݁ఉ௧೔షభ൧	

	
(12)

	

ൣܧ ௙ܰሺݐ௜ିଵ, ௜ሻ൧ݐ ൌ න ௜ݐሺܨሻݑሺߣ െ ݑሻ݀ݑ
௧೔

௧೔షభ

ൌ	

ൌ න ఉ௨൫1݁ߙ െ ݁ିఊሺ௧೔ି௨ሻ൯݀ݑ
௧೔

௧೔షభ

	

ൌ න ఉ௨݁ߙ െ ݑఉ௨݁ିఊሺ௧೔ି௨ሻ݀݁ߙ
௧೔

௧೔షభ

	

ൌ
ߙ
ߚ
ൣ݁ఉ௧೔ െ ݁ఉ௧೔షభ൧ െ න ݑఉ௨݁ିఊ௧೔݁ఊ௨݀݁ߙ

௧೔

௧೔షభ

	

ൌ
ߙ
ߚ
ൣ݁ఉ௧೔ െ ݁ఉ௧೔షభ൧ െ ఊ௧೔ି݁ߙ ቈ

݁ሺఉାఊሻ௧೔ െ ݁ሺఉାఊሻ௧೔షభ

ሺߚ ൅ ሻߛ
቉	

	
	

(13)

ሾܧ ௦ܰሺݐ௜ሻሿ ൌ ሾܧ ௗܰሺݐ௜ିଵ, ௜ሻሿݐ െ ൣܧ ௙ܰሺݐ௜ିଵ, 	௜ሻ൧ݐ

ൌ ఊ௧೔ି݁ߙ ቈ
݁ሺఉାఊሻ௧೔ െ ݁ሺఉାఊሻ௧೔షభ

ሺߚ ൅ ሻߛ
቉	

(14)

	
Table	1	shows	the	parameters	used	in	the	7	examples.	

	
Table	1	Parameters	used	in	Examples	1‐7	

Example	#	 	ሻݑሺߣ ݂ሺ݄ሻ ݓ Life	(year)	 ௠ܤ
1	 ሻݑሺߣ ൌ 0.025݁ሺଵ.଼௘ିଶሻ௨	 ݂ሺ݄ሻ ൌ 0.0625݁ି଴.଴଺ଶହ௛	 ݓ ൌ 0.5 20	 $5.0E6
2	 ሻݑሺߣ			 ൌ 0.025	 ݂ሺ݄ሻ ൌ 0.0625݁ି଴.଴଺ଶହ௛	 ݓ ൌ 0.5 20	 $5.0E6
3	 ሻݑሺߣ ൌ 0.025݁ሺଵ.଼௘ିଶሻ௨	 ݂ሺ݄ሻ ൌ 0.1݁ି଴.ଵ௛	 ݓ ൌ 0.5 20	 $5.0E6
4	 ሻݑሺߣ			 ൌ 0.025	 ݂ሺ݄ሻ ൌ 0.0625݁ି଴.଴଺ଶହ௛	 ݓ ൌ 0.5 10	 $5.0E6
5	 ሻݑሺߣ ൌ 0.025݁ሺଵ.଼௘ିଶሻ௨	 ݂ሺ݄ሻ ൌ 0.0625݁ି଴.଴଺ଶହ௛	 ݓ ൌ 0,0 20	 $5.0E6
6	 ሻݑሺߣ ൌ 0.025݁ሺଵ.଼௘ିଶሻ௨	 ݂ሺ݄ሻ ൌ 0.0625݁ି଴.଴଺ଶହ௛	 ݓ	 ൌ 1.0 20	 $5.0E6
7	 ሻݑሺߣ ൌ 0.025݁ሺଵ.଼௘ିଶሻ௨	 ݂ሺ݄ሻ ൌ 0.0625݁ି଴.଴଺ଶହ௛	 ݓ ൌ 0.5 20	 $2.5E6

	
The	results	for	the	first	example	will	be	discussed	in	details	to	show	how	the	model	works.	

The	results	for	the	rest	of	the	examples	will	be	listed	in	Table	2	for	comparison.	
Fig.	5	shows	the	evolution	of	the	TSL	values	throughout	the	generations	using	the	proposed	

model.	The	 figure	 shows	 that	 the	algorithm	converged	 to	 a	 value	of	0.9400.	This	 convergence	
happened	after	120	generations	and	stayed	for	the	rest	of	the	generations	through	the	genera‐
tion	 number	 150.	 The	 processing	 time	was	 0.57	 seconds	with	 population	 size	 of	 10	 chromo‐
somes	and	150	generations.		
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Fig.	5	The	evolution	of	the	TSL	value	throughout	the	generations	using	the	proposed	model	

	
The	best	inspection	policy	produced	by	the	proposed	model	for	Example	1	consisted	of	123	in‐
spections	at	the	following	timing	(in	days):	
	

t	=	{ 156	 350	 537	 742	 893	 1095	 1288	 1437	 1547	 1703	

	 1887	 1960	 2080	 2165	 2266	 2341	 2486	 2530	 2613	 2678	

	 2747	 2839	 2917	 3016	 3097	 3170	 3291	 3365	 3435	 3509	

	 3559	 3627	 3712	 3775	 3859	 3924	 3960	 4025	 4061	 4140	

	 4195	 4261	 4295	 4355	 4418	 4460	 4509	 4571	 4606	 4682	

	 4748	 4820	 4880	 4921	 4971	 5001	 5043	 5085	 5125	 5170	

	 5193	 5254	 5273	 5332	 5373	 5417	 5465	 5524	 5563	 5613	

	 5651	 5696	 5745	 5769	 5813	 5834	 5869	 5891	 5927	 5952	

	 5978	 6011	 6035	 6064	 6092	 6103	 6149	 6180	 6209	 6236	

	 6276	 6317	 6342	 6364	 6396	 6426	 6445	 6467	 6497	 6514	

	 6530	 6571	 6608	 6625	 6654	 6681	 6694	 6735	 6762	 6800	

	 6832	 6846	 6886	 6911	 6936	 6982	 6999	 7020	 7048	 7075	

	 7087	 7112	 7127	}	 		 		 		 		 		 		
	

Fig.	6	shows	a	histogram	for	the	number	of	inspections	in	each	of	the	twenty	years.	The	histo‐
gram	shows	that	the	number	of	inspections	increased	with	the	life	of	the	system.	For	example	in	
the	first	1200	days	of	the	system	life,	the	model	suggested	6	inspections	while	in	the	last	1200	
days	of	the	system	life	the	model	suggested	to	have	51	inspections.	This	increase	in	the	number	
of	inspections	coincides	with	the	fact	that	the	system	is	aging.	As	the	system	ages,	the	number	of	
defects	 increases	and	 the	delay‐time	of	 the	defects	decreases	which	 force	 the	model	 to	assign	
more	inspections	toward	the	end	of	the	system	life.		

Table	2	shows	the	results	of	the	7	examples	for	the	proposed	model	along	with	the	results	for	
the	aperiodic	model	with	fixed	number	of	inspections	where	the	number	of	inspections	was	30	
inspections.	The	table	shows	that	the	proposed	model	is	better,	in	all	of	the	attributes,	than	the	
aperiodic	model	with	 fixed	number	of	 periods	 except	 for	Example	 2	where	 the	number	of	 in‐
spections	is	equal.	Basically,	in	Example	2,	the	two	models	are	equivalent.	Example	4	shows	that	
the	proposed	model	chose	12	inspections	with	lower	maintenance	cost	and	higher	TSL	than	the	
aperiodic	model	with	 the	 fixed	 number	 of	 inspections	 30.	Moreover,	 the	 rest	 of	 the	 examples	
(except	Example	2)	show	that	even	the	number	of	inspections	is	higher	in	the	proposed	model	
than	 the	number	of	 inspections	 in	 the	aperiodic	model	with	 fixed	number	of	 inspections,	both	
the	maintenance	cost	and	 the	availability	 is	better	 in	 the	proposed	model.	These	results	 show	
that	treating	the	number	of	inspections	as	a	variable,	that	need	to	be	optimized	in	the	inspection	
model,	is	better	than	treating	it	as	a	constant	in	the	model	as	this	will	enhance	the	maintenance	
cost	and	the	availability	of	the	system	simultaneously.	
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Fig.	6	A	histogram	for	the	number	of	inspections	in	the	twenty	years	of	life	

	
Comparing	the	results	of	Examples	1,	5,	and	6	for	the	proposed	model,	one	can	see	that	the	

number	of	 inspections	 chosen	by	 the	model	 is	 significantly	different.	 In	Example	5,	where	 the	
objective	of	 the	model	was	to	maximize	the	availability	of	 the	system	alone,	 the	number	of	 in‐
spections	was	significantly	higher	than	the	number	of	inspections	in	Example	6	where	the	objec‐
tive	was	to	minimize	the	maintenance	cost	only.	Moreover	the	TSL	for	example	5	was	lower	than	
the	TSL	in	Example	6.	The	average	of	TSLs	of	Example	5	and	Example	6	is	almost	the	same	as	the	
TSL	 in	Example	1	where	the	two	objectives	were	considered.	Moreover	the	average	number	of	
inspections	for	the	two	examples	was	almost	the	same	as	the	number	of	inspections	in	Example	
1	but	the	average	cost	of	the	two	examples	was	higher	than	the	average	cost	in	Example	1.		

To	better	understand	what	happened	in	Examples	1,	5,	and	6	and	why	it	happened.	Consider	
Fig.	 7	which	 shows	 the	 relation	 between	 the	ܣ௦	 and	 	.௠ܥ The	 figure	 shows	 that	 there	may	 be	
more	than	one	value	of	ܣ௦	for	the	same	value	of	ܥ௠.	This	result	can	be	understood	on	the	light	of	
that	different	inspection	policies	may	have	the	same	cost	but	different	effect	on	the	availability	
of	the	system.	For	this	reason,	it	is	not	wise	to	use	maintenance	cost	as	the	only	objective	in	the	
inspection	models.	On	the	same	taken,	using	availability	as	the	only	objective	in	the	inspection	
model	may	result	in	choosing	an	expensive	inspection	policy	when	we	can	have	the	same	availa‐
bility	 using	 other	 inspection	 policies	 that	 have	 lower	 costs.	 This	 result	 emphasizes	 the	 im‐
portance	of	 treating	 the	 inspection‐policy	optimization	problem	as	a	multi‐objective	optimiza‐
tion	problem	rather	than	a	single	objective	problem.	

By	comparing	the	results	of	Example	1	and	the	results	of	Example	3,	it	is	easy	to	see	that	the	
increase	in	the	delay‐time	rate	caused	an	increase	in	the	number	of	inspections	(to	increase	the	
availability	of	the	system)	but	this	increase	also	increased	the	maintenance	cost,	the	matter	that	
caused	a	decrease	in	the	TSL.	This	result	is	expected	because	the	increase	in	the	delay‐time	rate	
means	 that	 the	 defects	will	 turn	 into	 failures	 faster	 and	 thus	more	 inspections	 are	 needed	 to	
prevent	the	defects	from	turning	into	failures	and	hence	reducing	the	availability	of	the	system.	

	
Table	2	The	results	of	the	7	examples	for	the	proposed	model	along	with	the	results	for		

the	aperiodic	model	with	30	inspections	
	 Example	1 Example	2	 Example	3 Example	4 Example	5 Example	6	 Example	7
	 Results	for	the	proposed	model

,௦ܣ ஺ೞܮܵ 	 0.9305	 0.9903	 0.9231 0.9908 N/A 0.9313	 0.9295
	௠ܥ 2.53e+05	 4.58e+04	 2.99e+05 2.298e+04 2.52e+05 2.67e+05	 2.54e+05
஼೘ܮܵ 	 0.9495	 0.9908	 0.9401 0.9954 0.9496 N/A	 0.8985
	ܮܵܶ 0.9400	 0.9906	 0.9316 0.9931 0.9496 0.9313	 0.9140
݊	 120	 30	 134 12 138 91	 127	

	 Results	for	the	aperiodic	model	with	fixed	number	of	inspections	(30	inspections)	
,௦ܣ ஺ೞܮܵ 	 0.9096	 0.9898	 0.8882 0.9875 N/A 0.9085	 0.9086
	௠ܥ 4.75e+05	 4.87e+04	 6.48e+05 2.57e+04 4.	80e+05 4.89e+05	 4.84e+05
஼೘ܮܵ 	 0.9050	 0.9903	 0.8703 0.9949 0.9040 N/A	 0.8064
	ܮܵܶ 0.9073	 0.9900	 0.8792 0.9912 0.9040 0.9085	 0.8575
݊	 30	 30	 30 30 30 30	 30	
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Fig. 7 The relation between the 𝐴𝐴𝑖𝑖 and 𝐶𝐶𝑚𝑚 

 
The proposed model responded to the increase in the delay-time rate by increasing the num-

ber of inspections but this also increased the maintenance cost as well. The model chose the op-
timal inspections number that compromised between the availability of the system and the 
maintenance cost of the system 

6. Conclusion 
In this paper an aperiodic inspection model is proposed and solved using mutation-based Genet-
ic algorithm. The proposed inspection model is based on delay-time concept and nonhomogene-
ous Poisson process of defect arrivals rather than renewal theory and periodic inspection mod-
elling that are used classically. The proposed model also optimizes the number of inspections 
and the timing of inspections simultaneously rather than optimizing either the number of in-
spections or the timing of inspections as in the case of the majority of the available inspection 
models. Moreover, the proposed model uses two objectives, namely: system availability and 
maintenance cost, to optimize the inspection policy whereas the available inspection models use 
only one objective.  

The results showed that the proposed model is better (in all of the attributes) than the aperi-
odic model that uses fixed number of inspections. Moreover, the results showed that using two 
objectives (system availability and maintenance cost) in the inspection models rather than one 
objective, can improve the quality of the inspection policy in terms of system availability and 
maintenance cost. 

The proposed model is a general model that can be implemented with different ROCOD and 
different delay-time distributions. Also this model can be extended easily to cover complex sys-
tems and imperfect inspection cases. 
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